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On Confining Potentials and Essential
Self-Adjointness for Schrödinger Operators on
Bounded Domains in R

n

Gheorghe Nenciu and Irina Nenciu

Abstract. Let Ω be a bounded domain in R
n with C2-smooth boundary, ∂Ω,

of co-dimension 1, and let H = −Δ + V (x) be a Schrödinger operator on
Ω with potential V ∈ L∞

loc(Ω). We seek the weakest conditions we can find
on the rate of growth of the potential V close to the boundary ∂Ω which
guarantee essential self-adjointness of H on C∞

0 (Ω). As a special case of an
abstract condition, we add optimal logarithmic type corrections to the known
condition V (x) ≥ 3

4d(x)2
where d(x) = dist(x, ∂Ω). More precisely, we show

that if, as x approaches ∂Ω,

V (x) ≥ 1

d(x)2

(
3

4
− 1

ln(d(x)−1)
− 1

ln(d(x)−1) · ln ln(d(x)−1)
− · · ·

)

where the brackets contain an arbitrary finite number of logarithmic terms,
then H is essentially self-adjoint on C∞

0 (Ω). The constant 1 in front of each
logarithmic term is optimal. The proof is based on a refined Agmon exponen-
tial estimate combined with a well-known multidimensional Hardy inequality.

1. Introduction

Consider a particle in a bounded domain Ω in R
n, n ≥ 1, in the presence of a

potential V . At the heuristic level, if V (x) → ∞ as x approaches the bound-
ary ∂Ω, then the particle is confined in Ω and never visits the boundary. At the
classical level, this indeed happens when V (x) → ∞ as x → ∂Ω (see, e.g. [17, The-
orem X.5]). At the quantum level, the problem is much more complicated due to
the possibility that the particle tunnels through the infinite potential barrier and
“sees” the boundary. The fact that the particle never feels the boundary amounts
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to saying that V determines completely the dynamics: there is no need for bound-
ary conditions. At the mathematical level, by Stone’s Theorem, the problem is
then finding conditions on the rate of growth of V (x) as x → ∂Ω which ensure
that the Schrödinger operator

H = −Δ + V (1.1)

is essentially self-adjoint on C∞
0 (Ω). Let us note here that oscillations of the po-

tential could also play a role in the essential self-adjointness problem due to the
possibility of coherent reflections by an appropriately chosen sequence of potential
barriers (see [17], the Appendix to Chapter X.1). In this paper we will not consider
oscillatory potentials, but rather focus on potentials which grow to infinity at the
boundary of the domain.

The problem has a long and distinguished history; for details and further
references, we send the reader to [6] and [17] and the review papers [4,5,15]. In the
1-dimensional case (say, Ω = (0, 1)) there exists a well-developed theory of essential
self-adjointness of Sturm-Liouville operators, which is based on limit point/limit
circle Weyl type criteria (see e.g. [6, 17] and the references therein). In particular
if, under appropriate regularity conditions,

V (x) ≥ 3
4
· 1
d(x)2

, (1.2)

where d(x) = dist
(
x, {0, 1}

)
, then H is essentially self-adjoint on C∞

0 (0, 1). The
constant 3

4 is optimal, in the sense that if for some ε > 0,

0 ≤ V (x) ≤
(

3
4
− ε

)
· 1
d(x)2

,

near 0 and/or 1, then H is not essentially self-adjoint on C∞
0 (0, 1) (see Theo-

rem X.10 in [17]). Many results have been generalized from one to higher di-
mensions – see, for example, a comprehensive review of these results in [5]. In
particular, if Ω is a bounded domain with C2 boundary ∂Ω of codimension 1, and
if V satisfies (1.2) as x approaches ∂Ω, with d(x) = dist(x, ∂Ω), then H defined as
in (1.1) is essentially self-adjoint on C∞

0 (Ω). Moreover, Theorem 6.2 in [5] implies
that for the case at hand the essential self-adjointness of H is assured by a weaker
condition, namely

V (x) ≥ 3
4
· 1
d(x)2

− c

d(x)
(1.3)

with some c ∈ R+. This raises the following optimality question: While among
power-type growth conditions, 3

4 ·
1

d(x)2 is optimal both in the exponent and in the
constant, does a growth condition of the type

V (x) ≥ 3
4
· 1
d(x)2

(
1 − m

(
d(x)

))
, lim

t→0+
m(t) = 0 , m(t) ≥ 0

still imply essential self-adjointness of H? It turns out that this is false – see the
counterexample in the proof of Theorem 3. So the question of optimality should
be refined to asking whether 3

4 ·
1

d(x)2 is the leading term of a (possibly formal)
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asymptotic expansion near ∂Ω of a critical potential Vc such that V ≥ Vc near ∂Ω
implies essential self-adjointness of H on C∞

0 (Ω). This would amount to finding
the form and size of sub-leading terms in the asymptotic expansion of Vc.

The main result of this note is the affirmative answer to this optimality
question. Namely, we show that for bounded domains Ω in R

n, n = 1, 2, 3, . . .
having C2 boundary of codimension 1, and for potentials V satisfying

V (x) ≥ 1
d(x)2

(
3
4
− 1

ln(d(x)−1)
− 1

ln(d(x)−1) · ln ln(d(x)−1)
− · · ·

)
(1.4)

as x approaches ∂Ω, the Schrödinger operator H is essentially self-adjoint on
C∞

0 (Ω), and that the constants 1 in front of each logarithmic term on the right-
hand side of (1.4) are optimal (for a precise statement, see Theorem 3).

Two remarks are in order here. The first one is that we are interested in
optimality rather than generality. Accordingly, and also in order not to obscure
the main ideas of our proofs by technicalities, we consider the simplest case, which
is still the most interesting from a physical point of view: a bounded domain
Ω ⊂ R

n with C2 boundary of co-dimension 1. In addition, we only consider scalar
Schrödinger operators with regular (L∞

loc) potentials, and we consider only what
one can think of as the “isotropic” case, i.e. we seek conditions on V (x) which
depend only on d(x), and not on the specific point x0 of the boundary that x
approaches, or the direction along which x → x0. In this setting the proofs are
short and elementary. Concerning more general situations, we note here that many
results about the essential self-adjointness problem of second order elliptic opera-
tors of general form on arbitrary domains in R

n can be found in [5] (see especially
Corollary 3.3 and its applications) – and then one can consider again the above
optimality question. At the price of technicalities, one may be able to extend the
results of the present note to more general situations, e.g. boundaries with com-
ponents of higher co-dimension, local singularities of the potential or second order
elliptic operators of general form. Reducing the regularity of the boundary ∂Ω
below C2 seems to require a finer analysis – in particular, of multidimensional
Hardy inequalities on domains with less smooth boundaries (see e.g. [7, 8, 16] and
references therein for results in this area).

The second remark concerns the method of proof. While the proofs in [5] are
based on his theory of semimaximal operators, our method of proof is based on the
observation that essential self-adjointness follows (via the fundamental criterion for
self-adjointness, see, e.g., [2,17]) from Agmon type results on exponential decay of
eigenfunctions (see [1, Theorem 1.5a]). As stated, the result in [1] does not lead
to optimal growth conditions on the potential. One has both to strengthen the
exponential decay estimates, and to combine them with multidimensional Hardy
inequalities [7]. So our basic technical result is an exponential estimate of Agmon-
type – see Theorem 4. Here the point is that our condition (Σ.2) below is strictly
weaker than the corresponding condition (3.12) from Brusentsev [5].

The paper is organized as follows. In Section 2 we state the problem and the
main results. Section 3 contains the proof of the Agmon-type Theorem 4. While
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some of the results in this section go back to Agmon [1] and are well-known (e.g.
the identity in Lemma 3.2), we give complete proofs for the reader’s convenience.
Finally Section 4 contains the proofs of Theorems 1 and 2.

2. Main results

Let Ω be a bounded domain in R
n, n ≥ 1, with C2-smooth boundary, ∂Ω, of

co-dimension 1. We consider the function

d(x) = dist(x, ∂Ω), for x ∈ Ω , (2.1)

where “dist” denotes the usual, Euclidean distance in R
n. As is well-known (see,

for example, the Appendix to Chapter 14 in [13]), d is Lipshitz and differentiable
a.e. in Ω. More importantly for us here, there exists a constant

dΩ > 0 (depending only on the domain Ω)

such that for x ∈ Ω with d(x) < dΩ, d is twice-differentiable and

|∇d(x)| ≤ 1 . (2.2)

Remark 2.1. Actually |∇d(x)| = 1 for x ∈ Ω with d(x) < dΩ, see for example [13],
or Lemma 6.2 in [5], but in the proofs below we use only (2.2).

In Ω we consider the Schrödinger operator H = −Δ + V with V ∈ L∞
loc(Ω),

defined on D(H) = C∞
0 (Ω). As explained in the Introduction, we are seeking

growth conditions on V close to ∂Ω ensuring essential self-adjointness of H. These
will be given in terms of functions G described below:

Condition (Σ). A function G : (0,∞) → R is said to satisfy condition (Σ) if it is
C1(0,∞) and such that:
(Σ.1) There exists d0 > 0, d0 ≤ dΩ, such that

0 ≤ G′(t) ≤ 1
t

, for t ∈ (0, d0) and

G′(t) = 0 for t ≥ d0 .

(Σ.2) For any ρ0 ≤ d0
2 ,

∞∑
n=1

4−ne−2G(2−nρ0) = ∞ (2.3)

We can now formulate our main result:

Theorem 1. Consider an open, bounded domain Ω ⊂ R
n with C2-smooth boundary,

and the Schrödinger operator

H = −Δ + V , (2.4)

with V ∈ L∞
loc and domain D(H) = C∞

0 (Ω). Assume that there exists a function
G satisfying condition (Σ) such that

V = V1 + V2 , (2.5)
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where
V1(x) +

1
4
· 1
d(x)2

≥ G′(d(x)
)2 and V2 ∈ L∞(Ω) . (2.6)

Then H is essentially self-adjoint in L2(Ω).

Theorem 1 follows from the fundamental criterion for self-adjointness (see, for
example, [2,17]), a multidimensional Hardy inequality [7], and a (refined) Agmon-
type exponential estimate (see Theorem 4 in Section 3).

We now turn to various examples of functions G satisfying condition (Σ), and
the associated criteria for essential self-adjointness of H in terms of the growth of
the potential at the boundary of the domain.

The first, simplest example of a function G satisfying condition (Σ) is the
one for which at sufficiently small t:

G(t) = ln t ,

which leads to the classical bound

V1(x) ≥ 3
4
· 1
d(x)2

, as x → ∂Ω . (2.7)

The second example is (again for t sufficiently small)

G(t) = ln t − c · t , c ∈ R
+ .

This choice of G leads, through (2.6), to

V1(x) ≥ 3
4
· 1
d(x)2

− c̃

d(x)
, as x → ∂Ω , (2.8)

for all c̃ < 2c. This is the lower bound obtained by Brusentsev in [5, Theorem 6.2]
for the case at hand.

The next example is (again for sufficiently small t) of the form

G(t) = ln t +
∫

t

f(u) du

with
f(u) ≥ 0 , lim

u→0
uf(u) = 0 , and lim

t→0

∫
t

f(u) du < ∞ . (2.9)

This leads to a bound on V of the form

V (x) ≥ 3
4
· 1
d(x)2

− c̃

d(x)
· f

(
d(x)

)
, as x → ∂Ω , (2.10)

with f as above and all c̃ < 2. Although this result does not appear in an explicit
form in [5] it can still be obtained from Corollary 3.3 in [5]. Note that, since we
required that uf(u) → 0 as u → 0, the second term c̃

d(x) · f(d(x)) in (2.10) is of
lower order than 1

d(x)2 , and thus does not contradict the optimality of 3
4 ·

1
d(x)2 .

The last example is our main hierarchy of essential self-adjointness conditions.
Let p ∈ Z, p ≥ 2, and iteratively define

L1(t) = ln(1/t) , Lp(t) = lnLp−1(t) , (2.11)
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where each Lp is defined for t ∈ (0, e−1
p ) with e1 = e and ep = eep−1 . Then we have

the following result:

Theorem 2. Consider an open, bounded domain Ω ⊂ R
n with C2-smooth boundary,

and the Schrödinger operator
H = −Δ + V, (2.12)

with V ∈ L∞
loc and domain D(H) = C∞

0 (Ω). Let p ∈ Z, p ≥ 2 and assume that

V = V1 + V2 , (2.13)

where

V1(x) ≥ 3
4
· 1
d(x)2

− 1
d(x)2

p∑
j=2

(
j−1∏
k=1

Lk

(
d(x)

))−1

− 1
d(x)

· f
(
d(x)

)
, (2.14)

for all x with d(x) < min(e−1
p , dΩ), with f satisfying (2.9), V1 bounded from below

on Ω, and V2 ∈ L∞(Ω).
Then H is essentially self-adjoint in L2(Ω).

Remark 2.2. Let K be a positive constant. Rewriting V (x) as

V (x) =
(
V1(x) + K

)
+

(
V2(x) − K

)
one sees that, in order to obtain the result above, it is sufficient to prove Theorem 2
with V1 bounded from below by some (appropriately chosen) positive constant; this
is exactly how we prove the theorem – see Section 4.

Note that, for any given j ≥ 2, each term 1
t · (

∏j−1
k=1 Lk(t))−1 is non-integrable,

and hence a higher order correction than the integrable term f(t). Further note
that the domain on which

∑
j≤p(

∏j−1
k=1 Lk(t))−1 is well defined shrinks to the

empty set as p → ∞.
The term 1

4 ·
1

d(x)2 in (2.6) comes from the additional “barrier” given by the
uncertainty principle of quantum mechanics via the Hardy inequality (see (4.2)
below). The fact that Hardy inequalities appear here is not surprising since, as
expressions of the uncertainty principle, they play a key role in various aspects
of the spectral analysis of Schrödinger and Dirac operators like stability, self-
adjointness, etc (see e.g. [10–12, 14] and the references therein). During the last
decade a large body of literature about improvements to Hardy inequalities has
appeared (see e.g. the references in [3,9,11,18]). In particular, in [3] (under suitable
conditions) the following optimal improvement of (4.2) was proved:

∫
Ω

|∇ϕ(x)|2 dx ≥ 1
4

∫
Ω

|ϕ(x)|2
d(x)2

(
1 +

∞∑
i=1

i∏
k=1

X2
k

(
d(x)
D

))
dx (2.15)

where D is a sufficiently large constant, and Xk(t), t > 0 are defined recursively
by

X1(t) = (1 − ln t)−1 , Xk(t) = X1

(
Xk−1(t)

)
.
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However, this improvement of Hardy’s inequality does not lead to an improvement
of the result in Theorem 2 (which according to Theorem 3 is already optimal at
the level of logarithmic subleading terms). Indeed, at the level of the leading term,
as t → 0, X2

k = L−2
k and so the contribution of the logarithmic terms in (2.15) can

be absorbed in the last (integrable) term on the right-hand side of (2.14).
As we will show in Section 4, the theorem follows from Theorem 1 with the

following choice, for sufficiently small t, of G function:

Gp(t) = ln t +
1
2
·

p∑
j=2

Lj(t) +
∫

t

f̃(u) du , (2.16)

where f̃ also satisfies (2.9).
Our last result is about the optimality of (2.14). With the hypotheses of

Theorem 2, it is well-know that the constant 3
4 in front of the first term on the

right-hand side of (2.14) is optimal. We claim that the constant 1 in front of each
logarithmic term in the sum above is also optimal, in the following precise sense:

Theorem 3. Given p ≥ 2 and a constant c > 1, there exist potentials V for which
H = −Δ + V is not essentially self-adjoint, and which grow close to the boundary
∂Ω as

V (x) ≥ 3
4
· 1
d(x)2

− 1
d(x)2

p−1∑
j=2

(
j−1∏
k=1

Lk

(
d(x)

))−1

− c · 1
d(x)2

·
(

p−1∏
k=1

Lk

(
d(x)

))−1

.

(2.17)

We end this section with a discussion of condition (Σ) and its relation with
condition (3.12) from Corollary 3.3 in [5]. We comment first on condition (Σ.1).
Note that (Σ.2) implies that G(t) → −∞ as t → 0. So G′(t) ≥ 0 in (Σ.1) only
adds that G(t) → −∞ monotonically which is not a real restriction as far as we
are not considering (as already stated in the Introduction) the effect of oscillations
of the potential. In fact, if one considers potentials which grow monotonically as
x → ∂Ω one may impose even a stronger condition that G′(t) is monotonically
increasing to ∞ as t → 0. Consider now G′(t) ≤ 1

t in (Σ.1). This is again harmless
(as far as it does not contradict (Σ.2)!) since if G′

1(t) ≥ G′
2(t) then Theorem 1

with G(t) = G2(t) gives a stronger result than with G(t) = G1(t).
The crucial condition is (Σ.2) and this is to be compared with Brusentsev’s

condition (3.12) from Corollary 3.3. We show now that Brusentsev’s condition
(3.12) is (at least for G(t) satisfying (Σ.1)) strictly stronger than (Σ.2). Notice
that we have restricted our attention to the situation when his matrix A ≡ I.
Comparing functions, we see that in Brusentsev’s notation the function which
determines the growth of the potential at the boundary is η(x), and that we are
therefore interested in showing that, if

η(x) = −G
(
d(x)

)
, (2.18)
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satisfies condition (3.12) in [5], then G must satisfy our condition (Σ.2). Condition
(3.12) in Brusentsev guarantees that there exists a constant C > 0 such that

|∇η(x)| · e−η(x) ≤ C . (2.19)

If we recall that for x with d(x) small enough, |∇d(x)| = 1, then we get from (2.18)
and (2.19) that

d

dt
eG(t) = G′(t)eG(t) ≤ C ,

for all 0 < t < dΩ. But since G(t) → −∞ as t → 0+, we can integrate, for all n
greater than some fixed integer NΩ,

eG(2−nρ0) =
∫ 2−nρ0

0

G′(t)eG(t) dt ≤ 2−n ·Cρ0 .

Plugging this into the series from (2.3) we get
∞∑

n=1

4−ne−2G(2−nρ0) ≥
∞∑

n≥NΩ

4−n · 4n(Cρ0)−2 = +∞ ,

thus showing that G satisfies (Σ.2).
Conversely, recall the Gp defined in (2.16). As we will show in Section 4, the

function Gp satisfies (Σ). Take now the simplest case G(t) = G2(t) with f̃ ≡ 0 i.e.
G(t) = ln t + 1

2 ln ln 1
t for sufficiently small t and set

η(x) = −G
(
d(x)

)
.

Then as t = d(x) → 0+

|∇η(x)|e−η(x) = G′(t) · eG(t) =
(

ln
1
t

) 1
2

(
1 − 1

2
1

ln 1
t

)
→ +∞ ,

and hence η does not satisfy condition (3.12) from [5].

3. Agmon-type estimates

Proposition 3.1. Let ψ be a weak solution of

Hψ = Eψ ,

i.e. ψ ∈ H1
loc(Ω) and satisfies〈

ψ, (H − E)ϕ
〉

= 0 , for every ϕ ∈ C∞
0 (Ω) (3.1)

Let g ∈ C1(Ω) be a real-valued function for which there exists a constant c > 0
such that 〈

ϕ, (H − E)ϕ
〉
−

∫
Ω

|ϕ(x)|2|∇g(x)|2 dx ≥ c‖ϕ‖2 (3.2)

for every ϕ ∈ C∞
0 (Ω).
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For ρ > 0, small enough, set Ωρ = {x ∈ Ω | d(x) > ρ}. Then there exists a
constant K = K(c) < ∞, independent of ρ, such that∫

Ω2ρ

|eg(x)ψ(x)|2 dx ≤ K(c)
ρ

∫
Ωρ\Ω2ρ

(
1
ρ

+ |∇g(x)|
)
|eg(x)ψ(x)|2 dx . (3.3)

Since this might be of independent interest and the proof is the same, we will
actually prove this proposition in a slightly more general context. Indeed, consider
the Schrödinger operator with magnetic potential on Ω

H = (�p − �a)2 + V , V ∈ L∞
loc(Ω) , �a ∈ C1

loc(Ω) , �p = −i∇ , (3.4)

defined on D(H) = C∞
0 (Ω) and, for ϕ,ψ ∈ W 1,2, the associated quadratic form

h[ϕ,ψ] =
∫

Ω

(�p − �a)ϕ · (�p − �a)ψ dx +
∫

Ω

ϕ̄ ·V ψ dx . (3.5)

Note that if ϕ and ψ are both in C2
0 (Ω), then

h[ϕ,ψ] =
∫

Ω

ϕ(x) (Hψ)(x) dx .

One of the main technical ingredients is the following simple identity [1]:

Lemma 3.2. Let ψ be a weak solution of Hψ = Eψ, and let f = f̄ ∈ C1
0 (Ω). Then

(h − E)[fψ, fψ] =
〈
ψ, |�∇f |2ψ

〉
. (3.6)

Proof. Consider first f ∈ C∞
0 and let ϕ ∈ C∞

0 . Then

(h − E)[ϕ, fψ] =
〈
(H − E)ϕ, fψ

〉
=

〈
f(H − E)ϕ,ψ

〉
.

Since [f, �p − �a] = i∇f on C∞
0 , we get that

[f,H] =
[
f, (�p − �a)2

]
= i

(
(�p − �a) · ∇f + ∇f · (�p − �a)

)
,

and so, if we remember that ψ is a weak solution,

(h − E)[ϕ, fψ] =
〈
[f,H]ϕ,ψ

〉
=

〈
ϕ, [H, f ]ψ

〉
.

Since fψ ∈ W 1,2
0 (Ω) and C∞

0 is dense in the W 1,2 topology, the identity above
implies that

(h − E)[fψ, fψ] =
〈
ψ, f [H, f ]ψ

〉
= Re

〈
ψ, f [H, f ]ψ

〉
=

1
2

〈
ψ,

(
f [H, f ] − [H, f ]f

)
ψ

〉

=
1
2

〈
ψ,

[
f, [H, f ]

]
ψ

〉
.

(3.7)

Finally, a straightforward computation shows that[
f, [H, f ]

]
= −i

[
f, (�p − �a) · ∇f + ∇f · (�p − �a)

]
= −i (2i∇f · ∇f) = 2|∇f |2 ,

which completes the proof. �
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Proof of Proposition 3.1. As in [1], we will now choose a function f to plug into
the formula (3.6). More precisely, let

f = egφ ,

where g ∈ C1(Ω), real-valued, is the function from the statement of the proposition,
and φ ∈ C∞

0 (Ω), 0 ≤ φ ≤ 1, is a cut-off function,

φ(x) =
{

0 , x /∈ Ωρ

1 , x ∈ Ω2ρ .

Taking φ of the form φ(x) = k(d(x)) where

k(t) =
{

0 , 0 ≤ t ≤ ρ
1 , t ≥ 2ρ

one sees that for ρ small enough (say ρ < dΩ
2 )

|∇φ| ≤ K1

ρ
, (3.8)

with K1 an absolute constant. Then

|∇f |2 = f2|∇g|2 + m,

where
m = 2feg∇g · ∇φ + e2g|∇φ|2 .

Estimating directly leads to:

|〈ψ,mψ〉| ≤ 〈ψ, |m|ψ〉 =
∫

Ω

|ψ|2(2e2gφ|∇g| |∇φ| + e2g|∇φ|2) dx

≤ K1

ρ

∫
Ωρ\Ω2ρ

∣∣ψeg
∣∣2 (

2|∇g| + K1

ρ

)
dx

where in the last inequality we used (3.8), as well as the fact that ∇φ ≡ 0 on
(Ω \ Ωρ)

⋃
Ω2ρ. But now recall that the Agmon condition (3.2) was that

(h − E)[ϕ,ϕ] −
∫

Ω

|ϕ(x)|2|∇g(x)|2 dx ≥ c‖ϕ‖2 ,

with c independent of ϕ and ρ. Using the density of C∞
0 in W 1,2

0 , we obtain that

(h − E)[fψ, fψ] − 〈fψ, |∇g|2fψ〉 ≥ c‖fψ‖2 . (3.9)

Since
(h − E)[fψ, fψ] − 〈fψ, |∇g|2fψ〉 = 〈ψ,mψ〉 ,

we obtain
K1

ρ

∫
Ωρ\Ω2ρ

∣∣ψeg
∣∣2(2|∇g| + K1

ρ

)
dx ≥ |〈ψ,mψ〉| ≥ c

∫
Ω

∣∣fψ
∣∣2 dx ,

which, if we recall the choice of f made at the beginning of the proof, leads directly
to the claim of the proposition. �
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Theorem 4. Consider an open, bounded domain Ω ⊂ R
n with C2-smooth boundary,

and the Schrödinger operator

H = −Δ + V , (3.10)

with V ∈ L∞
loc and domain D(H) = C∞

0 (Ω). Assume that there exist E ∈ R and
c > 0 such that

〈
ϕ, (H − E)ϕ

〉
−

∫
Ω

|∇g(x)|2|ϕ(x)|2 ≥ c‖ϕ‖2 , (3.11)

for all ϕ ∈ C∞
0 (Ω), where g(x) = G(d(x)) for some G satisfying condition (Σ).

If ψ is a weak solution of Hψ = Eψ, then ψ ≡ 0.

Proof. Let d0 > 0 be the constant that appears in condition (Σ) for the function G
from the hypothesis. Fix, for the time being, 0 < ρ0 ≤ d0/2, and let ρ > 0 be such
that 2ρ ≤ ρ0. Then define a “normalized” G function:

Gρ(t) = G(t) − G(ρ) ,

and set
gρ(x) = Gρ

(
d(x)

)
.

Note that for all x ∈ Ω we have

∇gρ(x) = G′(d(x)
)
∇d(x) . (3.12)

This, together with condition (Σ.1) for G, and the fact that |∇d(x)| ≤ 1 for
d(x) < dΩ, implies in particular that

|∇gρ(x)| ≤ 1
d(x)

for x ∈ Ω \ Ωd0/2 . (3.13)

On the other hand, look at x ∈ Ωρ0 . Since

ρ0 ≤ d(x) ,

condition (Σ.1) implies that

gρ(x) ≥ Gρ(ρ0) = G(ρ0) − G(ρ) , (3.14)

and so
e2gρ(x) ≥ e2G(ρ0) · e−2G(ρ) , for all x ∈ Ωρ0 . (3.15)

Therefore

e2G(ρ0) · e−2G(ρ)

∫
Ωρ0

|ψ(x)|2 dx ≤
∫

Ωρ0

|egρ(x)ψ(x)|2 dx ≤
∫

Ω2ρ

|egρ(x)ψ(x)|2 dx ,

where we used the fact that 2ρ ≤ ρ0 and so Ωρ0 ⊂ Ω2ρ. Now note that ∇gρ = ∇g,
and so gρ satisfies (3.11) with the same E and c as g. In particular, one can apply
Proposition 3.1 and obtain∫

Ω2ρ

|egρ(x)ψ(x)|2 dx ≤ K(c)
ρ

∫
Ωρ\Ω2ρ

(
1
ρ

+
∣∣∇gρ(x)

∣∣) |egρ(x)ψ(x)|2 dx .
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Since 0 < ρ < 2ρ < ρ0 ≤ d0/2, it follows that Ωρ \ Ω2ρ ⊂ Ω \ Ωd0/2 and so (3.13)
implies that

K(c)
ρ

∫
Ωρ\Ω2ρ

(
1
ρ

+ |∇gρ(x)|
)
|egρ(x)ψ(x)|2 dx ≤ K̃(c)

ρ2

∫
Ωρ\Ω2ρ

|ψ(x)|2 dx ,

where we also used the fact that, for x ∈ Ωρ \ Ω2ρ,

gρ(x) ≤ Gρ(2ρ) = G(2ρ) − G(ρ) =
∫ 2ρ

ρ

G′(t) dt ≤
∫ 2ρ

ρ

1
t

dt = log 2 .

Putting it all together, we get that

K2(c, ρ0) · ρ2e−2G(ρ)

∫
Ωρ0

|ψ(x)|2 dx ≤
∫

Ωρ\Ω2ρ

|ψ(x)|2 dx . (3.16)

for some constant K2(c, ρ0).
Now, let n ≥ 1 be an integer, and set

ρn =
1
2n

ρ0 .

So 2ρn = ρn−1, and we get
M⋃

n=1

(Ωρn
\ Ω2ρn

) =
M⋃

n=1

(Ωρn
\ Ωρn−1) = ΩρM

\ Ωρ0 ⊂ Ω .

So using (3.16) successively with ρ = ρn, 1 ≤ n ≤ M , and summing leads to

ρ2
0K2(c, ρ0)

(
M∑

n=1

4−ne−2G(2−nρ0)

)∫
Ωρ0

|ψ(x)|2 dx ≤
∫

Ω

|ψ(x)|2 dx < ∞ . (3.17)

But from condition (Σ.2) we know that the series
∑

n≥1 4−ne−2G(2−nρ0) diverges,
and so we find that ∫

Ωρ0

|ψ(x)|2 dx = 0 . (3.18)

But ρ0 > 0 was arbitrary, and so by taking ρ0 → 0 it follows that∫
Ω

|ψ(x)|2 dx = 0 , (3.19)

as claimed. �

4. Proofs of the main theorems

Our strategy in approaching Theorem 1 consists of combining Agmon-type decay
estimates for (weak) eigenfunctions (see Theorem 4) with multidimensional Hardy
inequalities. More precisely, for H as above, the fundamental criterion for self-
adjointness tells us that Theorem 1 can be proved as follows:
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Lemma 4.1. With the hypotheses of Theorem 4, there exists an E < 0 such that,
for any ψ ∈ L2(Ω), the condition〈

ψ, (H − E)ϕ
〉

= 0 , for every ϕ ∈ C∞
0 (Ω) (4.1)

implies that ψ ≡ 0.

Proof. In view of Theorem 4 the only thing to be proved is that for ψ ∈ L2(Ω), (3.1)
implies that ψ is a weak solution of (H − E)ψ = 0 i.e. ψ ∈ H1

loc(Ω). This is an
interior regularity result for elliptic equations and follows from general theory. In
our simple setting one can see by elementary means that ψ ∈ H2

loc(Ω). Indeed let
Ω̃ ⊂ Ω, dist(Ω̃, ∂Ω) > 0. Then V ∈ L∞(Ω̃) and from 〈ψ, (H − E)ϕ〉 = 0 it follows∣∣〈ψ, (−Δ + 1)ϕ

〉∣∣ =
∣∣〈ψ, (V − E + 1)ϕ

〉∣∣ ≤ KΩ̃,E‖ϕ‖

for all ϕ ∈ C∞
0 (Ω̃), which via the Riesz lemma implies〈

ψ, (−Δ + 1)ϕ
〉

= 〈Φ, ϕ〉

for some Φ ∈ L2(Ω̃). This means that the distribution (−Δ + 1)Ψ on C∞
0 (Ω̃) is

represented by a L2(Ω̃) function and the proof is finished. �

The following multidimensional Hardy inequality will allow us to complete
the proof of our main theorem:

Theorem 5 (Multidimensional Hardy Inequality). Let Ω ⊂ R
n be a bounded open

set with C2-smooth boundary. Then there exists a constant A = A(Ω) ∈ R such
that

1
4

∫
Ω

|ϕ(x)|2
d(x)2

dx ≤
∫

Ω

|∇ϕ(x)|2 dx + A‖ϕ‖2 (4.2)

for every ϕ ∈ C∞
0 (Ω).

This particular form of the Hardy inequality in domains in R
n can be found,

for example, in [7].
Now the proof of Theorem 1 follows very quickly.

Proof of Theorem 1. From the fundamental criterion for self-adjointness (via Lem-
ma 4.1) and the Agmon-type Theorem 4, we conclude that what we must show
in order to complete the proof is that there exist E ∈ R, as well as c > 0 and a
function g(x) = G(d(x)) with G satisfying (Σ) such that

〈
ϕ, (H − E)ϕ

〉
−

∫
Ω

|∇g(x)|2|ϕ(x)|2 dx ≥ c‖ϕ‖2 , (4.3)

for all ϕ ∈ C∞
0 (Ω).

Recall that under the hypotheses of Theorem 1, the potential V = V1 + V2

with V2 ∈ L∞(Ω) and

V1(x) ≥ G′(d(x)
)2 − 1

4
· 1
d(x)2

,
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for some G satisfying (Σ). Using exactly this G to define the g we need, and
applying the result of the multidimensional Hardy inequality above, we get that
for E ∈ R

〈
ϕ, (H − E)ϕ

〉
−

∫
Ω

|∇g(x)|2|ϕ(x)|2 dx

≥
∫

Ω

(
V1(x) − G′(d(x)

)2 +
1

4d(x)2

)
· |ϕ(x)|2 dx

+
(
−‖V2‖L∞ − A − E

)
‖ϕ‖2

≥
(
−‖V2‖L∞ − A − E

)
‖ϕ‖2 .

On the way we have used the fact that |∇g(x)|2 ≤ G′(d(x))2. So choosing, for
example,

E = −‖V2‖L∞ − A − 1 (4.4)

leads to (4.3) being satisfied with c = 1. This is exactly what we needed, and
concludes our proof. �

Proof of Theorem 2. As already explained in Section 2, Theorem 2 follows di-
rectly from Theorem 1 and a choice of function G which for small t coincides with
(see (2.16)):

ln t +
1
2
·

p∑
j=2

Lj(t) +
∫

t

f̃(u) du ,

where we recall that the functions Lj were defined in (2.11), and f̃ , which is to be
found, must satisfy (2.9).

More precisely, let

Lp(t) =
p∑

k=2

⎛
⎝k−1∏

j=1

Lj(t)

⎞
⎠

−1

(4.5)

defined for 0 < t < e−1
p . Notice that limt→0 Lp(t) = 0 and moreover Lp(t)2

t is
integrable at zero. So if we define

f̃(t) =
{

f(t) + 1
4tLp(t)2 , for 0 ≤ t ≤ e−1

p

0 , for t ≥ e−1
p ,

(4.6)

then it satisfies (2.9). Let now h(t) be a smooth function with the properties:

h(t) =
{

t , for 0 ≤ t ≤ d0
2

3
4d0 , for t ≥ d0 ,

(4.7)

and 0 < h′(t) ≤ 1 for all 0 < t < d0. Here d0 ≤ min{e−1
p , dΩ} and in addition is

sufficiently small such that for t ∈ (0, d0)

1 − 1
2
Lp(t) − tf̃(t) ≥ 2

3
. (4.8)



Vol. 10 (2009) Self-Adjointness on Bounded Domains 391

We claim that

Gp(t) = lnh(t) +
1
2
·

p∑
j=2

Lj

(
h(t)

)
+

∫
h(t)

f̃(u) du , (4.9)

satisfies all the needed conditions.
To check that Gp satisfies (Σ), first note that, for any k ≥ 1,

L′
k(t) = −1

t

⎛
⎝k−1∏

j=1

Lj(t)

⎞
⎠

−1

,

and so, for t ∈ (0, d0)

G′
p(t) =

1
h(t)

·
[
1 − 1

2
Lp

(
h(t)

)
− h(t)f̃

(
h(t)

)]
h′(t) , (4.10)

while for t ≥ d0, G′
p(t) = 0. Then (Σ.1) follows from (4.10) , (4.8) and the prop-

erties of h(t).
To check (Σ.2), note that from (4.9) for t < d0

2 (take into account that d0 < 1
and for t < d0

2 , h(t) = t)

e−2Gp(2−nρ0) ≥ 4nρ−2
0 e−2

∫
0+ f̃(u) du ·

⎛
⎝p−1∏

j=1

Lj(2−nρ0)

⎞
⎠

−1

.

If we define, for x ∈ R large enough, the log-log functions ln0(x) = x, lnk(x) =
ln(lnk−1(x)), then note that for all 1 ≤ j ≤ p − 1 and n ≥ N(ρ0) = 1

1−ln 2 ln ρ−1
0

(remember that 2ρ0 < e−1
p )

Lj(2−nρ0) = lnj(2nρ−1
0 ) = lnj−1(n ln 2 + ln ρ−1

0 ) ≤ lnj−1 n .

But then
∞∑

n=0

4−ne−2Gp(2−nρ0) ≥ const.
∞∑

n=N(ρ0)

1
n ln(n) ln2(n) · · · lnp−2(n)

= +∞ ,

where the divergence of the latter series is an elementary consequence of the inte-
gral test.

Since sup
t≥ d0

2
G′

p(t)
2 < ∞, in view of the remark following Theorem 2, all

that remains to be done in order to apply Theorem 1 is to show that for t ∈
(0, d0

2 ) (2.14) implies (2.6) with G(t) = Gp(t). Taking into account (4.10) it is
sufficient to check that for t ∈ (0, d0

2 ):

1
t2

− 1
t2
Lp(t) −

1
t
f(t) ≥ 1

t2

(
1 − 1

2
Lp(t) − tf̃(t)

)2

(4.11)

Doing the algebra one gets the condition

−f(t)
t

≥ −2
f̃(t)

t
+

Lp(t)2

4t2
+

(
tf̃(t) + Lp(t)

) f̃(t)
t
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Now taking into account (4.6) and that from (4.8), for t ∈ (0, d0
2 ), Lp ≤ 2

3 , tf̃(t) ≤
1
3 one has

−2
f̃(t)

t
+

Lp(t)2

4t2
+

(
tf̃(t) + Lp(t)

) f̃(t)
t

≤ − f̃(t)
t

+
Lp(t)2

4t2
= −f(t)

t
,

and the proof is finished. �

Finally we turn to the proof of our optimality theorem:

Proof of Theorem 3. In order to achieve this, we will work in 1 dimension, on the
interval (0, 1), and construct such a potential close to 0. In this case, let α ∈ R

and consider the wave function

ψp,α(x) = x− 1
2 ·

⎛
⎝p−1∏

j=1

Lj(x)

⎞
⎠

− 1
2

·Lp(x)α . (4.12)

First note that ψp,α grows as x → 0+ for all α ∈ R, but that∫
0+

ψ2
p,α(x) dx = ∞ ⇐⇒ α ≥ −1

2
.

A direct calculation shows that

ψ′′
p,α(x) = Vp,α(x)ψp,α(x) , (4.13)

with

Vp,α(x) =
3
4
· 1
x2

− 1
x2

·
p−1∑
j=1

(
j∏

k=1

Lk(x)

)−1

+
(
2α + o(1)

)
· 1
x2

·

⎛
⎝ p∏

j=1

Lj(x)

⎞
⎠

−1

(4.14)

where the o(1) comes from a sum of terms which are of lower order (in the same
spirit as in the previous proof). In this case, they are

1
4
· 1
x2

·

⎛
⎝p−1∑

j=1

(
j∏

k=1

Lk(x)

)−1
⎞
⎠

2

+
α2

x2
·

⎛
⎝ p∏

j=1

Lj(x)

⎞
⎠

−2

− α

x2
·

⎛
⎝p−1∑

j=1

(
j∏

k=1

Lk(x)

)−1
⎞
⎠ ·

⎛
⎝ p∏

j=1

Lj(x)

⎞
⎠

−1

+
1
2
· 1
x2

p−1∑
j=1

j∑
k=1

(
j∏

l=1

Ll(x)

)−1 (
k∏

l=1

Ll(x)

)−1

− α

x2

p∑
k=1

(
p∏

l=1

Ll(x)

)−1 (
k∏

m=1

Lm(x)

)−1

.
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Further note that the other (decreasing at 0+) solution of

φ′′
p,α(x) = Vp,α(x)φp,α(x)

is given by the usual relation

φp,α(x) = ψp,α(x) ·
∫ x

0

1
ψ2

p,α(y)
dy .

Since ψ−2
p,α(y) ∼ y1−ε as y → 0+ for any given ε > 0, we see that φp,α(x) → 0 as

x → 0+, and so in particular φp,α and ψp,α are indeed two independent solutions.
But for α < − 1

2 , they are both in L2(0+) and so we are in the limit-circle case
and

Hp,α = −Δ + Vp,α

is not essentially self-adjoint on (0, 1). But this is exactly the type of potential we
were looking for: given a constant c > 1, pick an α < − c

2 < − 1
2 . Thus Hp,α is not

essentially self-adjoint, but for x close enough to the boundary ∂Ω, equation (4.14)
together with our choice of α implies that Vp,α satisfies (2.17), as claimed in the
theorem.

Finally, the potentials Vp,α can also be used in several space dimensions to
construct counterexamples �
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