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Octonionic Twists for Supermembrane Matrix
Models

Jens Hoppe, Douglas Lundholm and Maciej Trzetrzelewski

Abstract. A certain G2 × U(1) invariant Hamiltonian arising from the stan-
dard membrane matrix model via conjugating any of the supercharges by
a cubic, octonionic, exponential is proven to have a spectrum covering the
whole half-axis R+. The model could be useful in determining a normalizable
zero-energy state in the original SO(9) invariant SU(N) matrix model.

1. Introduction

Despite considerable effort [3, 7, 8, 12, 13, 15–19, 21–25, 29–31, 35, 38, 39, 43, 48, 49]
during the last decade, and crucial relevance to M-theory [4, 46] membrane the-
ory [5, 14, 20, 45] reduced Yang–Mills theory [2, 6, 9, 11], existence, uniqueness and
structure of zero-energy states in Spin(9)×SU(N) invariant supersymmetric ma-
trix models are not really understood to a degree that one could call satisfactory.

In this paper we consider models with G2 × U(1) × SU(N) symmetry that
we obtain by deforming (cp. [10, 36]) the Spin(9) × SU(N) models, and which
we believe to be relevant both from the point of view of deformation theory and
possible relations between ground states, as well as because (for the fixed value of
the deformation parameter that we take) the Hamiltonian is slightly simpler, and
therefore a good testing ground for new approaches.

The model is introduced in Section 2 by deforming the Spin(9) × SU(N)
invariant one via a particular cubic exponential. In Section 3, with the help of
various propositions that are proved in Section 4, this model is shown to share a
central feature of the original theory, namely that the Hamiltonian, in contrast with
the discreteness of the spectrum (cp. [34, 40]) for the purely bosonic theory, has
an essential spectrum covering the whole positive axis (cp. [41,44]). A summary of
the results is presented in Section 5. In the appendices some background material
is provided, and the deformation we introduce put into a slightly more general
context.
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2. The deformed model

To find a normalizable state annihilated by the supercharges 1

Qβ :=
(

iδαβ
i

2
fABCzB z̄C + iΓj

αβ

∂

∂xjA
− 1

2
fABCxjBxkCΓjk

αβ

)
λαA

+
(

2δαβ
∂

∂zA
− ifABCxjB z̄CΓj

αβ

)
λ†

αA (1)

(and by their hermitian conjugates) is a difficult task; the (xjA)A=1,...,N2−1
j=1,...,7 and

zA = x8A + ix9A are bosonic coordinates, (λαA)A=1,...,N2−1
α=1,...,8 Grassmann vari-

ables, fABC totally antisymmetric structure constants of SU(N), Γjk := 1
2 [Γj ,Γk],

and (Γj)j=1,...,7 (purely imaginary, antisymmetric) matrices satisfying {Γj ,Γk} =
2δjk18×8, in a particular representation given by iΓj

α8 = δj
α, iΓj

kl = −cjkl, totally
anti-symmetric octonionic structure constants.

In [26] conjugation by the exponent of

g(x) :=
1
6
fABCxjAxkBxlC(iΓjkl)ββ (2)

was shown to remove the third term in (1) (extending an observation made in [45];
note that

∑
j Γj

αβΓjkl
ββ = Γkl

αβ for fixed β, cp. Appendix B). Correspondingly, defin-

ing Hk := {Q(k), Q(k)†} ≥ 0, where (choosing β = 8)

Q(k) := ekg(x)Q8e
−kg(x) = Q8 +

k

2
fABCxjBxlCΓjl

α8λαA , (3)

gives

Hk = −Δ
R9(N2−1) + (k − 1)2V1...7 + V89 + z̄AfABCxjBfA′B′CxjB′zA′

+ 2fAA′ExjE(δα8δα′j − δαjδα′8)λαAλ†
α′A′

+ 2(k − 1)fEAA′xjE

(
iΓj

)
ll′

λlAλ†
l′A′

+ fEAA′zEλαAλαA′ + fEAA′ z̄Eλ†
αA′λ

†
αA . (4)

The potential terms for the x- resp. z-coordinates are given by

V1...7 =
1
2
fABCxjBxlCfAB′C′xjB′xlC′ resp. V89 =

1
4
fABC z̄BzCfAB′C′zB′ z̄C′ .

While for large k,

Ĥ := −Δx + V1...7 − 2fEAA′xjEcjll′λlAλ†
l′A′ , (5)

appears to be the relevant operator (having rescaled x → (k − 1)−1/3x) 2 we will,
in this note, exclusively study Hk=1 =: H̃, which is of the form (cp. (4))

H̃ = −Δx + HD + V89 + fzλλ + fz̄λ†λ†, (6)

HD := −Δz + z̄AfABCxjBfA′B′CxjB′zA′ +2fAA′ExjE(δα8δα′j−δαjδα′8)λαAλ†
α′A′ .

1cp. Appendix A
2This point (and [10] in general) was discussed with B. Durhuus and J. P. Solovej, -which we
gratefully acknowledge.
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The operator HD (= HD(x) ≥ 0) arises from the second line of (1) alone,
and we will heavily use that its spectrum and eigenfunctions are known [27]. The
operator V89+zfλλ+z̄fλ†λ† appearing in (6) and involving only the z-coordinates
will be denoted by K. We also note that, regardless of the choice of k, the bosonic
part of Hk (first line in (4)) has a strictly positive and purely discrete spectrum
(this is easily proved along the lines of [34,40]).

The bosonic part of HD describes two sets of n := N2−1 harmonic oscillators
whose frequencies ωA are the square root of the eigenvalues of the parametrically
x-dependent, positive semidefinite frequency matrix

SAA′(x) := fABCxjBfA′B′CxjB′ , (7)

while its fermionic part, 2WαA βB(x)λαAλ†
βB, that is linear in xjA, has eigenvalues

arising from those of 2WαA βB , which are {±2ωA(x)}A=1,...,n as well as 6n times
the eigenvalue zero – altogether leading to the exact zero-energy state(s) of HD [27]

ψx =
n∏

A=1

√
ωA(x)

π
e−

1
2 ωA(x)z̄′

Az′
A e

(−ω1)
α1A1

(x) . . . e
(−ωl)
αlAl

(x)λα1A1 . . . λαlAl
, (8)

(where, n ≤ l ≤ 7n, ωl>n := 0, and we have diagonalized S via z′A = RAB(x)zB ,
S = RT [ω2

A]R), that involves the eigenvectors e(ω)(x) of the matrix W (x) cor-
responding to eigenvalue ω. Excited states of HD are obtained by acting with
the bosonic creation operators (i.e. multiplying ψx by the corresponding Hermite
polynomials) and/or adding fermions corresponding to positive eigenvalues 2ω (i.e.
multiplying ψx by e

(+ω)
αA λαA).

Alternatively, thinking of the coordinate point x = (xjA) as a tuple (Xj)
of traceless hermitian N × N matrices, with Xj = xjATA in a basis {TA} s.t.
[TA, TB ] = ifABCTC , the matrix (operator) S can also be written as

S(x) =
7∑

j=1

adXj
◦ adXj

=
[
Xj , [Xj , · ]

]
,

acting on i · su(N) ∼= R
n, E ↔ (eA). In particular, its lowest eigenvalue ω2

min is
given by

ω2
min = min

e∈Sn−1
eASABeB = min

‖E‖=1

∑
j

‖[Xj , E]‖2 ,

where ‖ · ‖ here denotes the corresponding norm on i · su(N) ∼= R
n. Hence, for

N > 2, S(x) will have zero-modes not only when all matrices Xj commute, but
(of qualitative significance) for the larger space of configurations where all the Xj

are simultaneously block-diagonalizable.
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3. Continuity of the spectrum of H̃

In this section we formulate and prove the main theorem of the paper. We will
make use of three propositions and one lemma (which are proved in Section 4 in
order not to break the flow of the text).

Main theorem. For any λ ≥ 0 there exists a sequence (Ψt) of rapidly decaying
smooth SU(N)-invariant functions such that ‖Ψt‖ = 1 and∥∥∥(H̃ − λ)Ψt

∥∥∥ → 0 as t → ∞ .

It follows that the spectrum of H̃ (when restricted to the physical Hilbert space)
consists of the whole non-negative real line.

This is clearly similar to the the case for the original Hk=0. However, because
of the terms that vanish for Hk=1, together with the convenient structure of the
remaining terms noted in the previous section, we are able to construct such a
sequence (Ψt) explicitly without resorting to the gauge fixing procedure used in [41,
44].

In the following, we write H̃ as

H̃ = −Δx + HD(x) + K , (9)

where
HD(x) = −4∂z̄ · ∂z + z̄ ·S(x)z + 2W (x)λλ† (10)

and
K(z) =

1
4
fz̄zfzz̄ + fzλλ + fz̄λ†λ† . (11)

We also point out that, since H̃ is an unbounded operator, it is considered to be
defined as a differential operator on the Schwartz class S of smooth functions of
rapid decay, and then extends by closure or Friedrichs extension to a self-adjoint
operator in H = L2(R9n) ⊗F .

Our candidate for the sequence Ψt will be wavefunctions given by the minimal
fermion number ground state ψx of HD(x) multiplied by some gauge invariant cut-
off function χt. Formally, it is convenient to write the Hilbert space H as a constant
fiber direct integral (see [37]) over the x-coordinates,

H =
∫ ⊕

R7n

h dx ,

where (writing dx = d7nx, dz = dnx8d
nx9 for the integration measures)

h := L2(R2n) ⊗F =
∫ ⊕

R2n

F dz

is the z-coordinate Hilbert space on which the operator HD(x) + K acts in each
point x. Hence, for any Ψ(x, z) = χ(x)ψx(z) ∈ H, we have

‖Ψ‖2
H =

∫
R7n

|χ(x)|2‖ψx‖2
h dx =

∫
R7n

|χ(x)|2
∫

R2n

‖ψx(z)‖2
F dz dx . (12)
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We also write the ground state (8) of HD(x) in a more compact notation,

ψx(z) = π−n
2 s(x)

1
4 e−

1
2 z̄ ·S(x)1/2zξx , (13)

where s := det S, and ξx ∈ Fn (i.e. n fermions) is the normalized fermionic eigen-
vector satisfying

W (x)λλ† ξx = −
∑
A

ωA ξx = − tr
(
S(x)

1
2
)
ξx . (14)

We note the following:

Proposition 1. ψx is smooth (also in x), rapidly decaying, and SU(N)-invariant.

Proposition 2. ‖ψx‖h = 1, and ‖|z|kψx‖h ≤ Ck

ω
k/2
min(x)

, for k = 1, 2, 4 and some

positive constants Ck.

Hence, by choosing an appropriate cut-off function χt for the x-coordinates
such that ωmin(x) → ∞ as t → ∞, we can make the terms in K(z) arbitrarily
small. The following proposition shows that such a choice is indeed possible.

Proposition 3. For any λ ≥ 0 and t sufficiently large there exist SU(N)-invariant
cut-off functions χt ∈ C∞

0 (R7n) such that ∀x ∈ suppχt

ωmin(x) ≥ c1t , c2t ≤ |x| ≤ c3t , (15)

and, as t → ∞,

‖χt‖L2(R7n) = 1 , ‖∂jAχt‖L2(R7n) ≤ c4 , ‖(−ΔR7n − λ)χt‖L2(R7n) → 0 , (16)

where (here, and in the following) ck=1,2,3,... are some positive constants.

As a final preparation before proving the main theorem, we state the following
lemma which ensures that also certain derivatives tend to zero.

Lemma 4. ‖∂jAψx‖h ≤ c5
ωmin(x) and ‖∂2

jAψx‖h ≤ c6
ω2

min(x)
on suppχt.

3.1. Proof of the main theorem

Motivated by the expression (9) and the above preparations, we define

Ψt(x, z) := χt(x)ψx(z) ,

where χt ∈ C∞
0 (R7n) is chosen according to Proposition 3. We note that Ψt is in

the domain of H̃ and by (12) has ‖Ψt‖ = 1. Acting with H̃ on Ψt(x, z), we obtain

H̃Ψt = −ψxΔxχt − 2
∑
j,A

∂jAχt∂jAψx −
∑
j,A

χt∂
2
jAψx + χtK(z)ψx , (17)

(where we used the fact that HD(x)ψx = 0). Subtracting λΨt from this equation
and using Propositions 2, 3 and Lemma 4 (and that any operator on F is bounded)
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to estimate the norms of the terms on the r.h.s. as t → ∞, we find

‖ψx(−Δx − λ)χt‖2 = ‖(−Δx − λ)χt‖2
L2(R7n) → 0 ,

‖∂jAχt ∂jAψx‖2 ≤
∫

|∂jAχt|2
(

c5

ωmin

)2

dx ≤ c7

t2
‖∂jAχt‖2

L2(R7n) ≤
c8

t2
→ 0 ,

‖χt∂
2
jAψx‖2 ≤

∫
|χt|2

(
c6

ω2
min

)2

dx ≤ c9

t4
‖χt‖2

L2(R7n) → 0 ,

and

‖χtK(z)ψx‖2 ≤
∫

|χt|2(c10‖|z|4ψx‖h + c11‖|z|ψx‖h)2dx

≤
∫ (

c10C4

ω2
min

+
c11C1

ω
1/2
min

)2

|χt|2dx ≤ c12

t
‖χt‖2

L2(R7n) → 0 .

Hence, ‖(H̃ − λ)Ψt‖ → 0 as t → ∞.
It follows that, for any λ ≥ 0, the operator H̃ − λ does not have a bounded

inverse. Together with H̃ ≥ 0 from supersymmetry, this proves the theorem. �

4. Proofs

Here we present detailed proofs of the propositions and lemma that were stated
in the previous section.

4.1. Proof of Proposition 1

It is obvious from (13) that ψx ∈ S(R2n) ⊗ Fn =: Sn. Smoothness in x for the
scalar (bosonic) part of ψx follows from our requirement that ωmin(x) > 0, i.e.
s > 0 for every x we consider. As for the fermionic part ξx, smoothness follows by
considering Fn as a real space of dimension

(
8n
n

)
and, for each point x, viewing ξx

as the (up to sign) unique normalized eigenvector of the linear map ξ 
→ W (x)λλ†ξ
with eigenvalue −

∑
A ωA(x). (A consistent choice of sign can be made because we

will only be working on orientable subsets of R
7n.) Smoothness of ξx now follows

from smoothness of W (x) and the implicit function theorem. Also note that any
x-derivatives ∂jAψx, ∂jA∂kBψx, etc. still lie in Sn.

ψx is SU(N)-invariant (covariant) in the sense that R̃ψRx(Rz) = ψx(z),
where R (resp. R̃) ∈ SU(N) ↪→ SO(n) (resp. Spin(Fn)). This follows from the
uniqueness of ψx at each point x and covariance of the operator HD(x), i.e.
URHD(x)U†

R = HD(RT x), where U denotes the corresponding unitary represen-
tation of SU(N) on h. �
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4.2. Proof of Proposition 2

Since ψx(z) is Gaussian in the z-coordinates, the evaluation of the moments
‖|z|kψx‖2

h = 〈|z|2k〉ψx
is straightforward. We find that ‖ψx‖2

h = ‖ξx‖2
F = 1,

‖|z|ψx‖2
h =

∑
A

1
ωA

,

∥∥|z|2ψx

∥∥2

h =
3
2

∑
A

1
ω2

A

+
1
2

(∑
A

1
ωA

)2

, and

∥∥|z|4ψx

∥∥2

h = k1

∑
A

1
ω4

A

+ k2

(∑
A

1
ω3

A

) (∑
A

1
ωA

)
+ k3

(∑
A

1
ω2

A

)2

+ k4

(∑
A

1
ω2

A

) (∑
A

1
ωA

)2

+ k5

(∑
A

1
ωA

)4

for some combinatorial factors k1, . . . , k5. For example, the evaluation of ‖|z|2Ψx‖2
h

goes as follows

∥∥|z|2ψx

∥∥2

h = 〈|z|4〉ψx

= π−ns
1
2

∫ (
|u|2 + |v|2

)2
e−u ·S1/2ue−v ·S1/2vdnudnv

= 2π−n
2 s

1
4

∫
|u|4e−u ·S1/2udnu + 2π−ns

1
2

(∫
|u|2e−u ·S1/2udnu

)2

= 2π−n
2 s

1
4

∑
A,B

∫
ũ2

Aũ2
Be−

∑
C ωC ũ2

C dnũ

+ 2π−ns
1
2

(∑
A

∫
ũ2

Ae−
∑

C ωC ũ2
C dnũ

)2

= 2
∑
A

1 · 3
22ω2

A

+ 4
∑
A<B

1
2ωA

1
2ωB

+ 2

(∑
A

1
2ωA

)2

=
3
2

∑
A

1
ω2

A

+
1
2

(∑
A

1
ωA

)2

=
3
2

tr S−1 +
1
2

(
tr S− 1

2

)2

,

where we diagonalized S = RT [ωA]2R (at the point x) and put ũ := Ru. Hence,

‖|z|ψx‖h ≤
√

n

ωmin
,

∥∥|z|2ψx

∥∥
h ≤

√
n(n + 3)/2

ωmin
, and

∥∥|z|4ψx

∥∥
h ≤ C4

ω2
min

for some positive constant C4. �
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4.3. Proof of Proposition 3

We divide the proof into two steps. First, we show that the conditions (15) can be
satisfied on some subset Dt ⊆ R

7n. Then we construct a function χt with support
on Dt which also satisfies the conditions (16).

4.3.1. Construction of the set Dt. We start by finding an explicit point x̂ where
ωmin(x̂) > 0. A basis for the Lie algebra i · su(N) of traceless hermitian N × N -
matrices is given by N − 1 diagonal ones, hk, together with the off-diagonal

eij := Eij + Eji , fij := i(Eij − Eji) ,

(1 ≤ i < j ≤ N), where Eij denotes the standard basis of matrices. For any
diagonal matrix Λ = diag(λ1, . . . , λN ) we have

[Λ, eij ] = −i(λi − λj)fij and [Λ, fij ] = i(λi − λj)eij . (18)

Let e.g. X̂1 := diag(m,m − 1, . . . ,−m + 1,−m) (or any other traceless diagonal
matrix with all entries different), and X̂2 :=

∑
i<j eij . Now, take any fixed

E =
∑

k

αkhk +
∑
i<j

βijeij +
∑
i<j

γijfij ∈ isu(N)

and require E to commute with both X̂1 and X̂2. Then, by (18), [X̂1, E] = 0 implies
βij = γij = 0, i.e. E must be diagonal, E = diag(λ1, . . . , λN ). Again, by (18),
[E, X̂2] = 0 implies

∑
i<j(λi − λj)fij = 0, i.e. all λi are equal. Tracelessness then

implies that E = 0. Hence,

‖[X̂1, E]‖2 + ‖[X̂2, E]‖2 > 0

for all E �= 0, and since Sn−1 is compact it also follows that

ω2
min(x̂) ≥ min

‖E‖=1

(
‖[X̂1, E]‖2 + ‖[X̂2, E]‖2

)
=: c > 0 ,

where x̂ = (x̂1, x̂2, x3, . . . , x7) ∈ R
7n, and x̂1 ↔ X̂1, x̂2 ↔ X̂2 as usual.

Now, consider the map F : R
n × R

n × Sn−1 → R+,

F (x1, x2, e) := ‖[X1, E]‖2 + ‖[X2, E]‖2 .

We know from the above that F (x̂1, x̂2, · ) ≥ c. Furthermore, note that for any R ∈
SU(N) ↪→ SO(n), since F (Rx1, Rx2, e) = F (x1, x2, R

T e), we have F (Rx̂1, Rx̂2, · )
≥ c > 0 as well. Then, because F is continuous and Sn−1 compact, there exists
an εR > 0 such that F (x1, x2, · ) ≥ c/2 for all x1, x2 in the balls BεR

(Rx̂1) and
BεR

(Rx̂2), respectively. Also, by compactness of SU(N), there is an ε > 0 such
that

F (x1, x2, · ) ≥
c

2
∀(x1, x2) ∈ Bε(Rx̂1) × Bε(Rx̂2) ∀R ∈ SU(N) .

Therefore, defining

D1 :=
⋃

R∈SU(N)

Bε(Rx̂1) × Bε(Rx̂2) × B1(0)5 ⊆ R
7n ,
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we find that ωmin(x) ≥ c/2 for all x ∈ D1. Furthermore, we have

(|x̂1| − ε)2 + (|x̂2| − ε)2 ≤ |x|2 ≤ (|x̂1| + ε)2 + (|x̂2| + ε)2 + 5

on D1. By rescaling this set (note that F is homogeneous of degree 2), Dt := tD1,
we reach the conditions (15). It is also useful to note that ωmin ≤ ωmax = ‖S 1

2 ‖op ≤
c13|x| (where ‖ · ‖op denotes the operator norm).

4.3.2. Construction of the function χt. We set

χt(x1, . . . , x7) := μt(x1, x2)ηt(x3) . . . ηt(x6)ζt(x7) ,

where μt, ηt and ζt are to be defined below.
Given some spherically symmetric bump function η ∈ C∞

0 (Rn) with sup-
port on the unit ball B1(0) and unit L2-norm, ‖η‖L2(Rn) = 1, we define ηt(x) :=
t−n/2η(x/t) so that supp ηt ⊆ Bt(0), ‖ηt‖L2(Rn) = 1, and ‖∂αηt‖L2(Rn) = t−|α|

‖∂αη‖L2(Rn) for any partial derivative multi-index α.
The function ζt is chosen to be asymptotically a gauge invariant solution

to the Helmholtz equation, namely we take (for the case λ = 0 we instead take
ζt := ηt)

ζt(x) := Atρt(x)h(x) ,

where At := ‖ρth‖−1
L2(Rn), ρt is a cut-off function ρt(x) := ρ(x/t) such that ρ ∈

C∞
0 (Rn) is spherically symmetric, 0 ≤ ρ ≤ 1, ρ = 1 on B1/2(0) and ρ = 0 outside

B1(0), and

h(x) :=
1

λ
1
2 |x|

sinn−3(λ
1
2 |x|)

satisfies (Δ + λ)h = 0 (see [42]), with

sinp(x) :=
∞∑

k=0

(−1)kx2k+1

2(3 + p)4(5 + p) · · · 2k(2k + 1 + p)
= cpx

(1−p)/2J(1+p)/2(x) .

Since the Bessel functions Jk behave asymptotically as [1]

Jk(x) =

√
2

πx

(
cos

(
x − π

4
(2k + 1)

)
+ O

(
1
x

))
,

one finds ∫
BR(0)

h2dx = c14

∫ R

0

J2
(n−2)/2(λ

1
2 r)rdr = c15R + o(R)

and ∫
BR(0)

|∂Ah|2dx ≤ c16

∫ R

0

J2
n/2(λ

1
2 r)rdr ≤ c17 + c18R .

Hence, At ≤ c19/t1/2 → 0, t → ∞, and

‖∂Aζt‖L2(Rn) ≤ At

(
‖(∂Aρt)h‖L2(Rn) + ‖ρt∂Ah‖L2(Rn)

)
≤ c19

t1/2

(c20

t
(c15t)1/2 + (c17 + c18t)1/2

)
→ c21 .
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Furthermore, (
∑

A ∂2
A + λ)ζt = At(Δρt)h + 2At

∑
A(∂Aρt)(∂Ah), so that

‖(−Δ − λ)ζt‖L2(Rn) ≤
c19

t1/2

(c22

t2
(c15t)1/2 + 2n

c20

t
(c17 + c18t)1/2

)
→ 0 .

Lastly, we set μt(x1, x2) := t−n‖μ‖−1
L2(R2n)μ(x1/t, x2/t), where

μ(x1, x2) :=
∫

R∈SU(N)

ηε(x1 − Rx̂1)ηε(x2 − Rx̂2) dμH(R)

and μH denotes some Haar measure on SU(N). Then μt ∈ C∞
0 (R2n), suppμt ×

Bt(0)5 ⊆ Dt, ‖μt‖L2(R2n) = 1, ‖∂αμt‖L2(R2n) ≤ cα/t|α|, and μt(Rx1, Rx2) =
μt(x1, x2) for all R ∈ SU(N).

Hence, χt ∈ C∞
0 (R7n) is SU(N)-invariant, suppχt ⊆ Dt, and

‖χt‖2
L2(R7n) = ‖μt‖2

L2(R2n)‖ηt‖8
L2(Rn)‖ζt‖2

L2(Rn) = 1 .

Furthermore, as t → ∞,

‖∂jAχt‖L2(R7n) =

⎧⎨
⎩

‖∂jAμt‖L2(R2n) ≤ c23/t → 0 , j = 1, 2
‖∂Aηt‖L2(Rn) ≤ c24/t → 0 , j = 3, 4, 5, 6
‖∂Aζt‖L2(Rn) ≤ c21 , j = 7

and

‖(−Δx − λ)χt‖L2(R7n) ≤ ‖Δ(x1,x2)μt‖L2(R2n) +
6∑

j=3

‖Δxj
ηt‖L2(Rn)

+ ‖(Δx7 − λ)ζt‖L2(Rn) → 0 . �

4.4. Proof of Lemma 4

Here, we will denote the partial derivatives ∂jAψx, ∂2
jAψx by ψ′

x and ψ′′
x , re-

spectively. Since ψx is a zero-energy state of HD, we have in particular that
∂jA(HDψx) = 0, which can be equivalently written as

−HDψ′
x =

(
z̄ ·S′(x)z + 2W ′(x)λλ†)ψx =: Φx .

In the following we will need an estimate on the norm of Φx ∈ Sn. We have, using
Propositions 2 and 3,

‖Φx‖h ≤ ‖z̄ ·S′(x)zψx‖h + 2
∥∥W ′(x)λλ†ψx

∥∥
h

≤ ‖S′(x)‖op(Rn)‖|z|2ψx‖h + 2
∥∥W ′(x)λλ†∥∥

op(F)
‖ψx‖h

≤ c25|x|
C2

ωmin(x)
+ c26 ≤ c27

t

t
+ c26 =: c5 .

Now, we note that Φx ∈ (ker H̄D)⊥ =: P+ where H̄D denotes the self-adjoint
extension of HD. To see this, consider any Φ0 ∈ ker H̄D. We have

〈Φx,Φ0〉h = −〈H̄Dψ′
x,Φ0〉h = −〈ψ′

x, H̄DΦ0︸ ︷︷ ︸
=0

〉h = 0 .
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Therefore, since the lowest eigenvalue of H̄D on P+ is 2ωmin > 0, we have
‖H̄D|−1

P+
‖op(h) ≤ 1

2ωmin
and

‖ψ′
x‖h = ‖H̄−1

D Φx‖h ≤ ‖H̄D|−1
P+

‖op(h)‖Φx‖h ≤ c5

ωmin
.

Similarly, taking the second derivative we have ∂2
jA(HDψx) = 0, i.e.

−HDψ′′
x = z̄ ·S′′(x)zψx + 2

(
z̄ ·S′(x)z + 2W ′(x)λλ†)ψ′

x =: Φ̃x .

Just as above, we see that Φ̃x ∈ P+ ∩ Sn, but we will also need an estimate on
‖|z|2ψ′

x‖h . For this, we recall from the proof of Proposition 2 that

〈|z|2ψx, |z|2ψx〉h =
3
2

trS−1 +
1
2

(
tr S− 1

2

)2

=: T (x) ,

Note that T is smooth for s > 0 and homogeneous of degree −2, because S
is homogeneous of degree 2. It follows that, if x = re with e ∈ S7n−1, then
T ′′(x) = r−4T ′′(e) and

2Re 〈|z|2ψ′′
x , |z|2ψx〉h + 2

∥∥|z|2ψ′
x

∥∥2

h = T ′′(x) ≤ 1
r4

sup
K0

|T ′′| ,

where K0 := S7n−1 ∩ {x ∈ R
7n : s(x) ≥ (c1/c3)2n} is compact and we have used

that ωmin/|x| ≥ c1/c3 by Proposition 3. Hence,∥∥|z|2ψ′
x

∥∥2

h ≤ c28

|x|4 + ‖ψ′′
x‖h

∥∥|z|4ψx

∥∥
h ≤ c29

ω4
min

(
1 + ω2

min‖ψ′′
x‖h

)
,

so that

‖ψ′′
x‖h = ‖H−1

D Φ̃x‖h

≤ 1
ωmin

(
c30‖|z|2ψx‖h + c31‖S′‖op‖|z|2ψ′

x‖h + c32‖ψ′
x‖h

)

≤ 1
ωmin

(
c30C2

ωmin
+

c33|x|
ω2

min

(
1 + ω2

min‖ψ′′
x‖h

) 1
2 +

c32c5

ωmin

)

and thus, ω2
min‖ψ′′

x‖h ≤ c6 for some constant c6. �

5. Summary

We have introduced G2×U(1)×SU(N) invariant matrix models as deformations of
the standard Spin(9)×SU(N) invariant models by conjugating a supercharge with
a cubic, octonionic, exponential. Furthermore, similarly to what has been shown
for the original models, we have proved that the spectrum of the corresponding
Hamiltonian H̃ covers the whole positive half-axis by finding sequences of states
contradicting existence of a bounded inverse to the operator H̃ − λ for any λ ≥
0. However, contrary to the case for the original models, we have constructed
such sequences explicitly, without fixing the gauge. Making use of the convenient
structure of terms appearing in H̃, we could configure the states to annihilate some
terms, while, related to having the possibility of making the lowest eigenvalue of a
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certain frequency matrix S arbitrarily large, other terms could be made arbitrarily
small – using a gauge invariant asymptotic solution to the Helmholtz equation,
with support on a set of matrices that are not simultaneously block-diagonalizable.
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Appendix A

In this appendix we give notation and conventions used in the paper (cp. e.g. [28]).
The supermembrane matrix theory is a quantum mechanical model with

N = 16 supersymmetries, SU(N) gauge invariance and Spin(9) symmetry. The
theory involves real bosonic variables xsA (coordinates) and real fermionic ones
θαA (Majorana spinors) with s = 1, . . . , 9, α = 1, . . . 16 and A = 1, . . . , N2 − 1 -
spatial, spinor and color indices respectively. The corresponding supercharges and
the Hamiltonian of the model are

Qα =
(

psAγs
αβ +

1
2
fABCxsBxtCγst

αβ

)
θβA , γst =

1
2
[γs, γt] ,

H = psApsA +
1
2
(fABCxsBxtC)2 + ifABCγs

αβθαAθβBxsC ,

{Qα,Qβ} = δαβH + 2γs
αβxsAJA , JA = fABC

(
xsBpsC − i

2
θαBθαC

)
. (19)

Here psA are momenta conjugate to xsA, [xsA, ptB ] = iδstδAB , γs are 16 × 16 di-
mensional, real matrices s.t. {γs, γt} = 2δst116×16, θαA are Grassmann numbers
s.t. {θαA, θβB} = δαβδAB , and fABC are SU(N) structure constants (real, anti-
symmetric). The operators are defined on the Hilbert space H = L2(R9(N2−1))⊗F ,
where F is the irreducible representation of θ’s, while the physical (gauge invari-
ant) Hilbert space consists of states |ψ〉 satisfying JA|ψ〉 = 0 which corresponds
to the Gauss law in unreduced N = 1 super Yang–Mills theory.

Such singlet constraint is an essential requirement for the model to be super-
symmetric which is apparent in Eq. (19). However, the necessity of the constraint
follows also from simply counting the fermionic and bosonic degrees of freedom.
Let us consider the Fock space formulation of the model. For the case at hand
there are 9(N2 − 1) bosonic degrees of freedom, however there are 16

2 (N2 − 1)
fermionic ones. The mismatch is equal to N2 − 1, which is exactly the number of
constraints coming from the Gauss law.
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There are many ways in which one can single out 8 out of 16 fermions (which
is required in order to obtain an irreducible Fock representation F). We will follow
the convention in [45] and introduce complex spinor variables λαA := 1√

2
(θαA +

iθ8+α A) i.e.3

θαA =
1√
2
(λαA + λ†

αA) , θα+8 A =
1

i
√

2
(λαA − λ†

αA) .

We then also split the coordinates xsA into (xjA, zA, z̄A) where zA = x8A + ix9A

and j = 1, . . . , 7.
After this is done the Spin(9) symmetry of (19) is not explicit, however now

an arbitrary wavefunction Ψ(x, z, z̄) can be written as

Ψ(x, z, z̄) = ψ + ψαAλαA +
1
2!

ψαA βBλαAλβB + . . . ,

with ψα1A1...αlAl
complex-valued and square integrable. The above sum is finite

and truncates when the number of fermions is more than 8(N2 − 1).4

It now follows that the Hamiltonian (19) can be written in terms of non-
hermitian (“cohomology”) charges Qα := 1√

2
(Qα + iQ8+α),

Qβ =
(

iδαβ
i

2
fABCzB z̄C + iΓj

αβ

∂

∂xjA
− 1

2
fABCxjBxkCΓjk

αβ

)
λαA

+
(

2δαβ
∂

∂zA
− ifABCxjB z̄CΓj

αβ

)
λ†

αA , (20)

so that, on the physical Hilbert space,

{Qα, Q†
β} = δαβH , {Qα, Qβ} = 0 , {Q†

α, Q†
β} = 0 .

Here, Γj are 8×8, purely imaginary, antisymmetric matrices satisfying {Γj ,Γk} =
2δjk18×8. We have chosen the following representation of γs matrices

γj =
[

0 iΓj

−iΓj 0

]
, γ8 =

[
0 18×8

18×8 0

]
, γ9 =

[
18×8 0

0 −18×8

]
,

implying

γjk =
[

Γjk 0
0 Γjk

]
, γj8 =

[
iΓj 0
0 −iΓj

]
,

γj9 =
[

0 −iΓj

−iΓj 0

]
, γ89 =

[
0 −18×8

18×8 0

]
,

3Other choices of 8 fermions are possible, e.g. Majorana–Weyl spinors (see [47]).
From now on the spinor indices α, β, . . . run from 1 to 8.
4Note that in this notation λαA is a fermionic creation operator while λ†

αA fermionic annihilation

operator.
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and

γjkl =
[

0 iΓjkl

−iΓjkl 0

]
, γjk8 =

[
0 Γjk

Γjk 0

]
,

γjk9 =
[

Γjk 0
0 −Γjk

]
, γj89 =

[
iΓj 0
0 iΓj

]
,

where γst := 1
2 [γs, γt], γstu := 1

6 (γs[γt, γu] + cycl.) and Γjk, Γjkl respectively.
It is here where the octonions enter, in choosing the representation iΓj

α8 = δj
α,

iΓj
kl = −cjkl with totally antisymmetric octonionic structure constants.5 This is

also natural from the view of representation theory of Clifford algebras since the
representations of Γj are uniquely given by left or right multiplication on the
octonion algebra (see e.g. [32]). Furthermore, because the automorphism group of
the octonions is given by the exceptional group G2 (which is also the subgroup of
Spin(7) fixing a chosen spinor index), the deformed Hamiltonians Hk, Ĥ, and H̃
will be G2 invariant.

Appendix B

Starting from the 9-dimensional Fierz identity (see e.g. [2])

γs
αβγst

α′β′ + γs
α′βγst

αβ′ + γs
αβ′γst

α′β + γs
α′β′γst

αβ = 2(δαα′γt
ββ′ − δββ′γt

αα′) ,

which holds for all t = 1, . . . , 9, α, α′, β, β′ = 1, . . . , 16, and using the representation
in Appendix A with α, α′, β′ = 1, . . . , 8, β = 9, . . . , 16 (then redefining β := β−8),
we obtain the corresponding 7-dimensional Fierz identity

Γj
αβΓjk

α′β′ + Γj
α′βΓjk

αβ′ = δαβΓk
α′β′ + δα′βΓk

αβ′ − δαβ′Γk
α′β − δα′β′Γk

αβ − 2δαα′Γk
ββ′

for all k = 1, . . . , 7, α, α′, β, β′ = 1, . . . , 8. From this identity it follows that

Γj
αβΓjk

α′β′ − Γj
α′β′Γjk

αβ = −2(δαα′Γk
ββ′ + δββ′Γk

αα′ − δα′βΓk
αβ′ + δαβ′Γk

α′β) .

Multiplying this equation with Γl
β′β̇

, summing over β′, and taking α′ = β = β̇ to
be fixed, we obtain

Γj

αβ̇
Γjkl

β̇β̇
= Γkl

αβ̇
.

Appendix C

In this appendix we consider deformed Hamiltonians from a more general view-
point and show how one could be led to the particular deformation considered in
this paper.

5Explicitly, cijk = +1 for (ijk) = (123), (165), (246), (435), (147), (367), (257).
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Let us consider the algebra of N > 1 supersymmetric quantum mechanics,
{Qα,Qβ} = δαβH, and the corresponding cohomology supercharges 6

Qαβ :=
1√
2
(Qα + iQβ) , Q†

αβ =
1√
2
(Qα − iQβ) .

We have
{Qαβ , Qμν} = 0 , {Qαβ , Q†

μν} = δ(αβ)(μν)H .

The deformed Hamiltonian Hαβ(k) := {Qαβ(k), Q†
αβ(k)} (no sum over α,β) given

by deformed cohomology supercharges Qαβ(k) := ekg(x)Qαβe−kg(x), where k ∈ R,
and g(x) is some operator s.t. [Qβ , g(x)] commutes with g(x), becomes

Hαβ(k) = H − 2ik
{
Qα,

[
Qβ , g(x)

]}
− 2k2

[
Qβ , g(x)

]2
.

Substituting the supercharges (19) for the particular model considered here, we
obtain

Hαβ(k) = H + k2
(
∂sAg(x)

)2 + kγst
αβ

(
∂sAg(x)ptA − ∂tAg(x)psA

)
− k(γstγu)αβfABCxsAxtB∂uCg(x)

+ 2ik∂sA∂tBg(x)γs
αα′γt

ββ′θα′Aθβ′B .

Now, say we are interested in a particular deformation where g(x) is cubic in x (so
that (∂g)2 is quartic). Because γstu is totally antisymmetric, a natural choice is

g(x) =
1
6
fABCxsAxtBxuCγstu

αβ ,

with α < β. Taking e.g. (α, β) = (8, 16) and choosing the representation of γs

matrices as in Appendix A, we find that

g(x) =
1
6
fABCxjAxkBxlCiΓjkl

8,8 =
1
6
cjklfABCxjAxkBxlC ,

and that H8,16(k) becomes precisely Hk in (4).
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