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Abstract. The aim of this paper is to establish estimates of the lowest eigen-
value of the Neumann realization of (i∇ + BA)2 on an open bounded subset
Ω ⊂ R

2 with smooth boundary as B tends to infinity. We introduce a “mag-
netic” curvature mixing the curvature of ∂Ω and the normal derivative of the
magnetic field and obtain an estimate analogous with the one of constant case.
Actually, we give a precise estimate of the lowest eigenvalue in the case where
the restriction of magnetic field to the boundary admits a unique minimum
which is non degenerate. We also give an estimate of the third critical field in
Ginzburg–Landau theory in the variable magnetic field case.

1. Introduction and statement of main results

Let Ω be an open bounded subset of R
2 with smooth boundary and A ∈ C∞(Ω, R2).

We let:
β = ∇× A

and for B > 0 and u ∈ H1(Ω):

qN
BA,Ω(u) =

∫
Ω

|(i∇ + BA)u|2dx

and we consider the associated selfadjoint operator, i.e. the Neumann realization
of (i∇+ BA)2 on Ω. We denote by λ1(BA) the lowest eigenvalue of this operator.
By the minimax principle, we have:

λ1(BA) = inf
u∈H1(Ω)

qN
BA,Ω(u)
‖u‖2

.

We first recall some properties of the harmonic oscillator on a half axis (see [8,13]).
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Harmonic oscillator on a half axis.
For ξ ∈ R, we consider the Neumann realization h

N,ξ in L2(R+) associated with
the operator

− d2

dt2
+ (t + ξ)2 , D(hN,ξ) =

{
u ∈ B2(R+) : u′(0) = 0

}
. (1.1)

One knows that it has compact resolvent and its lowest eigenvalue is denoted μ(ξ);
the associated L2-normalized and positive eigenstate is denoted by uξ = u( · , ξ)
and is in the Schwartz class. The function ξ �→ μ(ξ) admits a unique minimum in
ξ = ξ0 and we let:

Θ0 = μ(ξ0) , (1.2)

C1 =
u2

ξ0
(0)
3

. (1.3)

Let us also recall identities established by [5, p. 1283–1284]. For k ∈ N
∗, we denote

by Mk:

Mk =
∫

t>0

(t + ξ0)k|uξ0(t)|2dt .

M0 = 1 , M1 = 0 , M2 =
Θ0

2
, M3 =

C1

2
and

μ′′(ξ0)
2

= 3C1

√
Θ0 . (1.4)

Let us state a result in the case where β is constant:

Theorem 1.1. Assuming that β = 1, we have the estimate:

λ1(BA) = Θ0B − C1κmax

√
B + O(B1/3) ,

where
κmax = max

{
k(s), s ∈ ∂Ω

}
and k(s) denotes the curvature of the boundary at the point s. Moreover, the
groundstate decays exponentially away from the points of maximal curvature.

Remark 1.2. This result was first announced by a formal analysis in [5] and rig-
orously proved in the case of the disk (see [4]). Let us also mention that in [19],
an estimate at the first order was rigorously proved (see also [21] for the problem
in R

2 and R
2
+). For higher order expansion in the case of constant magnetic field,

one can finally mention [9, 10,12,13].

Our aim is to obtain a similar result when the the magnetic field is not
constant. We will assume that β > 0 on Ω. We introduce:

b = inf
Ω

β and b′ = inf
∂Ω

β , (1.5)

and we assume:
Θ0b

′ < b . (1.6)
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Estimate for the variable magnetic field.
Let us state a first (rough) estimate concerning the first eigenvalue:

Theorem 1.3. Assuming that β|∂Ω admits a unique and non degenerate minimum,
we have:

λ1(BA) = Θ0b
′B + O(B1/2) .

Remark 1.4. The first term was obtained by many authors (cf. [13, 19]) with a
worse remainder estimate. Our assumption of non-degeneracy permits to find the
optimal remainder O(B1/2) (the improvement occurs for the lower bound) which
is crucial to establish tangential Agmon estimates (see Section 4).

Let us also state a tangential localization result of the first eigenfunctions:

Proposition 1.5 (Tangential Agmon’s estimates for uB). Let uB be an eigenfunc-
tion associated with the lowest eigenvalue of the Neumann realization of (i∇ +
BA)2. We have the control:∫

exp
(
α1χ

(
t(x)

)
d
(
s(x)

)
B1/2

){
|uB |2 + B−1|(i∇ + BA)uB |2

}
dx ≤ C‖uB‖2 ,

where χ is a smooth cutoff function in a neighborhood of the boundary, t(x) =
d(x, ∂Ω), s(x) the curvilinear coordinate on the boundary and where d is the Agmon
distance to the minimum of β defined in Section 4.

Remark 1.6. This estimate improves the localization found in [13] by specifying the
behaviour of uB near the minimum of β. In Section 4 we also get tangential Agmon
estimates for DsuB . All these localizations properties are essential to obtain the
second correction term of Theorem 1.3.

Theorem 1.7. Assuming that β|∂Ω admits a unique and non degenerate minimum
in x0, we have:

λ1(BA) = Θ0b
′B + Θ1/2b

′1/2B1/2 + O(B2/5) ,

where

Θ1/2 = Θ1/2(x0)

= −κ(x0)C1 +
(

C1

2
− Θ0ξ0

)
1
b′

∂β

∂t
(x0) + Θ3/4

0

(
3C1

2b′
∂2β

∂s2
(x0)

)1/2

.

Remark 1.8.

1. When β|∂Ω admits a finite set M of non degenerate minima, we have the
same expansion by replacing Θ1/2 by minx∈M Θ1/2(x).

2. Without assuming the non degeneracy of the minima, we believe that the
conclusion of Theorem 1.7 is true by replacing Θ1/2 by minx∈M Θ1/2(x).

3. The optimal remainder is certainly O(B1/4) as suggested by the upper bound.
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4. The computations for the upper bound lead to conjecture the following ex-
pansion of the n-th eigenvalue:

λn(BA) = Θ0b
′B + Θn

1/2B
1/2 + O(B1/4) .

where:

Θn
1/2 = −κ(x0)C1 +

(
C1

2
− Θ0ξ0

)
1
b′

∂β

∂t
(x0) + (2n − 1)Θ3/4

0

(
3C1

2b′
∂2β

∂s2
(x0)

)1/2

.

5. In the variable case and under the assumption of Theorem 1.7, the localization
due to the curvature doesn’t play a role anymore; the effect of the curvature
is small compared to the variation of the magnetic field.

6. This expansion with two terms of the first eigenvalue could be generalized
at any order under the previous assumptions (unique and non degenerate
minimum of β|∂Ω) by using a Grushin approach (see [10]).

7. The case where the magnetic field (non degenerately) vanishes in Ω was
treated in [18]. Moreover, the case where it non degenerately vanishes on the
boundary remains open and should be an interesting problem.

8. Theorems 1.3 and 1.7 are also sensible under the hypothesis of regularity of
the domain. When the domain has corners (see [6, Theorem 1.2]) and with a
variable magnetic field, the ground state is not necessarily localized near the
points of the boundary where the magnetic field is minimum.

9. The asymptotic behaviour in Theorems 1.3 and 1.7 is strongly dependent on
the Neumann boundary condition we impose, as one can see in [15–17]. In
particular, in certain cases, the localization is no more determined by the
minimal points of β.

10. Finally, let us mention that there exists results in dimension 3. Indeed, the
two terms asymptotics in the constant magnetic field case is given in [14,
Theorem 1.2] and, until now, we only know the first term in the variable case
(see [14, Theorem 4.4]).

Constant magnetic field on the boundary.
In [2,3], the case of the constant magnetic field on the boundary is treated. Never-
theless, this case is studied under a non degeneracy condition: it is assumed that
the curvature of the boundary κ admits a unique maximum at x = x0 and that
the normal derivative ∂β

∂t admits a unique minimum at x = x0; moreover, the min-
imum of ∂β

∂t − b′κ has to be non degenerate. Here, we improve his result by using
more generic assumptions; in particular, we will see that the quantity to maximize
is the “magnetic curvature” defined by:

κ̃(x) = C1κ(x) +
(

Θ0ξ0 −
C1

2

)
1
b′

∂β

∂t
(x) .

More precisely, our result is the following:
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Theorem 1.9 (Upper bound: Constant magnetic field on ∂Ω). When the magnetic
field is constant on the boundary, we have the upper bound:

λ1(BA) ≤ Θ0b
′B−max

x∈∂Ω

{
C1κ(x) −

(
C1

2
− Θ0ξ0

)
1
b′

∂β

∂t
(x)

}
b′1/2B1/2+O(B1/3) ,

where κ(x) denotes the curvature of the boundary at x.

Remark 1.10.
1. The corresponding lower bound could certainly be obtained by the techniques

of [12].
2. Assuming the existence of a unique and non degenerate maximum of the

magnetic curvature κ̃, one could surely give an asymptotics at any order of
λ1(BA) and localization properties as for the constant magnetic field case
(see [10]) which would improve the hypothesis of Aramaki.

Organization of the paper.
In Section 2 and 3, we will prove the Theorem 1.3 and give the upper bound of
Theorem 1.7 and of Theorem 1.9. Then, we will see, in Section 4, that this first
rough estimate gives information on the localization of the groundstates on the
boundary near the mimimum of the magnetic field. In Section 5, we prove the
lower bound of Theorem 1.7 thanks to a reduction to a degenerate case studied
by S. Fournais and B. Helffer. Finally, we apply the previous results to give an
estimate of the third critical field in Ginzburg–Landau theory.

2. A rough lower bound

In order to get the lower bound in Theorem 1.3, we use a localization technique
permitting the reduction to easier models.

2.1. Partition of unity

For each 0 < ρ < 1
2 , B > 0, ε > 0 and C0 > 0, we consider a partition of unity

(cf. [14]) for which there exists C = C(Ω, β, ε, C0) > 0 such that:∑
j

|χB
j |2 = 1 on Ω ; (2.7)

∑
j

|∇χB
j |2 ≤ CB2ρ on Ω . (2.8)

Each χB
j is a C∞-cutoff function supported in Dj ∩ Ω. Moreover, we may assume

that there exists a ball Dj = Djmin
whose center is the minimum of β on the

boundary and C0B
−ρ for radius. We may also assume that the balls which intersect

the boundary have their centers on the boundary and that those one admit εB−ρ

for radius. The radius of all the other balls is assumed to be B−ρ. We will choose
ρ, ε and C0 later for optimizing the error. We will use the following localization
IMS formula (cf. [7]):
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Lemma 2.1.

qBA(u) =
∑

j

qBA(χB
j u) −

∑
j

‖|∇χB
j |u‖2 , ∀u ∈ H1(Ω) . (2.9)

So, in order to minimize qBA(u), we are reduced to the minimization of
qBA(v), with v supported in some Dj .

2.2. Estimates for the lower bound

2.2.1. Study inside Ω. Let j such that Dj does not intersect the boundary. It is
well known that:

qBA(χB
j u) ≥ B

∫
Ω

β(x)|χB
j u|2dx ≥ bB

∫
Ω

|χB
j u|2dx .

Having in mind (1.6), these terms will not play a role in the computation of the
asymptotics.

2.2.2. Study at the boundary. In the next paragraph, we introduce boundary co-
ordinates.

Boundary coordinates.
We choose a parametrization of the boundary:

γ : R/(|∂Ω|Z) → ∂Ω .

Let ν(s) be the unit vector normal to the boundary, pointing inward at the point
γ(s). We choose the orientation of the parametrization γ to be counter-clockwise,
so

det
(
γ′(s), ν(s)

)
= 1 .

The curvature k(s) at the point γ(s) is given in this parametrization by:

γ′′(s) = k(s)ν(s) .

The map Φ defined by:

Φ : R/(|∂Ω|Z)×]0, t0[→ Ω

(s, t) �→ γ(s) + tν(s) ,

is clearly a diffeomorphism, when t0 is sufficiently small, with image

Φ
(
R/(|∂Ω|Z)×]0, t0[

)
=

{
x ∈ Ω|d(x, ∂Ω) < t0

}
= Ωt0 .

We let:

Ã1(s, t) =
(
1 − tk(s)

)
A

(
Φ(s, t)

)
· γ′(s) , Ã2(s, t) = A

(
Φ(s, t)

)
· ν(s) ,

β̃(s, t) = β
(
Φ(s, t)

)
,

and we get:
∂sÃ2 − ∂tÃ1 =

(
1 − tk(s)

)
β̃(s, t) .

Let j such that Bj intersect the boundary; we have, with vj = χB
j u and ṽj = vj ◦Φ:

qBA(vj) =
∫ (

1 − tk(s)
)
|(i∂t + BÃ2)ṽj |2 +

(
1 − tk(s)

)−1|(i∂s + BÃ1)ṽj |2dsdt .
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Approximation by a constant magnetic field on a domain with constant curvature.
Locally, we can choose a gauge such that

Ã1(s, t) =
∫ t

0

(
1 − t′k(s)

)
β̃(s, t′)dt′ , Ã2 = 0 .

We assume that the center of the ball Dj has the coordinates (sj , 0) and that the
coordinates of the minimum are (0, 0). We let:

kj = k(sj) , β̃(sj , 0) = β̃j and Δkj(s) = k(s) − kj .

We have: (
1 − tk(s)

)
β̃(s, t) = (1 − tkj)β̃j − tΔkj(s)β̃(s, t)

+ (1 − tkj)
(
β̃(s, t) − β̃j

)
. (2.10)

We write:

Ã1(s, t) = A1,j(s, t) + Rj(s, t) , (2.11)

with

A1,j(s, t) =
(

t − kj
t2

2

)
β̃j . (2.12)

Control of the remainders.
Therefore, we are reduced to compare qBA with the quadratic form associated with
the Neumann problem on a domain with constant curvature (see [4, 10, 12, 13]).
For all λ > 0, we get the inequality (with the Cauchy–Schwarz inequality):

qBA(vj) ≥ (1 − λ)
∫

(1 − tkj)|∂tṽj |2 + (1 − tkj)−1|(i∂s + BA1,j)ṽj |2dsdt

− C

∫
Δkj(s)t

(
|∂tṽj |2 + |(i∂s + BÃ1)ṽj |2

)
dsdt

− B2

λ

∫
|Rj(s, t)ṽj |2dsdt .

We apply the result of the constant magnetic field on a domain with constant
curvature to get the existence of C > 0 such that for all j such that Dj ∩ ∂Ω 
= ∅
(cf. [4, Theorem 6.1]):∫

(1 − tkj)|∂tṽj |2 + (1 − tkj)−1|(i∂s + BA1,j)ṽj |2dsdt

≥ (Θ0β̃jB − C1kjB
1/2 − C)‖ṽj‖2 . (2.13)

In order to control the remainders, we recall the Agmon estimates (cf. [1,10,12,13]):

Proposition 2.2 (Normal Agmon’s estimates). Let uB be an eigenfunction asso-
ciated with the lowest eigenvalue of the Neumann realization of (i∇ + BA)2. We
have the control the momenta of order n in the normal variable t:∫

t(x)n
{
|uB |2 + B−1|(i∇ + BA)uB |2

}
dx ≤ CnB−n

2 ‖uB‖2 .
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εB−1/4

∂Ω

Ω

ε0

ε0

C0B
−1/4

xjmin
= (0, 0)

xj = (sj , 0)

Figure 1. Partition of unity near the boundary.

We choose ρ = 1
4 (see Figure 1) and notice that |Δjk(s)| = O(B−1/4) (uni-

formly in j).
So, there exists C > 0 such that for all j:∣∣∣∣

∫
Δkj(s)t

(
|∂tṽj |2 + |(i∂s + BÃ1)ṽj |2

)
dsdt

∣∣∣∣ ≤ CB
1
4 ‖ṽj‖2 .

We let:

α =
1
2

∂2β

∂s2
(0, 0) . (2.14)

Using the assumption of non degeneracy of the minimum, we can choose ε0 > 0
small enough such that

α

2
s2 ≤ β̃(s, 0) − β̃(0, 0) ≤ 3

2
αs2 (2.15)

for all |s| ≤ ε0.
To estimate the other remainder, we will distinguish between three cases:

• j = jmin,
• |sj | ≥ ε0,
• C0B

−1/4 ≤ |sj | ≤ ε0.

Case 1: j = jmin.

As
∂β̃

∂s
(0, 0) = 0 ,

we have, with (2.10) and (2.11):

|Rjmin
(s, t)| ≤ C(t2 + s2t) .
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Consequently, using Proposition 2.2, we get:∫
|Rjmin

(s, t)ṽjmin
|2dsdt ≤ CB−2‖ṽjmin

‖2 .

Taking λ = B−1/2, we deduce:

qBA(vjmin
) ≥ (Θ0b

′B − CB1/2)‖ṽjmin
‖2 .

Case 2: |sj | ≥ ε0.
We get:

|Rj(s, t)| ≤ C
(
(s − sj)t + t2

)
.

Thus, we find: ∫
|Rj(s, t)ṽj |2dsdt ≤ C(B−3/2ε2 + B−2)‖ṽj‖2 .

Moreover, there exists b′′ > b′ such that for all |sj | ≥ ε0, we have: β̃j ≥ b′′. We
take λ = B−1/2 and deduce, using (2.13) and for B large enough, that for all j
satisfying |sj | ≥ ε0:

qBA(vj) ≥ Θ0b
′B‖ṽj‖2 .

Case 3: C0B
−1/4 ≤ |sj | ≤ ε0.

We use the inequality:

sup
|s−sj |≤εB−1/4

∣∣∣∣∣
∂β̃

∂s
(0, s)

∣∣∣∣∣
2

≤ C sup
|s−sj |≤εB−1/4

|β̃ − b′|

to find with (2.11) and (2.10):
∫

|Rj(s, t)ṽj |2dsdt ≤ C

(
B−3/2ε2 sup

|s−sj |≤εB−1/4
|β − b′| + B−2

)
‖ṽj‖2 .

As a consequence, we can write, with λ = B−1/2:

qBA(vj) ≥
(

Θ0b
′B + B

(
Θ0

(
β̃(sj) − b′

)
− Cε2 sup

|s−sj |≤εB−1/4
|β − b′|

))
‖ṽj‖2 .

By non degeneracy, we have, for C0 ≥ 2ε:

sup
|s−sj |≤εB−1/4

|β̃ − b′| ≤ 27 inf
|s−sj |≤εB−1/4

|β̃ − b′| . (2.16)

Indeed, we have, for all C0 ≥ 2ε:

inf
|s−sj |≤εB−1/4

|β̃ − b′| ≥ α

2
inf

|s−sj |≤εB−1/4
s2 ≥ α

2
(sj − εB−1/4)2

and
sup

|s−sj |≤εB−1/4
|β̃ − b′| ≤ 3α

2
sup

|s−sj |≤εB−1/4
s2 ≤ 3α

2
(sj + εB−1/4)2 .
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Thus, we get, for C0 ≥ 2ε:

sup|s−sj |≤εB−1/4 |β̃ − b′|
inf |s−sj |≤εB−1/4 |β̃ − b′|

≤ 3
(

sj + εB−1/4

sj − εB−1/4

)2

= 3
(

1 +
2εB−1/4

sj − εB−1/4

)2

≤ 27 .

We deduce, for C0 ≥ 2ε:

qBA(vj) ≥
(

Θ0b
′B + B(Θ0 − 27Cε2) inf

|s−sj |≤εB−1/4
|β̃ − b′|

)
‖ṽj‖2 .

We will further use that there exists c > 0 such that for all C0 ≥ 2ε:

qBA(vj) ≥
(
Θ0b

′B + cB
(
β̃(sj) − b′

))
‖ṽj‖2 .

Indeed, we have, for all C0 ≥ 2ε:

inf
|s−sj |≤εB−1/4

|β̃ − b′| ≥ 1
27

(
β̃(sj) − b′

)
.

We find, for ε > 0 small enough:

qBA(vj) ≥ (Θ0b
′B + CB1/2)‖ṽj‖2 .

We conclude that: ∑
j bnd

qBA(vj) ≥ (Θ0b
′B − CB1/2)

∑
j bnd

‖vj‖2 .

Putting together this estimate and the estimate inside Ω, we have the lower bound
in Theorem 1.3.

3. Models near a minimum of β and upper bounds

3.1. Model operator

We fix k0, k1 and α ≥ 0 and we wish to study the quadratic form on the Hilbert
space L2((1 − k0t)dtds) defined, for u ∈ C∞

0 (Bk0) by:

qk0,k1,α,B(u) =
∫

s∈R

0<t≤ 1
2k0

(1 − tk0)|∂tu|2

+ (1 − tk0)−1

∣∣∣∣
(
−i∂s + Bt

(
1 − k1

2
t + αs2

))
u

∣∣∣∣ dtds , (3.17)

where Bk0 = R × [0, 1
2k0

[ (and by convention B0 = R × R+). The self-adjoint
associated operator is:

−(1 − k0t)−1∂t(1 − k0t)∂t + (1 − tk0)2
(
−i∂s + Bt

(
1 − k1

2
t + αs2

))2

,
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with Neumann condition on t = 0 and Dirichlet condition on t = 1
2k0

(if k0 
= 0).
We first rescale the problem:

t = B−1/2τ ,

s = B−1/4σ ,

and we are reduced to the operator on L2((1 − tk0B
−1/2)dtds):

−
(

1 − k0t

B1/2

)−1

∂t

(
1 − k0t

B1/2

)
∂t

+
(

1 − tk0

B1/2

)−2 (
t − k1

2B1/2
t2 + α

s2t

B1/2
− i

∂s

B1/4

)2

. (3.18)

We make a change of gauge u �→ eiξ0B1/4σu. Then, the operator defined in (3.18)
becomes:

−
(

1 − k0t

B1/2

)−1

∂t

(
1 − k0t

B1/2

)
∂t

+
(

1 − tk0

B1/2

)−2 (
t + ξ0 −

k1

2B1/2
t2 + α

s2t

B1/2
− i

∂s

B1/4

)2

. (3.19)

3.2. Degenerate case: α = 0
This case corresponds to the degeneracy of the minimum of the restriction of β to
the boundary. In particular, we will prove Theorem 1.9.

3.2.1. Formal computation. In order to have an upper bound, we first construct
a formal quasimode. We make a Fourier transform in the variable s. Thus, we are
reduced to the study of the family of operators on L2((1 − k0t

B1/2 )dt):

Hk0,k1,ξ = −
(

1− k0t

B1/2

)−1

∂t

(
1− k0t

B1/2

)
∂t +

(
1− k0t

B1/2

)−2(
t + ξ− k1

2B1/2
t2

)2

.

We formally expand this operator in powers of B.
Term in B0:

H0 = −∂2
t + (t + ξ)2 .

Term in B−1/2:
H1 = k0∂t − k1(t + ξ)t2 + 2k0t(t + ξ)2 .

We look for a quasimode expressed as:

ψ =
+∞∑
j=0

B−j/2uj

and a expansion of the first eigenvalue:

λ1(B) =
+∞∑
j=0

λjB
−j/2 .
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So, we have to solve
H0u0 = λ0u0

and, as we look for λ0 minimal, we fix ξ = ξ0, we deduce λ0 = Θ0 and we take
u0 = uξ0 . Then, the next equation to solve is:

H0u1 + H1u0 = Θ0u1 + λ1u0 .

Thus, we deduce:
(H0 − Θ0)u1 = (λ1 − H1)u0 .

To have solutions, the second member must be orthogonal to u0, so, using the
formulas (1.4), we get:

λ1 +
k0 + k1

2
C1 − Θ0ξ0(k1 − k0) = 0 ,

and we take:
u1 = R0(λ1 − H1)u0 .

We let:

Θk0,k1
1/2 = −k0 + k1

2
C1 + Θ0ξ0(k1 − k0) .

Thus, ψ is a good candidate to be a quasimode after truncation.

3.2.2. Quasimode. We write, in the initial coordinates (with b′ = 1, for simplicity):

Ã1 = A1 + R ,

where

A1 = t

(
1 − t

k1

2

)

with

k1 = k0 −
∂β

∂t
(0, 0) . (3.20)

Let us denote ψ = u0 + B−1/2u1 and notice that ψ is in the Schwartz class. As a
quasimode, we take:

uB(s, t) = χ(t)ψ(B1/2t)e−s2B1/2−2ρ

eiξ0B1/2s ,

with χ a smooth cutoff function supported in [0, 1
2k0

] and ρ ∈]0, 1
4 [ which will be

choosen later to optimize the error. The Gaussian e−s2B1/2−2ρ

permits a localiza-
tion near s = 0. We have:

qBA(uB) ≤
∫

(1 − tk0)|∂tuB |2 + (1 − tk0)−1|(−i∂s + BÃ1)uB |2dsdt

+ C

∫
Δk(s)t

{
|∂tuB |2 + |(−i∂s + BÃ1)uB |2

}
dsdt .

By noticing that there exists C > 0 such that:

|Ã1(s, t)| ≤ Ct ,
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we get: ∣∣∣∣
∫

Δk(s)t
{
|∂tuB|2 + |(−i∂s + BÃ1)uB |2

}
dsdt

∣∣∣∣ ≤ CB1/4+ρ‖uB‖2 .

Let us prove the upper bound for the first term (the second can be treated in the
same way). We have:

∂tuB = χ′(t)ψ(B1/2t)e−s2B1/2−2ρ

eiξ0B1/2s+B1/2χ(t)ψ′(B1/2t)e−s2B1/2−2ρ

eiξ0B1/2s .

Thus we get:

|∂tuB |2 ≤ 2|χ′(t)ψ(B1/2t)|2e−2s2B1/2−2ρ

+ 2B|χ(t)ψ′(B1/2t)|2e−2s2B1/2−2ρ

.

Then, we find:∫
tΔk(s)|∂tuB|2dtds ≤ C

∫
ts|χ′(t)|2|ψ(B1/2t)|2e−2s2B1/2−2ρ

dtds

+ CB

∫
ts|χ(t)|2|ψ′(B1/2t)|2e−2s2B1/2−2ρ

dtds .

As ψ is in the Schwartz class, we get:∫
ts|χ′(t)|2|ψ(B1/2t)|2e−2s2B1/2−2ρ

dtds = O(B−∞)‖uB‖2 .

Then, we have after rescaling, for some C > 0 independent of B:

B

∫
ts|χ(t)|2|ψ′(B1/2t)|2e−2s2B1/2−2ρ

dtds ≤ CBB−1/2B−1/4+ρ‖uB‖2

= CB1/4+ρ‖uB‖2 .

Moreover, we have:∫
(1 − tk0)|∂tuB|2 + (1 − tk0)−1|(−i∂s + BÃ1)uB |2dsdt

=
∫

(1 − tk0)|∂tuB |2 + (1 − tk0)−1|(−i∂s + BA1)uB |2dsdt

+ �
{∫

(1 − tk0)−1(B2|RuB|2 + 2B(−i∂s + BA1)uBRuB)dsdt

}
.

We get:
qk0,k1,0,B(uB) ≤ (Θ0B + Θk0,k1

1/2 B1/2 + CB1/2−2ρ)‖uB‖2 ,

the crucial points being to estimate the term∫
|∂2

se−s2B1/2−2ρ |e−s2B1/2−2ρ |χ(t)|2|ψ(B1/2t)|2dtds

by O(B1/2−2ρ)‖uB‖2 and the term
∫

(Bt+B1/2ξ0)∂s(χ(t)ψ(B1/2t)e−s2B1/2−2ρ

) by
O(B−∞)‖uB‖2 thanks to the fact that M1 = 0 (cf. (1.4)) and that ψ is in the
Schwartz class. Using that:

|R(s, t)| ≤ C(t3 + s4t + st2) ,
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we find:∣∣∣∣�
{∫

(1 − tk0)−1
(
B2|RuB|2 + 2B(−i∂s + BA1)uBRuB

)
dsdt

}∣∣∣∣
≤ CB1/4+ρ‖uB‖2.

and finally with ρ = 1
12 :

qBA(uB) ≤ (Θ0B + Θk0,k1
1/2 B1/2 + CB1/3)‖uB‖2 .

Thus, after replacing k1 by its expression, the upper bound of Theorem 1.9 is
proved.

Remark 3.1. It follows from the identities (1.4) that:
C1

2
− Θ0ξ0 = M3 − ξ3

0 > 0 ,

where M3 =
∫

t>0
(t + ξ0)3u2

0dt. This remark permits to understand how the upper
bound of Theorem 1.9 improves the one of Aramaki.

3.3. Non-degenerate case α > 0
3.3.1. Formal computation. We consider the operator H (cf.(3.19)):

−
(

1 − k0t

B1/2

)−1

∂t

(
1 − k0t

B1/2

)
∂t

+
(

1 − k0t

B1/2

)−2 (
t + ξ0 −

k1

2B1/2
t2 +

α

B1/2
s2t − i

∂s

B1/4

)2

.

Formally, we write:

H =
+∞∑
j=1

B−j/4Hj .

Let us look for a quasimode expressed as:

U =
+∞∑
j=1

B−j/4Uj . (3.21)

and a Taylor expansion of the lowest eigenvalue:

λN
1 (B) =

+∞∑
j=1

Θj/4B
−j/4 .

Here, we have:

H0 = −∂2
t + (t + ξ0)2 ,

H1 = −2i∂s(t + ξ0) ,

H2 = k0∂t − ∂2
s + 2(t + ξ0)

(
αs2t − k1

2
t2

)
+ 2k0t(t + ξ0)2 .
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This leads us to solve:
H0U0 = λ0U0 .

We write U0 as U0 = u0(t)ψ0(s) and, as we look for λN
1 minimal, we take λ0 = Θ0

and u0 > 0 the associated normalized eigenvector.
Then, we solve:

H1U0 + H0U1 = Θ0U1 + λ1U0 .

We can take Θ1/4 = 0 by writing U1 = u1(t)ψ1(s) with ψ1 = ∂sψ0 and we find:

(H0 − Θ0)u1 = 2i(t + ξ0)u0 .

As M1 = 0 (see (1.4)), this last equation admits a unique solution u1 such that∫
t>0

u0u1dt = 0.
Finally, we consider:

H0U2 + H1U1 + H2U0 = Θ0U2 + Θ1/2U0 .

Thus, we get:

(H0 − Θ0)U2 = −H1U1 − H2U0 + Θ1/2U0 = 2i(t + ξ0)u1∂sψ1 − H2U0 + Θ1/2U0 .

Multiplying by u0 and integrating with respect to t, one applies the formulas (1.4)
and one solves:

−(1 − 4I2)∂2
sψ0 + αΘ0s

2ψ0 =
(

Θ1/2 +
k0 + k1

2
C1 − (k1 − k0)Θ0ξ0

)
ψ0 .

where

I2 =
∫

t>0

(t + ξ0)R0

(
(t + ξ0)u0

)
u0dt .

This last integral can be rewritten by letting v = R0((t + ξ0)u0); we have:

(H0 − Θ0)v = (t + ξ0)u0 .

By computing, we get:

−1
2

∂u

∂ξ
( · , ξ0) = v .

Using the identities of [12], we find:

1 − 4I2 =
μ′′(ξ0)

2
= 3C1

√
Θ0 > 0 .

After rescaling, we let:

ψ0(s) = e
−Θ1/4

0
√

αs2

2
√

3C1

and:

Θ1/2 = Θk0,k1,α
1/2 = −k0 + k1

2
C1 + (k1 − k0)Θ0ξ0 +

√
3C1Θ

3/4
0

√
α . (3.22)
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3.3.2. Quasimode. For simplicity, we assume b′ = 1. We write:

Ã1 = A1 + R ,

where

A1 = t

(
1 − t

k1

2
+ αs2

)

with α defined in (2.14) and k1 defined in (3.20). We let:

uB(s, t) = χ(t)U(B1/4s,B1/2t)eiξ0B1/2s ,

where U consists of the three first terms of (3.21). We have:

qBA(uB) ≤
∫

(1 − tk0)|∂tuB |2 + (1 − tk0)−1|(−i∂s + BÃ1)uB |2dsdt

+ C

∫
Δk(s)t

{
|∂tuB |2 + |(−i∂s + BÃ1)uB |2

}
dsdt .

Moreover, we have:∫
(1 − tk0)|∂tuB |2 + (1 − tk0)−1|(−i∂s + BÃ1)uB |2dsdt

=
∫

(1 − tk0)|∂tuB |2 + (1 − tk0)−1|(−i∂s + BA1)uB |2dsdt

+ �
{∫

(1 − tk0)−1
(
B2|RuB|2 + 2B(−i∂s + BA1)uBRuB

)
dsdt

}
.

Using that U is in the Schwartz class, we get:

qk0,k1,α,B(uB) ≤ (Θ0B + Θk0,k1,α
1/2 B1/2 + C)‖uB‖2 .

Moreover, we have:
|Ã1 − A1| ≤ C(s3t + st2 + t3) .

So, we get:∣∣∣∣�
{∫

(1 − tk0)−1
(
B2|RuB|2 + 2B(−i∂s + BA1)uBRuB

)
dsdt

}∣∣∣∣ ≤ CB1/4‖uB‖2 .

Finally, we find:

qBA(uB) ≤ (Θ0B + Θk0,k1,α
1/2 B1/2 + CB1/4)‖uB‖2 .

In particular, we have proved the upper bound in Theorem 1.3.

4. Tangential Agmon’s estimates

We first observe that, for Φ a real Lipschitzian function and if u is in the domain
of the Neumann realization of (i∇+ BA)2, then we have, by integration by parts:

�
〈
(i∇+ BA)2u, exp(2B1/2Φ)u

〉
= qBA

(
exp(B1/2Φ)u

)
−B‖|∇Φ| exp(B1/2Φ)u‖2 .
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Taking u = uB an eigenfunction attached to the lowest eigenvalue λ1(BA), we get:

λ1(BA)‖ exp(B1/2Φ)uB‖2 = qBA

(
exp(B1/2Φ)uB

)
− B‖|∇Φ| exp(B1/2Φ)uB‖2 . (4.23)

4.1. Tangential Agmon’s estimates for uB

We now use the lower bound found in Section 2; more precisely, for all ε > 0, there
exists c > 0 and C > 0 such that, for all C0 > 0 sufficiently large, there exists
C ′ > 0 s.t for all u in the form domain of qBA:

qBA(u) ≥ (bB − CB1/2)
∑
j int

‖χju‖2

+
∑

j bnd,j �=jmin

(
Θ0b

′B + c
(
β(sj) − b′

)
B

)
‖χju‖2

+ (Θ0b
′B − C ′B1/2)‖χjmin

u‖2 .

We choose u = exp(B1/2Φ)uB ; we recall that, by Theorem 1.3, we have the upper
bound:

λ1(BA) ≤ Θ0b
′B + CB1/2 .

Using these estimates in (4.23), we find the inequality by dividing by B:∫
(C ′B−1/2 + |∇Φ|2)|χjmin

exp(B1/2Φ)uB |2

≥
∑
j bnd

j �=jmin

∫ (
c
(
β̃(sj) − b′

)
− CB−1/2 − |∇Φ|2

)
|χj exp(B1/2Φ)uB |2dsdt .

We choose
Φ = α1d(s) ,

where d is the Agmon distance associated with the metric (β(s, 0) − b′)ds2 i.e.:

d(s) =
∫ |s|

0

(
β(σ, 0) − b′

)1/2
dσ .

On Djmin
, we notice that

|∇Φ|2 ≤ CB−1/2 .

Then, for j 
= jmin, we consider the quantity:

c
(
β̃(sj) − b′

)
− CB−1/2 − α2

1

(
β̃(s) − b′

)
.

For ε > 0 and α1 small enough, there exists c′ > 0 such that for j such that
|sj | ≥ ε0 and B large enough, we have:

c
(
β̃(sj) − b′

)
− CB−1/2 − α2

1

(
β̃(s) − b′

)
≥ c′ .

For C0 ≥ 2ε, there exists c′′ > 0 such that for j 
= jmin and |sj | ≤ ε0 and B large
enough, we have:

c
(
β̃(sj) − b′

)
− CB−1/2 − α2

1

(
β̃(s) − b′

)
≥ c′′B−1/2 .
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Indeed, due to the non degeneracy, we have (2.16). Thus, we get C > 0 and B0 > 0
such that for all B ≥ B0:∑

j bnd

∫
|χj exp(B1/2Φ)uB |2 ≤ C

∫
|s|≤C0B−1/4

| exp(B1/2Φ)uB |2 .

We deduce Proposition 1.5 and have the following corollary:

Corollary 4.1. For all n ∈ N, there exists C > 0 such that for all B large enough:∫
Ω

s2n
{
|uB |2 + B−1|(i∇ + BA)uB |2

}
dx ≤ CB−n/2

∫
Ω

|uB |2dx .

4.2. Agmon’s estimates for DsuB

We consider a partition of unity as in (2.7). We have the formula (2.9) and:

qBA(u) ≥
∑

j

qBA(χB
j u) − CB1/2‖u‖2 .

We use (4.23). We have

λ1(B) ≤ Θ0b
′B + CB1/2 .

Thus, we get, using the inequalities of the previous section:

qBA

(
χjmin

eB1/2ΦuB

)
+

∑
j �=jmin

(
Θ0b

′B + c
(
β(sj) − b′

)
B

) ∣∣∣χje
B1/2ΦuB

∣∣∣2

+ bB
∑
j int

∣∣∣χje
B1/2ΦuB

∣∣∣2

≤ (Θ0b
′B + CB1/2)

∫ ∣∣∣eB1/2ΦuB

∣∣∣2 + B

∫ ∣∣∣∇ΦeB1/2ΦuB

∣∣∣2 + CB1/2‖uB‖2,

where Φ = α1d(s).
We have the control:

B

∫
Ω

∣∣∣χjmin
∇ΦeB1/2ΦuB

∣∣∣2 ≤ CB1/2

∫
Ω

∣∣∣χjmin
eB1/2ΦuB

∣∣∣2 ≤ CB1/2

∫
Ω

|uB |2dx ,

and we deduce, for α1 small enough:

qBA(χjmin
eB1/2ΦuB) − Θ0b

′B
∣∣∣χjmin

eB1/2ΦuB

∣∣∣2 ≤ CB1/2

∫
|uB |2 .

We introduce:

qapp(v) =
∫

t>0,s∈R

(1 − k0t)|∂tv|2 (4.24)

+ (1 − k0t)−1

∣∣∣∣
(

Bt + Bαs2t + B1/2ξ0 − Ds − B
k1

2
t2

)
v

∣∣∣∣
2

dtds .

If we write:
Ã1(s, t) =

∫ (
1 − t′k(s)

)
β̃(s, t′)dt′ ,
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we have: (
1 − tk(s)

)
β̃(s, t) = (1 − tk1) + αs2 + O(t2 + st + s3) ,

and thus:
Ã1(s, t) = t − k1

2
t2 + αs2t + O(t3 + st2 + s3t) . (4.25)

Then, by the Cauchy–Schwarz inequality, we have for all λ > 0:

qBA(v) ≥ (1 − λ)qapp(v) − B2

λ
‖Rv‖2 .

For instance, we can estimate
∫

(st2)2|v|2. Using the tangential (cf. Proposition 1.5)
and normal Agmon estimates and letting:

v = χjmin
eB1/2ΦuB ,

we have:
B2

∫
s2t4|v|2dsdt ≤ CB2B−1/2B−2‖v‖2 .

In the same way, we control the other remainders and by choosing λ correctly, we
get:

qBA(v) ≥ qapp(v) − CB1/4

∫
|v|2 . (4.26)

Using the Cauchy–Schwarz inequality and again the Agmon estimates, we find:

qapp(v) ≥ (1 − B−1/2)q2
app(v) − CB1/2

∫
|v|2 ,

where

q2
app(v) =

∫
t>0,s∈R

(1 − k0t)|∂tv|2 + (1 − k0t)−1|(Bt + B1/2ξ0 − Ds)v|2dx .

Making a Fourier transform in the variable s and letting w = v̂, we have:

q2
app(v) =

∫
t>0,σ∈R

(1 − k0t)|∂tw|2 + (1 − k0t)−1|(Bt + B1/2ξ0 − σ)w|2dtdσ .

Thus, we get (see [12, Chapter 6, Prop 6.2.1] or [13, Section 11]):

q2
app(v) ≥ Θ0b

′B

∫
|v|2 + B1/2 μ′′(ξ0)

2

∫
|Dsv|2 − CB1/2

∫
|v|2 .

Consequently, we get the upper bound:∫ ∣∣∣Ds(χjmin
eB1/2ΦuB)

∣∣∣2 ≤ C

∫
|uB |2 .

We deduce the following proposition:

Proposition 4.2 (Tangential Agmon’s estimates for DsuB). With the previous no-
tations, there exists C > 0 and α1 > 0 such that for all B large enough:∫

Ω

∣∣∣eα1B1/2χ(t(x))d(s(x))DsuB

∣∣∣2 dx ≤ CB1/2

∫
Ω

|uB |2dx ,

where χ is a smooth cutoff function supported in [−t0, t0].
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Corollary 4.3. For all n ∈ N, there exists C > 0 such that for all B large enough,
we have: ∫

Ω

χ(t)s2n|DsuB |2dx ≤ CB1/2−n/2

∫
Ω

|uB |2dx .

Remark 4.4. The tangential and normal Agmon estimates roughly say that |uB |
has the same behaviour as e−αs2B1/2

u0(B1/2t).

5. Refined lower bounds

In this section, we prove the lower bound in Theorem 1.7. We consider a partition
of unity as in (2.7) with ρ = 1

4 − η for η > 0. We have:

qBA(u) ≥
∑

j

qBA(χB
j u) − CB1/2−2η‖u‖2 .

5.1. Control far from the minimum

Let us first recall some the estimates we have proved. For j such that Dj does not
intersect the boundary, we have:

qBA(χju) ≥ bB

∫
|χju|2dx .

For j such that Dj intersect the boundary and j 
= jmin, we notice that, for B
large enough:

qBA(χju) ≥ Θ0b
′B

∫
|χju|2 .

5.2. Reduction to a model near the minimum

Using the inequalities of the previous section, we get:

qBA(uB) ≥ Θ0b
′B

∑
j �=jmin

‖χjuB‖2 + qBA(χjmin
uB) − CB1/2−2η‖uB‖2 .

By the normal and tangential Agmon estimates, we have proved in (4.26), with
(4.24), (4.25) and the Cauchy–Schwarz inequality:

qBA(χjmin
uB) ≥ qapp(χjmin

uB) − CB1/4‖uB‖2 .

In order to make the term in αs2t disappear, we make the change of variables:

t = λ(s)τ ,

where λ(s) = (1 + αs2)−1/2; we have

∂sv =
∂τ

∂s
∂τ ṽ + ∂sṽ , ∂tv =

∂τ

∂t
∂τ ṽ , (5.27)
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where ṽ denotes the function v in the variables (τ, s) and we are reduced to the
form:

q̃app(v) =
∫ {(

1 − k0τλ(s)
)
|∂τv|2

+
(
1 − k0τλ(s)

)−1
∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − λ(s)Ds − B
k1τ

2

2
λ(s)3

+ ατsλ(s)3Dτ

)
v

∣∣∣∣
2
}

λ(s)−1dτds ,

where we have omitted the tilde. Noticing that s2 = O(B2ρ−1/2), on the support
of v = χjmin

uB , we make the approximations in L2:

−λ(s)Dsv = −Dsv + O
(
s2

)
Dsv ,

τ2λ(s)3v = τ2v + O
(
s2τ2

)
v ,

sλ(s)3τDτv = sτDτv + O(s3τ)Dτv .

We first find:

q̃app(v) ≥
∫ {

(1 − τk0)|∂τv|2

+ (1 − τk0)−1

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − λ(s)Ds − B
k1τ

2

2
λ(s)3

+ αsλ(s)3τDτ

)
v

∣∣∣∣
2
}

λ(s)−1dτds

− C

∫
Δλ(s)τ

{
|∂τv|2 +

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − λ(s)Ds − B
k1τ

2

2
λ(s)3

+ αsλ(s)3τDτ

)
v

∣∣∣∣
2
}

λ(s)−1dτds ,

where

Δλ(s) = λ(s) − λ(0) .

Let us consider the second term:

∫
Δλ(s)τ

{
|∂τv|2 +

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − λ(s)Ds − B
k1τ

2

2
λ(s)3

+ αsλ(s)3τDτ

)
v

∣∣∣∣
2
}

λ(s)−1dτds .
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Coming back in the variables (t, s), this term becomes:∫
Δλ(s)
λ(s)

t

{
|∂tv|2 + |

(
B(1 + αs2)t + ξ0B

1/2 − Ds − B
k1t

2

2

)
v|2

}
dtds .

Thus, the Agmon estimates give a control of the second term of order O(1). Then,
by the Cauchy–Schwarz inequality, the Agmon estimates (for uB and DsuB after
having come back in the variables (s, t)) and using the same kind of analysis as
in (4.26), we have:

∫ {
(1 − τk0)|∂τv|2 + (1 − τk0)−1

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − λ(s)Ds − B
k1τ

2

2
λ(s)3

+ αsλ(s)3τDτ

)
v

∣∣∣∣
2
}

λ(s)−1dτds

≥
∫ {

(1 − τk0)|∂τv|2 + (1 − τk0)−1

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − Ds − B
k1τ

2

2

)
v

∣∣∣∣
2
}

λ(s)−1dτds − CB1/4‖v‖2 .

We have finally, with v = χjmin
uB:

qBA(uB) ≥ Θ0b
′B

∑
j �=jmin

‖χjuB‖2

+
∫ {

(1 − τk0)|∂τv|2 + (1 − τk0)−1

∣∣∣∣
(

Bτ + ξ0λ(s)B1/2 − Ds − B
k1τ

2

2

)
v

∣∣∣∣
2
}

λ(s)−1dτds − CB1/4‖uB‖2 − CB1/2−2η‖uB‖2 . (5.28)

Moreover, thanks to the exponential decrease of uB away from the boundary (nor-
mal Agmon estimates), we can replace χjmin

by a smooth cutoff function such
that

supp χjmin
⊂ {0 < t ≤ B−1/2+ηand|s| ≤ B−1/4+η} ,

that is we assume χjmin
is supported in rectangles rather than balls; the reason is

technical and will appear in the next section.

5.3. Lower bound for the model

So, we are reduced, after the rescaling τ = τ̂
B1/2 , s = ŝ

B1/4 , to the study of:

qmod(u) =
∫

τ̂>0,ŝ∈R

{(
1 − k0τ̂

B1/2

)
|∂τ̂u|2

+
(

1 − k0τ̂

B1/2

)−1 ∣∣∣∣
(

τ̂ + ξ0λ(B−1/4ŝ) − Dŝ

B1/4

− k1

2B1/2
τ̂2

)
u

∣∣∣∣
2
} (

1 +
αŝ2

B1/2

)1/2

dτ̂dŝ .
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Reduction to the euclidean measure.
In order to make disappear the measure (1 + αŝ2

B1/2 )1/2, we make the change of
function defined by:

v =
(

1 +
αŝ2

B1/2

)1/4

u = fB(ŝ)u ,

we have:

qmod(u) =
∫

τ̂>0,ŝ∈R

{(
1 − k0τ̂

B1/2

)
|∂τ̂v|2

+
(

1 − k0τ̂

B1/2

)−1 ∣∣∣∣
(

τ̂ + ξ0λ(B−1/4ŝ) − Dŝ

B1/4
− f ′

B(ŝ)
B1/4fB(ŝ)

− k1

2B1/2
τ̂2

)
v

∣∣∣∣
2
}

dτ̂dŝ .

Term in ŝ.
We want to make a Fourier transform in the variable ŝ to be reduced to a problem
on a half axis, but the term ξ0λ(B−1/4ŝ) is annoying; that is why we make it
disappear with a change of gauge. We write: λ(B−1/4ŝ) = 1 + rB(ŝ) and we make
the change of gauge v �→ ṽ = ve−iφ(ŝ), where

φ(ŝ) =
∫ ŝ

0

ξ0rB(σ) − 1
B1/4

f ′
B(σ)

fB(σ)
dσ

to be reduced to:

q̃mod(ṽ) =
∫

τ̂>0,ŝ∈R

{(
1 − k0τ̂

B1/2

)
|∂τ̂ ṽ|2

+
(

1 − k0τ̂

B1/2

)−1 ∣∣∣∣
(

τ̂ + ξ0 −
Dŝ

B1/4
− k1

2B1/2
τ̂2

)
ṽ

∣∣∣∣
2
}

dτ̂dŝ ,

where u = (χjmin
uB)(B1/2τ̂ , B1/4ŝ). We make a Fourier transform in the variable ŝ

and we are reduced to a half axis problem in the normal variable:

qn(w) =
∫

τ̂>0

(
1 − k0τ̂

B1/2

)
|∂τ̂w|2

+
(

1 − k0τ̂

B1/2

)−1 ∣∣∣∣
(

τ̂ + ξ0 −
σ

B1/4
− k1

2B1/2
τ̂2

)
w

∣∣∣∣
2

dτ̂ ,

with w = v̂.
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Model on a half axis.
We can apply the same kind of analysis as in [12, Chapter 6, Prop 6.2.1] or in [13,
Section 11] to get the lower bound; there exists C > 0 such that for all B large
enough:

qn(w) ≥
(

Θ0 +
(

Θk0,k1
1/2 +

μ′′(ξ0)
2

σ2

)
B−1/2

− CB−3/4+3η

) ∫
τ̂>0

|w|2
(

1 − τ̂ k0

B1/2

)
dτ̂ . (5.29)

Remark 5.1. In [12], the fact that the magnetic field is constant permits to be
reduced to the case k0 = k1 = 1, thus Θk0,k1

1/2 = −C1.

Let us just recall the main ideas of the proof. We consider first the (formal)
operator on L2((1 − k0τ̂

B1/2 )dτ̂):

h(σ,B) = −
(

1 − k0τ̂

B1/2

)−1
d

dτ̂

(
1 − k0τ̂

B1/2

)
d

dτ̂

+
(

1 − k0τ̂

B1/2

)−2 (
τ̂ + ξ0 −

σ

B1/4
− k1

τ̂2

2B1/2

)2

.

Then, we formally expand this operator in powers of B and, for |σ| ≤ MBη, with
η′ > 0 small enough:

h(σ,B) = h0 + B−1/4h1 + B−1/2h2 + O(B−3/4+3η) ,

where

h0 = − d2

dτ̂2
+ (τ̂ + ξ0)2 ,

h1 = −2(τ̂ + ξ0)σ ,

h2 = k0τ̂
d

dτ̂
− k1τ̂

2(τ̂ + ξ0) + 2k0τ̂(τ̂ + ξ0)2 + σ2 .

Thus, as in Section 3.3.1, we compute a quasimode and obtain for some ψ:
∥∥(

h(σ,B) − (λ0 + λ1B
−1/4 + λ2B

−1/2)
)
ψ

∥∥
L2(R+,(1− k0τ̂

B1/2 ))
= O(B−3/4+3η) .

Finally, we can prove that the previous operator admits only one eigenvalue strictly
less than 1 thanks to a comparison with the harmonic oscillator on a half axis and,
applying the spectral theorem, we get the bottom of the spectrum given in (5.29)
(the values of σ such that |σ| ≥ MBη provide higher energies thanks to the non-
degeneracy of ξ �→ μ(ξ) near ξ0).
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Return in the initial variables.
Applying the Parseval formula, we get:

qmod(u) = q̃mod(ṽ) ≥ (Θ0 + Θk0,k1
1/2 B−1/2)

∫
ŝ∈R
τ̂>0

|v|2
(

1 − τ̂ k0

B1/2

)
dτ̂dŝ

+ B−1/2 μ′′(ξ0)
2

∫
ŝ∈R
τ̂>0

|Dŝṽ|2
(

1 − τ̂ k0

B1/2

)
dτ̂dŝ − CB−3/4+3η‖u‖2 .

We have:
|Dŝṽ|2 =

∣∣(Dŝ − φ′(ŝ)
)
v
∣∣2 .

As |φ′(ŝ)| ≤ Cŝ2B−1/2 ≤ CB−1/2+2η on the support of v, we get:

|Dŝṽ|2 ≥ (1 − B−1/4+η)|Dŝv|2 − B−1/4+η|v|2 .

Moreover, we have:

Dŝv =
αŝ

2B1/2
fB(s)−3u + fB(ŝ)Dŝu .

We deduce:

|Dŝṽ|2 ≥ |Dŝu|2 − CB−1/4+η(|u|2 + |Dŝu|2) − B−1/4+η|Dŝv|2 .

Recalling that

dτ̂dŝ =
(

1 +
αŝ

B1/2

)1/2

dt̂dŝ ,

|v|2 =
(

1 +
αŝ

B1/2

)1/2

|u|2 ,

where t̂ = B−1/2t, and with the tangential Agmon estimates, we get:

‖Dŝv‖2 ≤ C‖u‖2 , ‖Dŝu‖2 ≤ C‖u‖2

and

qmod(u) ≥ Θ0‖u‖2 + Θk0,k1B
−1/2‖u‖2

+
(∫ {

αΘ0|ŝǔ|2 +
μ′′(ξ0)

2
|Dŝǔ|2dŝ

} (
1 − t̂k0

B1/2

)
dt̂

)
B−1/2

− CB−3/4+3η , (5.30)

where ǔ(t̂, ŝ) = u(τ̂ , ŝ) and, thanks to the Agmon estimates, we have replaced Dŝu

by Dŝǔ and τ̂ by t̂ by noticing that Dŝu = Dŝǔ + ∂t̂
∂ŝDt̂ǔ and λ(ŝB−1/4)τ̂ = t̂.

We recognize the quadratic form of the harmonic oscillator and we have:
∫ {

αΘ0|ŝǔ|2 +
μ′′(ξ0)

2
|Dŝǔ|2dŝ

}
≥

√
μ′′(ξ0)αΘ0

2

∫
|ǔ|2dŝ .
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We take η = 1
20 and the lower bound of Theorem 1.7 follows from (5.30), (5.28)

and (1.4) after having noticed that the estimates of Agmon give:∫
Ω

|χjmin
uB |2dx =

(
1 + O(e−cBη

)
) ∫

Ω

|uB |2dx .

6. Estimate for the third critical field of the Ginzburg–Landau
functional

In this section, we give an estimate of the third critical field of the Ginzburg–
Landau functional in the case where the applied magnetic field denoted by β
admits a unique and non degenerate minimum on the boundary of Ω. The constant
magnetic field case has already been studied in details (see [11,19–21]).

Recall of properties of the functional.
The Ginzburg–Landau functional is defined by:

G(ψ,A) =
∫

Ω

{
|(i∇ + σκA)ψ|2 − κ2|ψ|2 +

κ2

2
|ψ|4

}
dx+(κσ)2

∫
Ω

|∇×A−β|2dx ,

for ψ ∈ H1(Ω, C) and A ∈ H1
div(Ω, R3) where

H1
div(Ω, R3) =

{
A ∈ H1(Ω, R3) : div(A) = 0 in Ω,A · ν = 0on ∂Ω

}
.

We assume moreover that
β = ∇× F .

Then, we recall the definitions of the critical fields (the first one was introduced
in [20]):

HC3(κ) = inf
{
σ > 0 : (0,F) is the unique minimizer of Gκ,σ

}
,

HC3(κ) = inf
{
σ > 0 : (0,F) is the unique minimizer ofGκ,σ′ for all σ′ > σ

}
,

HC3
(κ) = inf

{
σ > 0 : (0,F) is a minimizer ofGκ,σ

}
and

H
loc

C3
(κ) = sup

{
σ > 0 |λ1(κσF) < κ2

}
.

We have
HC3

(κ) ≤ HC3(κ) ≤ HC3(κ)
and

H
loc

C3
(κ) ≤ HC3(κ) .

We can prove the following result (cf. [12]):

Theorem 6.1. Let Ω be a bounded, simply connected domain with smooth boundary
and suppose that the applied magnetic field β satisfies

0 < Θ0b
′ < b .

Then, there exists κ0 > 0 such that for all κ ≥ κ0:

HC3(κ) = H
loc

C3
(κ) .
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Furthermore, if B �→ λ1(BF) is strictly increasing for large B, then all the critical
fields coincide for large κ and are given by the unique solution H of

λ1(κHF) = κ2.

Estimate of HC3(κ) for large κ.
Noticing that B �→ λ1(BF) is strictly increasing for large B (it is due to the
exponential decrease of the first eigenfunctions away from the boundary, still true
in the case of variable magnetic field; see [12, Chapter 9, Section 6]), we deduce
the following theorem:

Theorem 6.2. Let Ω be a bounded, simply connected domain with smooth boundary
and suppose that the applied magnetic field β has a unique and non degenerate
minimum on ∂Ω and that:

0 < Θ0b
′ < b .

Then, we have:

HC3(κ) =
κ

b′Θ0
− b′1/2 Θ1/2

Θ3/2
0

+ O(κ−7/20) .
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F-91405 Orsay Cedex
France
e-mail: nicolas.raymond@math.u-psud.fr

Communicated by Christian Gérard.

Submitted: June 26, 2008.

Accepted: November 28, 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00417
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


