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The Trace Formula for Quantum Graphs with
General Self Adjoint Boundary Conditions
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Abstract. We consider compact metric graphs with an arbitrary self adjoint
realisation of the differential Laplacian. After discussing spectral properties
of Laplacians, we prove several versions of trace formulae, relating Laplace
spectra to sums over periodic orbits on the graph. This includes trace formu-
lae with, respectively, absolutely and conditionally convergent periodic orbit
sums; the convergence depending on properties of the test functions used. We
also prove a trace formula for the heat kernel and provide small-t asymptotics
for the trace of the heat kernel.

1. Introduction

Some ten years ago Kottos and Smilansky [19, 21] introduced quantum graphs as
convenient models in the field of quantum chaos [13, 34], where a major goal is
to understand the connection between dynamical properties of a quantum system
and its associated classical counterpart [3]. Previously introduced models that
possess classical counterparts with chaotic dynamics include quantum billiards,
motions on Riemannian manifolds with negative curvatures and quantum maps.
These models have been studied with considerable success, however, they have
often turned out to bear unwanted complications. Quantum graphs are constructed
along the lines of many of these models in that they are mainly concerned with
spectral properties of Laplacians. In a sense they are maximally reduced versions
of such models in that the underlying configuration space is one dimensional.
The non trivial topology of the graph, however, introduces sufficient complexity
such that the quantum system behaves like typical quantum systems with chaotic
classical counterparts, see [19,21]. On the other hand, many details of the classical
dynamics are considerably simpler and quantum spectra are generally known to
some more detail, so that quantum graph models proved to be very useful in the
field of quantum chaos [11].
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Trace formulae provide a direct connection between classical and quantum
dynamics in that they relate quantum spectra to classical periodic orbits. In gen-
eral, this connection arises in the form of an asymptotic relation, valid for large
wave numbers. There are only few exceptional cases in which trace formulae are
identities. Among these are, most notably, Laplacians on flat tori and on Rie-
mannian manifolds with constant negative sectional curvatures. In both cases the
configuration manifolds are Riemannian symmetric spaces, allowing for the ap-
plication of powerful methods of harmonic analysis in proving the relevant trace
formulae, i.e., the Poisson summation formula and the Selberg trace formula [32],
respectively. Generically, however, the tools of harmonic analysis are not available,
and trace formulae have to be proven using semiclassical or microlocal techniques,
which naturally involve asymptotic methods. Semiclassical trace formulae were
introduced by Gutzwiller [12] for the spectral density of quantum Hamiltonians.
Subsequently, Balian and Bloch [1] set up analogous trace formulae for Laplacians
on domains in R

n in a short wavelength approximation. The first mathematical
proofs, for Laplacians on Riemannian manifolds, are due to Colin de Verdière [6]
as well as Duistermaat and Guillemin [7]. Later, proofs for the semiclassical case
followed [27,28].

One of the virtues of quantum graph models that led Kottos and Smilansky
to introduce them to the field of quantum chaos is that their trace formulae are
identities, very much in analogy to the Selberg trace formula. The first quantum
graph trace formula, however, is due to Roth [29], who expressed the trace of the
heat kernel for a Laplacian with Kirchhoff boundary conditions in the vertices of
the graph as a sum over periodic orbits. Kottos and Smilansky [21] then introduced
a trace formula for the spectral density of the Laplacian, and later Kostrykin, Pot-
thoff and Schrader [18] extended Roth’s trace formula to more general boundary
conditions. In these cases the boundary conditions characterising the domain of
the Laplacian were of a non-Robin type in that they do not mix boundary values
of functions and their derivatives. This leads to periodic orbit sums in the trace
formulae that closely resemble those occurring in the Selberg trace formula. In
this paper our principal goal now is to consider general self adjoint realisations of
Laplacians on compact metric graphs and to prove associated trace formulae with
fairly general test functions. In particular, we do not require their Fourier trans-
forms to be compactly supported. Allowing for Robin-type boundary conditions
leads to trace formulae that are still identities, yet the amplitudes multiplying the
oscillating factors in each periodic orbit contribution depend on the wave number
in a non trivial way. In principle, these amplitude functions are known and possess
asymptotic expansions for large wave numbers. Therefore, in a sense these trace
formulae are intermediate between Selberg and Gutzwiller/Duistermaat-Guillemin
trace formulae, where in the latter case only the asymptotic expansions of the am-
plitude functions are known, and the test functions must have compactly supported
Fourier transforms.

This paper is organised as follows: In Section 2 we briefly review the construc-
tion of quantum graphs, including parametrisations of self adjoint realisations of
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the Laplacian developed by Kostrykin and Schrader [20] as well as Kuchment [24].
Following this we investigate various properties of quantum graph edge S-matrices
as introduced in [21], focusing on their analytic properties. In Section 4 we then
discuss general properties of Laplace spectra on compact graphs. The main part of
this paper can be found in Section 5 where we prove several versions of quantum
graph trace formulae: Theorem 5.3 contains a trace formula with a double sum
over periodic orbits, of which only the sum over topological orbit lengths converges
absolutely, and which allows for a large class of test functions. In Theorem 5.4,
however, we restrict the class of test functions with the effect that the entire sum
over periodic orbits converges absolutely. A suitable choice of a test function then
allows to establish the trace of the heat kernel for arbitrary self adjoint realisations
of the Laplacian, see Theorem 5.5. We finally summarise and discuss our results
in Section 6. Some of the results presented here have been announced in [2].

2. Preliminaries

We begin with reviewing the relevant concepts underlying the construction of
quantum graphs.

2.1. Metric graphs

In the sequel we shall consider finite, metric graphs Γ = (V, E , l). Here V is a finite
set of vertices {v1, . . . , vV } and E is a finite set of edges {e1, . . . , eE}. When an
edge e connects the vertices v and w, these are called edge ends. Two edges are
adjacent, if they share an edge end; loops and pairs of multiply connected vertices
shall be allowed. The degree dv of a vertex v specifies the number of edges with v as
one of their edge ends. A metric structure can be introduced by assigning intervals
[0, li] to edges ei, along with coordinates xi ∈ [0, li]. The E-tuple l = (l1, . . . , lE)
then collects all edge lengths. Through this procedure the edge ends are mapped to
the end points of the intervals in a specified manner. The edge end corresponding
to xi = 0 is then called initial point and, correspondingly, the other end point is
the terminal point of the edge ei. Hence not only the connectedness of the graph
is specified, but also an orientation of the edges is introduced. We emphasise
that the specific choice of the orientation thus made does not impact the results
of this paper, in fact the choice of the initial and terminal points of the edges
are arbitrary. The intervals are only used to construct the Laplace operator as a
differential operator.

It is useful to arrange the 2E edge ends in a particular way: we list the initial
points in the order as they occur in the list of edges, followed by the terminal
points in the same order. For the trace formula we, moreover, require the following
notions.

Definition 2.1. A closed path in Γ is a finite sequence of edges (ei)
n
i=1, such that

the edges ei and ei+1 for ∈ {1, . . . , n− 1} and the edges en and e1 are adjacent. A
periodic orbit is an equivalence class of closed paths modulo cyclic permutations
of the edges.
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The number n of edges in a periodic orbit p is its topological length, whereas
the sum lp = le1 + · · ·+ len

of the metric lengths of its edges is the metric length, or
simply length, of p. A periodic orbit is primitive, if it is not a multiple repetition
of another periodic orbit. Furthermore, the set of periodic orbits of the graph is
called P, and Pn is its subset of orbits with topological length n.

2.2. Quantum graphs

Quantum mechanics on a metric graph can be studied in terms of the Schrödinger
equation

i
∂

∂t
ψt = −Δψt . (2.1)

Here ψt is a vector in an appropriate Hilbert space and Δ is a suitable (differential)
Laplace operator, acting on functions defined on the edges of the graph. Since this
operator is of second order, it is independent of the choice of the coordinates xj or
x̃j := lj − xj on the edges ej , and therefore also independent of the specification
of edge ends as initial and terminal.

In order to be in a position to view the negative Laplacian in (2.1) as a
quantum Hamiltonian, it has to be realised as a self adjoint operator on a suitable
Hilbert space. We therefore introduce the space of square integrable functions on
Γ as the quantum graph Hilbert space. In this context a function on the graph is
a collection F = (f1, . . . , fE) of functions fj : (0, lj) → C on the edges. Therefore,
one considers the following function spaces,

C∞(Γ) =
E⊕

j=1

C∞(0, lj) and L2(Γ) =
E⊕

j=1

L2(0, lj) .

The latter is a closed orthogonal sum of Hilbert spaces with respect to the scalar
product

〈F,G〉 :=
E∑

j=1

∫ lj

0

fj(xj) gj(xj) dxj .

As a differential expression the (negative) Laplacian is simply given by

−ΔF := (−f ′′
1 , . . . ,−f ′′

E) ,

where dashes denote derivatives. This expression may now serve as a way to in-
troduce a closed, symmetric operator (−Δ,D0) with domain

D0 =
E⊕

j=1

H2
0 (0, lj) .

Here each term in the orthogonal sum consists of an L2-Sobolev space of functions
which, together with their derivatives, vanish at the edge ends. The deficiency
indices of this operator are (2E, 2E), and thus it possesses self adjoint extensions
that can be classified according to von Neumann’s theory (see, e.g., [30]). An
alternative approach has been developed in detail by Kostrykin and Schrader [20],
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which provides a convenient parametrisation that is particularly useful for later
purposes. In this context one introduces the boundary values

Fbv =
(
f1(0), . . . , fE(0), f1(l1), . . . , fE(lE)

)T
,

F ′
bv =

(
f ′
1(0), . . . , f ′

E(0),−f ′
1(l1), . . . ,−f ′

E(lE)
)T

,
(2.2)

of functions and their derivatives, whereby the signs ensure that inward derivatives
are considered at all edge ends. Notice that the order of the terms follows the
convention of arranging edge ends introduced previously. Boundary conditions on
the functions in the domain of a given self adjoint operator are specified through
a linear relation between boundary values; they are of the form

AFbv + BF ′
bv = 0 , (2.3)

see [20]. Here A,B ∈ M(2E, C) are two matrices such that

• the matrix (A,B), consisting of the columns of A and B, has maximal rank
2E,

• AB∗ is self adjoint.

These conditions then imply the self adjointness of the operator, and every self
adjoint extension can be achieved in this manner. Occasionally, we shall denote
a particular such self adjoint realisation of the Laplacian as Δ(A,B, l). This
parametrisation, however, is obviously not unique because a multiplication of (2.3)
with C ∈ GL(2E, C) from the left does not change the boundary conditions. On
the other hand, if Δ(A,B, l) = Δ(A′, B′, l), there exists C ∈ GL(2E, C) with
A′ = CA and B′ = CB, see [20]. Thus, for any C ∈ GL(2E, C) both A,B and
A′ = CA,B′ = CB provide an equivalent characterisation of the same operator.

The linear relations (2.3) can in principle relate boundary values at any set
of edge ends. We wish, however, the operator to respect the connectedness of the
graph and therefore we restrict ourselves to local boundary conditions. These are
characterised by the condition that (2.3) only relates edge ends that form a single
vertex. To this end we now group the edge ends in (2.2) according to the vertices
they belong to. Local boundary conditions then lead to a block structure of the
matrices A and B,

A =
⊕

v∈V
Av and B =

⊕

v∈V
Bv , (2.4)

such that each block, represented by Av and Bv, exactly relates the boundary
values of functions and their derivatives at the vertex v. In this context self ad-
jointness of the Laplacian is achieved, if for all v ∈ V the rank of (Av, Bv) is dv

and AvB∗
v is self adjoint.

To mention a few examples, a vertex with Dirichlet boundary conditions can
be characterised by Av = 1dv

, Bv = 0, whereas for Neumann boundary conditions
one would choose Av = 0, Bv = 1dv

. Moreover, the generalised Kirchhoff boundary
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conditions used by Kottos and Smilansky [21] can be achieved by choosing

Av =

⎛

⎜⎜⎜⎝

1 −1
. . . . . .

1 −1
μv

⎞

⎟⎟⎟⎠ and Bv =

⎛

⎜⎜⎝
1 · · · · · · 1

⎞

⎟⎟⎠ , (2.5)

where only the non vanishing matrix entries are indicated. Here μv must be real;
when μv = 0 the usual Kirchhoff conditions are realised.

The approach we have taken here when singling out local boundary conditions
is to start from a given graph and then to realise the Laplacian as a self adjoint
operator on that graph. An alternative view would be to consider the above con-
struction as a realisation of the Laplacian as a self adjoint operator on a collection
of E intervals. One can then find a graph, i.e., a way to connect the interval ends
in vertices, such that a given pair of matrices A and B is local with respect to this
graph; there even is a unique graph maximising the number of vertices [22]. In the
following we shall, however, stick to the previous view.

The non-uniqueness in the choice of the matrices A and B can be overcome by
parametrising the self adjoint realisations of the Laplacian in terms of projectors
onto subspaces of the 2E-dimensional spaces of boundary values. To this end
Kuchment [24] introduced the projector P onto the kernel of B as well as the
projector Q = 1 − P onto the orthogonal complement (kerB)⊥ = ranB∗ in C

2E

and proved that A maps ranB∗ into ranB. He then defined the (self adjoint)
endomorphism

L :=
(
B|ran B∗

)−1
AQ (2.6)

of ranB∗, and showed that the boundary conditions (2.3) are equivalent to

PFbv = 0 and LQFbv + QF ′
bv = 0 . (2.7)

Moreover, there exists a C ∈ GL(2E, C) such that

A′ = CA = P + L and B′ = CB = Q , (2.8)

implying that
L = A′B′∗ .

A refinement of this construction can be found in [9]. From (2.7) one concludes
that in cases where L = 0, the boundary conditions do not mix boundary values of
the functions themselves with those of their derivatives. We call these non-Robin
boundary conditions, and all other cases Robin boundary conditions.

Yet another description of the self adjoint realisations of the Laplacian em-
ploys the associated quadratic forms. As shown by Kuchment [24], given a reali-
sation of the Laplacian as a self adjoint operator, the associated quadratic form

QΔ[F ] =
E∑

e=1

∫ le

0

|f ′
e(x)|2 dx − 〈Fbv, LFbv〉C2E (2.9)

has a domain that consist of all functions F on the graph, with components fe ∈
H1(0, le), whose boundary values fulfil PFbv = 0.
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3. The S-matrix

In quantum graph models Laplace eigenvalues can be conveniently characterised
in terms of zeros of finite dimensional determinants, and thus these models are
amenable to powerful analytical as well as numerical methods. In quantum bil-
liards a related method was pioneered by Doron and Smilansky [8] as the scat-
tering approach to quantisation. In general, this method relies on semiclassical
approximations. As first demonstrated by Kottos and Smilansky [21], however, in
quantum graphs the scattering approach allows to determine Laplace eigenvalues
exactly from a finite dimensional secular equation.

The scattering approach bears its name from the fact that it is based on
scattering processes occurring when one opens up a given closed quantum system
appropriately. In quantum graphs the procedure of opening up consists of replacing
each vertex and its attached edges by an infinite star graph. This is the single, given
vertex v with dv infinite half lines attached that replace the edges of finite lengths.
Carrying over the local boundary conditions at the vertices from the original closed
quantum graph, one thus obtains V open quantum systems, which each possess an
on-shell scattering matrix σv(k). More precisely, this S-matrix is defined in terms
of dv functions F (j) on the infinite star graph associated with v, whose components
on the dv infinite edges are

f
(j)
i (x) :=

{
σv

ji(k) eikx , j �= i

e−ikx + σv
jj(k) eikx , j = i

.

One then requires each of these functions to fulfil the boundary conditions at v. In
terms of the parameterisation of the boundary conditions described in Section 2.2
one then finds that

σv(k) = −(Av + ikBv)−1(Av − ikBv) , for k ∈ R\{0} . (3.1)

The conditions imposed on Av and Bv in order to achieve self adjoint boundary
conditions ensure that Av ± ikBv are invertible and that the vertex S-matrix σv(k)
is unitary for all k ∈ R \ {0}, see [20].

The local scattering matrix associated with a vertex with Dirichlet or Neu-
mann boundary conditions is σv = −1dv

or σv = 1dv
, respectively. In contrast,

according to (2.5) generalised Kirchhoff boundary conditions lead to a vertex S-
matrix with elements of the form [21]

σv
ij(k) = −δij +

2k

dvk + iμv
. (3.2)

The local S-matrices of the entire graph can now be grouped together vertex
by vertex. In that process all edges occur twice, namely associated with the vertex
S-matrices of their two edge ends. It is hence useful to consider directed edges, and
view the matrix elements of σv as describing transitions from a directed edge with
terminal point v to a directed edge that has v as its initial point. As the list of all
directed edges corresponds to listing their initial points, the transitions prescribed
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by σv can also be performed on the boundary values (2.2). As a result one obtains
the matrix

S(A,B; k) = −(A + ikB)−1(A − ikB) . (3.3)
Again, A ± ikB are invertible and S(A,B; k) is unitary for all k ∈ R \ {0}.
Moreover, (3.3) is invariant under the substitution of A,B by CA,CB for all
C ∈ GL(2E, C) and therefore is associated with the self adjoint realisations of the
Laplacian [22].

We emphasise that, although (3.3) can be defined for any self adjoint real-
isation, the vertex S-matrices (3.1) can only be recovered from (3.3) in the case
of local boundary conditions, i.e., when (2.4) is satisfied. Despite the fact that a
closed quantum graph does not allow for quantum scattering in the usual sense,
the quantity (3.3) is often referred to as the edge (or bond) S-matrix [21] of the
quantum graph.

Furthermore, using the parametrisation (2.7) of boundary conditions and
utilising (2.8) as well as the fact that (L + ik)−1 commutes with L − ik, one
obtains the representation

S(A,B; k) = −P − Q (L + ik)−1(L − ik)Q , k ∈ R\{0} , (3.4)

for the edge S-matrix, see [22].
From the expressions (3.3) and (3.4) it appears that the S-matrix generally

depends on the wave number k in a non-trivial way. However, certain boundary
conditions lead to k-independent S-matrices. Obvious examples are Dirichlet and
Neumann boundary conditions, as well as the usual Kirchhoff boundary conditions,
i.e., (3.2) with μv = 0. A general characterisation of such boundary conditions was
provided in [18] in terms of the following equivalent conditions:

• S(A,B; k) is k-independent.
• S(A,B; k) is self adjoint for some, and hence for all, k > 0.
• S(A,B; k) = 1− 2P for some, and hence for all, k > 0.
• AB∗ = 0, i.e., L = 0.

The last point shows that k-independent S-matrices arise exactly in the case of
non-Robin boundary conditions.

Below we are going to prove some properties of S-matrices that are relevant
for the trace formula. In this context, for Robin boundary conditions an important
role will be played by the spectrum σ(L) of the self adjoint matrix L (2.6).

We shall make extensive use of the S-matrix extended to complex wave num-
bers k and therefore need the following.

Lemma 3.1. Let A and B specify self adjoint boundary conditions for the Laplacian
on the graph. Then the S-matrix (3.3) has the following properties:

1. S(A,B; k) can be continued into the complex k-plane as a meromorphic func-
tion, and has simple poles at the points of the set iσ(L) \ {0}.

2. S(A,B; k) is unitary for all k ∈ R.
3. S(A,B; k) is invertible for all k ∈ C \ [±iσ(L) \ {0}], and its inverse is

S(A,B;−k).
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Proof. We henceforth extend the self adjoint endomorphism L of ranB∗, see (2.6),
to an endomorphism of C

2E by setting it to zero on (ranB∗)⊥ = ker B. We then
diagonalise L utilising an appropriate unitary W , and denote the non-zero eigenval-
ues (counted with their multiplicities) by {λ1, . . . , λd}. This leaves the eigenvalue
zero with a multiplicity of 2E − d. There are r := dim ranB∗ − d (orthonormal)
eigenvectors of L in ranB∗ and s := dim kerB = 2E − dim ranB∗ eigenvectors in
ker B, respectively, corresponding to the eigenvalue zero.

Employing this diagonalisation in the representation (3.4) of the S-matrix
then leads to the expression

S(A,B; k) = W ∗

⎛

⎜⎜⎜⎜⎜⎝

−λ1−ik
λ1+ik

. . .
−λd−ik

λd+ik

1r

−1s

⎞

⎟⎟⎟⎟⎟⎠
W . (3.5)

Since the unitary W is independent of k the first statement of the lemma is obvious.
The unitarity of S(A,B; k) for real k also follows immediately by observing

that the diagonal entries in (3.5) are all of unit absolute value.
The third statement follows in a completely analogous fashion from the rep-

resentation (3.5). �

Knowing that the S-matrix is analytic in k, one would like to calculate its
derivative. This in fact is required in the proof of the trace formula below. It is
even possible to relate the derivative of S(k) to the S-matrix itself.

Lemma 3.2. Under the same assumptions as in Lemma 3.1 one obtains for k ∈
C \ [±iσ(L) \ {0}],

d
dk

S(A,B; k) = − 1
2k

[
S(A,B; k) − S(A,B, k)−1

]
S(A,B; k) . (3.6)

We remark that for real k the unitarity of the S-matrix can be invoked to
obtain from (3.6) that it is independent of k, iff it is self adjoint.

Proof. Let us first assume that k ∈ R \ {0} and abbreviate S(A,B; k) as S(k).
We also denote derivatives w.r.t. k by a dash and use the relation d

dk [X(k)]−1 =
−X(k)−1X ′(k)X(k)−1, which is true for any differentiable function X(k) taking
values in GL(2E, C). Recall that the conditions imposed on A,B ensure that A±
ikB is invertible for k ∈ R \ {0}. Hence

S′(k) = (A + ikB)−1(iB)(A + ikB)−1(A − ikB) + (A + ikB)−1(iB)

= −i(A + ikB)−1B
(
S(k) − 1

)
.

(3.7)

The last line is obviously invariant under a replacement of A and B by CA and
CB, respectively, where C ∈ GL(2E, C) is arbitrary.
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Now choose C(k) = (A + ikB)−1 ∈ GL(2E, C) and find that (see also [23])

C(k)A = −1
2
(
S(k) − 1

)
and C(k)B = − 1

2ik
(
S(k) + 1

)
. (3.8)

Inserting this into (3.7) finally leads to

S′(k) =
1
2k

(
S(k) + 1

)(
S(k) − 1

)

= − 1
2k

(
S(k) − S(k)∗

)
S(k) ,

(3.9)

which proves the statement for k ∈ R \ {0}.
From Lemma 3.1 we infer that S(k) is analytic in a neighbourhood of k =

0 and that the right-hand side of (3.9) has a removable singularity at k = 0;
hence (3.9) extends to all real k. Since, moreover, S(k) is unitary on R and analytic
on C \ [±iσ(L)], and 1

k as well as S(k)−1 are also analytic on this set, the full
statement of the lemma follows by analytic continuation. �

From Lemma 3.1 we know that S(k) is meromorphic with finitely many poles
on the imaginary axis. One can therefore perform power series expansions of the
S-matrix in large parts of the complex k-plane. Below we want to specify two such
expansions, and to this end we exclude an annulus containing iσ(L) \ {0}. This
annulus is characterised by the two radii

λmin / max := min /max
{
|λ|; λ ∈ σ(L) \ {0}

}
.

Here we assume that σ(L) �= {0}; otherwise L = 0 which is equivalent to the
S-matrix being independent of k.

We are now in a position to provide the announced expansions of the S-
matrix.

Lemma 3.3. Let the same conditions as in Lemma 3.1 be given and assume that L �=
0. Then the following power series expansions converge absolutely and uniformly
in any closed subsets of the specified regions:

1. For |k| > λmax,

S(A,B; k) = 1− 2P + 2
∞∑

n=1

1
kn

(iL)n . (3.10)

2. For |k| < λmin,

S(A,B; k) = −1 + 2P̃ − 2
∞∑

n=1

kn
(
iL̃
)n

, (3.11)

where P̃ and L̃ emerge from P and L, respectively, by replacing A,B with
−B,A.
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Proof. For the first expansion we refer to the representation (3.5) of the S-matrix
and employ the expansion

−λα − ik
λα + ik

=
1 + i

kλα

1 − i
kλα

= 1 + 2
∞∑

n=1

(
iλα

k

)n

, α = 1, . . . , d ,

valid for |k| > λα. Hence, for |k| > λmax the S-matrix is 1 + 2
∑∞

n=1
1

kn (iL)n on
ran B∗ and −1 on ker B. Since L = 0 on ker B, the relation (3.10) follows.

For the second expansion we remark that from (3.3) one can readily deduce
the relation S(A,B; k) = −S(−B,A; 1

k ) for k ∈ R \ {0}, see [22]. Thus, (3.10)
implies (3.11), and the domain |k| < λmin of convergence, in which S(k) is holo-
morphic, follows immediately. �

Lemma 3.3 also provides limiting expressions for the edge S-matrix as |k| →
∞ and |k| → 0, respectively,

S∞ = 1− 2P and S0 = −1 + 2P̃ ,

which we shall use subsequently.
Later we shall integrate expressions containing the S-matrix along contours

in the upper complex half plane and, therefore, we need to estimate the norm of
the S-matrix along the contours. To this end we introduce

λ+
min :=

{
min{λ ∈ σ(L); λ > 0} , if ∃λα > 0
∞ , else

, (3.12)

and obtain the following.

Lemma 3.4. Let k ∈ R and 0 < κ < λ+
min, then

‖S(k + iκ)‖, ‖S(k − iκ)−1‖ ≤ max
{

1,
λ+

min + κ

λ+
min − κ

}
(3.13)

in the operator norm. Furthermore, if κ > λmax, then

‖S(k + iκ)‖ , ‖S(k − iκ)−1‖ ≤ κ + λmax

κ − λmax
. (3.14)

Proof. From (3.5) one can read off the eigenvalues of S(k + iκ) as ±1 and −(λα +
κ − ik)/(λα − κ + ik), α = 1, . . . , d. In absolute values the latter quantities, as
functions of k ∈ R, are maximised at k = 0. Now suppose that λ+

min > 0 and let
0 < κ < λ+

min. Then the largest quantity among the |λα +κ|/|λα −κ| is the one on
the right-hand side of (3.13). In the case λ+

min = ∞ the upper bound is one. The
proof for S(k − iκ)−1 is completely analogous.

If κ > λmax the same argument yields the bound (3.14). �
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4. The spectrum of the Laplacian

The scattering approach to the quantisation of a finite, metric graph utilises a
secular equation based on the edge S-matrix of the graph. Here we closely follow
the original approach as developed by Kottos and Smilansky [21] for the case
of (generalised) Kirchhoff boundary conditions, which was later generalised by
Kostrykin and Schrader [23]. To keep the presentation sufficiently self-contained,
we reproduce the relevant results below. We begin, however, with some general
properties of Laplace spectra and finish this section with some remarks on the
eigenvalue zero.

4.1. Preliminaries on the spectrum

Given a Laplacian on a compact metric graph, one would naturally expect that
its spectrum is discrete and has a finite lowest eigenvalue. Kuchment indeed
proved [24] that any such self adjoint (negative) Laplacian is bounded from below,
and that its resolvent is trace class. Thus, the spectrum is discrete and bounded
from below. Subsequently, Kostrykin and Schrader [23] improved the lower bound.
They showed that

−Δ ≥ −s2 , (4.1)

where s ≥ 0 is the unique solution of

s tanh
(

slmin

2

)
= λ+

max , (4.2)

with lmin denoting the shortest edge length and

λ+
max :=

{
max{λ ∈ σ(L); λ > 0} , if ∃λα > 0
0, else

. (4.3)

Remark 4.1. As an aside we should like to mention that the lower bound (4.1) is
optimal in the following sense: Consider a trivial example of a metric graph given
by an interval I of length l, and a Laplacian with domain specified by the choice

A = λ12 and B = 12 ,

where λ > 0, such that L = λ12 and σ(L) = {λ}. (Equivalently, P = 0, Q = 12

and L = λ12.) Hence, (2.7) leads to the Robin boundary conditions

λ

(
f(0)
f(l)

)
+
(

f ′(0)
−f ′(l)

)
= 0 ,

and this implies the quantisation condition
(

λ − ik
λ + ik

)2

e2ikl = 1 . (4.4)
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The solution k = iκ, with κ > λ > 0, representing the lowest Laplace eigenvalue
−κ2 corresponds to a solution of the equation

κ tanh
(

κl

2

)
= λ .

This condition is equivalent to (4.2), demonstrating that the bound (4.1) is sharp
for this ‘quantum graph’.

Kostrykin and Schrader also showed [23] that the number of negative Laplace
eigenvalues is bounded by the number of positive eigenvalues of L (counted with
their respective multiplicities). In the example above, the Robin Laplacian on an
interval hence has at least one and at most two negative eigenvalues.

For the trace formula one requires an a priori estimate on the number of
eigenvalues. This is well known for the Dirichlet and the Neumann Laplacian,
and in the case of Kirchhoff boundary conditions can be found in [33]. The same
asymptotic law, however, holds also in the general case.

Proposition 4.2. Given a self adjoint realisation of the Laplacian on a compact met-
ric graph, the number of its eigenvalues k2

j ∈ R (counted with their multiplicities)
fulfils the following asymptotic law,

N(K) := #
{
j; k2

j ≤ K2
}
∼ L

π
K , K → ∞ , (4.5)

where L := le1+· · ·+leE
is the total length of the graph. In particular, the Laplacian

has infinitely many eigenvalues that only accumulate at infinity.

Proof. We prove the asymptotic law employing a variational characterisation of
the eigenvalues based on the quadratic form (2.9), as well as an analogue of the
Dirichlet-Neumann bracketing (see [31]). To this end we introduce two comparison
operators.

The first comparison operator is the direct sum of the Dirichlet operators on
the edges, i.e., the Dirichlet-Laplacian of Section 2.2. The domain of the associated
quadratic form is characterised by the condition Fbv = 0, and therefore is contained
in the domain of (2.9). Moreover, on the Dirichlet-form domain both quadratic
forms coincide. The comparison lemma devised in [31] hence implies that ND(K) ≤
N(K). Here ND(K) is the counting function for the eigenvalues of the Dirichlet-
Laplacian, which trivially fulfils the asymptotic law (4.5).

As our second comparison operator we choose the direct sum of Robin Lapla-
cians on the edges (see the example above). This operator is characterised by
PR = 0, QR = 12E and L = λ12E with some λ ≥ 0. (λ = 0 in fact corresponds to
Neumann Laplacians on the edges.) The boundary conditions are λFbv + F ′

bv = 0,
and thus they decouple the edges. The respective eigenvalue counting function
NR(K) can be determined from (4.4) and clearly obeys the asymptotic law (4.5).
The associated form domain, characterised by the condition PRFbv = 0, con-
tains the domain of (2.9). Choosing λ = λ+

max, see (4.3), on the form domain of
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(2.9) one finds QR[F ] ≤ QΔ[F ]. Therefore, the comparison lemma of [31] implies
NR(K) ≥ N(K).

Thus, ND(K) ≤ N(K) ≤ NR(K) and the upper and the lower bounds both
fulfil the same asymptotic law, which proves (4.5). The further statement follows
immediately. �

This result is independent of any details of the quantum graph, apart from its
volume. This is analogous to the corresponding results for Laplacians on manifolds
or domains. In general, the asymptotic growth of the number of eigenvalues is
proportional to the volume of the manifold/domain and to KD, where D is the
dimension of the manifold/domain. This type of results is often referred to as
‘Weyl’s law’ [35], and insofar Proposition 4.2 is the quantum graph version of
Weyl’s law.

4.2. The secular equation

Apart from the edge S-matrix, the scattering approach requires the metric infor-
mation of the graph, which enters through

T (l; k) :=
(

0 t(l; k)
t(l; k) 0

)
with t(l; k) :=

⎛

⎜⎝
eikl1

. . .
eiklE

⎞

⎟⎠ , (4.6)

where k ∈ C. Both matrices are then used to introduce

U(k) := S(A,B; k)T (l; k) . (4.7)

The topological and the metric data entering U(k) are hence clearly separated.
For real k the endomorphisms S(k), T (k) and U(k) of C

2E are obviously uni-
tary. We therefore denote the eigenvalues of U(k) by eiθ1(k), . . . , eiθ2E(k). Following
Lemma 3.1 we conclude that U(k) can be extended into the complex k-plane as a
meromorphic function with poles at iσ(L) \ {0}. The determinant function

F (k) := det
(
1− U(k)

)
, (4.8)

on which the scattering approach is based (see [21]), hence is also meromorphic.
Its poles are in iσ(L) \ {0}, but do not necessarily exhaust the entire set.

Proposition 4.3 (Kostrykin, Schrader [23]). The determinant function (4.8) is
meromorphic on the complex plane with poles in the set iσ(L) \ {0}. Furthermore,
let kn ∈ C \ [iσ(L)∪{0}] with Im kn ≥ 0, then k2

n is an eigenvalue of −Δ, iff kn is
a zero of the function (4.8), i.e., F (kn) = 0. Moreover, the spectral multiplicity gn

of the Laplace eigenvalue k2
n > 0 coincides with the multiplicity of the eigenvalue

one of U(kn).

Proposition 4.3 establishes a close connection between zeros of the determi-
nant function (4.8) and Laplace eigenvalues. Notice that although Laplace eigen-
values occur as squares, k2, the function (4.8) is not invariant under a change
of sign in its argument. There exists, however, a functional equation under the
substitution k �→ −k.
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Lemma 4.4. For all C \ [±iσ(L) \ {0}] the following identity holds:

F (k) = (−1)M e2ikL

(
d∏

α=1

λα − ik
λα + ik

)
F (−k) , (4.9)

where M = E +d+dim kerB and L = le1 + · · ·+ leE
is the sum of all edge lengths.

Proof. We decompose

1− S(k)T (k) = −S(k)
[
1− S(−k)T (−k)

]
T (k) ,

so that after taking determinants,

F (k) = (−1)2E det T (k) det S(k)F (−k) .

Using the definition (4.6) of T (k) and the representation (3.5) of S(k) then yields
(4.9). �

We remark that when k2 ∈ R is a Laplace eigenvalue, then either k ∈ R when
the eigenvalue is non-negative or, in the case of a negative eigenvalue, k = ±iκ
with κ > 0. The relevant zeros of the determinant (4.8) are then ±k ∈ R or iκ,
respectively. Unless κ ∈ σ(L) or k = 0, all Laplace eigenvalues are covered by
Proposition 4.3. However, in order to count Laplace eigenvalues in terms of zeros
of F (k) with their correct multiplicities one has to establish a connection between
the order of the zero and the multiplicity of one as an eigenvalue of U(k). In the
trace formula we shall need this connection for the non-negative eigenvalues and
hence now consider the eigenphases θ(k) of U(k), defined through

U(k)v(k) = eiθ(k)v(k) with ‖v(k)‖ = 1 , (4.10)

for k ∈ R. We then recall that U(k) = S(A,B; k)T (l; k) is analytic in C \ [iσ(L) \
{0}]. According to analytic perturbation theory (see, e.g., [16]) its eigenvalues, for
which we keep the notation eiθ(k), are continuous on this set and differentiable apart
from possibly isolated points. Since, however, U(k) is real-analytic and normal
for all k ∈ R, we can apply a sharpened version of analytic perturbation theory
(see [26]) to conclude that the eigenvalues are real analytic for all k ∈ R and that
there exists a choice of eigenvectors with the same property.

The following statement is a generalisation of a result found in [5,21] that is
valid for k-independent S-matrices.

Lemma 4.5. Let θ(k) be an eigenphase of U(k), k ∈ R, with associated normalised
eigenvector v(k) = (v1(k), . . . , v2E(k))T . Then

d
dk

θ(k) =
2E∑

i=1

li|vi(k)|2 − 2
〈

v(k),
L

L2 + k2
v(k)

〉

C2E

. (4.11)
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Proof. Taking Lemma 3.2 into account we first observe that

U ′(k) = − 1
2k

(
S(k) − S∗(k)

)
S(k)T (k) + iS(k)T (k)D(l)

= −2i
L

L2 + k2
U(k) + iU(k)D(l) ,

(4.12)

where

D(l) :=
(

D1(l) 0
0 D1(l)

)
, D1(l) :=

⎛

⎜⎝
l1

. . .
lE

⎞

⎟⎠ . (4.13)

We also employed the relation

− 1
2k

(
S(k) − S∗(k)

)
= −2i

L

L2 + k2
(4.14)

that follows from (3.4). This then yields
〈

v(k),
d
dk

[
U(k)v(k)

]〉
= −2i eiθ(k)

〈
v(k),

L

L2+k2
v(k)

〉
+ i

〈
U∗(k)v(k),D(l)v(k)

〉

+ 〈U∗(k)v(k), v′(k)〉

= −2i eiθ(k)

〈
v(k),

L

L2 + k2
v(k)

〉
+ i eiθ(k)

〈
v(k),D(l)v(k)

〉

+ eiθ(k)
〈
v(k), v′(k)

〉
. (4.15)

On the other hand, taking the derivative on the right-hand side of (4.10) and then
multiplying with v(k) leads to

〈
v(k),

d
dk

[
eiθ(k)v(k)

]〉
= iθ′(k)eiθ(k) + eiθ(k)

〈
v(k), v′(k)

〉
. (4.16)

Comparing (4.15) and (4.16) proves the statement (4.11). �

This lemma allows us to obtain an upper and a lower bound for the derivative
of an eigenphase. Using lmax / min to denote the largest and the smallest edge length,
respectively, and introducing

λ−
min :=

{
min{|λ|; λ ∈ σ(L) ∩ R

−}, if ∃λα < 0
∞, else

,

in analogy to (3.12), we immediately get the following.

Corollary 4.6. The derivative θ′(k) of an eigenphase θ(k) is bounded from above
and below according to

lmin − 2
λ+

min

≤ θ′(k) ≤ lmax +
2

λ−
min

. (4.17)

In particular, if lmin > 2/λ+
min the derivatives of all eigenphases are always positive.
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Proof. Obviously,

lmin ≤
2E∑

i=1

li|vi(k)|2 ≤ lmax ,

since the eigenvector is supposed to be normalised. Moreover, after a diagonalisa-
tion of L, when WLW ∗ is diagonal with the eigenvalues λα on the diagonal, one
obtains

〈
v(k),

L

L2 + k2
v(k)

〉
=

2E∑

α=1

|wα(k)|2 λα

λ2
α + k2

,

where w(k) = Wv(k). This first yields

− 1
λ−

min

≤
〈

v(k),
L

L2 + k2
v(k)

〉
≤ 1

λ+
min

,

and then finally (4.17). �

As an important consequence of this corollary we are now able to extend the
statement of Proposition 4.3 as required to count eigenvalues in terms of zeros of
the determinant function.

Proposition 4.7. Let the metric structure of the graph be such that lmin > 2/λ+
min.

Then k2
n > 0 is an eigenvalue of the Laplacian with multiplicity gn, if ±kn ∈ R\{0}

are zeros of the function F (k) of order gn.

Proof. From Proposition 4.3 and Lemma 4.4 we know that the positive Laplace
eigenvalues are in one-to-one correspondence with (pairs of) k values where U(k)
has an eigenvalue one, and the respective multiplicities coincide. It hence remains
to establish that the order of the corresponding zeros of F (k) are exactly these
multiplicities: From the definition (4.8) of the function F (k) one obtains

F (k) =
2E∏

j=1

(
1 − eiθj(k)

)
,

so Corollary 4.6 implies d
dk

(
1 − eiθj(k)

)
= −iθ′j(k)eiθj(k) �= 0, and the claim follows

immediately. �

We remark that since the scattering approach to the proof of the trace for-
mula is based on counting zeros of the function F (k) on the real line with their
multiplicities, the requirement lmin > 2/λ+

min is essential. Otherwise one might
count Laplace eigenvalues with incorrect multiplicities. Whenever L has no pos-
itive part, however, the condition is empty. This is, e.g., the case for non-Robin
boundary conditions.
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4.3. The eigenvalue zero

In general, zero is a Laplace eigenvalue as well as a zero of the determinant (4.8),
and in so far Proposition 4.3 also applies to k0 = 0. The spectral multiplicity g0,
however, typically is different from the degree of k0 = 0 as a zero of F (k). For
Kirchhoff boundary conditions it has been shown in [17] that the degree of the
zero is E − V + 2, whereas the zero Laplace eigenvalue is non-degenerate, i.e.,
g0 = 1. Kurasov [25] subsequently linked this difference in the multiplicities to
the topology of the graph by noticing that a suitable trace formula contains the
quantity

1 − 1
2
(E − V + 2) =

1
2
(V − E) ,

and hence the Euler characteristic of the graph. This observation was generalised
to yield an index theorem for any quantum graph with non-Robin boundary condi-
tions by Fulling, Kuchment and Wilson [9]. One can view the t-independent term
1
4 trS = 1

2 (V −E) in the trace formula for the heat kernel (due to [29] for Kirchhoff
boundary conditions and [18] for general non-Robin conditions) as a predecessor
of this result. See also [2] for a more detailed discussion.

We here wish to give a further characterisation of the spectral multiplicity of
the zero eigenvalue in the case of a general self adjoint realisation of the Laplacian.
To this end we first introduce, for k ∈ R \ {0}, the matrix

C(l; k) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1
2 i

k +l1

. . .
lE

2 i
k +lE

2 i
k

2 i
k +l1

. . .
2 i

k

2 i
k +lE

2 i
k

2 i
k +l1

. . .
2 i

k

2 i
k +lE

l1
2 i

k +l1

. . .
lE

2 i
k +lE

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.18)

in which all matrix entries not indicated are zero. This now enables us to formulate
the following.

Proposition 4.8. For any given self adjoint realisation of the Laplacian specified
through A,B, zero is a Laplace eigenvalue, iff one is an eigenvalue of S(A,B; k)
C(l; k) for one, and hence any, k ∈ R \ {0}. Moreover, the multiplicity of this
eigenvalue one coincides with the spectral multiplicity g0 of the zero Laplace eigen-
value.

Proof. Eigenfunctions of the Laplacian corresponding to the eigenvalue zero must
be of the form F = (f1, . . . , fE)T with

fj(x) = αj + βjx , x ∈ [0, lj ] . (4.19)
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Hence, the boundary values (2.2) take the form

Fbv =
(
α1, . . . , αE , α1 + β1l1, . . . , αE + β1lE

)T
,

F ′
bv =

(
β1, . . . , βE ,−β1, . . . ,−βE

)T
.

We now employ the boundary conditions (2.3) by using the expressions (3.8) for
a possible choice of A and B. The result can be rearranged to yield

S(k)C+(l; k)
(

α
β

)
= C−(l; k)

(
α
β

)
, (4.20)

where, for any k ∈ R \ {0}, we have introduced

C±(l; k) :=
(
1E ± i

k1E

1E ∓ i
k1E + D1(l)

)
,

with D1(l) as defined in (4.13). We also use the abbreviations

α :=

⎛

⎜⎝
α1

...
αE

⎞

⎟⎠ and β :=

⎛

⎜⎝
β1

...
βE

⎞

⎟⎠ .

The matrices C±(l, k) are invertible for all k ∈ R \ {0}, with

C±(l; k)−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

± i
k−l1

±2 i
k−l1

. . .
± i

k−lE
±2 i

k−lE

± i
k

±2 i
k−l1

. . .
± i

k

±2 i
k−l1

1
±2 i

k−l1

. . .
1

±2 i
k−lE

−1
±2 i

k−l1

. . .
−1

±2 i
k−l1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now substitute

v(k) := C−(l; k)
(

α
β

)
(4.21)

in (4.20) and obtain

S(k)C+(l; k)C−(l; k)−1v(k) = v(k) .

It is straight forward to check that C+(l; k)C−(l; k)−1 = C(l; k), compare (4.18).
The linearly independent eigenvectors of SC corresponding to the eigenvalue one
then yield, via (4.21) and (4.19), coefficients αj and βj for as many linearly inde-
pendent Laplace eigenfunctions in L2(Γ). �

We remark that the order N of k0 = 0 as a zero of the function (4.8) is the
multiplicity of the eigenvalue one of

U(0) = S0

(
0 1E

1E 0

)
,
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which is in no obvious way related to the multiplicity of the eigenvalue one of
S(k)C(l; k) that appears in Proposition 4.8. In the case of non-Robin boundary
conditions, where the edge S-matrix is independent of k, however, Fulling, Kuch-
ment and Wilson [9] were able to relate the different multiplicities in the form of
an index theorem. They showed, in particular, that then

g0 −
1
2
N =

1
4

tr S .

As mentioned above, this term will reappear in the trace formula.

5. The trace formula

A trace formula expresses counting functions of Laplace eigenvalues in terms of
sums over periodic orbits. Ideally, one would like to count Laplace eigenvalues k2

n,
with their multiplicities gn, in intervals I in the form

Tr χI(−Δ) =
∑

k2
n∈I

gn . (5.1)

The sharp cut-off provided by the characteristic function χI of the interval I,
however, cannot be dealt with. One therefore replaces (5.1) with a smooth cut-off
and, moreover, performs this count in terms of the associated wave numbers kn,
i.e., one seeks to find a representation for

∑

n

gn h(kn) (5.2)

in terms of sums over periodic orbits. One ambition then is to find a sufficiently
large class of test functions h. It turns out that the following one parameter family
of test functions is particularly suited for these purposes.

Definition 5.1. For each r ≥ 0 the space Hr consists of all functions h : C → C

satisfying the following conditions:

• h is even, i.e., h(k) = h(−k).
• For each h ∈ Hr there exists δ > 0 such that h is analytic in the strip

Mr+δ := {k ∈ C; | Im k| < r + δ}.
• For each h ∈ Hr there exists η > 0 such that h(k) = O( 1

(1+|k|)1+η ) on Mr+δ.

We stress that the trace formula will only take non-negative Laplace eigen-
values into account. Hence, the test functions in (5.2) will be evaluated at real
arguments. We can therefore arrange the wave numbers kn > 0 corresponding to
Laplace eigenvalues k2

n in ascending order. Proposition 4.2 then readily implies the
existence of a constant C > 0 such that

∑

0<kn≤K

gn |h(kn)| ≤ CK sup
k∈[0,K]

|h(k)| . (5.3)
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The third condition of Definition 5.1 now ensures that the sum in (5.2) converges
absolutely when h ∈ Hr with some r ≥ 0. Since this sum constitutes one side
of the trace formula, choosing test functions h from any of the spaces Hr is an
appropriate prerequisite for the trace formula.

5.1. A precise eigenvalue count and the trace formula

The trace formula is based on an exact count of non-negative Laplace eigenvalues
with, however, a smooth cut-off as in (5.2). Essentially, this sum is expressed in
terms of a sum over periodic orbits on the graph. In order to perform such an
eigenvalue count one relies on the connection between Laplace eigenvalues and
zeros of the determinant function (4.8). More specifically, one chooses a test func-
tion h ∈ Hr with some r ≥ 0 as well as some ε > 0, which must be sufficiently
small so that in the set Cε,K = {k ∈ C; | Im k| ≤ ε, |Re k| ≤ K} the determinant
function F (k) has only (finitely many) real zeros related to non-negative Laplace
eigenvalues (compare Proposition 4.3). Then, by the argument principle,

1
2πi

∫

∂Cε,K

F ′

F
(k)h(k) dk = N h(0) + 2

∑

0<kn≤K

gn h(kn) . (5.4)

Here N and gn are the multiplicities of k0 = 0 and kn > 0, respectively, as a
zeros of F (k). Following Proposition 4.7, gn also is the multiplicity of the Laplace
eigenvalue k2

n. The factor of two occurs since kn,−kn ∈ Cε,K and we have exploited
the fact that h(k) is even. Based on this relation the trace formula emerges when
one expresses F ′(k)/F (k) in terms of a suitable series (eventually leading to a sum
over periodic orbits), and performs the limit K → ∞. The result of this procedure
is summarised in the following statement.

Proposition 5.2. Let lmin > 2/λ+
min and choose h ∈ Hr with any r ≥ 0. Then

N h(0) + 2
∞∑

n=1

gn h(kn) =
∑

l∈Z

1
2πi

∫ +∞

−∞
tr
[
Λ(k)U l(k)

]
h(k) dk , (5.5)

where

Λ(k) = −i
2L

L2 + k2
+ iD(l) . (5.6)

Proof. Our strategy is to show that both sides of (5.5) equal

lim
ε→0+

1
2πi

∫ +∞

−∞

[
F ′

F
(k − iε)h(k − iε) − F ′

F
(k + iε)h(k + iε)

]
dk . (5.7)

Beginning with the left-hand side, we have to show that in (5.4) the limit K → ∞
can be taken, followed by ε → 0. To this end we notice that the right-hand side
of (5.4) is explicitly independent of ε, in the range described above that equation.
Furthermore, from (5.3) we already know that the sum over kn converges absolutely
in the limit K → ∞. In order to perform these limits on the left-hand side of (5.4),
and thus producing (5.7), we have to estimate the contribution to the integral
coming from the vertical parts of the contour.
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Lemma 3.3 implies that for k ∈ C with |k| > λmax the approximation F (k) =
F∞(k) + O(|k|−1) holds, where

F∞(k) := det
(
1− S∞T (k)

)
. (5.8)

Since F∞ depends on k only through the matrix entries eikle of T (k), see (4.6), it
can be represented as

F∞(k) = 1 +
b∑

n=1

dn eiβnk , (5.9)

with some b < ∞. Moreover, βn > 0 is a finite sum of edge lengths, and dn ∈ C

is an appropriate coefficient. The expression (5.9) is first defined for k ∈ R, but
can be readily extended to complex k. Since S′(k) = O(|k|−2), see Lemma 3.2 and
eq. (4.14), we also find F ′(k) = F ′

∞(k) + O(|k|−1). For sufficiently large |k| one
can therefore approximate F ′(k)/F (k) by F ′

∞(k)/F∞(k). In order to estimate the
latter we employ (5.9) to obtain

∣∣F ′
∞(k)

∣∣ ≤ b dmax βmax e−βmin Im k , (5.10)

with dmax := max{|dn|} and βmax / min := max /min{βn}. Note that this bound is
independent of Re k. Furthermore, we pick k(0) ∈ R such that F (k(0)) �= 0 as well
as F∞(k(0)) �= 0, and take advantage of the fact that F∞(k), k ∈ R, is an almost
periodic function (see, e.g., [4]). One can hence construct a (strictly increasing)
sequence {k(j); j ∈ N0} with

|F∞(k(j)) − F∞(k(0))| <
|F∞(k(0))|

2
, j > 0 . (5.11)

Hence, in particular, F∞(k(j)) �= 0. The estimate (5.10), moreover, implies that

|F∞(k(j)) − F∞(k(j) + iκ)| <
|F∞(k(0))|

4
(5.12)

when |κ| is sufficiently small. Therefore, when ε is small enough, the function
|F∞(k(j) + iκ)|, −ε ≤ κ ≤ ε, is uniformly bounded from below away from zero.
Thus there exists Cε > 0 such that

∣∣∣∣∣

∫ k(j)+iε

k(j)−iε

F ′
∞(k)

F∞(k)
h(k) dk

∣∣∣∣∣ ≤ Cε sup
{
|h(k(j) + iκ)|; κ ∈ (−ε,+ε)

}
. (5.13)

The third property of test functions required in Definition 5.1 then ensures that
this integral vanishes as k(j) → ∞. A completely analogous reasoning applies
when replacing k(j) with −k(j). Hence, as K → ∞ the contributions coming from
[−K + iε,−K − iε] and [K − iε,K + iε] to the integration along ∂Cε,K in (5.4)
vanish, and the limits ε → 0 and K → ∞ can be interchanged.

It remains to prove the equality of (5.7) with the right-hand side of (5.5).
In order to achieve this we first recall from Proposition 4.3 that the function
F (k) is holomorphic and zero-free in the strip {k ∈ C; 0 < Im k < ε1}, where
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ε1 := min{λ+
min, κ1} when −κ2

1 is the largest negative eigenvalue of −Δ; if −Δ ≥ 0
we set ε1 := λ+

min. Hence,

F ′

F
(k + iε) =

d
dk

log det
(
1− U(k + iε)

)
= − tr

((
1− U(k + iε)

)−1
U ′(k + iε)

)
,

when 0 < ε < ε1. Furthermore, following Lemma 3.13 we obtain the bound

‖U(k + iε)‖ ≤ ‖S(k + iε)‖‖T (k + iε)‖ ≤ max
{

1,
λ+

min + ε

λ+
min − ε

}
e−εlmin (5.14)

in the operator norm. Thus, when

ε < λ+
min tanh

(
εlmin

2

)
, (5.15)

the operator norm of U(k + iε) is less than one. Iff lmin > 2/λ+
min this condition

is solvable, providing some ε2 with 0 < ε2 < λ+
min such that (5.15) is true for all

ε ∈ (0, ε2). For such ε the expansion

(
1− U(k + iε)

)−1 =
∞∑

l=0

U(k + iε)l

holds. Moreover, a straight forward calculation based on the relation (4.12) pro-
duces tr[U(k)lU ′(k)] = tr[Λ(k)U(k)l+1], see (5.6). Therefore, after cyclic permu-
tations under the trace,

F ′

F
(k + iε) = −

∞∑

l=1

tr
(
Λ(k + iε)U l(k + iε)

)
(5.16)

is true for all k ∈ R and ε ∈ (0, ε3), where ε3 := min{ε1, ε2}.
Likewise, based on the relation

(
1− U(k − iε)

)−1 = −
(
1− U−1(k − iε)

)−1
U−1(k − iε)

that holds for 0 < ε < λ+
min, we obtain

F ′

F
(k − iε) =

∞∑

l=0

tr
(
Λ(k − iε)U−l(k − iε)

)
(5.17)

for k ∈ R and sufficiently small ε > 0.
We now want to use the representations (5.16) and (5.17) in (5.7), interchange

integration and summations, and finally perform the limit ε → 0. In order to
achieve this we first notice that (for fixed ε) the estimate

∣∣tr
(
Λ(k ± iε)U±l(k ± iε)

)∣∣ ≤ 2E‖Λ(k ± iε)U±l(k ± iε)‖
≤ 2E‖Λ(k ± iε)‖‖U±1(k ± iε)‖l

(5.18)

justifies to interchange integration and summation according to the dominated
convergence theorem. Next, the contour of the integral

∫

Im k=±ε

tr
[
Λ(k)U±l(k)

]
h(k) dk (5.19)
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can be deformed into Im k = ±δ with a sufficiently small δ > 0; in particular,
δ < r. We then fix δ and find

∣∣∣∣
∫

Im k=±ε

tr
[
Λ(k)U±l(k)

]
h(k) dk

∣∣∣∣

≤
∫ +∞

−∞

∣∣tr
(
Λ(k ± iδ)U±l(k ± iδ)

)∣∣ |h(k ± iδ)|dk

≤ 2E

(
λ+

min + δ

λ+
min − δ

e−δlmin

)l ∫ +∞

−∞
‖Λ(k ± iδ)‖ |h(k ± iδ)|dk ,

(5.20)

when using (5.14) and (5.18) with δ instead of ε. Since the conditions in Def-
inition 5.1 apply, the integral on the right-hand side is finite and the positive
constant raised to the power l is smaller than one. The sum on l hence possesses
an absolutely convergent majorant, uniform in ε in the range indicated. Thus the
summation and the limit ε → 0 can be interchanged. Furthermore, another appli-
cation of the dominated convergence theorem allows to perform the limit ε → 0
of (5.19) inside the integral, finally proving (5.5). �

In order to arrive at the trace formula itself, the sum on the right-hand side
of (5.5) has to be reformulated as a sum over periodic orbits. The summation index
l then denotes the topological length of the orbits and the trace of Λ(k)U l(k) is
identified as a sum over the set Pl of periodic orbits with topological length l.
The term with l = 0 plays a special role and will be treated separately, whereas
contributions with negative l are related to those with −l in a simple way.

Before we state the trace formula, however, we introduce some notation: The
‘volume’ of the graph is the sum L = le1 +· · ·+leE

of all edge lengths. Furthermore,
if h ∈ Hr is a test function, its Fourier transform is

ĥ(x) =
1
2π

∫ +∞

−∞
h(k) eikx dk .

We recall that the second and the third property required for h in Definition 5.1
guarantee that ĥ(x) = O(e−rx) as x → ∞. Moreover, the Fourier transform of a
product A(k)h(k) is the convolution of the respective Fourier transforms, i.e., it
reads

Âh(x) =
∫ +∞

−∞
Â(x − y) ĥ(y) dy = Â ∗ ĥ(x) . (5.21)

Below this convolution will often have to be understood in a distributional sense,
as the functions A(k), though being regular, not always decay sufficiently fast as
k → ∞.

We are now in a position to state the first variant of the trace formula.

Theorem 5.3. Let Γ be a compact, metric graph with a self adjoint realisation
−Δ(A,B; l) of the Laplacian, such that the condition lmin > 2/λ+

min is fulfilled.
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Furthermore, let h ∈ Hr be a test function with an arbitrary r ≥ 0. Then the
following identity holds:

∞∑

n=0

gn h(kn) = L ĥ(0) +
(
g0 −

1
2
N
)
h(0) − 1

4π

∫ +∞

−∞
h(k)

Im tr S(k)
k

dk

+
∞∑

l=1

∑

p∈Pl

[(
ĥ ∗ Âp

)
(lp) +

(
ĥ ∗ Âp

)
(lp)

]
.

(5.22)

Here Âp is the Fourier transform of the amplitude function Ap(k) associated with
every periodic orbit p. This function is meromorphic with possible poles at the poles
of the S-matrix, and has a Taylor expansion

Ap(k) =
∞∑

j=0

a(j)
p k−j (5.23)

that converges for |k| > λmax. In general, only the sum over the topological lengths l
on the right-hand side of (5.22) converges absolutely, but not the entire double sum
over periodic orbits.

Proof. We have to evaluate tr[Λ(k)U l(k)], and first notice that according to (4.6)
and (4.7) the matrix entries of U are

Uj1j2 = Sj1ωj2
eiklj1 ,

where

ωj :=

{
j + E, if 1 ≤ j ≤ E

j − E, if E + 1 ≤ j ≤ 2E
.

Hence, the indices j and ωj correspond to the two edge ends of the j-th edge.
Local boundary conditions then imply that Sj1ωj2

�= 0 requires the edges with
ends j1 and ωj2 to be adjacent. Therefore, when l > 0 the non vanishing terms in
the multiple sum

tr
(
ΛU l

)
=

2E∑

j0,...,jl=1

Λj0j1Sj1ωj2
. . . Sjlωj0

eik(lj1+···+ljl
) (5.24)

correspond to the closed paths of topological length l on the graph.
We then make use of the decomposition (5.6) of Λ and begin with the contri-

bution of tr[D(l)U l(k)], which can be evaluated as in the case of Kirchhoff bound-
ary conditions [21]: Due to the specific diagonal form of D the terms in (5.24)
corresponding to closed paths related by cyclic permutations of their edges can be
grouped together. This finally yields a sum over the periodic orbits of topological
length l,

tr
[
D(l)U l(k)

]
= 2

∑

p∈Pl

l#p A1,p(k) eiklp .

According to (5.24), the functions A1,p(k) result from multiplying the local S-
matrices of the vertices visited along the periodic orbit p. Moreover, l#p is the
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primitive length of p, i.e., the length of the primitive periodic orbit associated
with p. Due to the relation (5.21) we therefore obtain

1
2π

∫ +∞

−∞
tr
[
D(l)U l(k)

]
h(k) dk = 2

∑

p∈Pl

l#p
(
ĥ ∗ Â1,p

)
(lp) .

The case of negative l follows by noticing that

U−1(k) = T−1(k)S−1(k) = T (−k)S(−k) ,

and thus
tr
[
D(l)U−l(k)

]
= 2

∑

p∈Pl

l#p A1,p(k) e−iklp ,

leading to

1
2π

∫ +∞

−∞
tr
[
D(l)

(
U l(k) + U−l(k)

)]
h(k) dk

= 2
∑

p∈Pl

l#p

[(
ĥ ∗ Â1,p

)
(lp) +

(
ĥ ∗ Â1,p

)
(lp)

]
.

In order to calculate the contribution from tr[ L
L2+k2 U l(k)] we notice that

−2i tr
[

L

L2 + k2
U l

]
= tr[S′TU l−1]

=
2E∑

j1,...,jl=1

S′
j1ωj2

Sj2ωj3
. . . Sjlωj1

eik(lj1+···+ljl
) .

(5.25)

Again, the multiple sum can be viewed as a sum over the closed paths of topological
length l, and the contributions of representatives of periodic orbits can be grouped
together. Eventually, this leads to

−2 tr
[

L

L2 + k2
U l(k)

]
= 2

∑

p∈Pl

A2,p(k) eiklp , (5.26)

where the functions A2,p(k) emerge from multiplying local S-matrix elements and
their derivatives along the closed paths as specified in (5.25). Negative l are dealt
with as above, so that the contribution from l ∈ Z \ {0} to the sum on the
right-hand side of (5.5) yields the sum on the right-hand side of (5.22), with
Ap(k) = l#p A1,p(k) + A2,p(k).

The contribution coming from l = 0 finally is

1
2πi

∫ +∞

−∞
tr Λ(k)h(k) dk = − 1

2π

∫ +∞

−∞
tr
(

2L

L2 + k2

)
h(k) dk +

L
π

∫ +∞

−∞
h(k) dk

= 2L ĥ(0) − 1
2π

∫ +∞

−∞
h(k)

Im tr S(k)
k

dk .

Adding the contribution of the Laplace-eigenvalue zero to (5.5), after a rearrange-
ment of the terms the result (5.22) follows. �
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As mentioned in Theorem 5.3, the double sum over periodic orbits in (5.22)
does not converge absolutely when h ∈ Hr with arbitrarily small r ≥ 0. In the
following we are going to show that an absolutely convergent periodic orbit sum can
be achieved under sharpened conditions on the test function. In order to formulate
these conditions we introduce the function

l(κ) :=
1
κ

log(2E) +
2
κ

artanh
(

κ

λ+
min

)
, 0 < κ < λ+

min , (5.27)

which attains its unique minimum at some σ ∈ (0, λ+
min). Moreover, the minimum

can be bounded from below as l(σ) ≥ (2 + log(2E))/λ+
min so that, in particular,

l(σ) > 2/λ+
min.

Theorem 5.4. Let Γ be a compact, metric graph with a self adjoint realisation
−Δ(A,B; l) of the Laplacian, such that the condition lmin > l(σ) is fulfilled. Fur-
thermore, let h ∈ Hr be a test function with an arbitrary r ≥ σ. Then the following
identity holds:

∞∑

n=0

gn h(kn) = L ĥ(0) +
(
g0 −

1
2
N
)
h(0) − 1

4π

∫ +∞

−∞
h(k)

Im tr S(k)
k

dk

+
∑

p∈P

[(
ĥ ∗ Âp

)
(lp) +

(
ĥ ∗ Âp

)
(lp)

]
.

(5.28)

The quantities appearing are the same as in Theorem 5.3. Here, however, the sum
over periodic orbits converges absolutely.

Proof. The task is to analyse the convergence of the sum over periodic orbits
in (5.28) more closely. In Theorem 5.3 we only considered the convergence of the
sum over l. This was based on the estimate (5.20), which shall now be refined. To
this end we refer to (5.24) and (5.25), and notice that tr[Λ(k)U l(k)] is a sum con-
sisting of (2E)l terms si1i2(k) . . . silil+1(k)h(k), each of which contains a product of
l factors that are matrix elements of either S(k), iD(l), or i 2L

L2+k2 . These factors are
all holomorphic in a strip 0 ≤ Im k < λ+

min and, following Lemma 3.4, in any strip
0 ≤ Im k ≤ κ with κ < λ+

min, they are bounded from above in absolute value by a
constant times (λ+

min +κ)/(λ+
min −κ). Thus, in particular, for all κ < min{λ+

min, r}
any product si1i2(k) . . . silil+1(k)h(k) is holomorphic for 0 ≤ Im k ≤ κ. Since here
we are evaluating Fourier transforms at li1 + · · ·+ lil

> 0, we can apply a suitable
version of the Paley-Wiener theorem that is concerned with Fourier transforms of
holomorphic functions in vertical strips of the upper half plane. This is an obvious,
slight variation of Theorem IX.14 in [30], and implies that there exists Cκ > 0 such
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that
∣∣∣∣
∫ +∞

−∞
tr
[
Λ(k)U l(k)

]
h(k) dk

∣∣∣∣

≤
2E∑

i1,...,il=1

∣∣∣∣
∫ +∞

−∞
si1i2(k) . . . sili1(k)h(k) eik(li1+···+lil

) dk

∣∣∣∣

≤ Cκ

(
2E

λ+
min + κ

λ+
min − κ

e−κlmin

)l

= Cκeκl
(
l(κ)−lmin

)
, (5.29)

where we made use of the function defined in (5.27). We hence conclude that
under the conditions stated the sum over periodic orbits converges absolutely.
In particular, lmin > l(κ) must be fulfilled. The latter condition is optimised for
κ = σ, at which the function l(κ) attains its minimum. For the above to hold, the
condition h ∈ Hr with r ≥ σ must be satisfied. �

We remark that whenever an amplitude function Ap(k) associated with a
periodic orbit is independent of k, as it is always true for non-Robin boundary
conditions, the convolution ĥ ∗ Âp(lp) degenerates into a product Ap ĥ(lp). In any
case, the condition r ≥ σ imposed on the test function h ensures that ĥ ∗ Âp(x) =
O(e−σ|x|), which enables the absolute convergence of the periodic orbit sum.

5.2. The trace of the heat kernel

The first trace formula of a quantum graph, due to Roth [29], expresses the trace
of the heat kernel for the Laplacian with Kirchhoff boundary conditions in terms
of a sum over periodic orbits. This has recently been extended to all non-Robin
boundary conditions by Kostrykin, Potthoff and Schrader [18]. An application of
Theorem 5.4 now allows us to produce an appropriate trace formula for all self
adjoint realisations of the Laplacian. In such a case, however, negative Laplace
eigenvalues −κ2

n, with multiplicities g−n , may occur so that the trace of the heat
kernel,

Tr eΔt :=
∑

−κ2
n<0

g−n eκ2
nt +

∑

k2
n≥0

gn e−k2
nt , t > 0 ,

does not follow immediately from Theorems 5.3 and 5.4. Instead, we consider

Tr+ eΔt :=
∑

k2
n≥0

gn e−k2
nt , t > 0 .

In the trace formula we hence have to choose the (entire holomorphic) function
h(k) = e−k2t, t > 0, which is in Hr for all r ≥ 0. Its Fourier transform is ĥ(x) =

1√
4πt

e−x2/4t. We also introduce the functions

ap(t) :=
1√
4πt

∫ +∞

−∞
Âp(lp − y) e−y2/4t dy

associated with the periodic orbits on the graph and obtain the following state-
ment.
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Theorem 5.5. Let Γ be a compact, metric graph with a self adjoint realisation
−Δ(A,B; l) of the Laplacian, such that the condition lmin > l(σ) is fulfilled. Then
the following identity holds:

Tr+ eΔt =
L√
4πt

+
(
g0 −

1
2
N
)
− 1

2

d∑

α=1

λα

|λα|
eλ2

αt erfc
(
|λα|

√
t
)

+ 2
∑

p∈P
Re ap(t) .

(5.30)

Here d is the number of non vanishing eigenvalues λα of L (counted with their
multiplicities) and

erfc(x) =
2√
π

∫ ∞

x

e−y2
dy , x ≥ 0 ,

is the error function complement. Moreover, as t → 0+ the trace of the heat kernel
has a complete asymptotic expansion in powers of

√
t, whose leading terms read

Tr eΔt =
L√
4πt

+ γ + O(
√

t) , t → 0+ . (5.31)

Here
γ = g0 −

N

2
+
∑

n

g−n − 1
2

∑

j

γ0,j +
1
2

∑

j

γp,j −
d+ − d−

2
,

where γ0,j and γp,j are the orders of the finitely many, non zero, purely imaginary
zeros and poles, respectively, of the determinant function F and d± denotes the
number of positive/negative eigenvalues of L.

Proof. We first observe that the expression (4.14) implies

Im tr S(k) = tr
2kL

L2 + k2
= 2k

d∑

α=1

λα

λ2
α + k2

;

then we employ the representation

erfc(|x|) =
2|x|
π

e−x2
∫ ∞

0

e−y2

y2 + x2
dy , x ∈ R .

Hence the relation (5.30) is an immediate consequence of (5.28), when the test
function h is chosen as indicated above.

In order to determine the small-t asymptotics we go back to the relation (5.4),
in which we use the test function h(k) = e−k2t, t > 0. We then deform the contour
into ∂Cβ,K , with β > max{λmax, s}, where s from (4.2) is such that −s2 yields a
lower bound on the Laplace spectrum. Thus the contour now encloses all non real
zeros and poles of the determinant function F and, therefore, in this process we
pick up contributions from all poles of F ′/F on the imaginary axis.

Having to perform the limit K → ∞ with β kept fixed, we need to estimate
the contribution coming from the vertical parts of the contour, i.e., for |Re k| =
K and ε < | Im k| < β. Firstly, F (k) is a polynomial in the matrix entries of
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S(k) and T (k). The latter are eikle , whereas the k-dependence of the former is
given by (λα − ik)/(λα + ik), see (3.5). In the two strips ε < | Im k| < β, with
neighbourhoods of the poles at iλα removed, all matrix entries are bounded, and
hence F ′(k) is of polynomial growth in k. Secondly, for sufficiently large |k| we
again approximate F (k) by F∞(k), see (5.8), and write F∞(k) =

∏2E
j=1(1−uj(k)).

Here u1(k), . . . , u2E(k) are the eigenvalues of S∞T (k), which satisfy

|uj(k)| ≤ ‖S∞‖ ‖T (k)‖ ≤ e−εlmin < 1 ,

for all k in the strips ε < | Im k| < β. Thus, in these strips,

|F∞(k)| > (1 − e−εlmin)2E > 0 .

Thirdly, when |K| > β the factor e−tk2
is of the order e−tK2

in the strips. Hence,
the integrand of (5.4) on the vertical parts of the contour with | Im k| > ε is
bounded by a polynomial times e−tK2

. As K → ∞, these parts of the contour
therefore do not contribute to the integral. Hence, from (5.4) we obtain

N + 2
∞∑

n=1

gn e−k2
nt =

∑

j

γp,j eκ2
p,jt −

∑

j

γ0,j eκ2
0,jt

+
1

2πi

∫ +∞

−∞

[
F ′

F
(k − iβ) e−(k−iβ)2t − F ′

F
(k + iβ) e−(k+iβ)2t

]
dk .

Here the non real zeros of F are denoted as iκ0,j and its poles as iκp,j ; the respective
orders are γ0,j and γp,j .

To proceed further we follow the argument leading from (5.14) to (5.16)
and (5.17), as well as the subsequent discussion of interchanging integration and
summation. As we are dealing with large β instead of small ε, due to (3.14) the
estimate (5.14) is replaced by

‖U(k + iβ)‖ ≤ max
{

1,
β + λmax

β − λmax

}
e−εlmin ,

Hence, for k ∈ R and β sufficiently large analogous relations to (5.16) and (5.17)
are obtained, eventually leading to

N + 2
∞∑

n=1

gn e−k2
nt =

∑

j

γp,j eκ2
p,jt −

∑

j

γ0,j eκ2
0,jt

+
∞∑

l=1

1
2πi

∫ +∞

−∞
tr
[
Λ(k + iβ)U l(k + iβ)

]
e−(k+iβ)2t dk

+
∞∑

l=0

1
2πi

∫ +∞

−∞
tr
[
Λ(k − iβ)U−l(k − iβ)

]
e−(k−iβ)2t dk .
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In the integrals with l �= 0 we now replace β by β/
√

t, 0 < t ≤ 1, and change
variables from k to q = k

√
t, yielding

I±l (t, β) :=
1

2πi
√

t

∫ +∞

−∞
tr
[
Λ
(

1√
t
(q ± iβ)

)
U±l

(
1√
t
(q ± iβ)

)]
e−(q±iβ)2 dq .

These integrals can be bounded in analogy to (5.29),

|I±l (t, β)| ≤ Cβ√
t

(
2E

β +
√

tλmax

β −
√

tλmax

e−βlmin/
√

t

)l

.

Summing over l �= 0 then finally shows that these contributions can be estimated
as being O( 1√

t
e−βlmin/

√
t).

The term with l = 0 can be calculated explicitly and yields the same con-
tribution to the heat trace as the first term and the sum over σ(L) \ {0} on the
right-hand side of (5.30).

We add the contributions of negative Laplace eigenvalues and use that erfc(x)
has a complete asymptotic expansion in x, with erfc(x) = 1+O(x), as x → 0. The
expansion (5.31) then follows immediately. �

At this point we recall that in the case of non-Robin boundary conditions
γ = g0 − 1

2N = 1
4 tr S, which has also been given an interpretation as (one half of)

a suitable Fredholm index. In this case, therefore, the constant term in the small-t
asymptotics of the heat kernel has a topological meaning.

Finally, we should like to mention that a suitable Tauberian theorem (see,
e.g., [15]) allows us to recover Weyl’s law

N(K) ∼ L
π

K , K → ∞ ,

see also Proposition 4.2, from the leading term in the expansion (5.31).

6. Conclusions

Our principal goal was to investigate spectra of general self adjoint realisations of
Laplace operators on compact metric graphs, culminating in proofs of some trace
formulae. In this context we achieved to allow for a large class of test functions,
leading either to absolutely or conditionally convergent sums over periodic orbits,
respectively, representing appropriate spectral functions of the Laplacian.

Previous work on quantum graph trace formulae [17,18,21,29] was restricted
to Laplacians with non-Robin boundary conditions. As compared to these cases
there are some modifications we had to take care of. Firstly, non-Robin boundary
conditions correspond to k-independent S-matrices and hence do not involve any
derivatives of S(k). This is in line with the fact that L = 0, so that in the trace
formula the contribution (5.26) to the periodic orbit sum is absent. Moreover,
since therefore λ+

min = ∞, the restriction imposed on lmin in the general case is
void so that any set of lengths can be attributed to the edges. What still remains
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to ensure an absolutely convergent periodic orbit sum in the case of non-Robin
boundary conditions is the single requirement h ∈ Hr with r ≥ (log 2E)/lmin on
the test functions. This implies ĥ(x) = O(e−r|x|), which in turn compensates for
the growth in the number of periodic orbits entering the sum

∑

p∈P,lp≤

Ap ĥ(lp) ,

when � → ∞.
Another property of Laplacians with non-Robin boundary conditions is that

they are non-negative. This fact is linked to the non-positivity of L which, as
L = 0, is trivial. The determinant function (4.8) hence is entire holomorphic with
only real zeros in the complex non-negative half plane, see Proposition 4.3.

As we have shown in Theorem 5.3 the condition on the test functions can be
relaxed to h ∈ Hr with any r ≥ 0, so that h(x) = O(e−δ|x|) with some (arbitrarily
small) δ > 0, when one is willing to accept a conditionally convergent sum. This has
to be understood in the sense given in (5.22), i.e., where the terms are arranged as
a double sum over the topological lengths of the orbits and over the periodic orbits
of fixed topological length. For non-Robin boundary conditions a refined analysis
of convergence had produced even more relaxed conditions to be demanded from
the test functions, see [36].

An important application of the trace formula for quantum graphs with non-
Robin boundary conditions was to prove an inverse theorem, very much in the
sense of Kac’s famous question ‘Can one hear the shape of a drum?’ [14]. Gutkin
and Smilansky [10] showed that under certain conditions, which include the re-
quirement that the edge lengths be rationally independent, the Laplace spectrum
determines the connectedness and the metric structure of a compact metric graph
uniquely. In this sense isospectral quantum graphs are isomorphic. Gutkin and
Smilansky made essential use of the trace of the wave group,

Tr e−it
√
−Δ + c.c. = 2

∞∑

n=0

gn cos(knt) , t �= 0 ,

which can, in the case of non-Robin boundary conditions, be expressed as a sum of
δ-singularities at the lengths lp of periodic orbits. Searching for these singularities
then allows one to first identify the geometric length spectrum. In a second step a
certain algorithm can be used to determine the connectedness and all individual
edge lengths. After a slight modification this proof can now be taken over to the
case of Robin boundary conditions almost verbatim. For this purpose one reads
off from the trace formula (5.28) the distributional identity

∞∑

n=0

gn cos(knt) = L δ(t) + g0 −
1
2
N − 1

2

d∑

α=1

λα

|λα|
e−|tλα|

+
∑

p∈P
Re

[
Âp(lp − t) + Âp(lp + t)

]
.
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Since, in general, the periodic orbit amplitudes are functions of k, there are no
longer pure δ-singularities present at the lengths of periodic orbits. For large k the
amplitudes, however, possess the expansions (5.23) with leading terms a

(0)
p . These

do not vanish since they stem from the corresponding leading term S∞ = 1− 2P
of the S-matrix. Hence, the Fourier transforms Âp of the amplitudes have leading
singularities of δ-type at the lengths lp of periodic orbits. Therefore, applying the
algorithm of Gutkin and Smilanksy to this wave trace enables one to identify the
graph connectivity and the edge lengths in the same way as previously.

In summary, almost all spectral properties established so far for Laplacians
on compact metric graphs with non-Robin boundary conditions carry over to ar-
bitrary self adjoint realisations of the Laplacian. Therefore, there are many more
quantum graphs model available that are suitable for further investigations in,
e.g., the field of quantum chaos.
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