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Hilbert Lattice Equations

Norman D. Megill and Mladen Pavičić

Abstract. There are five known classes of lattice equations that hold in every
infinite dimensional Hilbert space underlying quantum systems: generalised
orthoarguesian, Mayet’s EA, Godowski, Mayet–Godowski, and Mayet’s E
equations. We obtain a result which opens a possibility that the first two
classes coincide. We devise new algorithms to generate Mayet–Godowski equa-
tions that allow us to prove that the fourth class properly includes the third.
An open problem related to the last class is answered. Finally, we show
some new results on the Godowski lattices characterising the third class of
equations.

1. Introduction

In 1995, Solèr [1,2] proved that an infinite-dimensional Hilbert space can be
recovered from an orthomodular lattice (OML) together with a small number
of additional conditions, with the only ambiguity being that its field may be real,
complex, or quaternionic. Specifically, any OML that is complete, is atomic, sat-
isfies a superposition principle, has height at least 4, and has an infinite set of
mutually orthogonal atoms, which completely determines such a Hilbert space.
This provides us with a dual, purely lattice-theoretical way to work with the
Hilbert spaces of quantum mechanics. In addition to offering the potential for new
insights, the lattice-theoretical approach may be computationally efficient for cer-
tain kinds of problems in quantum mechanics, particularly if, in the future, we are
able to exploit what may be a “natural” fit with quantum computation.

However, the approach cannot be applied straightforwardly because unlike
the equations (identities) defining OML, the additional conditions needed to
recover Hilbert space are first- and second-order quantified conditions. Quanti-
fied conditions can complicate computational work: trivially, a computer cannot
scan infinite lattices or an infinite number of lattices to determine if “there exists”
and/or “for all” conditions are satisfied; more generally, quantified theorem-proving
algorithms may be needed to achieve rigorous results. Thus, it is desirable to find
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equations that can partially express some of these quantified conditions, allowing
them to be weakened or possibly even replaced. The goal is to get as close as pos-
sible to a purely equational description of C(H) (the lattice of closed subspaces of
a Hilbert space H), in other words to find smaller and smaller equational varieties
that contain it.

Until 1975, the only lattice equations known to hold in C(H) were those
defining OML itself. Then Alan Day discovered that a stronger equation, the
orthoarguesian law, also holds. There have been several advances since then. In
2000, Megill and Pavičić [3] discovered an infinite family of equations that gen-
eralised the orthoarguesian law and called them generalised orthoarguesian laws.
In 2006, Mayet [4] described a family of equations EA, obtained with a technique
similar to that used to derive the generalised orthoarguesian laws, that may fur-
ther generalise these laws. In this paper, we obtain a result that opens a possibility
that the latter class coincide with the former.

While the previous equations are not related to the states lattices admit,
the other equations are. In 1981, Godowski [5] discovered an infinite family of
equations derived by considering states on the lattice. In 1986, Mayet [6] general-
ised (strengthened) Godowski’s equations with a new family, but the examples he
gave were shown by Megill and Pavičić [3] to actually be instances of Godowski’s
equations. In 2006, Megill and Pavičić [7] showed the Mayet–Godowski class to be
independent from the Godowski class. We also present a new algorithm for gen-
erating Mayet–Godowski equations (MGEs) that differs considerably from other
methods described by Mayet [6,8].

In 2006, Mayet [4] discovered several new series of equations that hold pro-
vided the underlying field of H is real, complex, or quaternionic, which are also
the ones of interest for quantum mechanics. Mayet found these by considering
vector-valued states on C(H) and showed that they were independent of any of the
other equations found so far. In this paper, we obtain several new results on these
equations.

To achieve our results cited above, we developed several new algorithms. The
main part of this paper describes the two most important ones, which are incor-
porated into the computer programs that found these results. The first algorithm
(Sect. 4) determines whether a finite OML admits a “strong set of states” (defined
elsewhere) and if not, an extension to the algorithm (Sect. 5) generates MGE that
fails in the input OML but holds in every Hilbert lattice. The second algorithm
(Sect. 6) enables us to prove whether or not this generated equation is independent
from every equation in the infinite family found by Godowski. This second algo-
rithm also enabled us to find Godowski lattices of much higher order than before
and to show that it is possible to reduce their original size, therefore speeding up
calculations that make use of them; some of these results are presented at the end
of Sect. 6.

The last part of the paper presents two new results that were partly assisted
by our programs. In Sect. 7, we show that an example provided by Mayet from
his new family of orthoarguesian-related equations in fact can be derived from the
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generalised orthoarguesian laws, leaving open the problem of whether this new
family has members that are strictly stronger than these laws. In Sect. 8, we show
the solution to an open problem posed by Mayet [4] concerning his new families
of equations related to strong sets of Hilbert space-valued states [8].

2. Definitions for Lattice Structures

We briefly recall the definitions we will need. For further information, see Refs. [3,
7,9,10].

Definition 2.1. [11] A lattice is an algebra L = 〈LO,∩,∪〉 such that the following
conditions are satisfied for any a, b, c ∈ LO: a∪b = b∪a, a∩b = b∩a, (a∪b)∪c =
a ∪ (b ∪ c), (a ∩ b) ∩ c = a ∩ (b ∩ c), a ∩ (a ∪ b) = a, a ∪ (a ∩ b) = a.

Theorem 2.2. [11] The binary relation ≤ defined on L as a ≤ b
def⇐⇒ a = a ∩ b is a

partial ordering.

Definition 2.3. [12] An ortholattice (OL) is an algebra 〈LO, ′,∩,∪, 0, 1〉 such that
〈LO,∩,∪〉 is a lattice with unary operation ′ called orthocomplementation which
satisfies the following conditions for a, b ∈ LO (a′ is called the orthocomplement of
a): a ∪ a′ = 1, a ∩ a′ = 0, a ≤ b ⇒ b′ ≤ a′, a′′ = a

Definition 2.4. [13,14] An OML is an OL in which the following condition holds:
a ↔ b = 1 ⇔ a = b, where a ↔ b = 1 def⇐⇒ a → b = 1& b → a = 1, where
a → b

def= a′ ∪ (a ∩ b).

Definition 2.5. [15] We say that a and b commute in OML, and write aCb, when
the following equation holds: a ∩ (a′ ∪ b) ≤ b.

Definition 2.6. An OML which satisfies the following conditions is a Hilbert lattice,
HL.1

1. Completeness: The meet and join of any subset of an HL exist.
2. Atomicity: Every non-zero element in an HL is greater than or equal to an

atom. (An atom a is a non-zero lattice element with 0 < b ≤ a only if b = a.)
3. Superposition principle: (The atom c is a superposition of the atoms a and b

if c �= a, c �= b, and c ≤ a ∪ b.)
(a) Given two different atoms a and b, there is at least one other atom c,

c �= a, and c �= b, that is a superposition of a and b.
(b) If the atom c is a superposition of distinct atoms a and b, then atom a

is a superposition of atoms b and c.
4. Minimum height: The lattice contains at least two elements a, b satisfying:

0 < a < b < 1.

1 For additional definitions of the terms used in this section see Refs. [2,3,16,17].
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Note that atoms correspond to pure states when defined on the lattice. We
recall that the irreducibility and the covering property follow from the superpo-
sition principle [16, pp. 166, 167]. We also recall that any Hilbert lattice must
contain a countably infinite number of atoms [18].

By Birkhoff’s HSP theorem [19, p. 2], the family HL is not an equational
variety, since a finite sublattice is not an HL. A goal of studying equations that
hold in HL is to find the smallest variety that includes HL, so that the fewest
number of non-equational (quantified) conditions such as the above will be needed
to complete the specification of HL.

Definition 2.7. A state (also called probability measures or simply probabilities
[17,20–22]) on a lattice L is a function m : L −→ [0, 1] such that m(1) = 1 and
a ⊥ b ⇒ m(a ∪ b) = m(a) + m(b), where a ⊥ b means a ≤ b′.

Lemma 2.8. The following properties hold for any state m:

m(a) + m(a′) = 1, (2.1)
a ≤ b ⇒ m(a) ≤ m(b), (2.2)

0 ≤ m(a) ≤ 1, (2.3)
m(a1) = · · · = m(an) = 1 ⇔ m(a1) + · · · + m(an) = n, (2.4)

m(a1 ∩ · · · ∩ an) = 1 ⇒ m(a1) = · · · = m(an) = 1. (2.5)

Definition 2.9. A set S of states on L is called a strong2 set of states if

(∀a, b ∈ L)([(∀m ∈ S)(m(a) = 1 ⇒ m(b) = 1)] ⇒ a ≤ b). (2.6)

Theorem 2.10. [3] Every Hilbert lattice admits a strong set of states.

3. Definitions of Equational Families Related to States

First, we will define the family of equations found by Godowski, introducing a
special notation for them. These equations hold in any lattice admitting a strong
set of states and thus, in particular, any Hilbert lattice [3].

Definition 3.1. Let us call the following expression the Godowski identity:

a1
γ≡ an

def= (a1 → a2) ∩ (a2 → a3) ∩ · · · ∩ (an−1 → an) ∩ (an → a1), n = 3, 4, . . .

(3.1)

We define an
γ≡ a1 in the same way with variables ai and an−i+1 swapped.

2 Some authors use the term rich instead of strong, e.g. Ref. [23, p. 21].



Vol. 10 (2010) Hilbert Lattice Equations 1339

Theorem 3.2. Godowski’s equations [5]

a1
γ≡ a3 = a3

γ≡ a1, (3.2)

a1
γ≡ a4 = a4

γ≡ a1, (3.3)

a1
γ≡ a5 = a5

γ≡ a1, (3.4)
. . .

hold in all ortholattices, OLs, with strong sets of states. An OL to which these
equations are added is a variety smaller than OML.

We shall call these equations n-Go (3-Go, 4-Go, etc.). We also denote by
nGO (3GO, 4GO, etc.) the OL variety determined by n-Go, and we call equation
n-Go the nGO law.3

Next, we define a generalisation of this family, first described by Mayet [24].
These equations also hold in all lattices admitting a strong set of states, and in
particular in all HLs.

Definition 3.3. An MGE is an equality with n ≥ 2 conjuncts on each side:

t1 ∩ · · · ∩ tn = u1 ∩ · · · ∩ un, (3.5)

where each conjunct ti (or ui) is a term consisting of either a variable or a dis-
junction of two or more distinct variables:

ti = ai,1 ∪ · · · ∪ ai,pi
, i.e. pi disjuncts, (3.6)

ui = bi,1 ∪ · · · ∪ bi,qi
, i.e. qi disjuncts (3.7)

and where the following conditions are imposed on the set of variables in the
equation:
1. All variables in a given term ti or ui are mutually orthogonal.
2. Each variable occurs the same number of times on each side of the equality.

We will call a lattice in which all MGEs hold an MGO; i.e. MGO is the largest
class of lattices (equational variety) in which all MGEs hold.

The following three theorems about MGEs and MGOs are proved in Ref. [7].

Theorem 3.4. Every MGE holds in any ortholattice L admitting a strong set of
states and thus, in particular, in any Hilbert lattice.

Theorem 3.5. The family of all MGEs includes, in particular, the Godowski equa-
tions [Eqs. (3.2), (3.3),. . . ]; in other words, the class MGO is included in nGO for
all n.

3 The equation n-Go can also be expressed with 2n variables: a1 ⊥ b1 ⊥ a2 ⊥ b2 ⊥ · · · an ⊥
bn ⊥ a1 ⇒ (a1 ∪ b1) ∩ · · · (an ∪ bn) ≤ b1 ∪ a2, where n ≥ 3. We remark that if we set n = 2,
this equation holds in all OMLs, answering a question in Ref. [8, p. 536]. This can be seen as
follows. The equation that results from setting n = 2 in the equation series of Theorem 3.2 has
two variables and is easily shown to hold in all OMLs. The proof of Th. 3.19 of Ref. [3], which
converts it to the 2n-variable form, involves only OML manipulations.
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Theorem 3.6. The class MGO is properly included in all nGOs, i.e. not all MGEs
can be deduced from the equations n-Go.

Definition 3.7. A condensed state equation is an abbreviated representation of an
MGE constructed as follows: all (orthogonality) hypotheses are discarded, all meet
symbols, ∩, are changed to +, and all join symbols, ∪, are changed to juxtaposi-
tion.

For example, the 3-Go equation can be expressed as [7]:

a ⊥ d ⊥ b ⊥ e ⊥ c ⊥ f ⊥ a

⇒ (a ∪ d) ∩ (b ∪ e) ∩ (c ∪ f) = (d ∪ b) ∩ (e ∪ c) ∩ (f ∪ a), (3.8)

which, in turn, can be expressed by the condensed state equation

ad + be + cf = db + ec + fa. (3.9)

The one-to-one correspondence between these two representations of an MGE
should be obvious.

4. Finding States on Finite Lattices

It is possible to express the set of constraints imposed by states as a linear pro-
gramming (LP) problem. LP is used by industry to minimise cost, labour, etc.,
and many efficient programs have been developed to solve these problems, most
of them based on the simplex algorithm.

We will examine a particular example in detail to illustrate how the problem
is expressed. For this example, we will consider a Greechie diagram with 3-atom
blocks, although the principle is easily extended to any number of blocks.

If m is a state, then each 3-atom block with atoms (a, b, c) and complements
(a′, b′, c′) imposes the following constraints:

m(a) + m(b) + m(c) = 1
m(a′) + m(a) = 1,
m(b′) + m(b) = 1, (4.1)
m(c′) + m(c) = 1,

m(x) ≥ 0, x = a, b, c, a′, b′, c′.

To obtain Eq. (4.1), note that in any Boolean block, a ⊥ b ⊥ c ⊥ a, so m(a) =
1 − m(a′) = 1 − m(b ∪ c) = 1 − m(b) − m(c).

Let us take the specific example of the Peterson lattice, which we know does
not admit a set of strong states. The Greechie diagram for this lattice, shown in
Fig. 1, can be expressed with the textual notation

123,345,567,789,9AB,BC1,2E8,4FA,6DC,DEF.

(see Ref. [7]), where each digit or letter represents an atom, and groups of them
represent blocks (edges of the Greechie diagram).
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Figure 1. Greechie diagram for the Peterson lattice.

Referring to the textual notation, we designate the atoms by 1, 2, . . . , F and
their orthocomplements by 1′, 2′, . . . , F ′. We will represent the values of state m
on the atoms by m(1),m(2), . . . ,m(F ). This gives us the following constraints for
the 10 blocks:

m(1) + m(2) + m(3) = 1,
m(3) + m(4) + m(5) = 1,
m(5) + m(6) + m(7) = 1,
m(7) + m(8) + m(9) = 1,

m(9) + m(A) + m(B) = 1,
m(B) + m(C) + m(1) = 1,
m(2) + m(E) + m(8) = 1,
m(4) + m(F ) + m(A) = 1,
m(6) + m(D) + m(C) = 1,
m(D) + m(E) + m(F ) = 1.

In addition, we have m(a′) + m(a) = 1, m(a) ≥ 0, and m(a′) ≥ 0 for each atom
a, adding potentially an additional 15× 3 = 45 constraints. However, we can omit
all but one of these since most orthocomplemented atoms are not involved in this
problem, the given constraints are sufficient to ensure that the state values for
atoms are less than 1, and the particular LP algorithm we used assumes all vari-
ables are nonnegative. This speeds up the computation considerably. The only one
we will need is m(7) + m(7′) = 1 because, as we will see, the orthocomplemented
atom 7′ will be part of the full problem statement.

We pick two incomparable nodes, 1 and 7′, which are on opposite sides of the
Peterson lattice. (The program will try all possible pairs of incomparable nodes,
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but for this example, we have selected a priori a pair that will provide us with the
answer). Therefore, it is the case that ∼ 1 ≤ 7′. If the Peterson lattice admitted a
strong set of states, for any state m we would have:

(m(1) = 1 ⇒ m(7′) = 1) ⇒ 1 ≤ 7′.

Since the conclusion is false, for some m we must have

∼ (m(1) = 1 ⇒ m(7′) = 1),
i.e. ∼ (∼ m(1) = 1 ∨ m(7′) = 1),
i.e. m(1) = 1 & ∼ m(7′) = 1.

So this gives us another constraint:

m(1) = 1;

and for a set of strong states to exist, there must be some m such that

m(7′) < 1.

So, our final LP problem becomes (expressed in the notation of the publicly avail-
able program lp solve4):

min: m7′;
m1 = 1;
m7 + m7′ = 1;
m1 + m2 + m3 = 1;
m3 + m4 + m5 = 1;
m5 + m6 + m7 = 1;
m7 + m8 + m9 = 1;
m9 + mA + mB = 1;
mB + mC + m1 = 1;
m2 + mE + m8 = 1;
m4 + mF + mA = 1;
m6 + mD + mC = 1;
mD + mE + mF = 1;

which means “minimise m(7′), subject to constraints m(1) = 1,m(7) + m(7′) =
1, . . ..” The variable to be minimised, m(7′), is called the objective function (or
“cost function”). When this problem is given to lp solve, it returns an objective
function value of 1. This means that regardless of m, the other constraints impose
a minimum value of 1 on m(7′), contradicting the requirement that m(7′) < 1.
Therefore, we have a proof that the Peterson lattice does not admit a set of strong
states.

The program states.c that we use reads a list of Greechie diagrams and, for
each one, indicates whether or not it admits a strong set of states. The program
embeds the lp solve algorithm, wrapping around it an interface that translates,
internally, each Greechie diagram into the corresponding LP problem.

4 Version 3.2, available at http://m3k.grad.hr/lp solve 32/ (as of January 2010).

http://m3k.grad.hr/lp_solve_32/
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5. Generation of MGEs from Finite Lattices

When the LP problem in the previous section finds a pair of incomparable nodes
that prove that the lattice admits no strong set of states, the information in the
problem can be used to find an equation that holds in any OML admitting a strong
set of states, and in particular in HL, but fails in the OML under test. Typically,
an OML to be tested was chosen because it does not violate any other known HL
equation. Thus, by showing an HL equation that fails in the OML under test, we
would have found a new equation that holds in HL and is independent from other
known equations.

The set of constraints that lead to the objective function value of 1 in our
LP problem turns out to be redundant. Our algorithm will try to find a mini-
mal set of hypotheses (constraints) that are needed. The equation-finding mode
of the states.c program incorporates this algorithm, which will try to weaken
the constraints of the LP problem one at a time, as long as the objective function
value remains 1 (as in the problem in the previous section). The equation will be
constructed based on a minimal set of unweakened constraints that results.

The theoretical basis for the construction is described in the proof of The-
orem 30 of Ref. [7]. Here, we will describe the algorithm by working through a
detailed example.

Continuing from the final LP problem of the previous section, the program
will test each constraint corresponding to a Greechie diagram block, i.e. each equa-
tion with three terms, as follows. It will change the right-hand side (r.h.s.) of the
constraint equation from = 1 to ≤ 1, thus weakening it, then it will run the LP
algorithm again. If the weakened constraint results in an objective function value
m(7′) < 1, it means that the constraint is needed to prove that the lattice does
not admit a strong set of states, so we restore the r.h.s. of that constraint equation
back to 1. On the other hand, if the objective function value remains m(7′) = 1
(as in the original problem), a tight constraint on that block is not needed for the
proof that the lattice does not admit a strong set of states, so we leave the r.h.s.
of that constraint equation at ≤ 1.

After the program completes this process, the LP problem for this example
will look like this:

min: m7′;
m1 = 1;
m7 + m7′ = 1;
m1 + m2 + m3 <= 1;
m3 + m4 + m5 = 1;
m5 + m6 + m7 <= 1;
m7 + m8 + m9 <= 1;
m9 + mA + mB = 1;
mB + mC + m1 <= 1;
m2 + mE + m8 = 1;
m4 + mF + mA <= 1;
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m6 + mD + mC = 1;
mD + mE + mF <= 1;

Six out of the 10 blocks have been made weaker, and the LP algorithm will show
that the objective function has remained at 1. We now have enough information to
construct the MGE, which we will work within the abbreviated form of a condensed
state equation (Definition 3.7).
1. Since m(1) = 1, the other atoms in the two blocks (three-term equations)

using it will be 0. Thus m(2) = m(3) = m(B) = m(C) = 0.
2. For each of the four blocks that have = 1 on the r.h.s., we suppress the atoms

that are 0 and juxtapose the remaining two atoms in each block. For example,
in m(3) + m(4) + m(5) = 1, we ignore m(3) = 0, and collect the atoms from
the remaining two terms to result in 45 (4 juxtaposed with 5). Then we join
all four pairs with + to build the left-hand side (l.h.s.) form for the condensed
state equation:

45 + 9A + E8 + 6D. (5.1)

3. For the r.h.s. of the equation, we scan the blocks with weakened constraints.
From each block, we pick out and juxtapose those atoms that also appear on
the l.h.s. and discard others. For example, in m(5) + m(6) + m(7) ≤ 1, 5 and
6 appear in Eq. (5.1) but 7 does not. Joining the juxtaposed groups with +,
we build the r.h.s.:

56 + 89 + 4A + DE.

Note that out of six weakened constraints, two of them have no atoms at all
in common with Eq. (5.1) and are therefore ignored.

4. Equating the two sides, we obtain the form of the condensed state equation:

45 + 9A + E8 + 6D = 56 + 89 + 4A + DE.

5. Replacing the atoms with variables, the final condensed state equation
becomes:

ab + cd + ef + gh = bg + fc + ad + he. (5.2)

6. Finally, the number of occurrences of each variable on must match with each
side of the condensed state equation. In this example, that is already the case.
But in general, there may be terms that will have to be repeated in order
to make the numbers balance. An example with such “degenerate” terms is
shown as Eq. (47) of Ref. [7].

Equation (5.2) will be recognised, after converting it to an MGE, as the 4-Go
equation, which as is well-known holds in all OMLs that admit a strong set of
states but fails in the Peterson lattice (Fig. 1) [3].

Remark. We emphasise that the above algorithm is essentially heuristic, in that
its purpose is to make use of the existing functions in the states.c program to
assist producing new equations with less manual labour. In particular, there is no
guarantee that it will produce the strongest equation possible that is deducible
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from an OML, nor even that it will be able to find an equation at all. Indeed, a
few pathological OMLs have been found where the algorithm does not find terms
that can be balanced (in the sense mentioned in the last item above).

While further refinement of the algorithm may be possible, the point of it
is to provide a practical method to quickly generate new equations for further
study. These can be independently verified as both holding in every OML with
a strong set of states while at the same time being stronger than any equation
known up to that point. From a practical standpoint, at this stage we are mainly
interested in studying small equations with few variables, even if they are not the
strongest possible that can be generated from an OML, simply because they are
more tractable to work with. In a similar fashion, many of our results for n-Go and
nOA equations were obtained by first studying them for small n. Of course, our
goals may change once we gain a better understanding of the general properties
of MGEs and how they can be classified.

6. Checking n-Go Equations on Finite Lattices

For the general-purpose checking of whether an equation holds in a finite lattice,
the authors have primarily used a specialised program, latticeg.c, that tests an
equation provided by the user against a list of Greechie diagrams (OMLs) provided
by the user. This program has been described in Ref. [25]. While it has proved
essential to our work, a drawback is that the run time increases quickly with the
number of variables in and size of the input equation, making it impractical for
huge equations.

But there is another limitation in principle, not just in practice, for the use of
the latticeg.c program. In our work with MGEs, we are particularly interested
in those lattices having no strong set of states but on which all of the succes-
sively stronger n-Gos pass, for all n less than infinity. This would prove that any
MGE failing in that lattice is independent from all n-Gos and thus represents a
new result. The latticeg.c program can, of course, check only a finite number of
such equations, and when n becomes large, the program is too slow to be practical.
And in any case, it cannot provide a proof, but only evidence, that a particular
lattice does not violate n-Go for any n.

Both of these limitations are overcome by a remarkable algorithm based on
dynamic programming, that was suggested by Brendan McKay. This algorithm
was incorporated into a program, latticego.c, that is run against a set of lat-
tices. No equation is given to the program; instead, the program tells the user the
first n for which n-Go fails or whether it passes for all n. The program runs very
quickly, depending only on the size of the input lattice, with a run time propor-
tional to the fourth power of the lattice size (number of nodes) m, rather than
increasing exponentially with the equation size (number of variables) n as with
the latticeg.c program that checks against arbitrary equations.



1346 N. D. Megill and M. Pavičić Ann. Henri Poincaré

To illustrate the algorithm, we will consider the specific case of 7-Go. From
this example, the algorithm for the general case of n-Go will be apparent. We
consider 7-Go written in the following equivalent form [3]:

(a1 → a2) ∩ (a2 → a3) ∩ (a3 → a4) ∩ (a4 → a5)
∩(a5 → a6) ∩ (a6 → a7) ∩ (a7 → a1) ≤ a1 → a7. (6.1)

We define intermediate “operations” E1, . . . , E6 along with a predicate which pro-
vides the answer:

E1(a1, a2) = a1 → a2,

E2(a1, a2, a3) = E1(a1, a2) ∩ (a2 → a3),
E3(a1, a2, a3, a4) = E2(a1, a2, a3) ∩ (a3 → a4),

E4(a1, a2, a3, a4, a5) = E3(a1, a2, a3, a4) ∩ (a4 → a5),
E5(a1, a2, a3, a4, a5, a6) = E4(a1, a2, a3, a4, a5) ∩ (a5 → a6),

E6(a1, a2, a3, a4, a5, a6, a7) = E5(a1, a2, a3, a4, a5, a6) ∩ (a6 → a7),
answer(a1, a7) = (E6(a1, a2, a3, a4, a5, a6, a7) ∩ (a7 →a1))≤(a1 →a7).

Sets of values V2, . . . , V6 are computed as follows:

V2(a1, a3) = {E2(a1, a2, a3)|a2},

V3(a1, a4) = {E3(a1, a2, a3, a4)|a2, a3},

V4(a1, a5) = {E4(a1, a2, a3, a4, a5)|a2, a3, a4},

V5(a1, a6) = {E5(a1, a2, a3, a4, a5, a6)|a2, a3, a4, a5},

V6(a1, a7) = {E6(a1, a2, a3, a4, a5, a6, a7)|a2, a3, a4, a5, a6},

For all a1, a7 : answer(a1, a7) follows from V6(a1, a7), a7 → a1,

and a1 → a7.

For example, V4(a1, a5) is the set of values E4(a1, a2, a3, a4, a5) can have when
a2, a3, a4 range over all possibilities. If answer(a1, a7) is true for all possible a1 and
a7, then 7-Go holds in the lattice, otherwise it fails.

The computation time is estimated as follows, where m is the number of
nodes in the test lattice:

Each V2(a1, a3) can be found in O(m) time; O(m3) total,
Each V3(a1, a4) can be found in O(m2) time from V2;O(m4) total,
Each V4(a1, a5) can be found in O(m2) time from V3;O(m4) total.

...

So the total time is O(m4), when the algorithm is applied to a specific n-Go equa-
tion. If it were not for the typical convergent behaviour described in the following,
we would also multiply this time by n − 2, i.e. the number of passes V2, . . . , Vn−1.
In fact, only in rare cases do we require a computation of Vi for i greater 10 or so,
as we will explain.
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The program is written so that it only has to compute additional “inner
terms” to process the next n-Go equation. Remarkably, when a lattice does not
violate any n-Go, our observation has been that the addition of new terms almost
always converges to a fixed value rather quickly, meaning that Vn for (n + 1)-Go
remains the same as Vn−1 for n-Go. This almost always happens for n < 10, and
when it does, we can terminate the algorithm and say with certainty that no fur-
ther increase in n will cause an n-Go equation to fail in the lattice. (If it does not
happen, the program will tell us that, but such a case has so far not been observed.
The program has an arbitrary cutoff point of n = 100, after which the algorithm
will terminate. All of our observed runs have always either converged or failed far
below this point, and in any case the cutoff can be increased with a parameter
setting.) Convergence provides a proof that the entire class of Godowski equations
(for all n < ∞) will pass in the lattice. Such a feat is not possible with ordinary
lattice-checking programs, since an infinite number of equations would have to be
tested.

At this point, we do not have a good explanation for this quickly convergent
behaviour. It is simply an empirical observation.

When a lattice does violate some n-Go, that result tends to be found even
faster: the algorithm terminates, and the program tells us the first n at which an
n-Go equation fails in the lattice. Since n-Go can be derived from n+1-Go, failure
is also implied for all greater n. The algorithm can also be used for a secondary
purpose: it can scan a collection of lattices to determine efficiently which of them
satisfy n-Go but violate (n + 1)-Go and find the smallest ones with this property.

We caution the reader that m above represents lattice nodes, not Greechie
diagram atoms. For a fixed block size of say 3, which is the most common one
we have used, these numbers are proportional. However, the number of nodes in
a block (Boolean algebra) grows exponentially with the number of atoms in the
block.

Here, we should explain why we use our algorithm to find n at which an n-Go
equation fails in the lattice when it is well known [5] that n-Go fails in Godowski’s
“wagon wheel” of order n which can be easily constructed for each n. The answer is
that smaller lattices significantly reduce the run time needed to check an equation
conjectured to be equivalent to an n-Go. The (n+1)st wagon wheel lattice has six
atoms more than the nth one, and we have shown in Ref. [3] that our algorithms
give the smallest lattices in which 4-Go to 7-Go fail that are on average only 2.7
atoms apart. Our most recent computations5 presented below show that for higher
ns, this number can be still smaller and as we see from Figs. 2 and 3 for, e.g. 9-Go
to 12-Go it is on average 1.

In our textual notation, the OMLs from Fig. 2 read:

(a) 123, 345, 567, 789, 9AB, BCD, DEF, FGH, HI1, 2NE, 4JD, 6KC, IJ8, GL9, NMA, 2LK.

(b) 123, 345, 567, 789, 9AB,BCD,DEF,FGH,HIJ, JKL,LMN,NO1,KP8, 4PG, JQA,OE6,KD2,MC5.

5 For this purpose, we used the latticego algorithm together with the lattice-generating program
gengre described in Ref. [25] and extended in [26].
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Figure 2. a 23-16-p7go-f8go-a—one of two smallest lattices that
pass 7-Go and violate 8-Go; b 26-18-p8go-f9go-a—one of 23 small-
est; c 26-18-p9go-f10go-a—one of 42 smallest.
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Figure 3. a 26-18-p9go-f10go-b that also violates E3, Eq. (8.2),
from Sect. 8; b 28-20-p10go-f11go-a—one of the over 50 smallest
OMLs that pass 10-Go and violate 11-Go—it also violates E3; c
28-20-p11go-f12go-a—one of the over 50 smallest OMLs that pass
11-Go and violate 12-Go—it passes E3.

(c) 123, 345, 567, 789, 9AB, BCD, DEF, FGH, HIJ, JKL, LMN, NO1, KQ8, 4QE, 1PA, 6PF, O8G, 2KC.

The smallest lattice that satisfies 6-Go and violates 7-Go, 24-16-p6go-f7go (24
atoms, 16 blocks) [3], is bigger than the smallest one that satisfies 7-Go and
violates 8-Go, 23-16-p7go-f8go (23 atoms, 16 blocks) shown in Fig. 2. Also,
26-18-p8go-f9go-a and 26-18-p9go-f10go-a are of the same size.

In the textual notation, the OMLs from Fig. 3a–c read:

123, 345, 567, 789, 9AB, BCD, DEF, FGH, HIJ, JKL, LMN, NO1, 2PG, IQC, 7QP, HO8, K2B, M4A.

123,345,567,789,9AB,BCD,DEF,FGH,HIJ,JKL,LMN,NO1,MGA,IOB,L4E,KP6,IS5,2QA,PRC,QSR.

123,345,567,789,9AB,BCD,DEF,FGH,HIJ,JKL,LMN,NO1,CO6,I2B,L4A,KSE,MPQ,QRC,2PS,7PG.

We see that 28-20-p10go-f11go-a and 28-20-p11go-f12go-a are of the same
size and contain only two more atoms than 26-18-p9go-f10go-a,b.
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7. Can Generalised Orthoaguesian Equations be Enlarged?

There is an infinite series of algebraic OML equations that are apparently at
least partly independent of the conditions that the superpositions and the states’
OMLs admit impose on OMLs. In particular, the series properly overlaps with
those characterising states and superpositions, that have to hold in any Hilbert
lattice characterising quantum systems. A class of such equations are the so-called
generalised orthoarguesian equations nOA discovered by Megill and Pavičić [3,7].
We introduce them as follows.

Definition 7.1. We define an operation
(n)≡ on n variables a1, . . . , an (n ≥ 3) as

follows:

a1

(3)≡a2
def= ((a1 → a3) ∩ (a2 → a3)) ∪ ((a′

1 → a3) ∩ (a′
2 → a3)), (7.1)

a1

(n)≡ a2
def= (a1

(n−1)≡ a2) ∪ ((a1

(n−1)≡ an) ∩ (a2

(n−1)≡ an)), n ≥ 4. (7.2)

Theorem 7.2. The nOA laws

(a1 → a3) ∩ (a1

(n)≡ a2) ≤ a2 → a3 (7.3)

hold in any HL.

In Ref. [8, p. 530], Mayet attempted to enlarge the generalised orthoargue-
sian laws by deriving a family of equations, EA, which includes the nOA laws as a
special case. The equations EA are shown to hold in all HLs using a similar method
of proof used to obtain the nOA laws. In particular, subset relations between sub-
space sums in a Hilbert space H are found by considering sums and differences of
their member vectors. Subspace sums are then converted to closed subspace joins,
using either the relation HA+HB ⊆ HA∪HB, which holds in general for subspaces
HA and HB , or the equation HA + HB = HA ∪ HB , which holds whenever HA

and HB are orthogonal.
Mayet gives an example from family EA that is at least as strong as the 3OA

law6 in the sense that it implies the latter. Letting t1 = c ∪ ((a ∪ d ∪ e) ∩ (b ∪ c)),
t2 = d ∪ ((a ∪ c ∪ e) ∩ (b ∪ d)), and t3 = e ∪ ((a ∪ c ∪ d) ∩ (b ∪ e)), Mayet obtains
the following equation:7 [8, p. 531]

a ⊥ b & c ⊥ d & d ⊥ e & c ⊥ e

⇒ (a ∪ b) ∩ (c ∪ d ∪ e) ≤ a ∪ (b ∩ t3 ∩ t2 ∩ t1). (7.4)

By setting e = 0 in Eq. (7.4), we obtain an equation that obviously implies the
3OA law, which can be seen when the 3OA law is expressed in the following four-
variable form [3, Theorem 4.9]:

a ⊥ b & c ⊥ d ⇒ (a ∪ b) ∩ (c ∪ d) ≤ a ∪ (b ∩ (c ∪ ((a ∪ d) ∩ (b ∪ c)))). (7.5)

6 Mayet uses the notation OAn−2 for the equation that we call the nOA law.
7 Although condition (7.4) has hypotheses, it is equivalent to a (closed) equation by [6, p. 168,
Lemma 1]. Therefore, we are justified calling it an equation, which we will do for this and similar
conditions.
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However, as we prove in the following theorem, it turns out that the 3OA
law Eq. (7.5) also implies Eq. (7.4), meaning that the latter is not strictly stronger
than the former; in other words, they are equivalent.

Theorem 7.3. An OML in which Eq. (7.4) holds is a 3OA and vice-versa.

Proof. As we just described, Eq. (7.4) implies the implies the 3OA law. For the con-
verse, assume that we are given the 3OA law and that the hypotheses of Eq. (7.4)
hold. We obtain three substitution instances of the 3OA law by putting d∪e for d;
then d, c∪ e for c, d; then e, c∪d for c, d in Eq. (7.5). The hypotheses of Eq. (7.5)
are then satisfied, and we conclude, respectively,

(a ∪ b) ∩ (c ∪ d ∪ e) ≤ a ∪ (b ∩ (c ∪ ((a ∪ d ∪ e) ∩ (b ∪ c)))) = a ∪ (b ∩ t1),
(a ∪ b) ∩ (d ∪ c ∪ e) ≤ a ∪ (b ∩ (d ∪ ((a ∪ c ∪ e) ∩ (b ∪ d)))) = a ∪ (b ∩ t2),
(a ∪ b) ∩ (e ∪ c ∪ d) ≤ a ∪ (b ∩ (e ∪ ((a ∪ c ∪ d) ∩ (b ∪ e)))) = a ∪ (b ∩ t3).

Conjoining the r.h.s.,

(a ∪ b) ∩ (c ∪ d ∪ e) ≤ (a ∪ (b ∩ t1)) ∩ (a ∪ (b ∩ t2)) ∩ (a ∪ (b ∩ t3)).

Since a ⊥ b, we have that a commutes with b ∩ ti, i = 1, 2, 3, so we can use the
Foulis–Holland theorem (F-H; see, e.g. [20, p. 25]) to apply the distributive law to
the r.h.s.:

(a ∪ b) ∩ (c ∪ d ∪ e) ≤ (a ∪ ((b ∩ t1) ∩ (b ∩ t2) ∩ (b ∩ t3))
= (a ∪ (b ∩ t1 ∩ t2 ∩ t3),

which is the conclusion of Eq. (7.4) as required. �

In a word, whether the EA equations strictly include the nOA equations or
coincide with them remains an open problem.

8. Mayet’s E-equations and a Solution to a Related Open Problem

A third class of equations makes use of “vector measures” [27]. Several new fami-
lies of equations based on them were found by Mayet [4]. He called these measures
Hilbert space-valued states, defined as follows.

Definition 8.1. A real Hilbert space-valued state—we call it an RH state—on an
OML L is a function s : L −→ RH, where RH is a Hilbert space defined
over a real field, such that (a) ||s(1L)|| = 1, where s(a) ∈ RH is a state vec-
tor, ||s(a)|| =

√
(s(a), s(a)) is the Hilbert space norm, and a ∈ L; (b) (∀a, b ∈

L) [ a ⊥ b ⇒ s(a ∪ b) = s(a) + s(b) ], where a ⊥ b means a ≤ b′; (c) (∀a, b ∈
L) [ a ⊥ b ⇒ s(a) ⊥ s(b) ], where s(a) ⊥ s(b) means the inner product (s(a),
s(b)) = 0.

We also define a subclass of HL for which Definition 8.1 will later become
relevant:
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Definition 8.2. A quantum 8 Hilbert lattice, QHL, is a Hilbert lattice orthoisomor-
phic to the set of closed subspaces of the Hilbert space defined over either a real
field, or a complex field, or a quaternion skew field.

The conditions of Lemma 2.8 hold when we replace a real state value m(a)
with the square of the norm of the RH state value s(a). In addition, there are
number of properties that hold for RH states—see [4,7]. The following definition
of a strong set of RH states closely follows Definition 2.9, with an essential dif-
ference in the range of the states. We also define a strong set of CH and a QH
states.

Definition 8.3. A set S of RH states s : L −→ RH is called a strong set of RH
states if

(∀a, b ∈ L)([(∀s ∈ S)(||s(a)|| = 1 ⇒ ||s(b)|| = 1)] ⇒ a ≤ b). (8.1)

Theorem 8.4. [4], [7, p. 784] Any QHL admits a strong set of RH states.

Mayet derives three new families of equations, En, E∗
n, and E′

n, which hold in
all HLs but do not (for n ≥ 3) hold in all OMLs not admitting strong sets of Hil-
bert space-valued states [8]. For variables a1, . . . , an, b1, . . . , bn, r, let (Ω) be the set
of conditions ai ⊥ aj (i �= j) and ai ⊥ bi, for 1 ≤ i, j ≤ n. Define a = a1 ∪ · · · ∪ an,
b = b1 ∪ · · · ∪ bn, and q = (a1 ∪ b1) ∩ · · · ∩ (an ∪ bn). Equations En, E∗

n, and E′
n

(n ≥ 2) are defined as

(Ω) ⇒ a ∩ q ≤ b, (8.2)
((Ω) & r ⊥ a) ⇒ (a ∪ r) ∩ q ≤ b ∪ r, (8.3)
((Ω) & r ⊥ a) ⇒ q ∩ (q → r′) ∩ (a ∪ r) ≤ b, (8.4)

respectively.

Theorem 8.5. Equations En and E∗
n fail in Ln given in Fig. 1 of [4], n ≥ 3. Equa-

tion E′
n fails in L′

n given in Fig. 5 of [4], n ≥ 3. All of these equations hold in any
OML with a strong set of RH states.

Proof. See Ref. [4] or Ref. [7, p. 785] for En, and Ref. [4] for E∗
n and E′

n. (Th. 36
in [7] should be corrected to read “Ln” in place of “Li, i = 1, . . . , n.”) �

The equations of Theorem 8.5, which hold in every QHL, do not hold in
every HL. They are independent of the modular law and of any nOA law, nGO
law, MGE, or combination of them added to the axioms for OML [4], [7, p. 786].

8 Mayet [4] calls our family QHL by the name classical Hilbert lattices, but since the real and
complex fields as well as the quaternion skew field over which the corresponding Hilbert space
is defined are characteristic of its application in quantum mechanics, one of us (MP) prefers
to call these lattices quantum. Mayet uses the notation HL for the class we call QHL. He also
uses the notation generalised Hilbert lattices (GHL) for the larger class defined by omitting the
field requirement in Definition 8.2, which (see Ref. [28, Sects. 33, 34]) is equal to the family
we call HL in Definition 2.6. Finally, the notation C(H) is often used to specify the lattice of
closed subspaces of a particular Hilbert space H, typically when its underlying field is complex
(e.g. Ref. [20, p. 64]), in which case C(H) ∈ QHL.
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As an example, that E3 and E∗
3 are independent of the nOA laws for n =

3, 4, 5 is shown by the fact that OML L42 (Fig. 7 (b) from [3]) satisfies the latter
equations but violates E3 and E∗

3 . Also, our states program shows that L42 has
a strong set of states and thus satisfies all n-Go and MGE equations, showing
the independence of E3 and E∗

3 from these. L42 is the smallest lattice with these
properties. Equation E3 does not fail in lattice L3 given in Fig. 5 of [4], showing
that E′

3 is strictly stronger than E3.
Another example is given in Figs. 2 and 3. OMLs 26-18-p9go-f10go-b and

28-20-p10go-f11go-a violate E3, while 23-16-p7go-f8go-a, 26-18-p8go-f9go-a, 26-
18-p9go-f10go-a, and 28-20-p11go-f12go-a satisfy it. All of them satisfy E4. This
OMLs are the only known test on E3 and E4 apart from those mentioned above.

Yet another example is the following Mayet’s OML (30 atoms, 19 blocks)

123,456,789,ABC,DEF,GHI,JKL,MNO,PQR,STU,147S,ADGT,JMPU,3CL,6FO,9IR,2EQ,5HK,8BN.

(see Fig. 1 of [29]), which satisfies both E3 and E4 as well as all n-Go but does
not admit any state.

The En, E∗
n, and E′

n families of equations provide us with additional tools
with which to study equations holding in all QHLs but not all HLs. Importantly,
they provide us with a property related to the field of the Hilbert space (and in
particular holding in those Hilbert spaces with the classical fields of real num-
bers, complex numbers, and quaternions), something not previously known to be
expressible by an equation.

Mayet showed that En follows from E∗
n (by setting r = 0), and he asked [8,

p. 544] whether En and E∗
n are equivalent. The answer is affirmative.

Theorem 8.6. In any OML, equation En is a consequence of E∗
n and vice-versa,

for n ≥ 2.

Proof. We have already seen that En follows from E∗
n. For the converse, assume

the hypotheses of E∗
n hold, i.e. that

((Ω) & r ⊥ a). (8.5)

Starting from the l.h.s. of the E∗
n conclusion,

(a ∪ r) ∩ q

= (a1 ∪ · · · ∪ an ∪ r) ∩ (a1 ∪ b1) ∩ · · · ∩ (an ∪ bn)
≤ (a1 ∪ · · · ∪ an ∪ r) ∩ (a1 ∪ b1 ∪ r ∪ r) ∩ · · · ∩ (an ∪ bn ∪ r ∪ r)
= ((a1 ∪ · · · ∪ an) ∩ (a1 ∪ b1 ∪ r) ∩ · · · ∩ (an ∪ bn ∪ r)) ∪ r. (8.6)

For the last step above, the distributive law is justified by F-H, since r commutes
with each factor. Next, we substitute b1 ∪ r for b1, . . . , bn ∪ r for bn into equation
En. Since ai ⊥ bi and ai ⊥ r, we have ai ⊥ (bi ∪ r), so the hypotheses of this
substitution instance of En are satisfied. The conclusion gives

(a1 ∪ · · · ∪ an) ∩ (a1 ∪ (b1 ∪ r)) ∩ · · · ∩ (an ∪ (bn ∪ r)) ≤ (b1 ∪ r) ∪ · · · ∪ (bn ∪ r),
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which, after rearrangements and joining r to the l.h.s.,

((a1 ∪ · · · ∪ an) ∩ (a1 ∪ b1 ∪ r) ∩ · · · ∩ (an ∪ bn ∪ r)) ∪ r ≤ b ∪ r. (8.7)

Chaining Eqs. (8.6) and (8.7), we conclude E∗
n. �

Mayet also asked whether an OML exists in which E∗
2 fails. The answer is

negative.

Corollary 8.7. Equation E∗
2 ,

a1 ⊥ b1 & a2 ⊥ b2 & r ⊥ a1 & a1 ⊥ a2 & a2 ⊥ r

⇒ (a1 ∪ a2 ∪ r) ∩ (a1 ∪ b1) ∩ (a2 ∪ b2) ≤ b1 ∪ b2 ∪ r, (8.8)

holds in all OMLs.

Proof. Mayet showed [4] that E2 holds in all OMLs, and the previous theorem
shows that E2 and E∗

2 are equivalent in any OML. �
We can also generalise the previous Corollary, so as to replace the orthog-

onality relations with commutes relations (Definition 2.5) in all but the fourth
hypotheses of Eq. (8.8).

Corollary 8.8. The following generalisation of Equation E∗
2 ,

a1Cb1 & a2Cb2 & rCa1 & a1 ⊥ a2 & a2Cr

⇒ (a1 ∪ a2 ∪ r) ∩ (a1 ∪ b1) ∩ (a2 ∪ b2) ≤ b1 ∪ b2 ∪ r (8.9)

holds in all OMLs.

Proof. The proof runs as follows:

(a1 ∪ a2 ∪ r) ∩ (a1 ∪ b1) ∩ (a2 ∪ b2)
= (a1 ∪ b1) ∩ ((a2 ∪ b2) ∩ (a2 ∪ (a1 ∪ r)))
= (a1 ∪ b1) ∩ (a2 ∪ (b2 ∩ (a1 ∪ r)))
≤ (a1 ∪ b1) ∩ (a′

1 ∪ (b2 ∩ (a1 ∪ r)))
= (a1 ∩ (a′

1 ∪ (b2 ∩ (a1 ∪ r)))) ∪ (b1 ∩ (a′
1 ∪ (b2 ∩ (a1 ∪ r))))

≤ (a1 ∩ (a′
1 ∪ (b2 ∩ (a1 ∪ r)))) ∪ b1

≤ ((a1 ∪ r) ∩ (a′
1 ∪ (b2 ∩ (a1 ∪ r))) ∪ b1

= ((a1 ∪ r) ∩ a′
1) ∪ ((a1 ∪ r) ∩ (b2 ∩ (a1 ∪ r))) ∪ b1

≤ ((a1 ∪ r) ∩ a′
1) ∪ b2 ∪ b1

= ((a1 ∩ a′
1) ∪ (r ∩ a′

1)) ∪ b2 ∪ b1

= 0 ∪ (r ∩ a′
1) ∪ b2 ∪ b1

≤ b1 ∪ b2 ∪ r.

In the second, fourth, seventh, and ninth steps we used F-H, applying the hypoth-
eses of Eq. (8.9) as needed to obtain its prerequisite commuting conditions. In the
third step, we used the hypothesis a1 ⊥ a2, i.e. a2 ≤ a′

1. All other steps use simple
ortholattice identities. �
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9. Conclusion

In previous sections, we presented several results obtained in the field of Hilbert
space equations, based on the states defined on the space. The idea is to use clas-
ses of Hilbert lattice equations for an alternative representation of Hilbert lattices
and Hilbert spaces of arbitrary quantum systems that might eventually enable a
direct introduction of the states of the systems into quantum computers. In appli-
cations, infinite classes could then be “truncated” to provide us with finite classes
of required length. The obtained classes would in turn contribute to the theory of
Hilbert space subspaces, which so far is poorly developed. And it is poorly devel-
oped because it turns out that to describe even the simplest physical system is a
very demanding project.

In 1977, Hultgren and Shimony attempted to describe a spin-1 system by
means of Greechie/Hasse diagrams/lattices using Stern–Gerlach devices [30]. Some
of their diagrams were incomplete because, as shown Swift and Wright [31], they
did not take into account both electric and magnetic fields. If they have done so,
they could have patched the missing links in their Fig. 3 (dashed lines) and with
them their lattice would read 123,456,789,ABC,58B. However, even with that
correction, their description cannot work because Greechie/Hasse diagrams are
not subalgebras of a Hilbert lattice. Lattices necessary for a complete description
of a quantum system9 turn out to be too large for a brute-force approach in which
we would first generate all possible lattices up to a very large number of atoms and
then scan them to extract all required properties. Instead, we adopt a project of
finding efficient algorithms that could enable us to carry out a partial descriptions
of quantum systems in the lattice equation approach.

The algorithms and associated computer programs that were developed for
this project were essential to its success. McKay’s dynamic programming algorithm
for n-Go equations (Sect. 6), together with its quickly convergent behaviour for
large n, was particularly fortuitous. At the time of its discovery, no other way was
known that could show the independence of the MGEs from all n-Go equations;
at best, only empirical evidence pointing towards that answer could be accumu-
lated. Indeed, this problem had remained open for nearly 20 years since Mayet’s
first publication [24] of these equations. Recently, Mayet found a direct proof of
this independence that does not need a computer calculation [8]. Nonetheless, the

9 Greechie diagrams describe orthogonalities between one-dimensional sublattices well, but, e.g.
spans of nonorthogonal one-dimensional subspaces cannot be described by them at all—in the
Hilbert space the corresponding subspaces are not equal to 1, i.e. they do not span the whole
space while in a Greeche diagram they do. Consequently a proper lattice of a quantum system
must be much larger than a Greechie diagram, which describes only orthogonalities between
its spin components, because the Hilbert lattice equations require nonorthogonal atoms to pass
a lattice. More specifically, nGO equations fail in Hasse/Greechie diagrams that describe only
orthogonalities of Kochen–Specker setups but hold in their Hilbert space descriptions as well as
in extended Hilbert lattices that take into account all needed relations between nonorthogonal
atoms and their joins and meets [32].
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algorithm still provides a useful tool for testing the simultaneous validity of all
n-Go equations for individual OMLs that are not of the form required by Mayet’s
theorem.

Thus, there is a strong motivation to find other algorithms that, like McKay’s
n-Go dynamic programming algorithm, can be applied to other infinite families,
in particular the nOA (generalised orthoarguesian) laws, Eq. (7.3). Assuming sim-
ilar run-time behaviour could be achieved, these would provide us with extremely
powerful tools that would let us test finite lattices against the family very quickly
(instead of months or years of CPU time) as well as prove independence results
for the entire infinite family at once (if the valuation set rapidly converges to a
final, fixed value with increasing n, as it does for n-Go).

The success of the algorithm for n-Go depends crucially on the structure of
a particular representation of the n-Go equations, where variables appear only on
one side of the equation and are localised to an adjacent pair of conjuncts in a chain
of conjuncts. Unfortunately, all currently known forms of the nOA laws have their
variables distributed throughout their (very long) equations. So another approach,
rather than finding a new algorithm, would be to discover a new form of the nOA
laws that better separates their variable occurrences in such a way that the n-Go
dynamic programming algorithm might be applicable. Both of these approaches
are being investigated by the authors.

In Sect. 4, we described the application of LP to find states on a finite lattice.
The authors are unaware of any previous use of LP methods for this purpose, in
particular (for the present study) determining whether the lattice admits a strong
set of states. There appear to be relatively few programs that deal with states, and
most of the finite lattice examples in the literature related to states were found
by hand. A Pascal program written by Klaey [33] is able to find certain kinds of
states on lattices, but for the strong set of states problem it is apparently able to
indicate only “yes” (if a strong set of states was found) or “unknown” otherwise.
The LP method provides a definite answer either way, in the predictable amount of
time that the simplex algorithm takes to run. Finally, the LP problem itself (with
redundant constraints weakened) provides us with the information we need to con-
struct a new Hilbert lattice equation that fails in a given lattice not admitting a
strong set of states.

The states.c algorithm is actually more general than what we have described
for the present work. It can also determine whether a finite lattice admits no states,
exactly one state, a full set of states, a full set of dispersion-free ({0, 1}) states,
or group-valued states on the integers Z (Ref. [29] discusses lattices with some of
these properties.)

Mayet’s recent and important E-equation results [4] provide us with a power-
ful new method, the use of Hilbert space-valued states, to find previously unknown
families of equations that hold in Hilbert lattices. For further investigation of these
equations, it will be highly desirable to have a program analogous to our states.c
(which works only with real-valued states) that will tell us whether or not a finite
lattice admits a strong set of Hilbert space-valued states. This problem seems
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significantly harder than that of finding real-valued states, and possible algorithms
for doing this are being explored by the authors.

In Sect. 6 (see the second half of the section), some new computational results
on the Godowski lattices characterising Godowski equations are presented. In par-
ticular, we found out that the atom number increases for the successive smallest
lattices in which Godowski equations of order n fail can be reduced from 6—as
originally obtained by Godowski for any n—to 1 for 9 ≤ n ≤ 12 (see Figs. 2 and 3)
and most probably for all higher ns.

In Sect. 7, Theorem 7.3 tells us that further work is needed to determine
whether or not Mayet’s EA equations are independent of the nOA laws. This
problem is more difficult than it may first appear. With current techniques, all
that we can do is either prove that a particular EA equation can be derived from
the nOA laws, or show that it is independent only up to some feasibly large n.
Unlike the case with the n-Go laws, we have no known algorithm from showing
independence from all equations in the infinite family of nOA laws. This open
problem stresses the need to find such an algorithm.

In Sect. 8, Theorem 8.6 shows that two of Mayet’s E-equation series, En,
Eq. (8.2) and E∗

n, Eq. (8.3), are in fact equivalent (in an OML), answering an
open question posed by Mayet [8, p. 544]. A third series, E′

n, Eq. (8.4), is strictly
stronger than En (as already shown in Ref. [8, p. 549]).

The main results of Sect. 7 (Theorem 7.3) and Sect. 8 (Theorem 8.6) are both
negative in the sense that they show that equations conjectured to be independent
from others in fact are not. Nonetheless, such equations are still useful in the sense
that they provide us with non-obvious new ways to express the equations they are
equivalent to. In particular, they may move us a step closer to forms amenable to
dynamic programming algorithms that would test entire infinite families at once.

The programs latticego.c and states.c described above can be down-
loaded from http://us.metamath.org/#ql.

Acknowledgements

Supported by the Ministry of Science, Education, and Sport of Croatia through
the project no. 082-0982562-3160. Computational support was provided by the
cluster Isabella of the University Computing Centre of the University of Zagreb
and by the Croatian National Grid Infrastructure.

References
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Bull. Am. Math. Soc. 32, 205–234 (1995)

http://us.metamath.org/#ql


Vol. 10 (2010) Hilbert Lattice Equations 1357
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[10] Pavičić, M., Megill, N.D.: Is quantum logic a logic? In: Engesser, K., Gabbay, D.,
Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures. Quan-
tum Logic, pp. 23–47. Elsevier, Amsterdam (2009)

[11] Birkhoff, G.: Lattice theory. In: American Mathematical Society Colloqium Publi-
cations, vol. XXV, 2nd (revised) edn. American Mathematical Society, New York
(1948)

[12] Birkhoff, G.: Lattice theory. In: American Mathematical Society Colloquium Pub-
lications, vol. XXV, 3rd (new) edn. American Mathematical Society, Providence
(1967)
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Physics Chair
Faculty of Civil Engineering
University of Zagreb
Zagreb, Croatia
e-mail: pavicic@grad.hr

Communicated by Carlo Rovelli.

Received: June 25, 2009.

Accepted: December 8, 2009.


	1. Introduction
	2. Definitions for Lattice Structures
	3. Definitions of Equational Families Related to States
	4. Finding States on Finite Lattices
	5. Generation of MGEs from Finite Lattices
	6. Checking n-Go Equations on Finite Lattices
	7. Can Generalised Orthoaguesian Equations be Enlarged?
	8. Mayet's E-equations and a Solution to a Related Open Problem
	9. Conclusion
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


