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On the Ultraviolet Problem for the 2D Weakly
Interacting Fermi Gas

Giuseppe Benfatto

Abstract. We prove that the effective potential of the two-dimensional inter-
acting continuous Fermi gas with infrared cutoff is an analytic function of the
coupling strength near the origin. This is the starting point to study the in-
frared problem of the model without putting any ultraviolet cutoff, as usually
done in the literature.

1. Introduction

We consider a continuous system of two-dimensional fermions interacting with a
smooth integrable potential λv̄(�x − �y), �x, �y ∈ T

2
L, the two-dimensional torus of

side L. v̄(�x) is supposed to be bounded, smooth and with finite range. Since the
spin will not play any role in this paper, we shall suppose that the fermions are
spinless.

In the mathematical physical literature the infrared problem for this system
(sometimes called the jellium) is in general studied with an ultraviolet (UV) cutoff,
whose introduction is motivated by the remark that the model can not be valid at
high energies, see for example [3, 5]. This implies that the results could strongly
depend on the cutoff scale, if the system were not stable in the UV region. In-
deed, in these papers the interaction is not supposed to satisfy the usual stability
condition, which would be sufficient at least to ensure the existence of the thermo-
dynamical limit for the pressure, for any β, and of the correlation functions, for β
large enough [8,12]. Moreover, even in the case of a stable potential, the techniques
that are used to study the infrared problem do not allow to use this condition, but
are based on the analytic dependence on λ of the effective potential.

The aim of this paper is to prove that the UV cutoff can be safely removed.
Note that the dimension plays an essential role; in fact, if d ≥ 3, it is well known
that there are two-body interactions, which do not satisfy the stability condition,
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for which the pressure can not be defined, even for fermion systems [12]. In agree-
ment with this difficulty, our proof can not be extended to d > 2, see remark 3)
below.

Let us now define more precisely the model. Given the inverse temperature β,
we define Λ = [0, β] × T

2
L and, if x0 ∈ [0, β] and �x ∈ T

2
L, we put x = (x0, �x).

Moreover, we define Dβ,L = Dβ ×DL with Dβ = {k0 = 2π
β (n0 + 1

2 ) : n0 ∈ Z} and

DL = {�k = 2π
L �n : �n ∈ Z

2}; the elements of Dβ,L will be denoted by k = (k0,�k).
Finally, given the particle mass m > 0 and the chemical potential μ, we shall define
ε0(�k) = (�k2/2m) − μ.

We study the UV problem for the system of fermions, by analyzing the ef-
fective potential

Veff (ϕ) = log
∫

P (dψ)e−V (ψ+ϕ) , (1.1)

where ϕ is the (Grassmannian) external field, P (dψ) is the (Grassmannian) Gauss-
ian measure of covariance

guv(x − y) =
∫

P (dψ)ψ−
x ψ+

y =
1

βL2

∑
k∈Dβ,L

e−ik · (x−y) χ(k2
0 + ε0(�k)2)

−ik0 + ε0(�k)
, (1.2)

χ(t), defined for t > 0, being a smooth cutoff function, with a fixed infrared cutoff
on scale 1. We can choose it, for example, by putting χ(t) equal to 1 for t ≥ 2 and
equal to 0 for t ≤ 1. Finally the interaction term is given by

V (ψ) = λ

∫
Λ×Λ

dxdy v(x − y) ψ+
x ψ+

y ψ−
y ψ−

x + ν

∫
Λ

dxψ+
x ψ−

x , (1.3)

v(x − y) = δ(x0 − y0)v̄(�x − �y) , (1.4)

ν being a finite counterterm, which is in general introduced to fix the Fermi surface
at the free theory value, when the infrared cutoff is lowered [3, 5]; hence it is a
constant of order λ, whose precise value is of no importance in this paper. Veff (ϕ)
can be formally expanded in powers of ϕ; we shall write

Veff (ϕ) = −βL2p(λ, ν) +
∞∑

k=1

∫
dx dy W2k(x,y, λ, ν)

k∏
i=1

ϕ+
xi

k∏
i=1

ϕ−
yi

, (1.5)

where we used the notation x ≡ (x1, . . . ,xk). The pressure p(λ, ν) and the kernels
W2k(x,y, λ, ν) have well defined formal representations as powers of λ and ν; we
shall write:

p(λ, ν) =
∑

n+m≥1

pn,mλnνm , (1.6)

W2k(x,y, λ, ν) =
∑

n+m≥1

λnνmW2k,n,m(x,y) .

The kernels W2k(x,y, λ, ν) are finite sums of products of delta functions of the
difference between two space or time variables times suitable measurable functions
of a subset of the x and y variables, determined by the delta functions; we shall
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call, with an abuse of notation, L1 norm of W2k(x,y, λ, ν), and we shall denote by∫
dxdy|W2k(x,y, λ, ν)|, the sum of the L1 norms of these measurable functions.

The L1 norm is of course a uniform bound for the Fourier transform of the kernels.
As it is well known, it is difficult to check directly the convergence of the power

series in (1.6), because of the UV singularity of the propagator (1.2). Up to now,
the convergence has been proved (in a suitable norm) only in the one-dimensional
case [2]. However, it is possible to show that, if one expand in Feynman graphs the
series coefficients, the L1 norm of each graph satisfies a Cn+m/(n + m)! bound;
since the number of graphs is of order (n + m)!2, one gets a Cn+m(n + m)! bound
for the L1 norm of the series coefficients [6]. This result is obtained by using the
fact that the singular part of the covariance (1.2) is different from zero only if
x0 − y0 or x0 − y0 + β are positive, see Section 2. This argument works in all
dimensions, but we shall prove that, in the two-dimensional case, we can use it in
a more efficient way, so proving that the series coefficients indeed satisfy a Cn+m

bound.
In order to get this result, we introduce in Section 2 a suitable UV regulariza-

tion of the propagator, depending on a integer parameter N , which diverges as the
cutoff is removed, and we add a superscript (N) to all quantities in (1.6), to remind
the dependence on N . Then we prove that the series coefficients satisfy bounds
good enough to imply the power series convergence of p(N)(λ) and bounds on the
L1 norm of W

(N)
2k (x,y, λ, ν), for λ and ν small enough, uniformly in N . These

bounds are based on a multi-scale expansion, which allows us to prove also the
convergence, as N → ∞, of p(N)(λ), p

(N)
n,m, as well as convergence of W

(N)
2k,n,m(x,y)

and W
(N)
2k (x,y, λ, ν) in the L1 norm, to quantities satisfying (1.6). We could also

prove the convergence at non coinciding points of the correlation functions and the
fast decaying properties on scale 1 of the effective potential kernels. For simplicity,
here we shall only prove the following theorem.

Theorem 1.1. There are constants Ck, independent of L, β and N , such that

|p(N)
n,m| ≤ Cn+m

0 , (1.7)

(βL2)−1

∫
dx dy |W (N)

2k,n,m(x,y)| ≤ Cn+m
k . (1.8)

Moreover, there exist constants pn,m and distributions W2k,n,m(x,y), with the

same structure of W
(N)
2k,n,m(x,y) as sum of products of delta functions times mea-

surable functions, which satisfy the same bounds and are such that if λ and ν are
small enough,

lim
N→∞

∑
n+m≥1

λnνm|p(N)
n,m − pn,m)| = 0 , (1.9)

lim
N→∞

(βL2)−1

∫
dx dy

∑
n+m≥1

λnνm|W (N)
2k,n,m(x,y) (1.10)

− W2k,n,m(x,y)| = 0 .
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Remark.
1) The expansion used to prove this theorem could be easily used to prove that

the results of [5] and [3] about the normal behavior of the weakly interacting
Fermi system up to exponentially small temperatures (close to the expected
phase transition) can be obtained without any fixed ultraviolet cutoff.

2) The proof of the theorem is indeed valid even for a system with a fixed UV
cutoff on the �k variables, for example a system of fermions on a fixed lattice.
In this case, however, the UV problem is much milder and a much simpler
procedure to get the same result through a different multi-scale expansion is
described in App. A of [4]. Moreover, in [11] it has been shown that, if there
is a UV cutoff on the �k variables, no scale decomposition is needed, thanks
to an improved technique to control fermion determinants.

3) The expansion which allows us to prove the theorem could be applied also
to the case of spatial dimension grater than 2. However, if d > 2, the
bounds (1.7) and (1.8) can not be proved, as we shall explain in Section 4.
As we said above, this result should be expected, since the existence of the
thermodynamical limit is strictly related with the stability of the potential
for d ≥ 3 [12], so that we can at most make the hypothesis, in agreement
with the Cn+m(n + m)! bound of the series coefficients (see above), that the
perturbative series are Borel summable, if the two-body potential v̄(�x) is sta-
ble and λ > 0. However, our technique is not suitable for getting a result of
this type.

The plan of the paper is the following. In Section 2 we discuss the multi-
scale decomposition of the covariance, in Section 3 we describe the corresponding
expansion of the effective potential and, finally, in Section 4 we prove the theorem.

2. The decomposition of the covariance

Note that
guv(x) = g(x) − gir(x) , (2.1)

where

g(x) =
1

βL2

∑
k∈Dβ,L

e−ik ·x 1

−ik0 + ε0(�k)
, (2.2)

gir(x) =
1

βL2

∑
k∈Dβ,L

e−ik · (x−y) 1 − χ(k2
0 + ε0(�k)2)

−ik0 + ε0(�k)
. (2.3)

As it is well known, the sum over k0 in the r.h.s. of (2.2) can be performed
and one gets, if |x0| ≤ β,

g(x) =
1
L2

∑
�k∈DL

e−i�k · �x−x0ε0(�k)

[
θ(x0)

1 + e−βε0(�k)
− 1 − θ(x0)

1 + e+βε0(�k)

]
, (2.4)
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where θ(t) is the step function, equal to 1 for t > 0 and equal to 0 for t ≤ 0 (this
choice ensures that g(0, �x) = limx0→0− g(x0, �x), a required condition [10]).

The function g(x), which represents the covariance of the free fermion gas
without cutoffs, is antiperiodic in x0 of period β and periodic of period 2β; then
we shall consider it as defined on T

1
2β ×T

2
L. This function has a singularity at the

points x0 = 0,±β, which can be described in the following way. Let h0(t) be a
smooth function on R, equal to 1 for |t| ≤ 1 and equal to 0 for |t| ≥ 2, and let us
call h̃0(x0) the function on T

1
2β , which is equal to h0(x0) around x0 = 0 and equal

to h0(x0 +β) around x0 = −β. Let us call also h1(�x) the function on T
2
L, which is

equal to h0(�x2) around �x = 0, and f(x) = h̃0(x0)h1(�x). One can easily check that

f(x)g(x) = G(x) + R1(x) , (2.5)

where

G(x) = h0(x0)h1(�x)θ(x0)eμx0δ
(L)
x0/m(�x) (2.6)

− h0(x0 + β)h1(�x)θ(x0 + β)eμ(x0+β)δ
(L)
(x0+β)/m(�x) ,

R1(x) = −h0(x0)h1(�x)
1
L2

∑
�k∈DL

e−i�k · �x−x0ε0(�k)

1 + e+βε0(�k)
(2.7)

+ h0(x0 + β)h1(�x)
1
L2

∑
�k∈DL

e−i�k · �x−(x0+β)ε0(�k)

1 + e+βε0(�k)
,

and, if t > 0, we are defining

δ
(L)
t (�x) =

1
L2

∑
�k∈DL

e−i�k · �x−t�k2/2 =
∑

�n∈Z
2

e−(�x+�nL)2/(2t)

2πt
. (2.8)

By using (2.1) and (2.5), we can write:

guv = fguv + (1 − f)guv = fg − fgir + (1 − f)guv ≡ G + R , (2.9)

where R = R1 − fgir + (1 − f)guv. It is easy to check that R(x) is a smooth
function on T

1
2β × T

2
L and that, given any integer M > 0, there exists a constant

CM , independent of L and β, such that, if dβ(x0, y0) and dL(�x, �y) denote the
distances on T

1
β (not T

1
2β) and T

2
L, respectively, then

|R(x − y)| ≤ CM

1 + dβ(x0 − y0)M + dL(�x − �y)M
. (2.10)

As it is well known, the decomposition (2.9) of the covariance implies that,
if we call PR(dψ) and PG(dψ) the Gaussian measures of covariance R(x− y) and
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G(x − y), respectively, then we can rewrite (1.1) in the form

Veff (ϕ) = log
∫

PR(dψ)eVG(ψ+ϕ) , (2.11)

VG(ϕ) = log
∫

PG(dψ)e−V (ψ+ϕ) . (2.12)

The decaying property (2.10) of R(x) implies, by using standard techniques
based on the Gram–Hadamard inequality, that the integration in (2.11) gives no
problem. Hence, in order to prove Theorem 1.1, it is sufficient to prove it for the
functional VG(ϕ) of (2.12). We shall do that by a suitable scale decomposition of
the covariance, that we are going to describe.

If γ > 1 is the scaling parameter, we define, for any integer h ≥ 0,

θh(x0) = θ(x0)u(γhx0) , u(t) = h0(t) − h0(γt) . (2.13)

Since
∑∞

h=0 θh(x0) = θ(x0)h0(x0), we have

G(x) =
∞∑

h=0

Gh(x) , (2.14)

where, by (2.6),

Gh(x) = θh(x0)h1(�x)eμx0δ
(L)
x0/m(�x) (2.15)

− θh(x0 + β)h1(�x)eμ(x0+β)δ
(L)
(x0+β)/m(�x) .

It is easy to see that there are two constants A and κ, independent of L, β and h,
such that

|Gh(x − y)| ≤ Aγhe−κγh/2dL(�x,�y)
[
θh(x0 − y0) + θh(x0 − y0 + β)

]
. (2.16)

This implies, in particular, that, given two points x,y ∈ Λ,

Gh(x − y) �= 0 ⇒ γ−h−1 < x0 − y0 < 2γ−h

or − β + γ−h−1 < x0 − y0 < −β + 2γ−h , (2.17)

that is Gh(x − y) can be different from 0 only if the time coordinates x0 and y0

are ordered on the interval [0, β] thought as a torus, so that x0 follows y0 in the
positive direction.

Let us now put

G≤N (x) =
N∑

h=0

Gh(x) (2.18)

and let us call P≤N (dψ) the gaussian measure with covariance G≤N (x − y). We
shall regularize the functional (2.12), by putting

V
(N)
G (ϕ) = log

∫
P≤N (dψ)e−V (ψ+ϕ) . (2.19)
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Figure 1. An example of tree.

3. The tree expansion

An essential role in our analysis will be played by the tree expansion [1,7], in a form
and with notations very similar to those used in [2]; we assume that the reader is
enough familiar with this method to allow us to skip many technical details. We
start with some definitions and notations.

1) Let us consider the family of all unlabeled trees which can be constructed by
joining a point r, the root, with an ordered set of n ≥ 1 points, the endpoints
of the tree (see Figure 1), so that only one line emerges from the root. The
unlabeled trees are partially ordered from the root to the endpoints in the
natural way (we shall use the symbol < to denote the order); n will be called
the order of the unlabeled tree.

We shall consider also the labeled trees with cutoff N (which in general
will be simply called trees in the following); they are defined by associating
some labels with the unlabeled trees, as explained in the following items. We
shall denote T (N)

n the set of labeled trees of order n and cutoff N .
2) Given τ ∈ T (N)

n , we associate to each endpoint one of the two terms in the
r.h.s. of (1.3) and we shall distinguish the two choices by saying that the
endpoint is of type λ or ν, respectively. We shall call space-time points the
corresponding integration variables; they will be ordered so that x2i−1,x2i,
i = 1, . . . , n4, will denote the 2n4 space-time points associated to the n4

endpoints of type λ and x2n4+j , j = 1, . . . , n − n4, those associated to the
endpoints of type ν. x will be the set of all space-time points. We shall use
also the notation xj = (x0,j , �xj) to denote the time and space components
of xj .

3) We associate to the endpoints 4n4 + 2n2 = nϕ fields, ordered in a fixed
arbitrary way; we shall attach a label f = 1, . . . , nϕ to each field to distinguish
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them and we shall call Iτ the set of this labels. If f ∈ Iτ , xf and σf will denote
the space-time and the σ label, respectively, of the corresponding field ψ

σf
xf .

4) We introduce a family of vertical lines, labeled by a frequency index h, which
takes all the integer values between −1 and N + 1; the vertical lines are
ordered from left to right as the frequency index increases. Furthermore the
root must belong to the line with index −1, the endpoints must belong to a
line with index ≥ 0 and, finally, any branch point must belong to a vertical
line with index larger than −1 and smaller than N + 1.

5) We call non trivial vertices of τ its branch points (this set is empty if n = 1
and, in this case, there is only one unlabeled tree); we call trivial vertices
the points where the branches connecting two non trivial vertices intersect
the family of vertical lines; finally, we call vertices the trivial or non trivial
vertices and the endpoints (see the dots in Figure 1).

6) Given a vertex v, we call hv the frequency index of the vertical line containing
it. The first vertex of the tree (having frequency index 0) will be denoted
v0. Given a trivial or non trivial vertex v, sv will denote the number of lines
branching from v (then sv = 1, if v is a trivial vertex). If v is an endpoint and
v′ is the non trivial vertex immediately preceding it, there is the constraint
hv = hv′ + 1; this follows from the fact that Gh(0, �x − �y) = 0.

7) Given a vertex v, we shall call the cluster of v the family of space-time points
associated to all the endpoints following v, if v is not an endpoint, or v itself,
otherwise.

8) Finally, we denote Eh and ET
h the expectation and the truncated expectation,

respectively, with respect to the Gaussian measure with covariance Gh.
We can expand the functional (2.19) as

V
(N)
G (ϕ) =

∞∑
k=0

∑
n≥1

V
(N)
2k,n(ϕ) , (3.1)

where V
(N)
2k,n(ϕ) is the contribution of the terms of order 2k in the field and order n

in the couplings λ, ν, which will further expanded in the following way. Given a tree
τ ∈ T (N)

n , we associate to it many different terms, each term being characterized
by selecting, for any vertex v ∈ τ , a subset Pv ⊂ Iτ , so that the family {Pv, v ∈ τ}
satisfies the following conditions.

1) If v is an endpoint, Pv coincides with the set of fields appearing in the corre-
sponding interaction term.

2) If v is not an endpoint (v not e.p. in the following) and v1, . . . , vsv are the
vertices immediately following v, then Pv ⊆

⋃sv

i=1 Pvi
and, if v > ṽ0, the first

non trivial vertex of τ , Pv �= ∅. Moreover, if we define Qvi = Pv

⋂
Pvi (so

that Pv =
⋃sv

i=1 Qvi), then Pvi
\Qvi

�= ∅ for any i, if sv > 1.
Let us now define, for any set P ⊂ Iτ ,

ϕ(P ) =
∏
f∈P

ϕ
σf
xf , ψ(P ) =

∏
f∈P

ψ
σf
xf . (3.2)
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One can show that (see [2] for details)

V
(N)
2k,n(ϕ) =

∑
τ∈T (N)

n

∑
|Pv0 |=2k

∫
dx ϕ(Pv0) W (τ, Pv0 ,x) , (3.3)

W (τ, Pv0 ,x) =

⎡
⎢⎣ ∏

v>v0
v not e.p.

∑
Pv

⎤
⎥⎦W

(
τ, {Pv},x

)
, (3.4)

W
(
τ, {Pv},x

)
= (−ν)n2

n4∏
i=1

[
− λv(x2i−1 − x2i)

]
(3.5)

·
[ ∏

v not e.p.

1
sv!

ET
hv

(
ψ(Pv1\Qv1), . . . , ψ(Pvsv \Qvsv )

)]
.

Note that there is no explicit dependence on N in W (τ, {Pv},x), so that V
(N)
2k,n(ϕ)

depends on N only because the sum over the trees is restricted to T (N)
n .

4. Proof of Theorem 1.1

By the remark following (2.12), in order to prove the first part of Theorem 1.1,
that is the bounds (1.7) and (1.8), it is sufficient to prove that, if we put λ0 =
max{|λ|, |ν|},

(βL2)−1

∫
dx

∣∣∣∣∣∣
∑

τ∈T (N)
n

∑
|Pv0 |=2k

W (τ, Pv0 ,x)

∣∣∣∣∣∣ ≤ (Ckλ0)n . (4.1)

To begin with, we note that, by proceeding as in App. 2 of [2] (where an es-
sential role is played by the Gram–Hadamard inequality, used as in [9]) and by
using (2.16), we get∣∣∣ET

h

(
ψ(P1), . . . , ψ(Ps)

)∣∣∣ ≤ C
∑

j |Pj |γ
h
2

∑
j |Pj |

∑
T

e−κd
(h)
T (P1,...,Ps) , (4.2)

where T is an anchored tree graph between the clusters of space-time points from
which the fields labeled by P1, . . . , Ps emerge; this means that T is a set of lines
connecting two points in different clusters, which becomes a tree graph if one
identifies all the points in the same cluster. Moreover, if xi and yi, i = 1, . . . , s are
the space-time coordinates of the two points connected by the lines belonging to
T , we define:

d
(h)
T (P1 . . . Ps) =

s−1∑
i=1

(
γhdβ(xi

0, y
i
0) + γh/2dL(�xi, �yi)

)
. (4.3)

Note that, if s = 1, the sum over T is void and must be understood as a trivial
factor 1.
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We can use the inequality (4.2) to bound the r.h.s. of (3.5). We get

∣∣W (
τ, {Pv},x

)∣∣ ≤ (Cλ0)n

[
n4∏
i=1

|v(x2i−1 − x2i)|
]

(4.4)

·
[ ∏

v not e.p.

1
sv!

γ
hv
2

∑ sv
i=1[|Pvi

|−|Pv|]
∑
Tv

e−κd
(hv)
Tv

(Pv1 ,...,Pvsv
)

]
,

where we used the fact that
∑

v not e.p.

∑sv

i=1[|Pvi
| − |Qvi

|] ≤ 2n.
Let us now observe that, if we select one tree graph Tv for each vertex v,

except the endpoints, and we add, for each endpoint of type λ, the line connecting
the two corresponding space-time points, we get a spanning tree for the all set
of points x associate to τ . We can use this spanning tree (and the corresponding

e−κd
(hv)
Tv

(Pv1 ,...,Pvsv
) or v(x2i−1 − x2i) factors) to perform the integrations over the

space-time points in the usual way, by ordering them in a way suggested by the
spanning tree so that each integration involves only one difference of coordinates,
except the last one, which gives a volume factor. As shown in App. 3 of [2], the sum
over the possible choices of the spanning tree is controlled, up to a Cn constant,
by the 1/sv! factors, hence we get:

(βL2)−1

∫
dx

∣∣W (
τ, {Pv},x

)∣∣ ≤ (Cλ0)n‖v̄‖n4
1

·
∏

v not e.p.

γ
hv
2

∑ sv
i=1[|Pvi

|−|Pv|]γ−2hv(sv−1) , (4.5)

where ‖v̄‖1 =
∫

d�x v̄(�x). Note that v(x) is not a bounded function, see (1.4); hence,
in the previous bound an essential role is played by the fact that all the spanning
trees contain all the lines associated to the endpoints of type λ.

Let us now call n4,v and n2,v the number of endpoints of type λ and ν,
respectively, following the vertex v, if it is not an endpoint, and nv their sum.
Then, it is easy to check that, if v is not an endpoint,

∑
ṽ≥v

∑sṽ

i=1[|Pṽi
| − |Pṽ|] =

4n4,v + 2n2,v − |Pv| and that
∑

ṽ≥v(sṽ − 1) = n4,v + n2,v − 1. Then we can
rewrite (4.5) as

(βL2)−1

∫
dx

∣∣W (
τ, {Pv},x

)∣∣ ≤ (Cλ0)n
∏

v not e.p.

γ−d(n4,v,n2,v,|Pv|) , (4.6)

where the vertex dimension d(n4, n2, p) is defined as

d(n4, n2, p) = 2(n4 + n2 − 1) − 1
2
(4n4 + 2n2 − p) = n2 − 2 +

p

2
. (4.7)

If, given the tree τ ∈ T (N)
n , it turns out that d(n4,v, n2,v, |Pv|) > 0 for any

v > v0 which is not an endpoint, then, by proceeding as in §3 of [2], one can
perform the sum over the sets {Pv, v > v0} and all the labels of τ of the l.h.s.
of (4.1), obtaining a (Cλ0)n bound. Hence, if this property were true for all trees
of order n, one could get the bound (4.1), after exchanging the absolute value with
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x

y

x

Figure 2. The interaction terms.

the sums in the l.h.s., since the number of unlabeled trees of order n is bounded
by 4n. The dependence on k of the constant Ck is related to the sum over Pv0 .

However, one can see immediately that there are trees which contain vertices
with zero or negative dimension. Luckily, this can happen only in a few cases:

(a) |Pv| = 4, n2,v = 0
(b) |Pv| = 2, n2,v = 0, 1
(c) |Pv| = 0, n2,v = 0, 1, 2 (this can happen only in the vertices between v0 and

the first non trivial vertex of τ)

Note that this result is strictly related with the space dimension. In fact our
procedure works even for d > 2, the only difference being that, instead of (4.7),
we get d(n4, n2, p) = −n4(d/2− 1) + n2 − d/2− 1 + pd/4, so that, for any value of
|Pv|, we have vertices with negative dimension, if n4,v is large enough. This makes
completely useless the tree expansion. We want now to show that, if d = 2, we
can improve our bounds, by summing the contributions of some trees in the l.h.s.
of (4.1), before exchanging the absolute value with the sums.

Note that, if we expand, given any vertex v, all the truncated expectations
in the vertices ṽ ≥ v, we get a sum of connected Feynman graphs. These graphs
can be drawn in the usual way by representing the two interaction terms of (1.3)
as in Figure 2, where the solid lines correspond to fermions and the wiggling
lines correspond to the two-body potential; moreover, the arrow on a fermion line
coming in (out) the space-time point x means that the corresponding field has
positive (negative) σ-label. It turns out that the graphs must have |Pv| external
fermion lines, associated to the field variables in Pv, one internal wiggling line for
each endpoint of type λ following v and {

∑sṽ

i=1[|Pṽi
| − |Pṽ|]}/2 internal fermion

lines, associated to propagators of scales hṽ, for each ṽ ≥ v. Moreover, the set of
all fermion lines can be partitioned uniquely in a family of paths, which are simple
loops (fermionic loops in the following) or open paths connecting two external
lines; in all paths the arrows define a precise orientation. However, thanks to the
time ordering condition (2.17) (see the remark following it), the value of the graph
is 0 if there is a fermionic loop containing a number of space-time points less than
βγhv/2, as it is easy to check. It follows that, if

nv < n∗
hv

≡ [βγhv/2] (4.8)
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z1

y1

z2

y2

zm−1

ym−1

zm

ym

Figure 3. A ladder graph.

the value of the graph is exactly zero, if there is some fermionic loop. Moreover,
because of the delta function in the time variables of the two-body potential and
the fact that the connectivity of the graph can be ensured only through the wiggling
lines, the orientation of all open fermion lines must be the same.

The previous considerations imply in particular that, if v satisfies condi-
tion (a) above and (4.8), the only graphs giving a non vanishing contribution are
those having the structure of a ladder graph, that is a graph with two open paths
with the same orientation, connected by n4,v non intersecting wiggling lines, see
Figure 3. Let us now suppose that v satisfies condition (b) or (c) and (4.8); in this
case, it is possible to build graphs without loops only if n4,v = 0 and |Pv| = 2, so
that nv = n2,v = 1, which is impossible if v > v0. Hence a tree τ may give a non
vanishing contribution only if there is no trivial or non trivial vertex satisfying (b)
or (c), together with (4.8), except the trivial tree with nv = n2,v = 1.

We are now ready to modify our expansion. Given a tree τ ∈ T (N)
n and the

sets {Pv, v ∈ τ}, let us consider the family Fτ of all vertices different from v0,
which satisfy condition (a), (4.8) and the further condition that, if v ∈ Fτ , there
is no vertex ṽ < v, except possibly v0, which also satisfies (a) and (4.8). We want
to rebuild our expansion (3.3), by summing all terms associated to trees which are
obtained from τ by substituting, for each v ∈ Fτ , the subtree starting from v with
another arbitrary subtree with the same number nv of endpoints of type λ; we
shall call T (N)

v the family of all such subtrees starting from v. Moreover, we sum
also over all the choices of the sets Pṽ, ṽ > v, and we leave unchanged the set Pv,
again for each v ∈ Fτ . In order to describe the result of such operation, we note
that, if v ∈ Fτ and m = nv,

∑
τ∗∈T (N)

v

⎡
⎢⎣ ∏

ṽ>v
ṽ not e.p.

∑
Pṽ

⎤
⎥⎦ ∏

ṽ≥v
ṽ not e.p.

1
sṽ!

ET
hṽ

(
ψ(Pṽ1\Qṽ1), . . . , ψ(Pṽsṽ \Qṽsṽ )

)
= (4.9)

1
m!

ET
[hv,N ]

(
ψ+

z1
ψ+

y1
;ψ+

z2
ψ+

y2
ψ−

y2
ψ−

z2
; . . . , ψ+

zm−1
ψ+

ym−1
ψ−

ym−1
ψ−

zm−1
;ψ−

ym
ψ−

zm

)
,
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where ET
[h,N ] denotes the truncated expectation with respect to the Gaussian mea-

sure with covariance G[h,N ] =
∑N

h′=h Gh′ and the fields involved in the truncated
expectation are those associated to the endpoints following v, except the fields
associate to Pv, that is ψ−

z1
, ψ−

y1
, ψ+

zm
and ψ+

ym
. This claim easily follows by com-

paring the multiscale expansion of log
∫

P[hv,N ](dψ) exp V (ψ+ϕ) with the ordinary
cumulant expansion, P[h,N ](dψ) being the measure with covariance G[h,N ].

Let us now call T̃ (N)
n the set of trees, whose definition differs from that of

T (N)
n for the following reasons.
1) The number of endpoints is not fixed, but is at most n.
2) Besides the endpoints of type ν and λ (whose number is still denoted by n2

and n4, respectively), there are also n∗
4 endpoints, to be called of type λ∗ and

order n∗
v ≤ n; if Fτ is the set of endpoints of type λ∗, the following constraint

has to be satisfied:
n4 + n2 +

∑
v∈Fτ

n∗
v = n . (4.10)

3) To each v ∈ Fτ we associate a frequency label hv ∈ [1, N ], satisfying the
constraint that hv = hv′ +1, if v′ is the higher vertex preceding v in the tree.

4) To each v ∈ Fτ we associate n∗
v interaction terms of type λ; we shall call

x∗
v the set of corresponding 2n∗

v space-time points. Moreover, if the set x∗
v is

written as in the second line of (4.9) and Figure 3, with m = n∗
v, and we put

xm = x∗
v, h = hv, we shall define the function

ṽ
(N)
m,h(xm) =

1
m!

m∏
i=1

v(yi − zi) (4.11)

· ET
[hv,N ]

(
ψ+

z1
ψ+

y1
;ψ+

z2
ψ+

y2
ψ−

y2
ψ−

z2
; . . . , ψ+

zm−1
ψ+

ym−1
ψ−

ym−1
ψ−

zm−1
;ψ−

ym
ψ−

zm

)
.

It follows that we can substitute (3.3) with a similar expansion:

V
(N)
2k,n(ϕ) =

∑
τ∈T̃ (N)

n

∑
|Pv0 |=2k

∫
dx ϕ(Pv0) W̃ (N)(τ, Pv0 ,x) , (4.12)

W̃ (N)(τ, Pv0 ,x) =

⎡
⎢⎣ ∏

v>v0
v not e.p.

∑
Pv

∗

⎤
⎥⎦ W̃ (N)

(
τ, {Pv},x

)
, (4.13)

where
∑∗

Pv
means that the sum is constrained by the condition |Pv| ≥ 6, if nv <

n∗
hv

, and

W̃ (N)
(
τ, {Pv},x

)
= (−ν)n2

n4∏
i=1

[
− λv(x2i−1 − x2i)

] ∏
v∈Fτ

[
(−λ)n∗

v ṽ
(N)
n∗

v,hv
(x∗

v)
]

·
[ ∏

v not e.p.

1
sv!

ET
hv

(
ψ(Pv1\Qv1), . . . , ψ(Pvsv \Qvsv )

)]
. (4.14)
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Note that, if v ∈ Fτ , the set Pv is not fixed, but has to be chosen in all possible
ways among the sets of four fields, a couple with σ(f) = + and a couple with
σ(f) = −, that one can select so that the two couples of fields belong to two
different interaction terms of type λ, among those associated to v, see item 4)
above. For the other vertices, Pv is defined as before.

It is easy to see that W̃ (N)(τ, {Pv},x) satisfies a bound similar to (4.5). The
only difference is that now we do not have a spanning tree and a corresponding
decaying factor to perform the integration inside the sets x∗

v associated to the
endpoints of type λ∗. However, if we shrink every set x∗

v to a point, we get a
spanning tree by choosing, as before, a tree graph Tv or the interaction line for
the other vertices; if we use this spanning tree to perform in the usual way the
integrations over the differences of coordinates associated to its lines, we are left
with the integrations over the sets x∗

v, v ∈ Fτ , with the condition that one of the
space-time points from which the four external lines Pv emerge is fixed, in each
set. It follows, by observing that, if v ∈ Fτ , the set Pv can be chosen in n∗

v(n∗
v − 1)

different ways, and by using the constraint (4.10), that we have to multiply the
r.h.s. of (4.5) by

∏
v∈Fτ

||ṽ(N)
n∗

v,hv
||, having defined

||ṽ(N)
m,h|| = max

i
sup
x∗

i

∫
d(xm\x∗

i )|ṽ
(N)
m,h(xm)| , (4.15)

where x∗
i is one of the four points from which the four external lines of Pv emerge.

On the other hand, the graph expansion of (4.9) gives rise to a sum of
2m−2(m − 2)! ladder graphs with propagator G[h,N ]; hence, by using (4.11) and
(1.4), we get

||ṽ(N)
m,h|| ≤ 2m sup

j

∫ ⎡
⎣ m∏

i=1,i 	=j

dzi,0d�zi

⎤
⎦

[
m∏

i=1

d�yi

][
m∏

i=1

|v̄(�yi − �zi)|
]

·
[

m−1∏
i=1

|G[h,N ](zi+1 − zi)||G[h,N ](zi+1,0 − zi,0, �yi+1 − �yi)|
]

. (4.16)

By using (2.15) and (2.13), we can easily see that, uniformly in N ,∫
d�x|G[h,N ](x0, �x)| ≤ C

[
h0(γh|x0|) + h0(γh|x0 + β|)

]
. (4.17)

Therefore, if we integrate in (4.16) first the space coordinates, by using a spanning
tree containing all fermion lines and one interaction line, then the time coordinates,
by using the fact that h0(γh|x0|) has support in an interval of size γ−h, we get

||ṽ(N)
m,h|| ≤ Cmγ−h(m−1)‖v̄‖m−1

∞ ‖v̄‖1 , (4.18)

where ‖v̄‖∞ = sup�x |v̄(�x)|.
The bound (4.18) implies that W̃ (N)(τ, {Pv},x) satisfies a bound similar

to (4.6). We could indeed even improve the bound, by using the γ−h(m−1) factor
in the r.h.s. of (4.18), but we do not need this improvement. It will be sufficient
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to use the fact that now the set {Pv} has the important property that, if a vertex
v has non positive dimension (that is it satisfies either condition (a), (b) or (c)
above), then nv ≥ n∗

hv
, that is nv has to be very large, if hv is large. To exploit

this property in an efficient way, let us select, given τ , the family Rτ of vertices
such that nv ≥ n∗

hv
and there is no vertex ṽ > v with the same property. We note

that, for any ε > 0,

1 =
∏

v∈Rτ

e−εn∗
hv eεn∗

hv ≤ eεn
∏

v∈Rτ

e−
εβ
2 γhv

, (4.19)

so that, if we choose ε = 2β−1, we get

1 ≤ e2β−1n(4e−2)|Rτ |
∏

v∈Rτ

γ−2hv ≤ Cn
∏

v∈Rτ

γ−2hv . (4.20)

By using this bound, we get finally

(βL2)−1

∫
dx

∣∣W̃ (N)
(
τ, {Pv},x

)∣∣

≤ (Cλ0)n

[ ∏
v∈Rτ

γ−2hv

] ∏
v not e.p.

γ−d(n4,v,n2,v,|Pv|) . (4.21)

Let us call τ∗ the minimal subtree of τ which contains v0 and the set Rτ of vertices.
Our definitions imply that all the vertices of τ which have non positive dimension
belong to τ∗ and that the elements of Rτ are the endpoints of τ∗. Hence, we can
distribute the γ−2hv factors in the r.h.s. of (4.21) along the paths connecting the
vertices in Rτ to v0, so to increase the dimension of all vertices of τ∗ of at least
two units. Since d(n4, n2, p) is ≥ −1 and grows linearly with p, this is sufficient to
control the sum over the set {Pv}, see remark after (4.7).

In order to complete the proof of Theorem 1.1, we define the constants pn,m

and the distributions W2k,n,m(x,y) in a way analogous to p
(N)
n,m and W

(N)
2k,n,m(x,y),

that is by using, instead of the expansion (4.12), the similar expansion

V2k,n(ϕ) =
∑

τ∈T̃n

∑
|Pv0 |=2k

∫
dx ϕ(Pv0) W̃ (τ, Pv0 ,x) , (4.22)

where T̃n =
⋃

N≥0 T̃
(N)

n and

W̃ (τ, Pv0 ,x) =

⎡
⎢⎣ ∏

v>v0
v not e.p.

∑
Pv

∗

⎤
⎥⎦ W̃

(
τ, {Pv},x

)
, (4.23)

W̃ (τ, {Pv},x) being the expression obtained from (4.14) by substituting ṽ
(N)
n∗

v,hv
(x∗

v)

with ṽn∗
v,hv

(x∗
v) = ṽ

(∞)
n∗

v,hv
(x∗

v).
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In order to prove the bounds (1.9) and (1.10), it is sufficient to prove that
there exists a constant δN , which goes to 0 as N → ∞, such that

a(βL2)−1

∫
dx

∣∣∣∣∣∣
∑

τ∈T̃ (N)
n

∑
|Pv0 |=2k

W̃ (N)(τ, Pv0 ,x)

−
∑

τ∈T̃n

∑
|Pv0 |=2k

W̃ (τ, Pv0 ,x)

∣∣∣∣∣∣ ≤ (Ckλ0)nδN . (4.24)

This is indeed an almost immediate consequence of the previous bounds. In fact, we
can write the expression inside the modulus in the r.h.s. of (4.24) as the difference
between

Δ1,N (x) =
∑

τ∈T̃ (N)
n

∑
|Pv0 |=2k

[
W̃ (N)(τ, Pv0 ,x) − W̃ (τ, Pv0 ,x)

]
(4.25)

and
Δ2,N (x) =

∑
τ∈T̃n\T̃ (N)

n

∑
|Pv0 |=2k

W̃ (τ, Pv0 ,x) . (4.26)

On the other hand, by proceeding as in the proof of (4.18), it is easy to prove that

||ṽ(N)
m,h − ṽm,h|| ≤ Cmγ−Nγ−h(m−2)‖v̄‖m−1

∞ ‖v̄‖1 , (4.27)

which implies in a simple way that

(βL2)−1

∫
dx|Δ1,N (x)| ≤ (Ckλ0)nγ−N . (4.28)

Let us now consider Δ2,N (x). The sum over the trees in the r.h.s. of (4.26) is
restricted to trees which have at least one non trivial vertex with frequency index
greater than N , say v̄. Hence we can extract from the bound of (βL2)−1

∫
dx

|W̃ (τ, Pv0 ,x)|, which is of the form of the r.h.s. in (4.6), a factor γ−N/2, without
affecting the bound of the sum over the trees; in fact this factor can be compensated
by lowering of 1/2 the vertex dimension (which is ≥ 1) in all the vertices of the
path joining v̄ with the root. It follows that

(βL2)−1

∫
dx|Δ2,N (x)| ≤ (Ckλ0)nγ−N/2 . (4.29)

Therefore, the bound (4.24) is proved with δN = γ−N/2.
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