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Abstract. The point process corresponding to the configurations of bosons in
standard conditions is a Cox process driven by the square norm of a centered
Gaussian process. This point process is infinitely divisible. We point out the
fact that this property is preserved by the Bose–Einstein condensation phe-
nomenon and show that the obtained point process after such a condensation
occured, is still a Cox process but driven by the square norm of a shifted
Gaussian process, the shift depending on the density of the particles. This law
provides an illustration of a “super”- Isomorphism Theorem existing above
the usual Isomorphism Theorem of Dynkin available for Gaussian processes.

1. Introduction

The point processes corresponding to the spatial configurations of fermions and
bosons in standard conditions have been clearly identified (see Macchi [13, 14])
and are usually respectively named fermion point processes and boson point pro-
cesses. Shirai and Takahashi [16] have given an unified presentation of these two
classes of processes by introducing the definition of alpha-permanental (or alpha-
determinantal) random point processes. Indeed they have established the existence
of random point processes whose Laplace transforms are equal to the power (− 1

α )
of a Fredholm determinant. When α = −1 one obtains a determinantal (or a
fermion) point process, when α = 1 it is a permanental (or a boson) point process.

These results allow to check the property of infinite divisibility of some alpha-
permanental point processes for α > 0, and in particular of the point process
associated to an infinite collection of bosons in an infinite box with a density
lower than the Bose–Einstein critical density. We remind that a point process N
is infinitely divisible if for every integer k there exists k independent identically
distributed point processes N1,k, N2,k, . . . , Nk,k such that

N
(law)
= N1,k + N2,k + · · · + Nk,k . (1.1)
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Note that a fermion point process can not be infinitely divisible. One can have an
intuition of that fact thanks to the “anti-bunching” property of the fermions: two
fermions can not be closer than the “correlation length”, a given distance whose
existence has been assumed theoretically before being recently put in evidence ex-
perimentally (see [10] Jeltes et al.). This property makes impossible the realization
of (1.1) even for k = 2 since two points belonging respectively to the support of
N1,2 and N2,2 can not be closer than the correlation length. The independency of
N1,2 and N2,2 can not afford that. More generally for α < 0, alpha-permanental
random point processes can not be infinitely divisible.

Coming back to the bosons, one may ask whether a Bose–Einstein condensa-
tion would preserve this infinite divisibility property. The answer is affirmative and
based on a recent paper of Tamura and Ito [19] who have obtained in a new way
the law of the configurations of the particles of an ideal Bosonian gas containing
particles in a Bose–Einstein condensation state. We shall analyze in Section 2 their
result and show why infinite divisibility is the key to understand the factorization
of the Cox process involved in the Bose–Einstein condensation. In Section 3, we
show that this factorization provides an illustration of a “super”- Isomorphism
Theorem existing above the usual Isomorphism Theorem of Dynkin [3].

2. An infinitely divisible Cox process

Shirai and Takahashi [16] have extended the notions of boson and fermion point
processes by introducing the following distributions denoted by μα,K . The corre-
sponding random point processes are sometimes called alpha-permanental point
processes. In the definition below, E is a locally compact Hausdorff space with
a countable basis, λ is a nonnegative Radon measure on E, and Q is the space
of nonnegative integer-valued Radon measures on E. An operator K on L2(E, λ)
is locally bounded if for every compact subset of E, A, the operator PAKPA is
bounded (PA denotes the projection from L2(E, λ) to L2(A, λ)).

Definition 2.1. For K a locally bounded integral operator on L2(E, λ) and α a
fixed number, the distribution μα,K on Q satisfies, when it exists

∫
Q

μα,K(dξ)exp
(
− 〈ξ, f〉

)
= Det(I + αKφ)−1/α (2.1)

for every nonnegative measurable function f with compact support on E, Kφ

stands for the trace class operator defined by

Kφ(x, y) =
√

φ(x)K(x, y)
√

φ(y)

and
φ(x) = 1 − exp

(
− f(x)

)
.

The function Det denotes the Fredholm determinant.
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For a different presentation of these distributions we refer the reader to the
paper of Hough et al. [9]

When α = 1, μ1,K is the distribution of the configurations of a Bosonian gas.
Shirai and Takahashi have established sufficient conditions, on the operator K,
for the existence of the distribution μα,K . In particular for K, a locally bounded
integral operator on L2(E, λ) and α a fixed positive number, they have shown that
if (α,K) satisfies

(B) : the kernel function of the operator Jα = K(I + αK)−1 is nonnegative

then μα,K exists and is infinitely divisible.
Note that μα,K is infinitely divisible iff μnα,K/n exists for every n ∈ N

∗.
In the special case E = R

d, α = 1 and J1 with kernel J1(x, y) = 1
(4πβ)d/2

exp(−|x − y|2/4β) (K is such that J1 = K(I + K)−1), the distribution μ1,K can
be obtained as the limit of the distributions of the positions in R

d of N identical
particles following the Bose–Einstein statistics in a finite box. More precisely, one
starts from the following random point measure μ(L,N) which describes the location
of an ideal Bosonian gas, composed of N particles in a volume V = [−L/2, L/2]d

with d ≥ 1, at a given temperature T∫
V N

μ(L,N)(dξ)e−〈ξ,f〉

= C

∫
V N

exp

⎛
⎝−

N∑
j=1

f(xj)

⎞
⎠ per

(
GL(xi, xj)

)
1≤i,j≤N

dx1 . . . dxN

where the constant C is equal to
∫

V N per(GL(xi, xj))1≤i,j≤Ndx1 . . . dxN , GL de-
notes the operator exp(βΔL) with β = 1/T and ΔL is the Laplacian under the
periodic condition in L2(V ).

As N and V are tending to ∞ with N/V → ρ, μ(L,N) converges to a limit

depending on ρ. Indeed, denoting by ρc the critical density
∫

Rd
dx

(2π)d
e−β|x|2

1−e−β|x|2 which
is finite for d > 2, we have

– if ρ < ρc, then μ(L,N) converges to μ1,Kρ
, where Kρ = �(ρ)J1(I − �(ρ)J1)−1

and �(ρ) is a positive constant depending on ρ.
This last result provides a justification to the fact that μ1,Kρ

is the
distribution of the configurations of an ideal Bosonian gas. The next result
is more illuminating; indeed, in the case d > 2 and

– if ρ ≥ ρc, then μ(L,N) converges to a random point process with a distribution
ζ given by∫

Q

ζ(dξ)e−〈ξ,f〉

= Det(I + Kφ)−1exp
{
− (ρ − ρc)

(√
1 − e−f , (I + Kφ)−1

√
1 − e−f

) }
(2.2)

where K = J1(I − J1)−1.



1126 N. Eisenbaum Ann. Henri Poincaré

The physical explanation of this split convergence, actually a phase transition,
is due to the fact that when the density of the gas becomes higher than ρc, a certain
proportion of the particles tends to lower the density by reaching the lowest level
of energy. This phenomenon, called the Bose–Einstein condensation, predicted by
Einstein in 1925, is intensively studied today especially since this phenomenon has
been experimentally obtained (for d = 3 of course) in 1995 by a team at JILA.
It is interesting to see that the Bose–Einstein condensation phenomenon provides
an illustration in the case d = 3 of a mathematical physics result available for any
dimension d greater than 3.

These results have been established by many authors. In particular they
are consequences of the works of Bratteli and Robinson [2] (see Theorem 5.2.32
Chap. 5 p. 69) and of Fichtner and Freudenberg [7]. The way Tamura and Ito
have obtained these results in [18] and [19], deserves a special attention because
they need neither quantum field theories nor the theory of states on the operator
algebras, but mostly an integral formula due to Vere-Jones [21]. Further, Tamura
and Ito have actually done more than (2.2). In [19] their proof is based on the
following theorem.

Theorem A. Let K be a locally bounded symmetric integral operator on L2(E, λ)
such that (1,K) satisfies condition (B) and∫

E

J1(x, y)λ(dy) ≤ 1 λ(dx) a.e. (2.3)

Then for every r > 0, there exists a unique random measure with distribution ζr

on Q such that for every non-negative measurable function f on E∫
Q

ζr(dξ)e−〈ξ,f〉 = exp
{
− r

(√
1 − e−f , (I + Kφ)−1

√
1 − e−f

) }
(2.4)

where (., .) denotes the inner product of L2(E, λ).

Tamura and Ito’s result generates several natural questions:
• In (2.2) the distribution of the configurations of the particles is, by Theorem

A, the convolution of two distributions: μ1,K ∗ζρ−ρc
. It is tempting to imagine

that μ1,K corresponds to the fraction of the particles with level of energy
greater than 0 and that ζρ−ρc

corresponds to the particles that did “coalesce”
(i.e. without kinetic energy or similarly in a quantic state equal to 1.) Indeed
�(ρ) is a continuous function of ρ on (0, ρc] that takes the value 1 at ρc.
Hence the distribution of the configurations of particles with density ρc has
the distribution μ1,K . The problem is to know whether the configurations
of particles with 0 kinetic energy are independent of the configurations of
moving particles? In what follows we shall answer this question.

• The assumption of condition (B) in Theorem A, makes μ1,K infinitely di-
visible. Since ζr = (ζr/n)∗n, ζr is infinitely divisible as well. Consequently
the distribution ζ given by (2.2) is also infinitely divisible. Moreover, thanks
to Theorem A, the distribution ζ exists for any K such that (1,K) satisfies
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condition (B) and (2.3). We therefore obtain a family of infinitely divisible
distributions – who are they? Their characterization is the theme of Theo-
rem 2.3.

• Besides, in their paper [16] (Theorem 6.12) Shirai and Takahashi have ob-
tained a factorization involving μα,K for (α,K) satisfying condition (B)
(see (2.13) below). In the case α = 1, is this factorization connected to (2.2)?
We will show that the answer is affirmative and that they are both direct
consequences of the infinite divisibility of μα,K .
To analyze further the results of Tamura and Ito, we will use the notion of a

Cox process.

Definition 2.2. A Cox process is a Poisson point process with a random intensity σ
on the space of Radon measures on E. Its distribution Πσ satisfies therefore∫

Q

Πσ(dξ)exp
(
− 〈ξ, f〉

)
= IE

[
exp

(
−

∫
E

(
1 − e−f(x)

)
σ(dx)

)]
,

for every nonnegative measurable function f with compact support on E.

We shall work mostly with Cox processes with random intensity ψ(x)λ(dx)
where (ψ(x), x ∈ E) is a positive process such that IE(ψ(x)) is a locally bounded
function of x. Such a Cox process is said to be driven by (ψ, λ). We denote its
distribution by Πψ,λ or Πψ when there is no ambiguity about the measure λ.

If ψ is equal to 1
2η2 with η real valued centered Gaussian process with co-

variance (K(x, y), x, y ∈ E) then∫
Q

Π(ψ,λ)(dξ)exp
(
− 〈ξ, f〉

)
= IE

[
exp

(
−

∫
E

(1 − e−f(x))ψ(x)λ(dx)
)]

for every positive function f with compact support. Using the Dominated Con-
vergence Theorem one shows then that Π(ψ,λ) = μ 1

2 ,K . Note that a priori the
couple (1

2 ,K) does not satisfy condition (B) of Shirai and Takahashi.

Remark 2.2.1. The infinite divisibility of a Cox process with distribution Πψ is
not equivalent to the infinite divisibility of the process ψ. Of course, the infinite
divisibility of ψ implies the infinite divisibility of Πψ, but the converse is not true.
This fact has been stated in 1975 by Kallenberg [11] (Ex. 8.6, p. 58 Chap. 8 – see
also Shanbhag and Westcott (1977) [15]). Condition (B) of Shirai and Takahashi
allows to put in evidence examples of squared Gaussian processes η2 which are
not infinitely divisible although the Cox process with distribution Πη2 is infin-
itely divisible. For this purpose, consider the example of the ideal Bose gas, where
J1(x, y) = 1

(4πβ)d/2 exp(−|x− y|2/4β). By condition(B), μ1,K is infinitely divisible.
Further note that, μ1,K = Π 1

2 η2,λ ∗Π 1
2 η2,λ, where (ηx, x ∈ R

d) is a centered Gauss-
ian process with covariance (K(x, y), x, y ∈ R

d) and λ is the Lebesgue measure
on R

d. Hence Π 1
2 η2,λ is infinitely divisible. Using now Bapat’s characterization

of Gaussian processes with infinitely divisible square [1], we can easily choose
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x, y, z ∈ R
d such that (η2

x, η2
y, η2

z) is not infinitely divisible. Indeed, if yizi < 0
for every 1 ≤ i ≤ d then |y − z|2 > |y − x|2 + |z − x|2 for x in R

d with |x|
small enough. The matrix (K(a, b), a, b ∈ {x, y, z}) has only positive coefficients
and (K−1(a, b), a, b ∈ {x, y, z}) has at least one off-diagonal positive coefficient.
Consequently this last matrix can not be an M-matrix. In Lemma 2.5, we shall
characterize the infinitely divisible Πψ where ψ is a nonnegative process.

To state the main result of this section, Theorem 2.3, we need the follow-
ing notation. Let (ηx, x ∈ E) be a centered Gaussian process with covariance
(K(x, y), x, y ∈ E) and a a point not in E. Extend the process η to E ∪ {a} by
setting ηa = 0 and K(a, a) = K(x, a) = K(a, x) = 0 for all x ∈ E. Let (ψx, x ∈ E)
be a centered Gaussian process with covariance (K(x, y) + 1, x, y ∈ E). One can
similarly extend it to E ∪ {a} in the obvious manner, namely, E(ψxψa) = 1 for
all x in E. For a measure λ on E and ε > 0, define

λε = λ + εδa

where δa is the Dirac measure with mass at a. For a positive random process
(φx, x ∈ E ∪{a})on E ∪{a}, we denote by Πφ,λε

the distribution of a Cox process
with random intensity φxλε(dx) on E ∪{a}. Note that for the process η above, we
have: Πη2,λε

= Πη2,λ. Without ambiguity Q will denote the space of nonnegative
integer-valued Radon measures on E∪{a}. With these notation, we are now ready
to state Theorem 2.3. Its proof is deferred to the end of this section.

Theorem 2.3. Let (ηx, x ∈ E) be a centered Gaussian process with covariance
(K(x, y), x, y ∈ E). Let (ψx, x ∈ E) be a centered Gaussian process with covariance
(K(x, y) + 1, x, y ∈ E). Assume that the distribution Π 1

2 η2,λ is infinitely divisible,
then the following five points are equivalent.

(i) The distribution Π 1
2 (η+c)2,λ is infinitely divisible for every constant c in R.

(ii) The distribution Π 1
2 ψ2,λε

is infinitely divisible for every ε > 0.
(iii) For every r > 0 there exists a random measure with distribution νr on Q

such that
Π 1

2 (η+r)2,λ = Π 1
2 η2,λ ∗ νr . (2.5)

Moreover the distribution νr satisfies∫
Q

νr(dξ)e−〈ξ,f〉 = exp
{
− 1

2
r2

(√
1 − e−f , (I + Kφ)−1

√
1 − e−f

) }
, (2.6)

where the inner product is taken with respect to the measure λ.
(iv) For every ε > 0 and r > 0, there exists a random measure with distribu-

tion νr on Q satisfying (2.5) and (2.6) but for the measure λε instead of the
measure λ.

(v) The distribution Π 1
2 (η+c)2,λε

is infinitely divisible for every constant c in R

and every ε > 0.

Remark 2.3.2. Note that the distribution νr of (iii) is not necessarily the distri-
bution of a Cox process. In Section 3, we will see that, this makes precisely the
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difference between the infinite divisibility of Πφ and the infinite divisibility of φ.
We shall see also that this remark extends from squared Gaussian processes to
nonnegative processes.

We are now in position to analyze further the results of Tamura and Ito.
Recall that in the case ρ > ρc, the case when a Bose–Einstein condensation occurs,
the obtained limit ζ is equal to μ1,K ∗ ζρ−ρc

, where ζr is defined by Theorem A.
First we note that by Theorem 2.3, the existence of ζρ−ρc

for every ρ > ρc is
equivalent to the infinite divisibility of μ1,K+1. To check directly this last property
we can, for example, verify that (1,K + 1) satisfies condition (B). Indeed we have
the following general result which does not require that K be symmetric.

Proposition 2.4. Let K be an integral operator on L2(E, λ) such that (1,K) satisfies
condition (B) and ∫

E

J1(y, x)λ(dy) ≤ 1 λ(dx) a.e. (2.7)

and ∫
E

J1(x, y)λ(dy) ≤ 1 λ(dx) a.e. (2.8)

Then (1,K + 1) satisfies condition (B).

Proof of Proposition 2.4. Set J1 = (K + 1)(I + K + 1)−1. We have to show that
J1 has a nonnegative kernel. We denote by 11 the integral operator on L1(E, λ)
with the kernel identically equal to 1. We then have I +K +11 = (I −J1)−1 +11 =
(I +11(I −J1))(I −J1)−1, which leads to J1 = (K +11)(I −J1) (I + 11(I − J1))

−1.
Let f be an nonnegative element of L2(E, λ). We set g = (I + 11(I − J1))−1f and
similarly f = g + 11(I − J1)g. Note that 11(I − J1)g is a constant function that we
denote by c(g). We claim that c(g) ≥ 0. Indeed, c(g) = 11(I − J1)(f − c(g)) and
by (2.7) the integral operator 11(I − J1) has a positive kernel. Hence if c(g) < 0
then f − c(g) is a positive function and therefore so is c(g) = 11(I − J1)(f − c(g)),
which leads to a contradiction. Thus, c(g) ≥ 0.

We now have:

J1f = (K+11)(I−J1)g = J1g+11(I−J1)g = J1

(
f−c(g)

)
+c(g) = J1f+(I−J1)c(g) .

By (2.8) (I − J1)c(g) ≥ 0 and thanks to (B), J1f is nonnegative. Consequently
J1f is non negative as well. �

Theorem 2.3 and Proposition 2.4 prove Theorem A of Tamura and Ito.
Restricting our attention to the case of ideal Bosonian particles, we see that,

with the notations of Theorem 2.3, (2.2) becomes

ζ = μ1,K ∗ ν√
2(ρ−ρc)

. (2.9)

Can we interpret ν√
2(ρ−ρc)

as the law of the configurations of the particles with 0

kinetic energy and density ρ−ρc ? These particles are at temperature T = 1/β and
the distribution ζ depends on T . Now imagine that we can lower the temperature T
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to 0, we then have ρc → 0 and for any positive function f with compact support,
we easily obtain∫

Q

ζ(dξ)e−〈ξ,f〉 −→ exp
{
−ρ

∫
Rd

(1 − e−f(x))dx

}
.

The obtained limit is the distribution of a Poisson point process with uniform
intensity ρdx on R

d. But at temperature T = 0, all the particles are at 0 level of
kinetic energy. Hence this limit Πρ,dx is the distribution of the configurations of
particles, with density ρ, at 0 level of energy and temperature 0. This has been
already established (differently) by Goldin et al. [8]. Now remember that once
the 0 state of kinetic energy is reached, the particles don’t move anymore, hence
the law of their configurations should not vary when the temperature goes down.
But obviously ν√

2(ρ−ρc)
is different from Π(ρ−ρc),dx. Consequently the answer to

the above question is negative. This implies that the presence of particles in the
Bose–Einstein condensation state has an influence on the configurations of the still
moving particles.

Moreover, (2.9) can be rewritten as

ζ = Π 1
2 η2 ∗ ν√ρ−ρc

∗ Π 1
2 η2 ∗ ν√ρ−ρc

which leads to
ζ = Πψ (2.10)

with (ψx, x ∈ E)
(law)
= (1

2 (ηx+
√

ρ − ρc)2+ 1
2 (η̃x+

√
ρ − ρc)2, x ∈ E) and η and η̃ two

independent centered Gaussian processes with covariance (K(x, y), x, y ∈ R
d). Un-

der this writing it appears that ζ is the distribution of a Cox process. Similarly (2.9)
leads to

ζ = Π 1
2 (η+

√
2(ρ−ρc))2

∗ Π 1
2 η2 . (2.11)

Under this last form, one can provide a physical interpretation in terms of fields
(instead of particles). We thank Yvan Castin from Laboratoire Kaestler–Brossel
for the following explanation. The Bosonic field (φ(x), x ∈ R

d) satisfies φ(x) =
φ0+φe(x), where φ0 is a (spatially) uniform field corresponding to the condensated
particles and (φe(x), x ∈ R

d) is the field corresponding to the excited particles.
This last field φe is a complex Gaussian field: φe = 1√

2
(η + iη̃). Besides φ0 is taken

to be the constant
√

ρ − ρc. The real component of φe can interfere with φ0 and
provides the part Π 1

2 (η+
√

2(ρ−ρc))2
of ζ, while the imaginary component of φe does

not interfere with φ0 and its contribution to ζ is the same as for the gas without
condensation Π 1

2 η2 .
To prove Theorem 2.3 we will use the following characterization of the infinite

divisible random measure. According to Theorem 11.2 (Chap. 11, p. 79) in Kallen-
berg’s book [11], a random measure with distribution ζ is infinitely divisible iff for
almost every x,w.r.t. IE(ζ), there exists a random measure with distribution μx
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on Q such that

ζx = ζ ∗ μx (2.12)

where (ζx, x ∈ E) denotes the Palm measures of ζ.
In the special case of a couple (α,K) satisfying condition (B), we hence obtain

the existence of μx such that

μx
α,K = μα,K ∗ μx (2.13)

which is precisely the factorization obtained by Shirai and Takahashi. Note that
it is really an immediate consequence of the infinite divisibility of μα,K .

We are going to make use of Kallenberg’s Theorem (2.12) to characterize the
infinitely divisible Πψ.

Lemma 2.5. Let Πψ be the distribution of a Cox process directed by a positive
process (ψx, x ∈ E) with respect to λ. Assume that IE(ψx) is a locally bounded
function of x. For each b in E such that IE(ψb) > 0, denote by (ψ(b)(x), x ∈ E)
the process ψ under IE[ ψ(b)

IE(ψ(b)) ; .]. The Palm measure at b of Πψ, denoted by Πb
ψ,

admits the following factorization for IE(ψx)λ(dx) almost every b

Πb
ψ = Πψ(b) ∗ δb

where δb is the Dirac point mass at b.
The distribution Πψ is infinitely divisible iff for almost every b w.r.t.

IE(ψx)λ(dx), there exists a random measure with distribution μb such that

Πψ(b) ∗ δb = Πψ ∗ μb .

Proof of Lemma 2.5. For every nonnegative function f on E, we have:
∫

Q

Πψ(dξ)e−〈ξ,f〉 = IE

[
exp

(
−

∫
E

(1 − e−f(x))ψ(x)λ(dx)
)]

. (2.14)

Call X the Cox process with distribution Πψ, then X admits a first moment
measure M on B(E) defined by IE(X(A)) = M(A) = IE(

∫
A

ψ(x)λ(dx)), for every
A ∈ B(E). Let (Πx

ψ, x ∈ E) be the family of Palm measures of Πψ, we define Π̃x
ψ

by Πx
ψ = Π̃x

ψ ∗ δx. This means that (Π̃x
ψ, x ∈ E) satisfies

∫
Q

Πψ(dξ)
∫

E

ξ(dx)u(ξ, x) =
∫

E

M(dx)
∫

Q

Π̃x
ψ(dξ)u(ξ + δx, x) .

As a consequence of this disintegration formula, we have for any f and g nonneg-
ative functions on E with support in a compact set A

− d

dt

∫
Q

Πψ(dξ)e−〈ξ,f+tg〉|t=0 =
∫

E

g(x)
∫

Q

Π̃x
ψ(dξ)e−〈ξ+δx,f〉M(dx)
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which thanks to (2.14) leads to

∫
E

g(x)e−f(x)λ(dx)IE
[
ψ(x)exp

(
−

∫
R

(1 − e−f(y))ψ(y)λ(dy)
)]

=
∫

E

g(x)
∫

Q

Π̃x
ψ(dξ)e−〈ξ,f〉e−f(x)IE

(
ψ(x)

)
λ(dx) .

Consequently IE[ψ(x)]λ(dx) a.e.
∫

Q

Π̃x
ψ(dξ)e−〈ξ,f〉 = IE

[
ψ(x)

IE(ψ(x))
exp

(
−

∫
R

(1 − e−f(y))ψ(y)λ(dy)
)]

,

and

Π̃x
ψ = Πψ(x) .

Lemma 2.5 now follows from (2.12), the infinite divisibility of Πψ, and the definition
of Π̃x

ψ. �

Proof of Theorem 2.3. Let N be a standard Gaussian variable independent of η.
Then η + N is a centered Gaussian process with covariance K + 1 and we may
take ψ = η + N .

(ii) ⇒ (iii) Assume that Π 1
2 (η+N)2,λε

is infinitely divisible for every ε > 0.
Denote by Πx, x ∈ E ∪ {a} the Palm measures of Π 1

2 (η+N)2,λε
. According to

Lemma 2.5 there exists IE(ηx +N)2λε(dx) almost every x, a random measure with
distribution μx on Q such that

Πx = Π 1
2 (η+N)2,λε

∗ μx .

Since λε({a}) = ε > 0, we have

Πa = Π 1
2 (η+N)2,λε

∗ μa .

We also have

Πa = Π̃a ∗ δa

where Π̃a is the law of a Cox process with intensity 1
2 (η + N)2 under IE(N2, . )

with respect to λε. Consequently, we obtain

Π̃a ∗ δa = Π 1
2 (η+N)2,λε

∗ μa . (2.15)

For a fixed positive constant r > 0, the finite-dimensional Laplace transforms
of the process 1

2 (η + r)2 are given by

IE

(
exp

{
−1

2

n∑
i=1

αi(ηxi
+ r)2

})
= |I + αK|−1/2exp

{
−1

2
r21t(I + αK)−1α1

}
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for every x1, x2, . . . , xn in E∪{a} where 1 is the n-dimensional column vector of 1’s
and 1t is its transpose. Consequently for every nonnegative function f on E ∪ {a}

∫
Q

Π 1
2 (η+r)2,λε

(dξ)e−〈ξ,f〉

= IE

[
exp

{
−1

2

∫
E∪{a}

(1 − e−f(y))η2
yλε(dy)

}]
exp

{
−1

2
r2F (f,K)

}
(2.16)

with F (f,K) = (
√

1 − e−f , (I +Kφ)−1
√

1 − e−f ), where the inner product is with
respect to λε. Note that

F (f, η) =
∫

E

√
1 − e−f(x)

(
(I + Kφ)−1

√
1 − e−f

)
(x)λ(dx) + ε(1 − e−f(a)) .

(2.17)
We obtain∫

Q

Π 1
2 (η+N)2,λε

(dξ)e−〈ξ,f〉

= IE

[
exp

{
−1

2

∫
E∪{a}

(1 − e−f(y))η2
yλε(dy)

}]
IE

(
exp

{
−1

2
N2F (f,K)

})

(2.18)

and similarly
∫

Q

Π̃a(dξ)e−〈ξ,f〉

= IE

[
exp

{
−1

2

∫
E∪{a}

(1 − e−f(y))η2
yλε(dy)

}]
IE

[
N2exp

{
−1

2
N2F (f,K)

}]
.

(2.19)

Now, making use of (2.18) and (2.19), equation (2.15) gives
∫

Q

μa(dξ)e−〈ξ,f〉

= IE

[
N2exp

{
−1

2
N2F (f,K)

}]
IE

(
exp

{
−1

2
N2F (f,K)

})−1

e−f(a)

which thanks to elementary computations on the standard Gaussian law leads to∫
Q

μa(dξ)e−〈ξ,f〉 =
(
1 + F (f,K)

)−1 e−f(a) = IE[e−F (f,K)T ] e−f(a)

where T is an exponential variable with parameter 1 independent of η. Multiplying
then each member of the above equation by

∫
Q

Π 1
2 η2(dξ)e〈ξ,f〉, we obtain∫

Q

μa(dξ)e−〈ξ,f〉
∫

Q

Π 1
2 η2(dξ)e−〈ξ,f〉 =

∫
Q

Π 1
2 η2(dξ)e−〈ξ,f〉IE[e−F (f,K)T ] e−f(a)
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which implies
μa ∗ Π 1

2 η2 = Π 1
2 (η+

√
2T )2,λε

∗ δa .

Now note that Π 1
2 η2 does not charge configurations including the site a, hence

there exists a distribution μ̃a such that μa = μ̃a ∗ δa and we finally obtain

μ̃a ∗ Π 1
2 η2 = Π 1

2 (η+
√

2T )2,λε
.

Denote by Xa, Yη2 and Y(η+
√

2T )2 the random measures corresponding respectively
to the distributions μ̃a, Π 1

2 η2 and Π 1
2 (η+

√
2T )2,λε

. We then have

Xa + Yη2
(law)
= Y(η+

√
2T )2 .

In particular, since Yη2({a}) = 0, we have Xa({a})(law)
= Y(η+

√
2T )2({a}). It follows

that (
Xa + Yη2 ,Xa({a})

)(law)
=

(
Y(η+

√
2T )2 , Y(η+

√
2T )2({a})

)
.

Now, thanks to (2.17), we know that Y(η+
√

2T )2({a}) = NεT where (Nt, t ≥ 0)
is a Poisson process independent of (Y(η+

√
2T )2 |E

, T ). Similarly Xa({a}) = N ′
εTa

where Ta is an exponential variable with parameter 1, and (N ′
t , t ≥ 0) is a Poisson

process independent of ((Xa + Yη2)|E , Ta). Moreover, since Xa({a}) is independent
of Yη2 , we may take Ta independent of Yη2 . Hence

(
(Xa + Yη2)|E , N ′

εTa

)(law)
= (Y(η+

√
2T )2 |E

, NεT )

which implies that for every nonnegative measurable function f with compact
support on E and every λ > 0

IE[e−〈(Xa + Yη2 )|E ,f〉 e−λN ′
εTa ] = IE[e

−〈Y(η+
√

2T )2 |E
,f〉

e−λNεT ]

which leads to

IE[e−〈(Xa + Yη2 )|E ,f〉 e−(1−e−λ)εTa ] = IE[e
−〈Y(η+

√
2T )2 |E

,f〉
e−(1−e−λ)εT ] .

Since the above is true for every ε > 0, we obtain

(Xa|E + Yη2 , Ta)
(law)
= (Y(η+

√
2T )2 |E

, T )

which leads to
(Xa|E |Ta = r) + Yη2

(law)
= Y(η+

√
2r)2 |E

for almost every r > 0. In terms of distribution, this means that there exists a
random measure on E with distribution νr satisfying

νr ∗ Π 1
2 η2 = Π 1

2 (η+r)2,λ .

With the above equation and (2.16) for λ instead of λε, we obtain∫
Q

νr(dξ)e−〈ξ,f〉 = exp
{
−1

2
r2

(√
1 − e−f , (I + Kφ)−1

√
1 − e−f

)}
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where the inner product is with respect to the measure λ. We use now the result
contained in Exercise 5.1 p. 33 Chap. 3 in Kallenberg’s book [11], to check that
for any sequence (rn, n ∈ N) of rational numbers converging to a given r, the
sequence (νrn

) converges to a limit distribution satisfying both (2.5) and (2.6) for
the measure λ. Hence (iii) is established for every r > 0. Since for every real r,

(η + r)2
(law)
= (η − r)2, (iii) is obtained for every real r.

(iii) ⇒ (i) By assumption Π 1
2 η2,λ is infinitely divisible. Since, νr = (νr/

√
n)∗n,

νr is infinitely divisible. Hence Π 1
2 (η+r)2,λ is infinitely divisible for every r in R.

(i) ⇒ (v) Assume that Π 1
2 (η+r)2,λ is infinitely divisible for every constant r.

We have∫
Q

Π 1
2 (η+r)2,λε

(dξ)e−〈ξ,f〉

= IE

[
exp

{
1
2

∫
E∪{a}

(1 − e−f(y))(ηy + r)2λε(dy)

}]

= IE

[
exp

{
1
2

∫
E

(1 − e−f(y))(ηy + r)2λ(dy)
}]

exp
{
−1

2
(1 − e−f(a))εr2

}

hence

Π 1
2 (η+r)2,λε

= Π 1
2 (η+r)2,λ ∗ Π 1

2 r2,εδa
.

As the convolution of two infinitely divisible distributions, Π(η+r)2,λε
is infinitely

divisible too for every ε > 0.
(v) ⇒ (iv) We keep the notation of the proof of “(ii) ⇒ (iii)”.

∫
Q

Π 1
2 (η+r)2,λε

(dξ)e−〈ξ,f〉

= IE

[
exp

{
−1

2

∫
E

(1 − e−f(y))η2
yλ(dy)

}]
exp

{
−1

2
r2F (f,K)

}
.

For every integer n and every r, [
∫

Q
Π 1

2 (η+r)2,λε
(dξ)e−〈ξ,f〉]1/n is still a Laplace

transform of a random measure on Q. This is true in particular for r
√

n, but

[∫
Q

Π 1
2 (η+r

√
n)2,λε

(dξ)e−〈ξ,f〉
]1/n

= IE

[
exp

{
−1

2

∫
E

(1 − e−f(y))η2
yλ(dy)

}]1/n

exp
{
−1

2
r2F (f,K)

}
.

Letting n tend to ∞ we obtain, using Kallenberg’s result (Exercise 5.1 p. 33
Chap. 3 in [11]) that there exists a limiting distribution with Laplace transform
exp{− 1

2r2F (f,K)}.
(iv) ⇒ (ii) We start from Π 1

2 (η+r)2,λε
= Π 1

2 η2,λε
∗ νr.
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Integrating the above equation with respect to IP (N ∈ dr) (recall that N is
a standard Gaussian random variable) we obtain

Π 1
2 (η+N)2,λε

= Π 1
2 η2,λε

∗ νN

where νN denotes the distribution satisfying for every positive function f on E∪{a}∫
Q

νN (dξ)e−〈ξ,f〉 =
∫

R

exp
{
−1

2
r2F (f,K)

}
IP (N ∈ dr) ,

where F (f,K) is defined by (2.16). Since N2 is an infinitely divisible variable, for
every integer n, there exists an i.i.d. sequence (Z1, Z2, . . . , Zn) of positive variables

such that N2(law)
= Z1 + Z2 + · · · + Zn. Hence we have∫

Q

νN (dξ)e−〈ξ,f〉 = IE

[
exp

{
−1

2
N2F (f,K)

}]

= IE

[
exp

{
−1

2
Z1F (f,K)

}]n

=
[∫

Q

ν√Z1
(dξ)e−〈ξ,f〉

]n

.

It follows that νN is infinitely divisible and thus, so is Π 1
2 (η+N)2,λε

( ie Π 1
2 ψ2,λε

). �

3. A super-Isomorphism Theorem

The characterization of Gaussian processes (ηx, x ∈ E) such that (η2
x, x ∈ E) is

infinitely divisible is an old question that has been first raised up by Paul Lévy [12].
Several answers have been given since (see [5] for an extended bibliography of
the subject). For example, in Remark 2.2.1 we have used Bapat’s criteria [1] for
centered Gaussian processes. In [4], we have characterized the Gaussian processes
(ηx, x ∈ E) such that (1

2 (ηx + r)2, x ∈ E) is infinitely divisible for every real
constant r: a Gaussian process has such a property iff its covariance is equal to
the Green function of a recurrent Markov process X killed at the first hitting time
of a given value a. The Markov process X is independent of η. This condition
translates into the following factorization result. For every real r(

1
2
(ηx + r)2, x ∈ E

)
(law)
=

(
1
2
η2

x + Lx
τr

, x ∈ E

)
(3.1)

where (Lx
t , x ∈ E, t ≥ 0) is the local time process of X and τr = inf{s ≥ 0 :

La
s > 1

2r2}. This identity is a so-called “Isomorphism Theorem” which has been
established in [6]. It is a variant of the first Isomorphism Theorem established by
Dynkin [3]. who drew inspiration from Symanzik [17].

With the notation of Theorem 2.3, (3.1) is equivalent to

Π 1
2 (η+r)2,λ = Π 1

2 η2,λ ∗ ΠLτr ,λ

for every λ element of Q.
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One can hence formulate the exact difference between the infinite divisibility
of (η+r)2 for every r and the infinite divisibility of Π 1

2 (η+r)2,λ for every r: (η+r)2 is
infinitely divisible for every r iff for every λ of Q, Π 1

2 (η+r)2,λ is infinitely divisible
for every r and νr is a Cox process with respect to λ .

The identity generated by the infinite divisibility property of Π 1
2 (η+r)2,λ is an

extension of the above Isomorphism Theorem to point processes. It can hence be
considered as a “super”- Isomorphism Theorem. We are going now to establish a
lemma that will enlarge even more the point of view on the Isomorphism Theorems.

Lemma 3.1. Let (ψx, x ∈ E) be a positive process. For every a such that IE(ψa) > 0,
denote by (ψ(a)

x , x ∈ E) the process having the law of (ψx, x ∈ E) under the
probability 1

IE(ψa)IE(ψa, .). Then, ψ is infinitely divisible if and only if for every a

such that IE(ψa) > 0, there exists a process (l(a)
x , x ∈ E) independent of ψ such

that
ψ(a)(law)

= ψ + l(a) . (3.2)

Consider a centered Gaussian process η with a covariance equal to the Green
function of transient Markov process. Then according Dynkin’s Isomorphism The-
orem [3], (3.2) holds for ψ = η2. Hence Dynkin’s Isomorphism Theorem can be
seen as a characterization of the infinite divisibility property of η2. Lemma 3.1
connects every infinitely divisible positive process (ψx, x ∈ E) to a family of pro-
cesses ((l(a)

x , x ∈ E), a ∈ E). The identity (3.4) below relates the different l(a) as a
varies. Similarly to Dynkin’s Isomorphism Theorem or to (3.1), Lemma 3.1 relates
path properties of ψ to path properties of l(a). For example, one immediately ob-
tains that the continuity of ψ implies the continuity of (l(a)

x , x ∈ E) for every a.
Lemma 3.1 can hence be seen as an “Isomorphism Theorem”.

More generally, we can regard Lemma 2.5 as a super-Isomorphism Theorem
characterizing the infinite divisibility of a given Cox process. When the consid-
ered Cox process has an infinitely divisible intensity ψ, the corresponding super
Isomorphism Theorem is just the “super” identity existing above (3.2).

Proof of Lemma 3.1. If ψ is infinitely divisible then for every x = (x1, x2, . . . , xn) ∈
En, there exists νx a Levy measure on R

n such that
∫

R
n
+

1 ∧ |y|νx(dy) < ∞ and
for every α = (α1, α2, . . . , αn) in R

n
+

IE(e−
∑ n

i=1 αiψxi ) = exp

{
−

∫
R

n
+

(1 − e−(α,y))νx(dy)

}
(3.3)

where (α, y) =
∑n

i=1 αiyi.
We hence have

IE

(
ψ(x1)

IE(ψ(x1))
e−

∑ n
i=1 αiψxi

)
= IE(e−

∑ n
i=1 αiψxi )

∫
R

n
+

y1

IE(ψ(x1))
e−(α,y)νx(dy)

from which it follows that there exists a process l(x1) independent of ψ such that
ψ(x1) = ψ + l(x1).
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Conversely, assume that for every a there exists a process l(a) satisfying (3.2).
By computing the law of ψ underIE[ψaψb, .], applying the above formula twice,
we see that for every couple (a, b) of E, we must have

caIE
[
l
(a)
b F (l(a)

x , x ∈ E)
]

= cbIE
[
l(b)a F (l(b)x , x ∈ E)

]
(3.4)

where cx = IE(ψx) for every x in E. To lighten the writing, we set x1 = a. We also
have

∂
∂α1

IE(e−
∑ n

i=1 αiψxi )

IE(e−
∑ n

i=1 αiψxi )
= −IE(e−

∑ n
i=1 αil

(a)
xi )IE(ψx1)

and hence

IE(e−
∑ n

i=1 αiψxi )

= IE(e−
∑ n

i=1 αiψxi )|α1=0 exp

{
−IE(ψx1)IE

[
1 − e−α1l(a)

x1

l
(a)
x1

e−
∑ n

i=2 αil
(a)
xi

]}
. (3.5)

We now use (3.5) and an induction argument to end our proof. For n = 1 it
follows immediately from (3.5) that IE(e−α1ψx1 ) = e−

∫ ∞
0 (1−e−α1y1 )νx(dy1) where

νx(dy1) = IE(ψx1 )

y1
IP (l(a)

x1 ∈ dy1).
Assume now that the law of (ψx1 , ψx2 , . . . , ψxn−1) is given by

IE(e−
∑ n−1

i=1 αiψxi ) = exp

{
−

∫
[0,∞)n−1

(1 − e−
∑ n−1

i=1 αiyi)νx(dy)

}
,

with νx(dy) = cx1
y1

IP (l(x1)
x ∈ dy).

By (3.4) νx(dy) =
∫

R+
cxn

yn
IP (l(xn)

x ∈ dy, l
(xn)
xn ∈ dyn), for every xn distinct

from x1, x2, . . . , xn−1.
Using this in (3.5) we obtain

IE(e−
∑ n

i=1 αiψxi )

= exp

{
−

∫
[0,∞)n−1

(1 − e−
∑ n

i=2 αiyi)νx(dy)

}

exp

{
−

∫
[0,∞)n

(e−
∑ n

i=2 αiyi − e−
∑ n

i=1 αiyi)
cx1

y1
IP (l(x1)

x ∈ dy1dy2 . . . dyn)

}

= exp

{
−

∫
[0,∞)n

(1 − e−
∑ n

i=1 αiyi)
cx1

y1
IP (l(x1)

x ∈ dy1dy2 . . . dyn)

}
.

�

We mention that Theorem 2.3 is easily extendable from squared Gaussian
processes to permanental processes which are real valued processes characterized
by the fact that any joint moment of such a process is equal to a permanent. These
processes have been properly defined by Vere-Jones [20].
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