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Absence of Quantum States Corresponding to
Unstable Classical Channels

Ira Herbst and Erik Skibsted

Abstract. We develop a general theory of absence of quantum states corre-
sponding to unstable classical scattering channels. We treat in detail Hamil-
tonians arising from symbols of degree zero in x and outline a generalization
in an Appendix.

1. Introduction and results

The purpose of this paper is to show in a class of models that there are no quantum
states corresponding to unstable classical channels. A principal example treated
in detail is the following: Consider a real-valued potential V on Rn, n ≥ 2, which
is smooth outside zero and homogeneous of degree zero. Suppose that the restric-
tion of V to the unit sphere Sn−1 is a Morse function. We prove that there are
no L2-solutions to the Schrödinger equation i∂tφ = (−2−1Δ + V )φ which asymp-
totically in time are concentrated near local maxima or saddle points of V|Sn−1 .
Consequently all states concentrate asymptotically in time in arbitrarily small
open cones containing the local minima, cf. [15] and [18].

In the bulk of the paper we consider the following general situation: Suppose
h(x, ξ) is a real classical Hamiltonian in C∞((Rn \ {0})× Rn), n ≥ 2, satisfying

x · ∇xh(x, ξ) = 0 (1.1)

in a neighborhood of a point (ω0, ξ0) ∈ Sn−1 × Rn. Suppose in addition that
this neighborhood is conic in the x-variable and that the orbit (0,∞) � t →
(x(t), ξ(t)) = (tk0ω0, ξ0) with k0 > 0 is a solution to Hamilton’s equations

dx

dt
= ∇ξh(x, ξ) ,

dξ

dt
= −∇xh(x, ξ) ,
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or equivalently,
∇xh(ω0, ξ0) = 0 , ∇ξh(ω0, ξ0) = k0ω0 . (1.2)

We consider situations in which for each energy E near E0 = h(ω0, ξ0) there is
a (typically unique) (ω(E), ξ(E)) ∈ Sn−1 × Rn near (ω0, ξ0) depending smoothly
on E such that the above structure persists, namely

h
(
ω(E), ξ(E)

)
= E , (1.3)

∇xh
(
ω(E), ξ(E)

)
= 0 , (1.4)

∇ξh
(
ω(E), ξ(E)

)
= k(E)ω(E) . (1.5)

Although we shall not elaborate here, we remark that one may easily derive a
criterion for (1.3)–(1.5) using the implicit function theorem.

Let us restrict attention to the constant energy surface h(x, ξ) = E and to
values of (x̂, ξ, E) close to (ω(E), ξ(E), E0). (Here and henceforth x̂ = |x|−1x.)
Introduce a change of variables

x = xn

(
ω(E) + u

)
, ξ = ξ(E) + η + μω(E) ;

u ·ω(E) = η ·ω(E) = 0 .
(1.6)

This amounts to considering coordinates (u, xn, η, μ) ∈ Rn−1 × R × Rn−1 × R.
We can solve the equation h(ω(E) + u, ξ(E) + η + μω(E)) = E for μ using the
implicit function theorem, because

∂μh
(
ω(E), ξ(E) + μω(E)

)
|μ=0

= k(E) > 0

for E near E0. We obtain μ = −g(u, η, E) where g is smooth in a neighborhood
of (0, 0, E0) and g(0, 0, E0) = 0. After introducing the “new time” τ = lnxn(t) =
ln (x(t) ·ω(E)) Hamilton’s equations reduce to

u+
du

dτ
= ∇ηg(u, η, E) ,

dη

dτ
= −∇ug(u, η, E) . (1.7)

(See [3, p. 243].) After linearization of these equations around the fixed point
(u, η) = (0, 0) we obtain with w = (u, η)

dw

dτ
= B(E)w ; B(E) =

(
0 I
−I 0

)
A(E) −

(
I 0
0 0

)
,

A(E) =
(
gu,u gu,η

gη,u gη,η

)
.

(1.8)

Here the real symmetric matrix A(E) of second order derivatives is evaluated at
(0, 0, E). We assume all eigenvalues of B(E) have nonzero real part (the hyperbolic
case). These eigenvalues are easily proved to come in quadruples, λ,−1 − λ, and
their complex conjugates (if λ is not real). If all eigenvalues of B(E) have negative
real part then this corresponds to a stable channel. We prefer the word channel
because in the case considered xn(t) grows linearly in time. If at least one of the
eigenvalues of B(E) has a positive real part then the usual stable/unstable mani-
fold theorem shows that there are always classical orbits (on the stable manifold)
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for which (x̂(t), ξ(t)) → (ω(E), ξ(E)) for t → ∞ (throughout this paper we use
the convention t → ∞ to mean t → +∞ ). In this situation the question is, do
there exist quantum states whose propagation is governed by a self-adjoint quan-
tization H of h(x, ξ) on L2(Rn) (possibly with the singularity at x = 0 removed)
which exhibit this behavior? With a mild further requirement (see (1.10) below),
we will answer this question in the negative.

To be precise, let us first fix a (small) neighborhood U0 ⊆ (Rn \ {0}) × Rn

of (k(E0)ω0, ξ0). Then we consider a small open neighborhood I0 of E0 and states
of the form ψ = f(H)ψ with f ∈ C∞

0 (I0) such that:

For all g1, g2 ∈ C∞
0 (Rn)

∥
∥
∥
{
g1(t−1x) − g1

(
k(H)ω(H)

)
1I0(H)

}
ψ(t)

∥
∥
∥ → 0 for t→ ∞ ,

∥∥
∥
{
g2(p) − g2

(
ξ(H)

)
1I0(H)

}
ψ(t)

∥∥
∥ → 0 for t→ ∞ ;

ψ(t) = e−itHψ , p = −i∇x ,

(1.9)

while∫ ∞

1

t−1
∥
∥aw(t−1x, p)ψ(t)

∥
∥2
dt <∞ for all a ∈ C∞

0

(U0 \ γ(I0)
)
;

γ(I0) =
{(
k(E)ω(E), ξ(E)

) | E ∈ I0

}
.

(1.10)

(Here aw signifies Weyl quantization, and 1I0 is the characteristic function of I0.)
Notice that by (1.9), at least intuitively, for all such symbols a

∥
∥aw(t−1x, p)ψ(t)

∥
∥ → 0 for t→ ∞ , (1.11)

so that (1.10) appears as a weak additional assumption (or as part of our definition
of a quantum channel). See the beginning of Section 3 where (1.11) is proved
from (1.9) and assumptions about the pseudodifferential nature of H (conditions
(H1)–(H3)). On the other hand, (1.11) is also a consequence of (1.10) as may be
shown by a subsequence argument (cf. the proof of (8.22)).

The states ψ obeying the above conditions (with fixed I0) form a subspace
whose closure, say H0, is H-reducing.

We show the following (main) result.

Theorem 1.1. Suppose B(E0) has an eigenvalue with a positive real part. Then
under a certain assumption concerning possible resonances (and other technical
conditions, see (H1)–(H8) in Section 2) there exists a sufficiently small open neigh-
borhood I0 of E0 such that

H0 = {0} . (1.12)

There is the following slightly more general result not involving (1.9).

Theorem 1.2. Under the conditions of Theorem 1.1 there exists a sufficiently small
open neighborhood I0 of E0 such that if a state ψ(t) = e−itHf(H)ψ with f ∈
C∞

0 (I0) obeys (1.10), then in fact the pointwise decay (1.11) holds for all a ∈
C∞

0 (U0).
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A symbol satisfying the conditions (1.4) and (1.5) was studied by Guillemin
and Schaeffer [12]. In their paper the roles of x and ξ are reversed and their h is
homogeneous of degree one in ξ. There is only one half-line of points in question
rather than a one parameter family of half-lines (their critical set of points is at
zero energy). Under the condition of no resonances they obtain a conjugation of H
to a simpler normal form from which they draw conclusions about propagation of
singularities for an equation of the form Hψ = φ.

To see what Theorem 1.1 means in the model where h(x, ξ) = 2−1ξ2 + V (x̂)
with V a Morse function on Sn−1 we recall from [15]: The spectrum of H =
2−1p2 + V (x̂) is purely absolutely continuous and

I =
∑

ωl∈Cr

Pl , (1.13)

where Pl are H-reducing orthogonal projections defined as follows: Pick any fam-
ily {χl|ωl ∈ Cr} of smooth functions on Sn−1 with χk(ωl) = δkl (the Kronecker
symbol); here Cr is the finite set of non-degenerate critical points in Sn−1 for V .
Then

Pl = s− lim
t→∞ eitHχl(x̂)e−itH ,

see [15] and [1]. Furthermore in [15] the existence of an asymptotic momentum p+

was proved and its relationship to the above projections was shown. (There was the
restriction in [15] to n ≥ 3 but this is easily removed using the Mourre estimate [1,
Theorem C.1].)

We notice that (1.13) has an analog in Classical Mechanics: Any classical
orbit (except for the exceptional ones that collapse at the origin) obeys |x| → ∞
with x̂→ ωl for some ωl ∈ Cr.

Obviously the collection (1.3)–(1.5) corresponds in the potential model ex-
actly to Cr : (ω(E), ξ(E)) = (ωl,

√
2(E − V (ωl))ωl) with ωl ∈ Cr. The assumption

that the real part of one eigenvalue is positive corresponds to ωl being either a
local maximum or a saddle point of V . Moreover we have the identification

H0 = Ran
(
Pl1I0(H)

)
. (1.14)

Whence, upon varying I0, Theorem 1.1 yields the following for the potential model.

Theorem 1.3. Suppose ωl ∈ Cr is the location of a local maximum or a saddle
point of V . Then

Pl = 0 . (1.15)

Of course we will need to verify (1.14) in order to use Theorem 1.1 and
this involves verifying (1.9) and (1.10) for ψ ∈ RanP� satisfying ψ = f(H)ψ,
f ∈ C∞

0 (I0) (see Section 8).
A detailed analysis of the large time asymptotic behavior of states in the

range of the projections Pl which correspond to local minima was accomplished
recently in [18]. In particular for any local minimum, Pl 	= 0. Moreover in this
case we have (1.14) for the analogous space of that in Theorem 1.1. One may
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easily include in Theorem 1.3 a short-range perturbation V1 = O(|x|−1−δ), δ > 0,
∂α

xV1 = O(|x|−2), |α| = 2, to the Hamiltonian H , see Remarks 8.3 (1).
The results Theorems 1.1 and 1.2 are much more general than Theorem 1.3.

In particular, as a further application, we apply them to a problem of a charged
quantum particle in two dimensions subject to an electromagnetic vector potential
which is asymptotically homogeneous of degree zero in x, see [6]. (For another
magnetic field problem in this class, see [5].) Here the magnetic field which is given
asymptotically by B0(x) = b(θ)/r (in polar coordinates) can be zero on certain
rays. If qb′(θ0) < 0 at a zero θ0 of b (here q denotes the charge of the particle),
the orbit with magnetic field B0 for which r → ∞ and whose x-space projection
is the ray θ = θ0 has both stable and unstable manifolds associated with it. Using
Theorems 1.1 and 1.2 it is shown in [6] that quantum orbits corresponding to the
classical stable manifold do not exist.

Let us also give a simple example from Riemannian geometry.

Example 1.4. Consider the symbol h on (R2 \ {0})× R2

h = h(x, ξ) =
1
2
(
1 + ax2

2|x|−2
)−1

ξ21 +
1
2
ξ22 ; a > 0 . (1.16)

The family (1, 0;
√

2E, 0), E > 0, consists of points obeying (1.3), (1.4) and (1.5).
For the linearized reduced flow (1.8) we find the eigenvalues − 1

2 (−1 ± √
1 + 4a),

and we conclude that the fixed points are saddle points. If a is irrational there
are no resonances of any order (see Section 2 for definition), whence we may infer
from Theorem 1.1 that there is no quantum channel associated to the family of
fixed points in this case. Using the absence of low order resonances condition (2.6)
we may in fact obtain this conclusion for a 	= 3

4 , 2; see Remark 2.1 for a further
discussion. We have tacitly assumed that the symbol (1.16) is suitably regularized
at x = 0 (for the quantization).

Our proof of Theorem 1.1 consists of three steps:
I) Assuming ψ(t) = e−itHψ does localize in phase space as t → ∞ in the

region |u| + |η| ≤ ε for any ε > 0 in the sense of (1.8) and (1.9), we prove a
stronger localization. Namely, for some small positive δ, the probability (assuming
here that ψ is normalized) that ψ(t) is localized in the region |u| + |η| ≥ t−δ goes
to zero as t→ ∞. See Section 4.

II) Using I) and an iteration scheme, we construct an observable Γ which
decreases “rapidly” to zero. This iteration scheme is based on one used by Poincaré
(see [2, pp. 177–180]) to obtain a change of coordinates which linearizes (1.7). The
fact that if one eigenvalue of B(E) has a positive real part then another has real
part < −1 is relevant here. Our observable Γ is in first approximation roughly a
quantization of a component of w in (1.8) which decays as exp (λτ) with Reλ < −1.
See Section 5.

III) Using Mourre theory we prove an uncertainty principle lemma for two
self-adjoint operators P and Q satisfying i[P,Q] ≥ cI, c > 0, and some technical
conditions. A consequence of this lemma is that if 0 ≤ δ1 < δ2 and g1 and g2 are
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two bounded compactly supported functions then

lim
t→∞

∥
∥g1(t−δ1Q)g2(tδ2P )

∥
∥ = 0 .

If ψ is normalized this bound implies that the localizations of I) and II) are in-
compatible. See Sections 6 and 7.

The basic theme of our paper may be phrased as absence of certain quantum
mechanical states which are present in the corresponding classical model. Notice
that given any critical point ωl ∈ Cr (restricting for convenience the discussion to
the potential model) there are indeed classical orbits with |x| → ∞ and x̂→ ωl; in
particular this is the case for any given local maximum or saddle point. Intuitively,
Theorem 1.1 is true because the associated classical orbits occur for only a “rare”
set of initial conditions as fixed by the stable manifold theorem. Alternatively,
for some components of (x̂, ξ) the convergence to (ωl, ξ

+) is “too fast” thus being
incompatible with the uncertainty principle in Quantum Mechanics. These two
different explanations are actually connected.

For another example of this theme we refer to [11, 24] and [25].
We addressed the problem of Theorem 1.3 in a previous work, [16], where we

proved (1.15) at local maxima but only had a partial result for saddle points (using
a different time-dependent method). Also in the case of homogeneous potentials
similar and related results were obtained in [13] and [14] by stationary methods.
The present paper is an expanded version of the preprint [17].

This paper is organized as follows: In Section 2 we elaborate on all technical
conditions needed for Theorem 1.1 and give a more detailed outline of its proof,
cf. the steps I)–III) indicated above. In Section 3 we have collected a few technical
preliminaries. In Section 4 we prove the t−δ-localization, cf. step I), while the
localization of Γ is given in Section 5. Finally, Section 6 is devoted to the Mourre
theory for this observable. We complete the proof of Theorem 1.1 in Section 7 (the
proof of Theorem 1.2 is omitted since it follows the same pattern) and give a few
missing details of the proof of Theorem 1.3 in Section 8. In Appendix A we study
possible generalizations of the homogeneity condition (1.1).

2. Technical conditions and outline of proof

We fix (ω0, ξ0) ∈ Sn−1 ×Rn and a small open neighborhood I0 of E0 = h(rω0, ξ0)
as in Section 1. We shall elaborate on conditions for the real-valued symbol h(x, ξ),
see (H1)–(H8) below. For convenience we remove a possible singularity at x = 0
caused by the imposed (local) homogeneity assumption of Section 1. This may be
done as follows. Let N0 be as small open neighborhood of (ω0, ξ0). We shall now
and henceforth assume that for some r0 > 0

h(x, ξ) = h(r0x̂, ξ) in C0 :=
{
(x, ξ) | (x̂, ξ) ∈ N0, |x| > r0

}
,

h ∈ C∞(Rn × Rn) .
(H1)
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Notice that this modification intuitively is irrelevant for the issue of Theorem 1.1
(which concerns states propagating linearly in time in configuration space).

We assume that for some r, l ≥ 0

h ∈ S
(〈ξ〉r〈x〉l, g0

)
; g0 = 〈x〉−2dx2 + dξ2 , 〈x〉 = (1 + |x|2)1/2

, (H2)

and that
H = hw(x, p) is essentially self-adjoint on C∞

0 (Rn) . (H3)
(See Section 3 for notation.)

Remark. There is some freedom in choosing a global condition like (H2). For
example it suffices to have (H2) with g0 replaced by 〈x〉−2δ1dx2 + 〈x〉2δ2dξ2 with
0 ≤ δ2 < δ1 ≤ 1 .

We assume
(1.3)–(1.5) for E ∈ I0 . (H4)

We define ωn(E) = ω(E), and shrinking I0 if necessary we pick smooth
functions

ω1(E), . . . , ωn−1(E) ∈ Sn−1

such that ω1(E), . . . , ωn(E) are mutually orthogonal. We define, cf. (1.6), xj =
x ·ωj(E) for j ≤ n, uj = xj/xn and ηj = (ξ − ξ(E)) ·ωj(E) for j ≤ n − 1 and
μ = (ξ − ξ(E)) ·ωn(E). Let w = (u, η) = (u1, . . . , un−1, η1, . . . , ηn−1).

As for the matrix B(E) of (1.8) in these coordinates we need the condition:

The real part of each eigenvalue of B(E) is
nonzero for E ∈ I0.

(H5)

Let us order the eigenvalues as βs
1(E), . . . , βs

ns(E), βu
1 (E), . . . , βu

nu(E) where
Re (βs

j (E)) < 0 (βs
j (E) are the stable ones) and Re (βu

j (E)) > 0 ( βu
j (E) are

the unstable ones). Let β(E) refer to the C2n−2-vector of eigenvalues (βs
1(E), . . . ,

βu
nu(E)) counted with multiplicity.

We are interested in the case

nu = nu(E) ≥ 1 . (H6)

Let V s(E) and V u(E) be the sum of the generalized eigenspaces of B(E)
corresponding to stable and unstable eigenvalues, respectively. Then we have the
decomposition

C2n−2 = V s(E) ⊕ V u(E) .
Using basis vectors respecting this structure we can find a smooth M2n−2(C)-

valued function T (E) such that

T (E)−1B(E)T (E) = diag
(
Bs(E), Bu(E)

)
. (2.1)

We may assume the following at E = E0 : Corresponding to the decomposi-
tion into generalized eigenspaces

C2n−2 = V s ⊕ V u = V s
1 ⊕ · · · ⊕ V s

ns ⊕ V u
1 ⊕ · · · ⊕ V u

nu ,

T (E0)
−1B(E0)T (E0) = diag (Bs

1 , . . . , B
u
nu) ,
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where for all entries N#
j := B#

j − β#
j (E0)Idim (V #

j ) is strictly lower triangular.
Given any ε > 0 we may assume (by rescaling the basis vectors) that

‖N#
j ‖ ≤ ε . (2.2)

We introduce a vector of new variables γ = (γs, γu) = (γ1, . . . , γ2n−2)

γ = γ
(
w(E), E

)
= T (E)−1

w(E) , (2.3)

where γs and γu are the vectors of coordinates of the part of w(E) in V s(E) and
V u(E), respectively.

We shall make the assumption (using “tr” to denote transposed):

There exists a smooth eigenvector v(E) of B(E)tr in E ∈ I0, such
that Re (λ(E)) < −1 for the corresponding eigenvalue λ(E).

(H7)

See Remark 2.3 below for an alternative condition.
The ordering of the eigenvalues may be chosen such that

βs
1(E) = λ(E) . (2.4)

It may also be assumed that v(E) is the first row of T (E)−1. Clearly by (2.4)
βs

1(E) is smooth for E ∈ I0.
We call E0 a resonance of order m ∈ {2, 3, . . .} for an eigenvalue β#

j (E0) if
for some α = (α1, . . . α2n−2) ∈ (N∪{0})2n−2 with |α| = m,

β#
j (E0) = β(E0) ·α . (2.5)

We assume that

E0 is not a resonance of order ≤ m0 for βs
1(E0) . (H8)

Here m0 may be extracted from the bulk of the paper; the condition

m0 > max

(

4,
1 + Re

(
βs

1(E0)
)

−Re
(
βs

1(E0)
) , . . . ,

1 + Re
(
βs

ns(E0)
)

−Re
(
βs

ns(E0)
)

)

(2.6)

suffices.

Remark 2.1. Typically the set of resonances of all orders will be dense in I0.
The theorem proved with (H8) does not exclude cases where there are low order
resonances as long as they constitute a discrete set. This is used in the proof
of Theorem 1.3 in Section 8. For the exceptional values a = 3

4 and a = 2 of
Example 1.4 there are resonances of order 5 and 4, respectively. For these values
of a all positive energies are resonances, and consequently our theorem is not
applicable.

We shall build a (classical) observable Γ from the first coordinate γ1 =
γ1(w(E), E) = v(E) ·w(E) of γs = γs(w(E), E)

Γ = γ1

(
w(E), E

)
+O

(∣
∣γ

(
w(E), E

)∣∣2
)
. (2.7)
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In the study of an analogous quantum observable we consider in detail the
case where for some 1 ≤ l ≤ n− 1

∂ηl
γ1(w,E0)|w=0 	= 0 . (2.8)

We notice that if (2.8) is not true then for some 1 ≤ l ≤ n− 1

∂ul
γ1(w,E0)|w=0 	= 0 . (2.9)

The construction of the quantum Γ in the case of (2.8) and an elaboration
of its decay properties will be given in Section 5. A Mourre estimate is given in
Section 6, and we complete the proof of Theorem 1.1 in this case in Section 7.
We refer the reader to Remarks 5.3, 6.4 and 7.2 for the modifications needed for
showing Theorem 1.1 in the case of (2.9).

2.1. Outline of proof of Theorem 1.1

Consider a classical orbit with (x̂(t), ξ(t)) → (ω(E), ξ(E)) for t → ∞ (and E
near E0). How do we prove the bound |u| + |η| ≤ Ct−δ for some positive δ?

We consider the observables

qs = |γs|2 , qu = |γu|2 , q− = qu − qs , q+ = qu + qs = |γ|2 . (2.10)

Using (1.7) and (2.1) we compute

d

dt
γ =

∂μh

xn

{(
Bs(E)γs, Bu(E)γu

)
+O(q+)

}
. (2.11)

For ε > 0 small enough in (2.2) the equation (2.11) leads to

d

dt
q− = 2 Re

〈
γu,

d

dt
γu

〉

Cnu

− 2 Re
〈
γs,

d

dt
γs

〉

Cns

≥ δ−t−1q+ (2.12)

for some positive δ− (which may be chosen independent of E close enough to E0)
and for all t ≥ t− (with t− large enough).

In particular q− is increasing and hence

q− ≤ 0 ; t ≥ t− . (2.13)

Using (2.11), (2.13) and the Cauchy–Schwarz inequality we compute

d

dt
qs = 2 Re

〈
γs,

d

dt
γs

〉

Cns

≤ −2δst−1qs (2.14)

for some positive δs and all t ≥ ts.
Integrating (2.14) yields

qs ≤ Cst−2δs

, t ≥ ts . (2.15)

Finally from (2.13) and (2.15) we conclude that q+ ≤ 2Cst−2δs

and therefore
that

|γ| ≤ Ct−δ ; δ ≤ δs . (2.16)
This classical proof will be the basis for our quantum arguments in Section 4

which constitute step I) of the proof of Theorem 1.1.
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Remarks 2.2.

1. We may choose the positive δ in (2.16) as close to the (optimal) exponent
min (Re (−βs

1(E0)), . . . ,Re (−βs
ns(E0))) as we wish (provided E is taken close

enough to E0).
2. Although not needed, one may easily prove using similar differential inequal-

ities that indeed qu = O((qs)2) in complete agreement with the stable mani-
fold theorem.

Classical Γ. To implement step II) of the proof, we shall for each m ∈ {1, . . . ,m0}
construct a γ(m) of the form (2.7) such that

d

dt
γ(m) =

∂μh

xn
βs

1

{
γ(m) +O(|γ|m+1)

}
; βs

1 = βs
1(E) . (2.17)

Specifically we shall require

γ(1) = γ1 , and γ(m) = γ1 +
∑

2≤|α|≤m

cαγ
α ; m ≥ 2 , (2.18)

with γα = γα1
1 · · · γα2n−2

2n−2 . (It will follow from the construction below that the
coefficients cα = cα(E) will be smooth; this will be important for “quantizing” the
symbol.)

We proceed inductively. Clearly by (2.11) we have (2.17) for m = 1. Now
suppose we have constructed a function γ(m−1) =

∑
|α|≤m−1 cαγ

α obeying

d

dt
γ(m−1) =

∂μh

xn
βs

1

⎛

⎝γ(m−1) +
∑

|α|=m

dαγ
α +O(|γ|m+1)

⎞

⎠ ,

then we add to γ(m−1) a function of the form
∑

|α|=m cαγ
α and we need to solve

d

dt

∑

|α|=m

cαγ
α =

∂μh

xn
βs

1

∑

|α|=m

(cα − dα)γα +O(|γ|m+1) . (2.19)

For that we compute the derivative using again (2.11). Let us denote by
βij the ij’th entry of the matrix diag(Bs(E)tr

, Bu(E)tr). Then (2.19) reduces to
solving

∑

|α̃|=m

∑

i,j

α̃iβijcα̃γ
α̃−ei+ej = βs

1

∑

|α|=m

(cα − dα)γα , (2.20)

which in turn reduces to solving the system of algebraic equations
∑

i,j

(αi + 1 − δij)βijcα+ei−ej = βs
1(cα − dα) ; |α| = m. (2.21)

Here ei and ej denote canonical basis vectors in R2n−2 and δij is the Kronecker
symbol.
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Clearly (2.21) amounts to showing that βs
1 is not an eigenvalue of the linear

map B̃ on Cñ with

ñ = #
{
α ∈ (

N∪{0})2n−2| |α| = m
}

=
(m+ 2n− 3)!
(2n− 3)!m!

given by

Cñ � c = (cα)α → (
B̃c

)
α

=

⎛

⎝
∑

i,j

(αi + 1 − δij)βijcα+ei−ej

⎞

⎠

α

∈ Cñ .

Since βij = βij(E) depends continuously on E ∈ I0 we only need to show that

B̃(E0) − βs
1(E0)I is invertible . (2.22)

By the condition (H8) indeed (2.22) holds since m ≤ m0 and the spectrum

σ
(
B̃(E0)

)
=

{
β(E0) ·α| |α| = m

}
.

The latter is obvious if diag (Bs(E0)
tr
, Bu(E0)

tr) is diagonal. In general this may
be seen by a perturbation argument, see [22, p. 37].

Finally we define
Γ = γ(m0) .

If we have m0 so large that δ(m0 + 1) > −βs
1(E) where δ is given as in (2.16)

we infer by integrating (2.17) (since limt→∞ t
∂μh
xn

= 1) that

Γ = γ1 +O(|γ|2) = O
(
tβ

s
1(E)+ε′) ; ε′ > 0 . (2.23)

Remark 2.3. We could have used a different observable constructed by a sim-
ilar iteration using as γ(1) a component of γ corresponding to an eigenvector
with eigenvalue λ(E) having Re (λ(E)) > 0. We would again need smoothness
of the eigenvector and a non-resonance condition for λ(E0), cf. (H7) and (H8).
The analogous observable γ(m) decreases as t−δ(m+1) with no upper bound on m
(assuming E0 is not a resonance of any order). But as we will see below, the cor-
respondence between classical and quantum behavior is not so precise as to allow
a similar statement in Quantum Mechanics. Thus it does not much matter which
of these observables is used.

Quantum Γ. To get a statement like (2.23) in Quantum Mechanics we need to
quantize the classical symbol γ(m) = γ(m)(x, ξ). We choose a quantization that
takes into account localizations of the states ψ = f(H)ψ obeying (1.9) and (1.10).
We fix m = m0 depending on an analogue of the classical bound (2.16), cf. the
classical case discussed above. Without going into details, in the case of (2.8) this
operator takes the form

Γ = Γ(t) =
(
p− ξ(E0)

) ·ωl(E0) +B1(t) ; B1(t) bounded .

We want B1(t) to be bounded to facilitate our uncertainty principle argument
(see Section 6). The fact that this works even though the classical Γ does not
have this form rests on the localizations of ψ. Strictly speaking, to get the above
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expression we first make the modification of the classical Γ of dividing by the
constant cl = ∂ηl

γ1(w,E0)|w=0 and then taking the real part; we shall not discuss
the case of (2.9) here. We show the following analog of (2.23):

Given σ > 0 we have for some Γ of this form the strong localization
∥
∥1[tσ−1,∞)(|Γ|)e−itHψ

∥
∥ → 0 for t→ ∞ . (2.24)

We notice that (2.24) is a weaker bound than (2.23); to control various com-
mutators we need to have σ positive. On the other hand it may appear somewhat
surprising that such localization result can be proved at all for σ < 2−1. Accord-
ing to folklore wisdom there is usually a strong connection for pseudodifferential
operators between the functional calculus and the pseudodifferential calculus, see
for example [8, Appendix D]. In our case one might think that (2.24) is equivalent
to a statement like

e−itHψ ≈ aw
t (x, p)e−itHψ for t→ ∞ ,

where the symbol at = h(t1−σ Re (c−1
l γ(m0))) for suitable h ∈ C∞

0 (R) and γ(m0)

given by the classical symbol (possibly modified by cut-offs) discussed above.
However for σ < 2−1 such symbols at do not fit into any standard (parameter-
dependent) pseudodifferential calculus which by the uncertainty principle essen-
tially would require the uniform bounds ∂β

ξ ∂
α
x at = O

(
tδ2|β|−δ1|α|) with δ2 < δ1.

As a consequence we shall base our proof of (2.24) on a functional calculus ap-
proach. Using a differential equality related to (2.17) we can indeed bound certain
quantum errors in a calculus even for σ < 2−1. It is important that we can take σ
small; see below. Somewhat related problems were studied in [10] and [5].

Remarks.
1. There is a subtle point suppressed in the above discussion which is very im-

portant technically. Although the t−δ-localization proved in step I) is needed
to construct the quantum Γ and prove (2.24), its full force cannot be used for
this purpose. The reason is that an effective use of the operator calculus lim-
its the strength of this localization (this is basically the uncertainty principle
again). Thus using a strong t−δ-localization results in a weaker localization
for Γ. The full force of the t−δ-localization is only exploited at the very end
of the proof of Theorem 1.1 in Section 7.

2. Another technical point not discussed here is the use of a certain hierarchy of
localizations in the construction of Γ (and Ā below) necessary because of the
variation of (ω(E), ξ(E)) with E. The fact that our procedure here actually
works may look almost miraculous at first glance (see (6.5) and (6.6)).

Implementing the uncertainty principle. The last step in our proof of Theorem 1.1
is the decisive one; here Quantum Mechanics enters crucially. We show that a
localization similar to the classical bound (2.16) and (2.24) are incompatible unless
ψ = 0. First fix δ > 0 in agreement with (2.16). More precisely we need the
localization

e−itHψ ≈ h2(Ā)e−itHψ → 0 for t→ ∞ , (2.25)
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for some h2 ∈ C∞
0 (R) and some operator of the form

Ā = tδ−1xl +B2(t) ; B2(t) = O
(
tδ
)
, xl = x ·ωl(E0) .

Then fix any σ ∈ (0, δ) and introduce with Γ as in (2.24) the operator H̄ = t1−δΓ.
We prove a global Mourre estimate

i[H̄, Ā] ≥ 2−1I . (2.26)

Abstract Mourre theory and (2.26) lead to the bound
∥
∥h2(Ā)h1(tδ−σH̄)

∥
∥ ≤ Ct(σ−δ)/2 , (2.27)

valid for all h1, h2 ∈ C∞
0 (R).

Finally picking localization functions in agreement with (2.25) and (2.24) we
conclude from (2.27) that

e−itHψ ≈ h2(Ā)h1(tδ−σH̄)e−itHψ → 0 for t→ ∞ ,

completing the proof.

3. Preliminaries

We use the notation Ψ(m, g) for the space of operators given by quantizing symbols
in the symbol class S(m, g) as defined by [19, (18.4.6)]. For the weight functions m
and metrics g relevant for this paper it does not matter here whether “quan-
tize” refers to Weyl or Kohn–Nirenberg quantization. For a ∈ S(m, g) we use
the notation aw(x, p) to denote the Weyl quantization of a. We refer the reader
to [8, Appendix D] and [19, Chapter 18] for a detailed account of the calculus
of pseudodifferential operators. We shall deal with various kinds of parameter-
dependent symbols. In one case the parameter is time t ≥ 1 and for that we
introduce the following shorthand notation.

Definition 3.1. A family {at|t ≥ 1} of symbols in S(m, g) is said to be uniform in
S(m, g) if for all semi-norms || · ||k on S(m, g) (cf. [19, (18.4.6)]) supt ‖at‖k < ∞.
In this case we write at ∈ Sunif (m, g) and aw

t (x, p) ∈ Ψunif (m, g).

Given this uniformity property various bounds from the calculus of pseudo-
differential operators are uniform in the parameter (by continuity properties of the
calculus).

We shall also deal with parameter-dependent metrics. Specifically we shall
consider for 0 ≤ δ2 < δ1 ≤ 1 and t ≥ 1

gt = gδ1,δ2
t = t−2δ1dx2 + t2δ2dξ2 . (3.1)

Similarly to Definition 3.1 we shall write (for given l ∈ R), at ∈ Sunif (tl, gt)
and aw

t (x, p) ∈ Ψunif (tl, gt) meaning that for all (time-dependent) semi-norms
supt ‖at‖t,k <∞. Also in this case various bounds from the calculus of pseudodif-
ferential operators will be uniform in the parameter. Some extensions of this idea
will be used without further comment.
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One may verify that (1.11) follows from (1.9) by applying a partition of unity
to the f of any state ψ = f(H)ψ of (1.9) to decompose it as f =

∑
fi and by

noticing that (1.9) remains valid for the sharper localized states ψ → ψi = fi(H)ψ.
(Notice that if supp (fi) is located near Ei this leads to t−1x ≈ k(Ei)ω(Ei) and
p ≈ ξ(Ei) along ψi(t).) The latter follows readily upon commutation and applying
Lemma 3.2 stated below. The same argument shows that indeed H0 is H-reducing.
(This property may also be verified without appealing to Lemma 3.2.)

Pick non-negative g1, g̃1, ˜̃g1 ∈ C∞
0 (Rn) such that g1 = 1 in a (small) neigh-

borhood of k(E0)ω0, g̃1 = 1 in a neighborhood of supp (g1) and ˜̃g1 = 1 in a
neighborhood of supp (g̃1). Similarly, pick non-negative g2, g̃2, ˜̃g2 ∈ C∞

0 (Rn) such
that g2 = 1 in a neighborhood of ξ0, g̃2 = 1 in a neighborhood of supp (g2) and
˜̃g2 = 1 in a neighborhood of supp (g̃2). We suppose supp (˜̃g1) × supp (˜̃g2) ⊆ U0

(with U0 given as in (1.10)), and in fact that the supports are so small that for
some t0 ≥ 1 the symbol

ht(x, ξ) := h(x, ξ)g̃1(t−1x)g̃2(ξ)

= h(r0x̂, ξ)g̃1(t−1x)g̃2(ξ) ; t ≥ t0 ,
(3.2)

cf. (H1). By the assumption (H2) we then have

ht ∈ Sunif (1, g0) ∩ Sunif (1, g1,0
t ) . (3.3)

Lemma 3.2. For all f ∈ C∞
0 (R) the family

f
(
hw

t (x, p)
) ∈ Ψunif (1, g0) ∩ Ψunif (1, g1,0

t ) (3.4)

and
∥
∥
∥g1(t−1x)g2(p)

{
f
(
hw

t (x, p)
)− f(H)

}∥
∥
∥ = O(t−∞) . (3.5)

This lemma facilitates the transition between the functional calculus and the
pseudo-differential operator calculus, both of which are used in this paper.

Proof. As for (3.4) we may proceed as in the proofs of [8, Propositions D.4.7
and D.11.2]. (One verifies the Beals criterion using the representation (3.10) given
below and the calculus of pseudodifferential operators.)

For (3.5) we let B = hw
t (x, p) and G = hw(x, p) − hw

t (x, p). By (3.10)

f
(
hw

t (x, p)
)− f(H) =

1
π

∫

C

(
∂̄f̃

)
(z)(B − z)−1

G(H − z)−1
dudv . (3.6)

For any large m ∈ N we may decompose

(B − z)−1
G =

m∑

k=1

adk
B(G)(B − z)−k + (B − z)−1

adm
B (G)(B − z)−m

, (3.7)
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yielding (by the calculus)

g1(t−1x)g2(p)(B − z)−1
G =

m∑

k=1

Rk(B − z)−k

+ g1(t−1x)g2(p)(B − z)−1adm
B (G)(B − z)−m ;

Rk = O(t−∞) .

(3.8)

By (H2), adm
B (G) ∈ Ψunif (〈x〉l−m, g0) and therefore adm

B (G) = O(tl−m), whence
∥∥
∥g1(t−1x)g2(p)(B − z)−1

G
∥∥
∥ ≤ Ctl−m| Im z|−(m+1) (3.9)

uniformly in z ∈ supp
(
f̃
)
.

Clearly (3.5) follows from (3.6) and (3.9). �

Remark 3.3. The statements of Lemma 3.2 extend to any smooth function f

with dk

dλk f(λ) = O(λm−k) (for fixed m ∈ R); in particular Lemma 3.2 holds for
f(λ) = λ.

Definition 3.4. Let F+ denote the largest set of F = F+ ∈ C∞(R), such that
0 ≤ F ≤ 1, F ′ ≥ 0, F ′ ∈ C∞

0 ((1
2 ,

3
4 )), F (1

2 ) = 0, F (3
4 ) = 1 and

√
1 − F ,

√
F ,√

F ′ ∈ C∞, which is stable under the maps F → Fm and F → 1 − (1 − F )m;
m ∈ N. Let F− denote the set of functions F− = 1 − F+ where F+ ∈ F+.

We shall in Section 5 use a modification of the abstract calculus [7, Lem-
ma A.3 (b)], see also [8, Appendix C], [10, Appendix] or [21].

Lemma 3.5. Suppose H̄ and B are self-adjoint operators on a complex Hilbert
space H , and that {B(t) | t > t0} is a family of self-adjoint operators on H with the
common domain D(B(t)) = D(B). Suppose that H̄ is bounded, that the commuta-
tor form i[H̄, B(t)] defined on D(B) is a symmetric operator with same (operator)
domain D(B) and that the B(H)-valued function B(t)(B − i)−1 is continuously
differentiable. Then

(A) For any given F ∈ C∞
0 (R) we let F̃ ∈ C∞

0 (C) denote an almost analytic
extension. In particular

F
(
B(t)

)
=

1
π

∫

C

(
∂̄F̃

)
(z)

(
B(t) − z

)−1
dudv , z = u+ iv . (3.10)

The B(H)-valued function F (B(t)) is continuously differentiable, and intro-
ducing the Heisenberg derivative D = d

dt + i[H̄, · ], the form

d

dt
F
(
B(t)

)
+ i

[
H̄, F

(
B(t)

)]

is given by the bounded operator

DF
(
B(t)

)
= − 1

π

∫

C

(
∂̄F̃

)
(z)

(
B(t) − z

)−1(
DB(t)

)(
B(t) − z

)−1
dudv . (3.11)
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In particular if DB(t) is bounded then for any ε > 0 (with 〈z〉 = (1 + |z|2) 1
2 )

∥
∥DF

(
B(t)

)∥∥ ≤ Cε sup
z∈C

(
〈z〉ε+2| Im z|−2|(∂̄F̃ )(z)|

)
||DB(t)|| . (3.12)

(B) Suppose in addition that we can split DB(t) = D(t) +Dr(t), where D(t)
and Dr(t) are symmetric operators on D(B) and that the form ikadk

B(t)(D(t)) =
i[ik−1adk−1

B(t)(D(t)), B(t)] for k = 1 defined on D(B) is a symmetric operator on
D(B); ad0

B(t)(D(t)) = D(t). (No assumption is made for the form when k = 2.)
Then the contribution from D(t) to (3.11) can be written as

− 1
π

∫

C

(
∂̄F̃

)
(z)

(
B(t) − z

)−1
D(t)(B(t) − z)−1

dudv

=
1
2

(
F ′(B(t)

)
D(t) +D(t)F ′(B(t)

))
+R1(t) ; (3.13)

R1(t) =
1
2π

∫

C

(
∂̄F̃

)
(z)

(
B(t) − z

)−2

· ad2
B(t)

(
D(t)

)(
B(t) − z

)−2
dudv .

For all f ∈ C∞
0 (R)

1
2

(
f2

(
B(t)

)
D(t) +D(t)f2

(
B(t)

))

= f
(
B(t)

)
D(t)f

(
B(t)

)
+R2(t) ; (3.14)

R2(t) =
1

2π2

∫

C

∫

C

(
∂̄f̃

)
(z2)

(
∂̄f̃

)
(z1)

(
B(t) − z2

)−1(
B(t) − z1

)−1

ad2
B(t)

(
D(t)

)(
B(t) − z1

)−1(
B(t) − z2

)−1
du1dv1du2dv2 .

(C) Suppose in addition to previous assumptions that for all t > t0 the form
i[D(t), B(t)] extends from D(B) to a bounded self-adjoint operator. Similarly sup-
pose the operator Dr(t) extends to a bounded self-adjoint operator. Then for all
F ∈ F+ the B(H)-valued function F (B(t))(B − i)−1 is continuously differentiable,
and there is an almost analytic extension with

∣
∣(∂̄F̃ )(z)

∣
∣ ≤ Ck〈z〉−1−k| Im z|k ; k ∈ N , (3.15)

yielding the representation

DF
(
B(t)

)
= F ′ 12

(
B(t)

)
D(t)F ′ 12

(
B(t)

)
+R1(t) +R2(t) +R3(t) , (3.16)

where R1(t) is given by (3.13), R2(t) by (3.14) with f =
√
F ′ and R3(t) is the

contribution from Dr(t) to (3.11).

Remarks.
1. The left hand side of (3.16) is initially defined as a form on D(B) while the

terms on the right hand side are bounded operators. We shall use the stated
representation formulas for bounding these operators in an application in the
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proof of Proposition 5.1; this will be in the spirit of (3.12) although somewhat
more sophisticated.

2. There are versions of Lemma 3.5 without the assumption that H̄ is bounded;
they are not needed in this paper.

4. t−δ-localization

Let ψ = f(H)ψ be any state obeying (1.9) and (1.10) with f supported in a very
small neighborhood of E0 (in agreement with the smallness of the neighborhood I0
of Theorem 1.1). Let g1, g̃1, g2, g̃2 ∈ C∞

0 (Rn) be given as in (3.2) and (3.5). In
particular we have

g1
(
k(E)ω(E)

)
f(E) = f(E) , g2

(
ξ(E)

)
f(E) = f(E) .

Consider for t, κ ≥ 1 symbols

a = at,κ(x, ξ) = F+

(
κq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) , (4.1)

where F+ is given as in Definition 3.4 and q− is built from the q− of (2.10) by
writing q− = q−(w(E), E) and substituting for E the symbol h(r0x̂, ξ) cf. (3.2),

q = q−
(
w
(
h(r0x̂, ξ)

)
, h(r0x̂, ξ)

)
. (4.2)

We shall consider κ ∈ [1, tν] with ν > 0. To have a good calculus for the
symbol a we need ν < 1/2. Notice that

at,κ ∈ Sunif (1, g1−ν,ν
t ) , (4.3)

and that the “Planck constant” for this symbol class is h = t2ν−1.
Denoting by 〈 · 〉t the expectation in the state ψ(t) = e−itHψ we have the

following localization.

Lemma 4.1. For all ν ∈ (0, 2/5)
〈
aw

t,tν (x, p)
〉

t
→ 0 for t→ ∞ . (4.4)

This lemma is a quantum version of (2.13).

Proof. We shall use a scheme of proof from [7]. Let

At,κ = L1(t)
∗
aw

t,κ(x, p)L1(t) ; L1(t) = g1(t−1x)g2(p) . (4.5)

From (1.11) and the calculus of pseudodifferential operators we immediately
conclude that for fixed κ

〈As,κ〉s → 0 for s→ ∞ ,

yielding

−〈At,κ〉t =
∫ ∞

t

〈DAs,κ〉sds , (4.6)

where D refers to the Heisenberg derivative D = d
ds + i[H, · ]. We shall show that

the expectation of DAs,κ is essentially positive (in agreement with (2.12)). Up to
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terms O(s−∞) we may replace D by Ds = d
ds + i[hw

s (x, p), · ], cf. Remark 3.3. First
we notice that

g2(p)g1(s−1x)
(
Dsa

w
s,κ(x, p)

)
g1(s−1x)g2(p) ≥ −Cs5ν−3 , (4.7)

where C > 0 is independent of κ ∈ [1, tν ].
This bound follows from the calculus. The classical Poisson bracket con-

tributes by a positive symbol when differentiating q(x, ξ). The Fefferman–Phong
inequality (see [19, Theorem 18.6.8 and Lemma 18.6.10]) for this term yields the
lower bound O(sν−1(s2ν−1)2) = O(s5ν−3).

Hence (uniformly in κ)

DAs,κ ≥ {T + T ∗} − Cs5ν−3 ;

T = g2(p)g1(s−1x)aw
s,κ(x, p)Ds

(
g1(s−1x)g2(p)

)
.

For the contribution from the first term on the right hand side we invoke (1.10)
after symmetrizing. We conclude that

∫ ∞

t

〈DAs,κ〉sds ≥ o(t0) − Ct5ν−2 uniformly in κ ∈ [1, tν] . (4.8)

Pick κ = tν .
By combining (4.6), (4.8), and the Fefferman–Phong inequality, we infer that

〈At,tν 〉t → 0 for t→ ∞ ,

and therefore (4.4). �
Let q+, qs and qu be given as in (2.10) upon substituting the symbol h(r0x̂, ξ)

for E, cf. the use of q− above. We introduce the symbols

a1
t = tν−1q−(x, ξ)F ′

+

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) ,

a2
t = tν−1q+(x, ξ)F ′

+

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) .

We get the following integral estimate from the above proof employing the
uniform boundedness of the family of “propagation observables” At,tν , cf. a stan-
dard argument of scattering theory see for example [7, Lemma A.1 (b)].

Lemma 4.2. In the state ψ1(t) = L1(t)ψ(t)
∫ ∞

1

(∣
∣〈(a1

t )
w
(x, p)

〉
t

∣
∣ +

∣
∣〈(a2

t )
w
(x, p)

〉
t

∣
∣
)
dt <∞ .

Proof. We substitute κ = tν in the construction (4.5). Then up to integrable terms
the left hand side of (4.7) (with s = t) is given by cwt (x, p) with

ct(x, ξ) = g2(ξ)
2
g1(t−1x)

2
(
νtν−1q−(x, ξ) + tν

{
h(x, ξ), q−(x, ξ)

})
F ′

+

(
tνq−(x, ξ)

)
,

where { · , · } signifies Poisson bracket.
We have the bounds for some C > 0 and all large enough t

C−1ct(x, ξ) ≤ g2(ξ)
2
g1(t−1x)

2(
a1

t (x, ξ) + a2
t (x, ξ)

) ≤ Cct(x, ξ) ,

from which we readily get the lemma by the Fefferman–Phong inequality. �
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Remark 4.3. We shall not directly use Lemma 4.2. However the proof will be
important. In particular we shall need the non-negativity of the above symbol ct.

Let for t, κ ≥ 1 and 0 < 2δ < min (ν, 2δs) with ν < 2/5 and δs as in (2.14)
(this number may be taken independent of E close to E0, cf. Remarks 2.2 (1)),

bt,κ(x, ξ)

= F+

(
κ−1t2δqs(x, ξ)

)
F−

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) ∈ Sunif (1, g1−ν,ν

t ) .

Lemma 4.4. For all ε > 0
〈
bwt,tε(x, p)

〉
t
→ 0 for t→ ∞ . (4.9)

Proof. We shall use another scheme of proof from [7]. Let

Bt,κ = L1(t)
∗bwt,κ(x, p)L1(t) , (4.10)

cf. (4.5), and write for any (large) t0

〈Bt,κ〉t = 〈Bt0,κ〉t0 +
∫ t

t0

〈DBs,κ〉sds . (4.11)

To show that the left hand side of (4.11) vanishes as t → ∞ (with κ = tε)
we look at the integrand on the right hand side: As in the proof of Lemma 4.1 we
may replace D by Ds up to a term rs,κ such that

∫ t

t0

rs,κds→ 0 uniformly in κ ≥ 1 and t ≥ t0 as t0 → ∞ .

Using (1.10) and Remark 4.3 we may estimate the integrand up to terms of
this type as

· · · ≤ 〈
L1(s)

∗(b1s,κ)
w
(x, p)L1(s)

〉
s
,

where

b1s,κ(x, ξ) = κ−1s2δ
(
2δs−1qs(x, ξ) +

{
h(x, ξ), qs(x, ξ)

})
cs,κ(x, ξ) ;

cs,κ(x, ξ) = F ′
+

(
κ−1s2δqs(x, ξ)

)
F−

(
sνq−(x, ξ)

)
g̃1(s−1x)g̃2(ξ) .

We compute, cf. (2.14), that for all large s and a large constant C > 0

−Cs2δ−ν−1 − Cs2δ−1qs(x, ξ)cs,κ(x, ξ) ≤ b1s,κ(x, ξ)

≤ Cs2δ−ν−1 − C−1s2δ−1qs(x, ξ)cs,κ(x, ξ) ,

from which we conclude that

lim sup
t0→∞

sup
κ≥1,t≥t0

∫ t

t0

〈DBs,κ〉sds ≤ 0 . (4.12)

As for the first term on the right hand side of (4.11), obviously for fixed t0

〈Bt0,κ〉t0 → 0 for κ→ ∞ . (4.13)
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Combining (4.12) and (4.13) we conclude (by first fixing t0) that

lim sup
t→∞

〈Bt,tε〉t ≤ 0 ,

whence we infer (4.9). �

Next we “absorb” the ε of Lemma 4.4 into the δ and introduce the symbols

bt(x, ξ) = F−
(
t2δqs(x, ξ)

)
F−

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) ,

b1t (x, ξ) = −t−1F ′
−
(
t2δqs(x, ξ)

)
F−

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) ,

(4.14)

where 0 < 2δ < min (ν, 2δs) with ν < 2/5 and δs as in (2.14). Clearly

bt(x, ξ) ∈ Sunif (1, g1−ν′,ν′
t ) ⊆ Sunif (1, g1−ν,ν

t ) ; ν′ = ν − δ .

We have the following integral estimate.

Lemma 4.5. In the state ψ1(t) = L1(t)ψ(t)
∫ ∞

1

∣
∣〈(b1t )

w
(x, p)

〉
t

∣
∣dt <∞ . (4.15)

Proof. We use the proofs of Lemmas 4.2 and 4.4. Notice that to leading order “the
derivative” of the symbol

F+

(
t2δqs(x, ξ)

)
F−

(
tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ)

is indeed non-positive, and that F ′
+ = −F ′

−. �

By combining Lemmas 4.1 and 4.4 we conclude the following localization
result.

Proposition 4.6. For any state ψ = f(H)ψ obeying (1.9) and (1.10) with f ∈
C∞

0 (I0) where I0 is a sufficiently small neighborhood of E0

||ψ(t) − bwt (x, p)ψ(t)|| → 0 for t→ ∞ . (4.16)

Using the symbol bt(x, ξ) we can bound powers of γ, cf. (2.17). If we define
γ = γ(x, ξ) as in (2.3) upon substituting E by the symbols h(r0x̂, ξ) we may
consider the symbol

γα
t (x, ξ) := γα(x, ξ)bt(x, ξ) ; α ∈ (

N ∪ {0})2n−2
. (4.17)

We have the bounds

||(γα
t )w(x, p)|| = O(t−δ|α|) . (4.18)

Proposition 4.6 and the accompanying (4.18) give the t−δ-localization of
step I) of the proof of Theorem 1.1. We will also need the integral estimate of
Lemma 4.5 as well as Remark 4.3 in the proof that Γ is well localized in the
state ψ(t) (see the proof of Proposition 5.1).
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5. Γ and its localization

With the assumption (2.8) we define operators G and Γ as follows: The right hand
side of (2.18) with m = m0 is of the form

γ(m0) = γ1 +
∑

2≤|α|≤m0

cαγ
α,

with cα as well as γ1 and γα depending smoothly of E. As done in (4.17) we
substitute

E = h(r0x̂, ξ) (5.1)

and multiply suitably by the factors ˜̃g1(t−1x) and ˜̃g1(ξ) as introduced in Section 3
(with small supports). Precisely we pick l ≤ n− 1 such that (2.8) holds and write

γ1 = cl
(
ξ − ξ(E0)

) ·ωl(E0) + rE(x, ξ) ; cl = ∂ηl
γ1(w,E0)|w=0 .

Then we define the operator G = Gt = γw
t (x, p) by the symbol

γt(x, ξ) = γ1(x, ξ) + γ2
t (x, ξ) ;

γ1(x, ξ) =
(
ξ − ξ(E0)

) ·ωl(E0) ,

γ2
t (x, ξ) = (cl)

−1

⎛

⎝rE(x, ξ) +
∑

2≤|α|≤m0

cαγ
α(x, ξ)

⎞

⎠˜̃g1(t−1x)˜̃g2(ξ) .

(5.2)

For the second term the substitution (5.1) is used. Let Γ = Γt = Re (G).
Clearly the quantization of this second term B1(t) = (γ2

t )w(x, p) is bounded.
We shall assume that

δ(m0 + 1) ≥ 1 , (5.3)

where δ < 2−1 min (ν, 2δs) is given as in Proposition 4.6.
Our proof that Γ is well localized in the state e−itHψ (see Corollary 5.2) rests

on the quantum analog of the differential equation (2.17) and the t−δ-localizations
proved in Section 4. In addition we will need integral estimates to bound terms
which arise when these “t−δ-localizations” are differentiated (see the proof of
Proposition 5.1).

We shall use the operator L1(t) given in (4.5). Let us introduce the notation
L2(t) = bwt (x, p) for the quantization of the first symbol of (4.14). Let us also
introduce the “bigger” localization operator

L3(t) = (b̃t)
w
(x, p) ;

b̃t(x, ξ) = F−
(
2−1t2δqs(x, ξ)

)
F−

(
2−1tνq−(x, ξ)

)
g̃1(t−1x)g̃2(ξ) .

Notice that also

b̃t(x, ξ) ∈ Sunif (1, g1−ν′,ν′
t ) ; ν′ = ν − δ ,

and that indeed for example
(
I − L3(t)

)
L2(t)L1(t) = O(t−∞) . (5.4)
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We obtain from (2.17), (5.3) and bounds like (4.18) that

L3i[H,G]L3 = −L3t̃
−1GL3 +O(t−2) , (5.5)

where t is omitted in the notation and t̃−1 is the Weyl quantization of the symbol

− ∂μh(x, ξ)
x ·ω(h(x, ξ)

)βs
1

(
h(x, ξ)

)˜̃g1(t−1x)˜̃g2(ξ) .

We may assume that the supports of ˜̃g1 and ˜̃g1 are so small that

Re (t̃−1) ≥ t−1 Re
(˜̃g1(t−1x)˜̃g2(p)

)
+O(t−2) . (5.6)

Next introduce P = Pt = GG∗ +G∗G where G = Gt is given as above. Using
the calculus we compute (with some patience)

L3i[H,P ]L3 = 2 Re
(
L3i[H,G]L3G

∗ +G∗L3i[H,G]L3

)

+ Re
(
L3i[H,G][G∗, L3] − [G∗, L3]i[H,G]L3

)

+ Re
(
L3i[H,G∗][G,L3] − [G,L3]i[H,G∗]L3

)

= 2 Re
(
L3i[H,G]L3G

∗ +G∗L3i[H,G]L3

)
+ cwt (x, p) +O

(
t2ν′−3

)
,

where

ct(x, ξ) = ct = 2 Re
({

b̃t,
{
b̃t, γt

}}{h, γt}
)
∈ Sunif

(
t3ν′−3, g1−ν′,ν′

t

)
.

Applying (5.5) to the first two terms on the right hand side and symmetrizing
yields

L3i[H,P ]L3 = −L3

{
P Re (t̃−1) + h.c.

}
L3

+ Re
(
GO(t−2) +G∗O(t−2)

)
+O(t2ν′−3) . (5.7)

(Here and henceforth the notation h.c. refers to hermitian conjugate, viz. S+h.c. =
S + S∗.) Notice that the contribution from cwt (x, p) disappears and that we use

P Re (t̃−1) + h.c. = 2GRe (t̃−1)G∗ + 2G∗ Re (t̃−1)G+O(t−3) . (5.8)

We have the following localization result.

Proposition 5.1. Let ψ, ν and δ be given as in Proposition 4.6 and suppose (5.3).
Then for all σ ∈ (ν′, 1 − ν′), ν′ = ν − δ, and with P = Pt = GG∗ + G∗G where
G = Gt is given as above

∥
∥F+(t2−2σP )ψ(t)

∥
∥ → 0 for t→ ∞ . (5.9)

Proof. We shall use the scheme of the proof of Lemma 4.4. Consider with κ = tε

for a small ε > 0 the observable

A(t, κ) = L1(t)
∗
F+

(
B(t)

)
L2(t)

2
F+

(
B(t)

)
L1(t) ;

B(t) = B(t;κ) = ḠḠ∗ + Ḡ∗Ḡ , Ḡ = Ḡ(t;κ) = κ−1t1−σGt .
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As before we first compute the Heisenberg derivative treating κ as a param-
eter and split (with Lj = Lj(t))

DA(t, κ) = T1(t, κ) + T2(t, κ) + T3(t, κ) ;

T1 = L∗
1F+

(
B(t)

)
L2

2

(
DF+

(
B(t)

))
L1 + h.c. ,

T2 = L∗
1F+

(
B(t)

)
(DL2

2)F+

(
B(t)

)
L1 ,

T3 = L∗
1F+

(
B(t)

)
L2

2F+

(
B(t)

)
DL1 + h.c.

The analog of (4.11) is

〈
A(t, κ)

〉
t
=

〈
A(t0, κ)

〉
t0

+
∫ t

t0

〈
T1(s, κ) + T2(s, κ) + T3(s, κ)

〉
s
ds . (5.10)

We shall prove that

lim sup
t0→∞

sup
t≥t0

∫ t

t0

〈
Ti(s, κ)

〉
s
ds ≤ 0 ; i = 1, 2, 3 . (5.11)

To do this we may replace D by the modified Heisenberg derivative

D3 =
d

dt
+ i[H̄, · ] ; H̄ = L3HL3 , L3 = L3(t) ,

cf. (5.4) and arguments below for (5.17).
With this modification we first look at the most interesting bound (5.11) with

i = 1. We use (3.16) to write

D3F+

(
B(t)

)
= F

′ 12
+

(
B(t)

)
D(t)F ′ 12

+

(
B(t)

)
+R1(t) +R2(t) +R3(t) ;

D(t) =
2 − 2σ
t

B(t) − L3

{
B(t) Re (t̃−1) + h.c.

}
L3 . (5.12)

Notice that here R3(t) is given by the integral representation (3.11) of Lemma 3.5
in terms of the bounded operator Dr(t) = D3B(t) −D(t) which by (5.7) is of the
form

Dr(t) = κ−2t2−2σ d

dt
P +

{
κ−2t2−2σL3Hi[L3, P ] + h.c.

}

+ κ−2t2−2σ
{

Re
(
GO(t−2)

)
+ Re

(
G∗O(t−2)

)
+O(t2ν′−3)

}
.

(5.13)

First we examine the contribution from the expectation of the term

· · ·L2(s)
2{
R1(s) +R2(s)

}
L1(s) + h.c.

of the integrand of (5.11) (after substituting (5.12)). We may write, omitting here
and henceforth the argument s,

i[D,B] = −i
[
L3

{
BRe (t̃−1) + h.c.

}
L3, B

]

= −
(
L3

{
BRe (t̃−1) + h.c.

}
i[L3, B] + h.c.

)

− L3

{
BRe

(
i[t̃−1, B]

)
+ h.c.

}
L3 .

(5.14)
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Substituted into the representation formulas (3.13) and (3.14) of Lemma 3.5 the
first term to the right can be shown to contribute by terms of the form κ−2O(s−∞)
(using the factors of L1 and L2 and commutation), however the bound κ−1

O(sν′−1−σ) suffices. Here and henceforth O(s−ε̃) refers to a term bounded by
Cs−ε̃ uniformly in t (recall that B contains a factor κ−2 = t−2ε). To demonstrate
this weaker bound we compute

i[L3, B] = κ−1s1−σi[L3, G]Ḡ∗ + κ−1s1−σḠ∗i[L3, G] + h.c. ,

i[L3, G] = O(sν′−1) .

Since the middle factor Re (t̃−1) = O(s−1) we get the bound

κ−1O(s1−σ)O
(
sν′−2

)
= κ−1O

(
sν′−1−σ

)
.

We used that Ḡ, Ḡ∗ and B may be considered as bounded in combination with the
resolvents of B; explicitly we exploited the uniform bounds (after commutation)

||Ḡ(B − z)−1|| , ||Ḡ∗(B − z)−1|| ≤ C
〈z〉1/2

| Im z| ,

||(B − z)−1|| ≤ C| Im z|−1 , ||B(B − z)−1|| ≤ 2〈z〉
| Im z| .

(5.15)

Similarly, since

Re
(
i[t̃−1, B]

)
= κ−1O(s−1−σ)Ḡ∗ + κ−1O(s−1−σ)Ḡ+ h.c. (5.16)

the second term to the right in (5.14) contributes by a term of the form κ−1

O(s−1−σ).
Using the representation for R3 = R3(s) and commutation we claim the

bound

· · ·L2
2R3L1 + h.c. = κ−1O(s−1) + κ−1O(s−1−σ) + κ−2O(s2ν′−1−2σ) . (5.17)

The contributions from the first two terms of (5.13) are κ−2O(s−∞) and therefore
in particular κ−1O(s−1). Let us elaborate on this weaker bound for the first term:
Write

κ−2s2−2σ d

ds
P = κ−1s1−σ

{
Ḡ
d

ds
G∗ + Ḡ∗ d

ds
G+ h.c.

}
,

and compute the time-derivative of the symbol ˜̃g1(s−1x) that defines the time-
dependence of the symbol of G

d

ds
˜̃g1(s−1x) = −s−2x · (∇˜̃g1)(s−1x) .

The contribution from this expression is treated by using the factor g1(s−1x) of L1.
First we may insert the j’th power of F = g̃1(s−1x) next to a factor L1. Then
we place one factor of F next to any of the factors of the time-derivative of G by
commuting through the resolvent of B, and repeat successively this procedure for
the “errors” given in terms of intermediary commutators. At each step a factor of
κ−1sν′−σ = O(sν′−σ) will be gained. (In fact for the first term of (5.13) treated
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here we have the stronger estimate O(s−σ).) This means that if we put σ′ = σ−ν′
then h = s−σ′

will be an “effective Planck constant”. Notice that

i
[
(B − z)−1, F

]

= κ−1s1−σ(B − z)−1{
ḠO(sν′−1) + Ḡ∗O(sν′−1) + h.c.

}
(B − z)−1

.

Repeated commutation through such an expression by factors of F provides even-
tually the power hj = s−σ′j . Again the finite numbers of factors like Ḡ(B − z)−1

and Ḡ∗(B − z)−1 may be estimated by (5.15) before integrating with respect to
the z-variable. We choose j so large that σ′(j + 1) ≥ 1.

The contribution to (5.17) from the second term of (5.13) may be treated
very similarly.

Clearly the last term of (5.13) contributes by terms of the form of the last
two terms to the right in (5.17).

Next we move the factors of L2 next to those of L1 (and other commutation)
for the contribution to (5.11) from the first term to the right in (5.12) yielding, as
a conclusion, that

〈
T1(s, κ)

〉
s
≤ 〈

ψ̆,D(s)ψ̆
〉

+ κ−1O(s−1) +O(sν′−2) ;

ψ̆ = (F 2′
+ )

1
2
(
B(s)

)
L2(s)L1(s)ψ(s) .

(5.18)

Notice that commutation of D(s) with the factors of L2(s), F
′ 12
+ (B(s)) and (F 2′

+ )
1
2

(B(s)) (when symmetrizing) involves the calculus of Lemma 3.5 and the effective
Planck constant h = s−σ′

in a similar fashion as above.
For the first term on the right hand side of (5.18) we infer from (5.6) and (5.8)

that
〈
ψ̆,D(s)ψ̆

〉 ≤ C1κ
−2s−1−2σ + C2s

−2 . (5.19)

By combining (5.18) and (5.19) we finally conclude (5.11) for i = 1.
As for (5.11) for i = 2 we use Remark 4.3, the integral estimate of Lemma 4.5

and the factors of L1. Notice that the leading (classical) term from differentiat-
ing the symbol bt may be written as a sum of three terms: The contribution
from “differentiating” the factor F−(tνq−(x, ξ)) is non-positive, cf. Remark 4.3.
The contribution from “differentiating” the first factor F−(t2δqs(x, ξ)) may after a
symmetrization be treated by Lemma 4.5. The commutation through the factors
of F+(B(s)) (when symmetrizing) involves the calculus of Lemma 3.5 in a simi-
lar fashion as above. Finally the contribution from “differentiating” the last two
factors are integrable due to the factors of L1. We omit further details.

As for (5.11) for i = 3 we use the integral estimate (1.10) and commutation.
We omit the details.

We conclude (5.11), and therefore by Proposition 4.6 the bound (5.9) first
with σ replaced by σ + ε and then (since ε is arbitrary) by any σ as specified in
the proposition. �
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Corollary 5.2. Under the conditions of Proposition 5.1 and with Γ = Γt = Re (G)
∥
∥F+(t1−σ|Γ|)ψ(t)

∥
∥ → 0 for t→ ∞ . (5.20)

Proof. Let σ ∈ (2ν′, 1) be given. Fix σ1 ∈ (2ν′, σ). By Proposition 5.1 it suffices
to show that ∥

∥F+(t1−σ|Γ|)F−(t2−2σ1P )
∥
∥ = O(tσ1−σ) .

Clearly by the spectral theorem this estimate follows from
∥
∥t1−σ1ΓF−(t2−2σ1P )

∥
∥ ≤ 1 ,

which in turn follows from substituting Γ = 2−1(G+G∗) and then estimating
∥∥t1−σ1ΓF−(t2−2σ1P )

∥∥ ≤ 2−1
∥∥t1−σ1GF−( · )∥∥ + 2−1

∥∥t1−σ1G∗F−( · )∥∥

≤ 2−1
∥∥t2−2σ1F−( · )G∗GF−( · )∥∥1/2

+ 2−1
∥
∥t2−2σ1F−( · )GG∗F−( · )∥∥1/2

≤ ∥
∥F−( · )t2−2σ1PF−( · )∥∥1/2 ≤ 1 . �

Remark 5.3. In the case of (2.9) we define Γ as follows: We pick l ≤ n − 1 such
that (2.9) holds and write

γ1 = cl
x

x̃n
·ωl(E0) + rt,E(x, ξ) ;

cl = ∂ul
γ1(w,E0)|w=0 , x̃n = tk(E0) .

The operator G = Gt = γw
t (x, p) is given by the symbol (using the substitu-

tion (5.1))

γt(x, ξ) = γ1
t (x, ξ) + γ2

t (x, ξ) ; (5.21)

γ1
t (x, ξ) = t−1x ·ωl(E0) ,

γ2
t (x, ξ) =

k(E0)
cl

⎛

⎝rt,E(x, ξ) +
∑

2≤|α|≤m0

cαγ
α(x, ξ)

⎞

⎠˜̃g1(t−1x)˜̃g2(ξ) ,

cf. (5.2). One proves Proposition 5.1 with this G in the same way as before. Let
Γ = Re (G). We have (5.20) for this Γ.

6. Mourre theory for Γ

The goal of this section is to show that Γ (modified by a constant) and a certain
conjugate operator which we introduce below satisfy a version of the uncertainty
principle. We accomplish this using Mourre theory. The abstract version of the
uncertainty principle we shall need is the following.

Lemma 6.1. Suppose H̄ and Ā are two self-adjoint operators on the same Hilbert
space such that
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1. D(H̄) ∩ D(Ā) is dense in D(H̄).
2. sup|s|<1 ‖H̄eisĀψ‖ <∞ for all ψ ∈ D(H̄).
3. The form i[H̄, Ā] extends to an H̄-bounded operator satisfying

i[H̄, Ā] ≥ c1 > 0 .

4. The form i[i[H̄, Ā], Ā] extends to a bounded operator B satisfying

‖B‖ ≤ C1 <∞ .

Then there exists C2 = C(c1, C1) > 0 such that for all h ∈ C∞
0 (R) (with

〈
Ā
〉

:= (1 + Ā2)1/2 )
∥
∥〈Ā

〉−1
h(H̄)

〈
Ā
〉−1∥∥ ≤ C2‖h‖L1 . (6.1)

In particular, for all h1, h2 ∈ C∞
0 (R), δ2 > δ1 ≥ 0 and t ≥ 1

∥
∥h1(t−δ1Ā)h2(tδ2H̄)

∥
∥ ≤ C3t

(δ1−δ2)/2 ; (6.2)

C3 = C2‖h2‖L2 sup |〈x〉h1(x)| .
Proof. We readily obtain by keeping track of constants in the method of [20] that
for some positive constant C depending only on c1 and C1

∥
∥〈Ā

〉−1(H̄ − z)−1〈
Ā
〉−1∥∥ ≤ C ; Im z 	= 0 . (6.3)

Representing h(H̄) = π−1 limε↓0
∫
h(λ) Im

((
H̄ − λ− iε

)−1)
dλ and then us-

ing (6.3) we conclude (6.1).
As for (6.2) we use (6.1) with Ā → t−δ1Ā and H̄ → tδ1H̄ , and with h(x) =

|h2(tδ2−δ1x)|2. Notice that (3) and (4) hold with the same constants for this re-
placement. �

To apply Lemma 6.1 we shall need a specific construction of Γ given in terms
of a hierarchy of sharp localizations in our observables (see (6.5) and (6.6)). We
are forced to use such hierarchy due to the energy variation of (ω(E), ξ(E)).

Let Γ be as in Section 5 (assuming first (2.8)). The m0 of (5.2) is here con-
sidered as arbitrary (but fixed); the condition (5.3) (needed before for dynamical
statements) is not imposed.

We introduce for 0 < δ̄ ≤ 1 the operators

H̄ = t1−δ̄Γ , Ā = āw
t (x, p) ; (6.4)

āt(x, ξ) = tδ̄−1

(
x ·ωl(E0) + x ·

(
ωl

(
h(x, ξ)

)− ωl(E0)
)
˜̃g1(t−1x)˜̃g2(ξ)

)
.

We shall need a specific construction of the functions ˜̃g1 and ˜̃g2 in the defi-
nitions (6.4) in terms of a small parameter ε > 0:

The factor ˜̃g1(t−1x) is the product of the n functions

F−
(
ε−3|t−1x ·ωj(E0)|

)
; j = 1, . . . , n− 1 ,

F−
(
ε−2|t−1x ·ωn(E0) − k(E0)|

)
.

(6.5)
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The factor ˜̃g2(ξ) is the product of the n functions

F−
(
ε−2|(ξ − ξ(E0)

) ·ωl(E0)|
)
,

F−
(
ε−3|(ξ − ξ(E0)

) ·ωj(E0)|
)

; j = 1, . . . , n− 1, j 	= l ,

F−
(
ε−4|(ξ − ξ(E0)

) ·ωn(E0)|
)
.

(6.6)

Now, indeed for we may apply Lemma 6.1 to the example introduced by (6.4).

Lemma 6.2. There exists ε0 > 0 such that for all positive ε ≤ ε0 there exists t0 ≥ 1
such that for all t ≥ t0 the conditions of Lemma 6.1 are fulfilled for H̄ = H̄t,ε and
Ā = Āt,ε with constants independent of t ≥ t0.

Proof. We shall verify Lemma 6.1 (3) and (4) only (Lemma 6.1 (1) and (2) follow
readily from the calculus of pseudodifferential operators). As for (3) we claim that
for all small enough ε

i[H̄, Ā] ≥ 2−1 ; t ≥ t0 = t0(ε) . (6.7)

To see this we notice that clearly the first term in (5.2) and the first term of
the symbol ā contribute by

i
[
t1−δ̄(γ1)

w
(x, p), tδ̄−1x ·ωl(E0)

]
= 1 ,

so it remains to estimate∥
∥
∥i

[
t1−δ̄

(
Re (γ2

t )
)w

(x, p), Ā
]∥∥
∥ ≤ 4−1 ; t ≥ t0 , (6.8)

and ∥
∥i

[
t1−δ̄(γ1)

w
(x, p), Ā− tδ̄−1x ·ωl(E0)

]∥∥ ≤ 4−1 ; t ≥ t0 . (6.9)
Let us denote by at(x, ξ) the Weyl symbol of the operator in (6.8) or the

one in (6.9). We have in both cases that at ∈ Sunif (1, g1,0
t ), so it suffices to show

(cf. [19, Theorem 18.6.3] and the proof of [8, Proposition D.5.1]) that

sup
x,ξ∈Rn,t≥t0

|at(x, ξ)| ≤ ν0 , (6.10)

where ν0 is a (universal) small positive constant associated for example to the
L2-boundedness result [19, Theorem 18.6.3].

For (6.10) we note the uniform bounds

h(x, ξ) − E0 = O(ε4) ,

t∂xjh(x, ξ) = O(ε2) ,

∂ξjh(x, ξ) = O(ε2) for j ≤ n− 1 , ∂ξnh(x, ξ) = O(ε0) ,

γj(x, ξ) = O(ε2) , t∂xγj(x, ξ) = O(ε0) , ∂ξγj(x, ξ) = O(ε0) ,

on the support of the function ˜̃g1(t−1x)˜̃g2(ξ) given by (6.5) and (6.6). Here we
used (1.4) and (1.5), and the notation

xj = x ·ωj(E0) , ξj = ξ ·ωj(E0) .
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By estimating the leading term of the symbol using these bounds we may
show (with some patience) that

sup
x,ξ∈Rn,t≥t0

|at(x, ξ)| ≤ Cε , (6.11)

from which (6.10) and (therefore) (6.7) follow.
As for (4) we have the bound

∥
∥i

[
i[H̄, Ā], Ā

]∥∥ = O(tδ̄−1) = O(1) . (6.12)

�
As an immediate consequence of Lemmas 6.1 and 6.2 we have.

Corollary 6.3. Suppose h1, h2 ∈ C∞
0 (R) and 0 ≤ σ < δ̄ ≤ 1. Then there exists

ε0 > 0 such that for all positive ε ≤ ε0 there exists C > 0 such that for all t ≥ 1

‖h1(Ā)h2(tδ̄−σH̄)‖ ≤ Ct(σ−δ̄)/2 . (6.13)

Remark 6.4. In the case of (2.9) we introduce (with Γ as in Remark 5.3)

H̄ = t1−δ̄Γ , Ā = āw
t (x, p) ;

āt(x, ξ) = tδ̄
((
ξ − ξ(E0)

) ·ωl(E0) + b(x, ξ)˜̃g1(t−1x)˜̃g2(ξ)
)
,

b(x, ξ) =
(
ξ − ξ

(
h(x, ξ)

)) ·ωl

(
h(x, ξ)

)− (
ξ − ξ(E0)

) ·ωl(E0) .

(6.14)

Here the factor ˜̃g1(t−1x) is the product of the n functions

F−
(
ε−2|t−1x ·ωl(E0)|

)
,

F−
(
ε−3|t−1x ·ωj(E0)|

)
; j = 1, . . . , n− 1 , j 	= l ,

F−
(
ε−2|t−1x ·ωn(E0) − k(E0)|

)
,

while the factor ˜̃g2(ξ) is the product of

F−
(
ε−3|(ξ − ξ(E0)

) ·ωj(E0)|
)

; j = 1, . . . , n− 1 ,

F−
(
ε−4|(ξ − ξ(E0)

) ·ωn(E0)|
)
.

One verifies (6.13) under the same conditions as in Corollary 6.3 along the
same line as before.

7. Proof of Theorem 1.3

The proof of Theorem 1.1 is based on Proposition 4.6, and Corollaries 5.2 and 6.3
(with the assumption (2.8)); we show that the t−δ-localization and the strong
localization of Γ are incompatible with the uncertainty principle as expressed in
Corollary 6.3.

We recall the assumptions of Proposition 4.6: 0 < 2δ < min (ν, 2δs) with
ν < 2/5 and δs as in (2.14).
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Lemma 7.1. With Ā = Āt given in terms of any (small) ε > 0 and of δ̄ = δ (with
δ as above) by either (6.4) (in the case of (2.8)) or (6.14) (in the case of (2.9))

lim
t→∞ ||F+(|Ā|)ψ(t)|| = 0 , (7.1)

where ψ = f(H)ψ is given as in Proposition 4.6 (with the support of f being
sufficiently small possibly depending on ε).

Proof. We fix δ1 such that 2δ < 2δ1 < min (ν, 2δs). Let bt(x, ξ) be given by (4.14)
in terms of δ1 and ν.

By Proposition 4.6 it suffices to show that

||F+(|Ā|)bwt (x, p)|| → 0 for t→ ∞ ,

and therefore in turn

||Ābwt (x, p)|| = O(tδ−δ1 ) .

For the latter bound one easily checks that the symbol of Ābwt (x, p) belongs to

Sunif (tδ−δ1 , g1−ν′,ν′
t ) ; ν′ = ν − δ1 . �

Now, we first fix δ as above and conclude from Lemma 7.1 that

||ψ(t) − F−(|Ā|)ψ(t)|| → 0 for t → ∞ , (7.2)

where ψ = f(H)ψ is given as in Proposition 4.6. This holds for f ∈ C∞
0 (I0);

I0 = I0(ε).
Next we fix any σ ∈ (0, δ) in agreement with Corollary 5.2 which means that

||F+(|t1−σΓ|)ψ(t)|| → 0 for t→ ∞ . (7.3)

Here the input of δ in Proposition 5.1 say δ1 (needed to fix the m0 in the definition
of the Γ of Corollary 5.2) is different; we need to have σ > ν′, ν′ = ν1 − δ1, for
which δ1 < δ is needed. The construction of this Γ depends on the same ε as above,
cf. Section 6.

Combining (7.2) and (7.3) leads to

||ψ(t) − F−(|Ā|)F−(|t1−σΓ|)ψ(t)|| → 0 for t→ ∞ . (7.4)

By combining Corollary 6.3 and (7.4) we conclude (by finally fixing ε > 0
sufficiently small) that

||ψ(t)|| → 0 for t→ ∞ , (7.5)

and therefore that ψ = 0 proving Theorem 1.1.

Remark 7.2. With the assumption (2.9) we proceed similarly using Remarks 5.3
and 6.4, and Lemma 7.1.
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8. Proof of Theorem 1.3

We shall here elaborate on the derivation of Theorem 1.3 from our general result
Theorem 1.1.

First we remove the singularity at x = 0 by defining

h(x, ξ) = 2−1ξ2 + Ṽ (x) ; Ṽ (x) = F+(|x|)V (x̂) ,

where (as before) V is a Morse function on Sn−1. (See Remarks 8.3 for extensions.)
In this case clearly the hypotheses (H1)–(H3) of Section 2 are satisfied, and (H4)
holds for any critical point ωl ∈ Cr and energyE > V (ωj) upon putting ω(E) = ωl,
ξ(E) = k(E)ωl and k(E) =

√
2(E − V (ωl)).

For (1.7) we put

g(u, η, E) =
√

2
(
E − V (ωl)

)−
√

2E − η2 − 2V (ωl + u) ,

yielding (1.8) with

A(E) = k(E)−1

(
V (2)(ωl) 0

0 I

)
.

We may choose an orthonormal basis in {ωl}⊥ ⊆ Rn for which V (2)(ωl) is
diagonal, say V (2)(ωl) = diag (q1, . . . , qn−1). The eigenvalues of B(E) take the
form

β+
j (E) = −1

2
+

1
2

√
1 − 2qj/

(
E − V (ωl)

)
or

β−
j (E) = −1

2
− 1

2

√
1 − 2qj/

(
E − V (ωl)

) (8.1)

say with
√
ζ := i

√−ζ if ζ < 0.
Clearly the hypothesis (H5) is the non-degeneracy condition, qj 	= 0 for all j,

while hypothesis (H6) amounts to qj < 0 for some j, i.e., ωl is a local maximum
or a saddle point of V .

As for (H7) one easily checks that there exists a smooth basis of eigenvectors
of B(E)tr for E − V (ωl) ∈ (0,∞) \ {2q1, . . . , 2qn−1}.

Elementary analyticity arguments show that given any m ∈ {2, 3, . . . } the
set of resonances of order m for any of the eigenvalues of B(E) is discrete in
(V (ωl),∞).

In conclusion, the hypotheses (H1)–(H8) are satisfied for any local maximum
or saddle point ωl of a Morse function V for E0 ∈ (V (ωl),∞) \ D where D is
discrete in (V (ωl),∞).

Due to the possible existence of bound states we change the definition of Pl

to be
Pl = s− lim

t→∞ eitHχl(x̂)e−itHEac(H) ,

where Eac(H) is the orthogonal projection onto the absolutely continuous subspace
of H , see [15] and [1, Theorem C.1]. This gives (1.13) with the left hand side
replaced by Eac(H).
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Now, to get (1.15) it suffices by Theorem 1.1 to verify (1.14) for any E0 ∈
(V (ωl),∞). Invoking the discreteness of the set of eigenvalues of H on the com-
plement of the set of critical values of V , cf. [1, Theorem C.1], one may easily
conclude (1.14) from the following statement:

Consider any open set I0 ⊆ (V (ωl),∞) such that

I0 ∩
(
σpp(H) ∪ V (Cr)

)
= ∅ .

Let H0 be the closure of the subspace of states ψ = f(H)ψ, f ∈ C∞
0 (I0), obey-

ing (1.9) and (1.10). Then for all ψ = Plf(H)ψ where f ∈ C∞
0 (I0)

ψ ∈ H0 . (8.2)

We shall verify (8.2) by showing that indeed ψ = Plf(H)ψ obeys (1.9)
and (1.10). We shall proceed a little more generally than needed in that we here
assume that the U0 of (1.10) is given by

U0 = Uε = C̃ε × Rn ;

C̃ε =
{
x ∈ Rn \ {0}|x̂ ∈ Cε

}
, Cε = {ω ∈ Sn−1 | |ω − ωl| < ε} ,

where ε > 0 is taken so small that Cε ∩ Cr = {ωl}.
Pick f̃ ∈ C∞

0 (I0) such that 0 ≤ f̃ ≤ 1 and f̃ = 1 in a neighborhood of
supp (f). Let r ∈ C∞(Rn) be given in terms of any F+ ∈ F+ by

r(x) =
∫ |x|

0

F+(s)ds+
∫ 1

0

F−(s)ds . (8.3)

(Notice that r(x) = |x| for |x| ≥ 1.) Let

p|| =
1
2
(∇r · p+ h.c.) , p̃|| = f̃(H)p||f̃(H) .

Lemma 8.1. Let χl ∈ C∞
0 (Cε) be given with 0 ≤ χl ≤ 1 and χl = 1 in a neighbor-

hood of ωl, and g̃2 ∈ C∞
0 (R) by

g̃2(s) = f̃
(
2−1s2 + V (ωl)

)
1(0,∞)(s) .

Let real-valued g−1 , g
+
1 ∈ C∞

0 (R) be given with

c−+ < c̃− ; c−+ = sup
(
supp (g−1 )

)
, c̃− = inf

(
supp (g̃2)

)
,

c+− > c̃+ ; c+− = inf
(
supp (g+

1 )
)
, c̃+ = sup

(
supp (g̃2)

)
.

Let F+ ∈ F+, F− ∈ F− and

C > 2
√

2
(

sup
(
supp (f)

)− min (V )
)
.

Then, in the state ψ(t) = e−itHPlf(H)ψ
∫ ∞

−∞
〈r−1−δ〉tdt <∞ ; δ > 0 , (8.4)

∫ ∞

−∞
|〈p · r(2)p〉t|dt <∞ , (8.5)
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∫ ∞

−∞
〈r|∇Ṽ |2〉tdt <∞ , (8.6)

∫ ∞

−∞

〈
χ̃lr

− 1
2 (η2 + u2)r−

1
2 χ̃l

〉
t
dt <∞ ; χ̃l = χl(x̂)F+(r) , (8.7)

∫ ∞

1

−t−1
〈
F ′
−(C−1t−1r)

〉
t
dt <∞ , (8.8)

∫ ∞

1

t−1||g(p̃||)F−(C−1t−1r)ψ(t)||2dt <∞ ; g ∈ C∞
0 ((−∞, 0)) , ḡ = g , (8.9)

∫ ∞

1

t−1
∣∣∣∣(1 − g̃2(p̃||)

)
F−(C−1t−1r)χ̃lψ(t)

∣∣∣∣2dt <∞ , (8.10)
∫ ∞

1

t−1||B−(t)ψ(t)||2dt <∞ ; B−(t) = g−1 (t−1r)g̃2(p̃||) , (8.11)
∫ ∞

1

t−1||B+(t)ψ(t)||2dt <∞ ; B+(t) = g+
1 (t−1r)g̃2(p̃||) . (8.12)

Proof. For (8.4), (8.5) and (8.6) we refer to [15] and [1, Theorem C.1]. The
bound (8.7) follows from those estimates by Taylor expansion.

As for (8.8) we consider the “propagation observable”

Φ(t) = f(H)F−(C−1t−1r)f(H) .

We may bound its Heisenberg derivative as

DΦ(t) ≥ −εt−1f(H)F ′
−(C−1t−1r)f(H) +O(t−2) ; ε > 0 .

As for (8.9) we consider the observable

Φ(t) = f̃(H)g(p̃||)t−1rF−(C−1t−1r)g(p̃||)f̃(H) .

We write its Heisenberg derivative as

DΦ(t) = T1 + T2 + T3 ;

T1 = f̃(H)
(
Dg(p̃||)

)
t−1rF−(C−1t−1r)g(p̃||)f̃(H) + h.c. ,

T2 = 2−1f̃(H)g(p̃||)t−1r
(
DF−(C−1t−1r)

)
g(p̃||)f̃(H) + h.c. ,

T3 = 2−1f̃(H)g(p̃||)
(
D(t−1r)

)
F−(C−1t−1r)g(p̃||)f̃(H) + h.c. ,

and notice the identities

Dr = p|| , Dp|| = p · r(2)p+O(r−3) . (8.13)

Using (8.4), (8.5), the second identity of (8.13) and (3.11) we readily obtain
after symmetrization that ∫ ∞

1

|〈T1〉t|dt <∞ . (8.14)

As for the the term T2 we use the first identity of (8.13) and (8.8) to derive
∫ ∞

1

|〈T2〉t|dt <∞ . (8.15)
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For the term T3 we compute using the first identity of (8.13) and (3.11)

T3 = Re
(
t−1f̃(H)g(p̃||)(p|| − t−1r)F−(C−1t−1r)g(p̃||)f̃(H)

)
+O(t−2)

≤ −εt−1f̃(H)g(p̃||)F−(C−1t−1r)g(p̃||)f̃(H) +O(t−2) ; ε > 0 . (8.16)

We conclude (8.9) from (8.14), (8.15) and (8.16).
The bound (8.10) follows from elementary energy bounds, Taylor expansion

and the previous estimates. (For this we need (8.9) to deal with the “region”
where p2

|| energetically has the right size, but p|| < 0.)
As for (8.11) we consider

Φ(t) = f̃(H)g̃2(p̃||)F (t−1r)g̃2(p̃||)f̃(H) ; F (s′) =
∫ s′

−∞
g−1 (s)2ds .

We write its Heisenberg derivative as

DΦ(t) = T1 + T2 ;

T1 = f̃(H)
(
Dg̃2(p̃||)

)
F (t−1r)g̃2(p̃||)f̃(H) + h.c. ,

T2 = f̃(H)g̃2(p̃||)
(
DF (t−1r)

)
g̃2(p̃||)f̃(H) .

Using (8.4), (8.5), the second identity of (8.13) and (3.11) as for (8.9) we
obtain that ∫ ∞

1

|〈T1〉t|dt <∞ . (8.17)

As for the the term T2 we compute using the first identity of (8.13) and (3.11)

T2 = t−1f̃(H)B−(t)∗(p|| − t−1r)B−(t)f̃(H) +O(t−2)

≥ t−1B−(t)∗
(
p̃||1[c̃−,∞)(p̃||) − c−+f̃(H)2

)
B−(t) +O(t−2)

≥ εt−1B−(t)∗B−(t) +O(t−2) ; ε = c̃− − c−+ .

(8.18)

Clearly (8.11) follows by combining (8.17) and (8.18).
As for (8.12) we may proceed similarly using

Φ(t) = f̃(H)g̃2(p̃||)F (t−1r)g̃2(p̃||)f̃(H) ; F (s′) =
∫ s′

−∞
g+
1 (s)2ds . �

Corollary 8.2. Let ψ, χl ∈ C∞
0 (Cε) and g̃2 be given as in Lemma 8.1. Let g1 ∈

C∞
0 (R) be given such that 0 ≤ g1 ≤ 1 and g1 = 1 in an open interval containing

supp (g̃2). Then

||ψ(t) − g1(t−1r)g̃2(p̃||)χl(x̂)f̃(H)ψ(t)|| → 0 for t→ ∞ . (8.19)

Proof. From the very definition of ψ we have

||ψ(t) − χl(x̂)f̃(H)ψ(t)|| → 0 for t→ ∞ .

Next, from [15, Theorems 4.10 and 4.12] we learn that

||ψ(t) − g̃2(p̃||)χl(x̂)f̃(H)ψ(t)|| → 0 for t→ ∞ . (8.20)
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Whence to show (8.19) it suffices to verify that
∣∣∣∣{g1(t−1r) − g1(p̃||)

}
g̃2(p̃||)f̃(H)ψ(t)

∣∣∣∣ → 0 for t→ ∞ ,

which in turn is reduced (by a standard density argument using that the energy
bounds the momentum) to verifying that for all constants C large enough
∣
∣
∣
∣F−(C−1t−1r)

{
g1(t−1r) − g1(p̃||)

}
g̃2(p̃||)f̃(H)ψ(t)

∣
∣
∣
∣ → 0 for t→ ∞ . (8.21)

For (8.21) we consider the observable

ΦC(t) = f̃(H)g̃2(p̃||)F−(C−1t−1r)(p̃|| − t−1r)
2
F−(C−1t−1r)g̃2(p̃||)f̃(H) .

Using Lemma 8.1 as well as the proof of this lemma we easily show that
∣
∣
∣∣

∫ ∞

1

| d
dt

〈
ΦC(t)

〉
t

∣
∣
∣∣ dt,

∫ ∞

1

t−1
〈
ΦC(t)

〉
t
dt <∞ ,

from which we conclude that along some sequence tk → ∞ indeed 〈ΦC(tk)〉tk
→ 0,

and then in turn that
〈
ΦC(t)

〉
t
→ 0 . (8.22)

We easily obtain (8.21) using (8.22), (3.10) and commutation. �

Now, one may easily verify (8.2) for ψ = Plf(H)ψ as follows: We introduce
a partition f =

∑
fi of sharply localized fi‘s and for each of these a “slightly

larger” f̃i. Using these functions and the states ψi = Plfi(H)ψ as input in Corol-
lary 8.2 the bounds (1.9) follow from the conclusion of the corollary and [15, Theo-
rems 4.10 and 4.12]. As for (1.10) we may use the same partition and then conclude
the result from Lemma 8.1 (applied with f̃ replaced by f̃i).

Remarks 8.3.

1. Using the Mourre estimate [1, Theorem C.1] one may easily include a short-
range perturbation V1 = O(|x|−1−δ), δ > 0, ∂α

xV1 = O(|x|−2), |α| = 2, to the
Hamiltonian H . In particular Theorem 1.3 holds for the strictly homogeneous
case as discussed in Section 1.

2. The non-degeneracy condition at ωl is important for the method of proof
presented in this paper. However it is not important that the set of critical
points Cr is finite; it suffices that ωl is an isolated non-degenerate critical
point and that V (Cr) is countable.

3. At a local maximum we proved a somewhat better result in [16] (by a differ-
ent method): A larger class of perturbations was included and we imposed a
somewhat weaker condition than the non-degeneracy condition. The method
of [16] yielded only a limited result at saddle points. Although there are indi-
cations that this method of proof might be extended to included Theorem 1.3
(by using a certain complicated iteration scheme) the proof presented in this
paper is probably much simpler.
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4. The components of the γ of (2.3) may be taken of the form

γj = ηj +
√

2
(
E − V (ωl)

)
β#

j (E)uj ,

where β#
j (E) is given by one of the expressions of (8.1). In particular both

of the conditions (2.8) and (2.9) are satisfied in the potential case.
5. We applied the Sternberg linearization procedure in [18] to the equations (1.7)

in the case of a local minimum. In this case the union of all resonances (of all
orders and for all eigenvalues) is discrete on (V (ωl),∞). One needs to exclude
this set of resonances to construct a smooth Sternberg diffeomorphism, see
for example [22, Theorem 9]. The construction of the symbol γ(m) in (2.18)
may be viewed as a rudiment of this procedure. However, the union of all
resonances at a local maximum or a saddle point ωl is dense in (V (ωl),∞),
and for that reason the smooth Sternberg diffeomorphism (defined at non-
resonance energies) would not be suited for quantization. Although not elabo-
rated, one may essentially view γ(m) as being constructed by a Cm Sternberg
diffeomorphism.

Appendix A. A generalization of the homogeneity condition

In this appendix we shall discuss possible generalizations of the homogeneity condi-
tion (1.1). We elaborate on the structure of the classical mechanics of our models.
A possible formulation of the quantum problem will be proposed although not
justified in general. It will be discussed for various examples.

The homogeneity condition is best understood as the invariance of the Hamil-
tonian under the flow generated by the vector field v(x, ξ) =

∑
xj∂/∂xj, or in-

finitesimally
vh(x, ξ) = 0 . (A.1)

Our goal is thus to find invariance conditions (A.1) which will

a. reduce the dimension of phase space by two giving an autonomous dynamical
system in dimension 2n− 2 (usually not Hamiltonian)

b. give a natural framework for discussing stability of orbits which do not lie
in a compact set. It will turn out that stability is not measured using any
preexisting metric in the phase space but rather using bundles of orbits of the
vector field v surrounding a given orbit of the Hamiltonian vector field, vh.

The particular vector field v(x, ξ) =
∑
xj∂xj does not generate a symplec-

tic flow but does satisfy a crucial property. Namely Lvω = ω where Lv is the
Lie derivative in direction v and ω is the symplectic form. It will turn out (see
Lemma A.1) that a geometric condition such as this, although more restrictive
than necessary, will guarantee that v is a suitable vector field.

We will require v to satisfy certain conditions relative to vh, where vh is a
Hamiltonian vector field on a symplectic manifold (M,ω) with Hamiltonian h:
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1. In a neighborhood U0 of a point x0 ∈M , the local flow φv
t ( · ) generated by v

exists for all t ∈ (−ε,∞) for some ε > 0 and there exists a surface S ⊂ U0

containing x0, transverse to v, and a diffeomorphism σ : B → S, where B is
a ball in R2n−1 centered at 0, such that the map

B × (−ε,∞) � (w, t) → φv
t

(
σ(w)

)

is a diffeomorphism onto its image, K0 ⊇ U0. We also assume v and vh are
parallel (and nonzero) along the positive orbit of v originating at x0 (identified
as 0 ∈ B).

2. There are smooth functions β and γ such that

[v, vh] = βvh + γv in K0 .

3. vh = 0 in K0.

Condition (1) allows us to assume (after a change of coordinates) that K0 =
B × (−ε,∞), x0 = (0, 0), and v = (0, . . . , 0, 1) in K0. With the notation x⊥ =
(x1, . . . , x2n−1) for x ∈ R2n, condition (2) implies

(vh)⊥(x) = k(x)(vh)⊥(x⊥, 0)

where k(x) = exp
( ∫ x2n

0
β ◦ φv

s(x⊥, 0)ds
)

so that introducing the new time vari-
able τ with dτ/dt = k(x(t)) the first 2n− 1 of Hamilton’s equations become

dx⊥
dτ

= (vh)⊥(x⊥, 0) .

As long as dh(x0) 	= 0, using condition (3) we can eliminate one more variable
using energy conservation, h(x) = h(x⊥, 0) = E. For example if ∂h/∂x2n−1 	= 0
we obtain x2n−1 = g(w,E) with w = (x1, . . . , x2n−2). Here we assume (w,E) is in
a neighborhood of (0, E0), E0 = h(x0) = h(0). We obtain

dw

dτ
= f(w,E) , (A.2)

where f(w,E) = ((vh)1(w, g(w,E), 0), . . . , (vh)2n−2(w, g(w,E), 0)). The orbit of vh

along v corresponds to w = 0, E = E0 (in which case f(0, E0) = 0). If det(∂fi/
∂wj(0, E0)) 	= 0 there will be a smooth family of fixed points of (A.2), w = w(E),
in a neighborhood of E0 (with w(E0) = 0). This situation is analogous to the case
v(x, ξ) =

∑
xj∂xj discussed in Section 1 and we can define stability of orbits in M

in terms of the stability of the fixed points w(E). In practice one might want to
place the fixed point of (A.2) at the origin by an affine change of variables, cf. Sec-
tion 1. In any case one may check that for the model studied in Section 1 indeed
the systems (1.7) and (A.2) are smoothly equivalent systems (up to a conformal
factor). Notice that in this case we may choose S ⊂ Sn−1 × Rn, for example.

If a proof of absence of channels is contemplated along the lines carried out
in this paper, it is necessary that low order resonances do not occur at more than
a discrete set of energies. In particular, the equations (A.2) should not have a
Hamiltonian structure.
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The only place where the Hamiltonian nature of the equations appeared above
was where we used conservation of energy. To bring in the symplectic form ω we
introduce a more geometric condition which turns out to imply condition (2) above
(see Remark A.2 for an interpretation):

Lemma A.1. Fix an open set U ⊆M .

a. Suppose Lvω = αω in U for some α ∈ C∞(U). Suppose in addition that
vh = 0 in U . Then [v, vh] = −αvh in U .

b. Suppose v is nonzero in U and for any smooth function h on U satisfying
vh = 0 in a neighborhood of a point of U , v satisfies [v, vh] = −αvh in this
neighborhood. Then Lvω = αω in U .

Proof. We shall use the general relations dh(w) = ω(vh, w), [Lv, iw] = i[v,w] and
[Lw, d] = 0. Here iw represents interior product with w (see for example [4, p. 84]
or [3, p. 198]).

For (a) we compute in U

i[v,vh]ω = [Lv, ivh
]ω = Lvdh− ivh

αω = dLvh− iαvh
ω = i−αvh

ω .

Since ω is non-degenerate we conclude (a).
As for (b) we use the same computation to conclude that

ivh
(−Lvω + αω) = 0

in open subsets where vh = 0. Since v is nonzero there are sufficiently many choices
of h to conclude from this that indeed Lvω = αω. �

Remark A.2. By integrating the condition of Lemma A.1 (a), Lvω = αω, we obtain

(φv
t )∗ω = exp

(∫ t

0

α ◦ φv
sds

)
ω . (A.3)

In particular if Lvω = αω holds in M and φv
t is a global flow we see that the

diffeomorphisms φv
t preserve the family of Lagrangian manifolds.

Conversely one may readily prove that if φv
t is a global flow and the diffeo-

morphisms φv
t preserve the family of Lagrangian manifolds, then indeed Lvω = αω

for some smooth α.

We give two simple examples.

Example A.3. Consider the symbol h on R2 × R2, suitably regularized at singu-
larities,

h = h(x, ξ) =
1
2
(
x2 − aξ22

)−1
ξ2 ; a > 0 .

Let v(x, ξ) = 1
2

∑
(xj∂xj + ξj∂ξj ). Then the vector field v and the Hamiltonian

vector field vh fulfill the conditions (1)–(3) along the positive orbit of v originating
at (1 + 2E)−1/2(1, 0;

√
2E, 0), E > 0. Here we take the S in condition (1) to be
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a subset of the unit-sphere S3. Notice also that (φv
t )∗ω = exp(t)ω, and therefore

Lvω = ω. After linearizing the reduced flow (A.2) we find the eigenvalues

−
√

2E
(
1 ±√

1 + 4Ea
)
,

and we conclude that the family of fixed points consists of saddle points. Reso-
nances (of any fixed order) are discrete in (0,∞).

Example A.4. Consider the symbol h on (R2 \ {0}) × R2

h = h(x, ξ) =
1
2
(
x2

1 + bx2
2

)κ/2
ξ2 ; b > 0 , κ < 2 , κ(b− 1) < 0 .

We introduce s = 2/(2 − κ) and v =
∑

(sxj∂xj + (1 − s)ξj∂ξj ). The vector field v
and the Hamiltonian vector field vh fulfill the conditions (1)–(3) along the positive
orbit of v originating at (1, 0;

√
2E, 0), E > 0. Here we take S ⊂ {(x, ξ)|x1 = 1}.

We notice that the condition κ < 2 assures that the x-component of the flow φv
t

grows as t → ∞; whence there is no conflict with a regularization at x = 0.
(The fact that for κ ∈ (0, 2) the ξ-component decays is irrelevant.) We find the
eigenvalues for the linearized reduced flow to be given by

−2 − κ

4

√
2E

{
1 ±

√
1 − 8κ(b− 1)(2 − κ)−2

}
.

Since by assumption κ(b − 1) < 0 we conclude that the family of fixed points
consists of saddle points. For a “generic” set of parameters b and κ there are no
resonances (of any order).

We shall propose a formulation of the quantum problem corresponding to the
classical framework discussed above, and then relate it to Examples A.3 and A.4.

Let us strengthen the above conditions (1)-(3) as follows: We assume that
ε = ∞ in (1) so that K0 is two-sided invariant under the flow φv

τ , and furthermore
that the condition Lvω = αω of Lemma A.1 (a) holds in U = K0 (implying (2)
with β = −α and γ = 0). Suppose also that α > 0.

Under these conditions we may write

φv
τ(t,E0)

(x0) = φvh
t (x0) ;

dτ(t, E0)
dt

= exp

(

−
∫ τ(t,E0)

0

α ◦ φv
s(x0)ds

)

k(E0) ,

vh(x0) = k(E0)v(x0) , τ(0, E0) = 0 .

Notice that any maximal solution to this differential equation is defined at least
on a positive directed half-line (i.e., τ(t, E0) exists for all large t’s). Denoting by
x(E) ∈ S the fixed points for neighboring energies E ≈ E0 we have similar iden-
tities for the positive common orbits originating at x0 → x(E). Whence we may
look at localization of states in quantum mechanics in terms of Weyl quantization
of symbols of the form a(φv

−τ(t,h)) where a ∈ C∞
0 (U0). Notice that for the model

studied in the bulk of this paper this procedure is a slight modification of the one
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used in (1.10) and (1.11). In fact in this case we may take S ⊂ Sn−1 × Rn and
compute in terms of the function k = k(E) of (1.5)

τ = ln
(
tk(E) + 1

)

yielding
φv
−τ(t,h)(x, ξ) =

(
x/

(
tk(h) + 1

)
, ξ

)
; h = h(x, ξ) .

We need in this setting to replace

γ(I0) → γ(I0) =
{
x(E) =

(
ω(E), ξ(E)

)| E ∈ I0

}
.

There is also a way to interpret the first factor t−1 of (1.10): Using (A.3) we may
compute the Poisson bracket

{
h, a

(
φv
−τ(t,h)( · )

)}
= exp

(∫ −τ(t,h)

0

α ◦ φv
s( · )ds

)

{h, a}(φv
−τ(t,h)( · )

)
,

which indicates that the first factor to the right is a “Planck constant” (this in-
terpretation is supported by the requirement α > 0). Effectively it is equal to t−1

for this example. Whence a possible reformulation of the integral condition (1.10)
(suited for generalization) is
∫ ∞

1

‖bwt (x, p)ψ(t)‖2
dt <∞ for all a ∈ C∞

0

(U0 \ γ(I0)
)
; (A.4)

at(x, ξ) = a
(
φv
−τ(t,h)(x, ξ)

)
,

bt(x, ξ) = exp

(

2−1

∫ −τ(t,h)

0

α ◦ φv
s(x, ξ)ds

)

at(x, ξ) ,

γ(I0) =
{
x(E) | E ∈ I0

}
, ψ(t) = e−itHf(H)ψ , f ∈ C∞

0 (I0) .

The analogous statement of Theorem 1.2 in general would read:
For all a ∈ C∞

0 (U0) and all localized states ψ(t) = e−itHf(H)ψ, f ∈ C∞
0 (I0),

obeying (A.4) with I0 � E0 small enough
∥
∥aw

t (x, ξ)ψ(t)
∥
∥ → 0 for t→ ∞ . (A.5)

Now, for Examples A.3 and A.4 we may compute

φv
−τ(t,h)(x, ξ) =

(
t0/(t+ t0)

)1/2(x, ξ) ; t0 =
(
2
√

2h(1 + 2h)
)−1

, (A.6)

and

φv
−τ(t,h)(x, ξ) =

((
t

s
√

2h
+ 1

)−s

x,

(
t

s
√

2h
+ 1

)s−1

ξ

)
; s = 2/(2−κ) , (A.7)

respectively.
We may use the effective Planck constant t−1 like for the other example. In

conclusion, the somewhat complicated looking quantum condition (A.4) reduces
to simple explicit requirements. Similarly (A.5) reads in these cases

∥
∥
∥aw

((
t0(h)/t

)1/2(x, p)
)
ψ(t)

∥
∥
∥ → 0 for t→ ∞ (A.8)
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and
∥∥
∥aw

((
s
√

2h
)s
t−sx,

(
s
√

2h
)1−s

ts−1p
)
ψ(t)

∥∥
∥ → 0 for t→ ∞ , (A.9)

respectively.
We remark that (A.4), (A.6) (or (A.7)) and (A.8) (or (A.9)) apply literally

for Example A.3 (or Example A.4); the conclusion (A.8) (or (A.9)) for the states
considered may be reached using Theorem 1.2 after a symplectic change of variables
and invoking symplectic covariance:

Example A.5. Consider a smooth symbol h on (Rn \ {0})2 obeying one of the
homogeneity properties 1)

h(λx, λξ) = h(x, ξ) ; for all λ > 0 ,

or 2) for some κ2 	= 0 and some κ1 	= κ2

h(λ1x, λ2ξ) = λκ1
1 λκ2

2 h(x, ξ) ; for all λ1, λ2 > 0 .

For 2) the change of variables x = |y|sŷ = |y|s−1y, where s = κ2/(κ2 − κ1),
induces a symplectic map on (Rn \ {0})2. The Hamiltonian in the corresponding
new variables, denoted again by x and ξ, reads

h̃(x, ξ) = h
(
x̂, ξ + (s−1 − 1)〈x̂, ξ〉x̂) .

The same change of variables with s = 1
2 leads for 1) to a Hamiltonian of the same

form. In particular (1.1) holds (in both cases) for the new symbol h̃. Up to other
conditions we may therefore apply Theorem 1.2. Clearly Examples A.3 and A.4
are concrete examples. To stress the symplectic covariance let us note that indeed
v :=

∑
(sxj∂xj + (1 − s)ξj∂ξj ) → ṽ :=

∑
xj∂xj .

We give yet another example from Riemannian geometry.

Example A.6. Consider the symbol h on (R2 \ {0}) × R2

h = h(x, ξ) =
1
2
g−1ξ2 ,

where the conformal (inverse) metric factor is specified in polar coordinates x =
(r cos θ, r sin θ) as g−1 = ef ; f = f(θ−c ln r). We assume f is a given smooth non-
constant 2π-periodic function and that c > 0. We introduce v = (x1 − cx2)∂x1 +
(cx1 + x2)∂x2 − cξ2∂ξ1 + cξ1∂ξ2 . Computations show that v and the Hamiltonian
vector field vh fulfill the conditions (1)–(3) along the positive orbit of v originating
at (r0, 0; ρ0, cρ0); here ρ0 =

√
2E(1 + c2)−1e−f0 where f0 = f(θ0) is given in terms

of any r0 > 0 satisfying the equation

−f ′(θ0) = 2c(1 + c2)−1 ; θ0 = −c ln r0 , (A.10)

and E = h > 0 is arbitrary. (Notice that there are at least two solutions to (A.10)
for all small as well as for all large values of c.) The x-space part of the orbit (a
geodesic) is the logarithmic spiral given by the equation θ − c ln r = θ0. We take
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S ⊂ {(x, ξ)|x2 = 0} and compute the eigenvalues for the linearized reduced flow
to be given by

−ρ0
1
2

{
1 ±

√
1 − 2(1 + c2)2f ′′

0

}
; f ′′

0 = f ′′(θ0) . (A.11)

For f ′′
0 < 0 the family of fixed points consists of saddles. There are no resonances

for “generic” values of c, and we also notice that taking c→ 0 in (A.10) and (A.11)
yields the formulas for the corresponding homogeneous model (here the equations
are considered to be equations in c and θ0).

Finally, using the new angle θ̃ = θ − c ln r one may again conjugate to a
homogeneous model. More precisely the relevant symplectic change of variables is
induced (expressed here in terms of rectangular coordinates) by the map x→ x̃ =
(x1g1 + x2g2, x2g1 − x1g2), where g1 = cos(c ln |x|) and g2 = sin(c ln |x|). One may
check that v → ṽ :=

∑
xj∂xj , and that h→ h̃ given by

h̃ =
1
2
ef(θ)

({
(c sin θ + cos θ)ξ1 + (sin θ − c cos θ)ξ2

}2 + {− sin θξ1 + cos θξ2}2
)

;

we changed notation back to the old one, x = (r cos θ, r sin θ) for position and ξ
for momentum.

Remark A.7. Although we shall not elaborate, due to the general nature of the
method used in the bulk of this paper the method should be generalizable to ap-
ply to the quantum problem for Examples A.3, A.4 and A.6 (without changing
variables). We believe it would apply to the quantum problem for a variety of
other examples of the classical theory. However we have not pursued the outlined
general scheme for two reasons: 1) There are additional complications related to
the pseudodifferential calculus, cf. [19, Section 18]. The treatment of these com-
plications is somewhat cumbersome and does not add new insight to the problem.
2) The condition (A.4) has a certain global flavor in our opinion, whence it does
not entirely stand alone. For instance its verification in the context of proving
asymptotic completeness, cf. [6, 15, 18] and Section 8, relies on global information
on the dynamics.

To illustrate this point further let us look at Example A.4 in the case κ < 0
and b > 1. For the classical problem any orbit x(t) going to infinity will roughly
follow either the x1-axis or the x2-axis. As a first step of proving asymptotic com-
pleteness in Quantum Mechanics (for the regularized Hamiltonian) one may derive
estimates for states in the continuous subspace with roughly the same content, in
particular the bound (A.4). Due to the eigenvalue calculation of Example A.4
only the x2-axis is “stable” for the classical orbits. The corresponding statement
in Quantum Mechanics given by (A.9) then leads to the preliminary informa-
tion for asymptotic completeness, ‖x1/|x|ψ(t)‖ → 0 for t → ∞. Although the
dynamics of Example A.6 in general is more complicated than Example A.4 we
remark that the attractive spirals (cf. the eigenvalue calculation (A.11)) similarly
define non-trivial quantum channels. One can show in some cases, for example if
f ′(θ) + 2c(1 + c2)−1 ≤ 0 on an interval of length (1 + c2)π/2, that those channels
are the only occurring ones.
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[20] É. Mourre, Absence of singular continuous spectrum for certain self-adjoint opera-
tors, Commun. Math. Phys. 91 (1981), 391–408.



552 I. Herbst and E. Skibsted Ann. Henri Poincaré

[21] J. S. Møller, An abstract radiation condition and applications to N-body systems,
Rev. Math. Phys. 12 no. 5 (2000), 767–803.

[22] E. Nelson, Topics in dynamics I, Flows, Princeton U. Press and U. Tokyo Press,
Princeton, 1969.

[23] M. Reed, B. Simon, Fourier analysis, self-adjointness. Methods of modern mathe-
matical physics II, Academic Press, New York, 1975.

[24] E. Skibsted, Long-range scattering of three-body quantum systems, Asymptotic com-
pleteness, Invent. Math. 151 (2003), 65–99.

[25] E. Skibsted, Long-range scattering of three-body quantum systems, II, Ann. Henri
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