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Constructive φ4 Field Theory without Tears

Jacques Magnen and Vincent Rivasseau

Abstract. We propose to treat the φ4 Euclidean theory constructively in a
simpler way. Our method, based on a new kind of “loop vertex expansion”, no
longer requires the painful intermediate tool of cluster and Mayer expansions.

1. Introduction

Constructive field theory builds functions whose Taylor expansion is perturbative
field theory [15, 24]. Any formal power series being asymptotic to infinitely many
smooth functions, perturbative field theory alone does not give any well defined
mathematical recipe to compute to arbitrary accuracy any physical number, so in
a deep sense it is no theory at all.

In field theory “thermodynamic” or infinite volume quantities are expressed
by connected functions. One main advantage of perturbative field theory is that
connected functions are simply the sum of the connected Feynman graphs. But
the expansion diverges because there are too many such graphs. However to know
connectedness does not require the full knowledge of a Feynman graph (with all
its loop structure) but only the (classical) notion of a spanning tree in it. This
remark is at the core of the developments of constructive field theory, such as
cluster expansions, summarized in the constructive golden rule:

“Thou shall not know most of the loops, or thou shall diverge!”
Some time ago Fermionic constructive theory was quite radically simplified.

It was realized that it is possible to rearrange perturbation theory order by order
by grouping together pieces of Feynman graphs which share a common tree [1,
22]. This is made easily with the help of a universal combinatoric so-called forest
formula [2,5] which once and for all essentially solves the problem that a graph can
have many spanning trees. Indeed it splits any amplitude of any connected graph in
a certain number of pieces and attributes them in a “democratic” and “positivity
preserving” way between all its spanning trees. Of course the possibility for such
a rearrangement to lead to convergent resummation of Fermionic perturbation
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theory ultimately stems from the Pauli principle which is responsible for analyticity
of that expansion in the coupling constant.

Using this formalism Fermionic theory can now be manipulated at the con-
structive level almost as easily as at the “perturbative level to all orders”. It leads
to powerful mathematical physics theorems such as for instance those about the
behavior of interacting Fermions in 2 dimensions [8, 11, 25], and to more explicit
constructions [9] of just renormalizable Fermionic field theories such as the Gross–
Neveu model in two dimensions first built in [13, 14].

But Bosonic constructive theory remained awfully difficult. To compute the
thermodynamic functions, until today one needed to introduce two different ex-
pansions one of top of the other. The first one, based on a discretization of space
into a lattice of cubes which breaks the natural rotation invariance of the theory,
is called a cluster expansion. The result is a dilute lattice gas of clusters but with a
remaining hardcore interaction. Then a second expansion called Mayer expansion
removes the hardcore interaction. The same tree formula is used twice once for
the cluster and once for the Mayer expansion1, the breaking of rotation invariance
to compute rotation invariant quantities seems ad hoc and the generalization of
this technique to many renormalization group steps is considered so difficult that
despite courageous attempts towards a better, more explicit formalization [4,6], it
remains until now confined to a small circle of experts.

The Bosonic constructive theory cannot be simply rearranged in a convergent
series order by order as in the Fermionic case, because all graphs at a given order
have the same sign. Perturbation theory has zero convergence radius for bosons.
The oscillation which allows resummation (but only, e.g., in the Borel sense) of the
perturbation theory must take place between infinite families of graphs of different
orders. To explicitly identify such families and rearrange the perturbation theory
accordingly seemed until now very difficult. The cluster and Mayer expansion
perform this task but in a very complicated and indirect way.

In this paper we at last identify such infinite families of graphs. They give
rise to an explicit convergent expansion for the connected functions of Bosonic φ4

theory, without any lattice and cluster or Mayer expansion. In fact we stumbled
upon this new method by trying to adapt former cluster expansions to large ma-
trix φ4 models in order to extend constructive methods to non-commutative field
theory (see [26] for a recent review). The matrix version is described in a separate
publication [27]. Hopefully it should allow a non-perturbative construction of the
φ�4 theory on Moyal space R

4, whose renormalizable version was pioneered by
Grosse and Wulkenhaar [16].

2. The example of the pressure of φ4

We take as first example the construction of the pressure of φ4
4 in a renormalization

group (RG) slice. The goal is, e.g., to prove its Borel summability in the coupling

1It is possible to combine both expansions into a single one [3], but the result cannot be considered
a true simplification.
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constant uniformly in the slice index, without using any lattice (breaking Euclidean
invariance) nor any cluster or Mayer expansion.

The propagator in a RG slice j is, e.g.,

Cj(x, y) =
∫ M−2j+2

M−2j

e−αm2
e−(x−y)2/4αα−2dα ≤ KM2je−cMj |x−y| (1)

where M is a constant defining the size of the RG slices, and K and c from now on
are generic names for inessential constants, respectively large and small. We could
also use compact support cutoffs in momentum space to define the RG slices.

Consider a local interaction λ
∫

φ4(x)d4x = λTrφ4 where the trace means
spatial integration. For the moment assume the coupling λ to be real positive and
small. We decompose the φ4 functional integral according to an intermediate field
as: ∫

dμCj (φ)e−λTrφ4
=

∫
dν(σ)e−

1
2 Tr log(1+iH) (2)

where dν is the ultralocal measure on σ with covariance δ(x − y), and H =
23/2λ1/2DjσDj is an Hermitian operator, with Dj = C

1/2
j .

The pressure is known to be the Borel sum of all the connected vacuum
graphs with a particular root vertex fixed at the origin. We want to prove this
through a new method.

We define the loop vertex 2 V = − 1
2Tr log(1 + iH). This loop vertex can be

pictured as in the left hand side of Figure 1. The trace means integration over a
“root” x0. Cyclic invariance means that this root can be moved everywhere over
the loop. It is convenient to also introduce an arrow, by convention always turning
counterclockwise for a +iH convention, and anti-clockwise for a complex conjugate
loop vertex V̄ = − 1

2Tr log(1 − iH).
We then expand the exponential as

∑
n

V n

n! . To compute the connected graphs
we give a (fictitious) index v, v = 1, . . . , n to all the σ fields of a given loop
vertex Vv. This means that we consider n different copies σv of σ with a degenerate
Gaussian measure dν({σv}) whose covariance is 〈σvσv′〉ν = δ(x−y). The functional
integral over dν(σ) is equal to the functional integral over dν({σv}). We apply then
the forest formula of [2] to test connexions between the loop vertices from 1 to n.
(The lines of this forest, which join loop vertices correspond to former φ4 vertices.)

The logarithm of the partition function log Z(Λ) at finite volume Λ is given
by this formula restricted to trees (like in the Fermionic case [1]), and spatial
integration restricted to Λ. The pressure or infinite volume limit of log Z(Λ)

|Λ| is
given by the same rooted tree formula but with one particular position fixed at
the origin, for instance the position associated to a particular root line �0. More
precisely:

2To avoid any confusion with the former φ4 vertices we shall not omit the word loop.
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Figure 1. Loop vertices and a tree on them.

Theorem 2.1.

lim
Λ→R4

log Z(Λ)
|Λ| =

∞∑
n=1

1
n!

∑
T

{∏
�∈T

[∫ 1

0

dw�

]}
GT (σ, x�0 )|x�0=0 (3)

GT (σ, x�0) =
∏
�∈T

∫
d4x�d

4y�

∫
dνT

({σv}, {w})
{∏

�∈T

[
δ(x� − y�)

δ

δσv(�)(x�)
δ

δσv′(�)(y�)

]} ∏
v

Vv , (4)

where
• each line � of the tree joins two different vertices Vv(�) and Vv′(�) at point x�

and y�, which are identified through the function δ(x� − y�) (since the covari-
ance of σ is ultralocal),

• the sum is over rooted trees over n vertices, which have therefore n− 1 lines,
with root �0,

• the normalized Gaussian measure dνT ({σv}, {w}) over the vector field σv has
covariance

〈σv, σv′ 〉 = δ(x − y)wT
(
v, v′, {w})

where wT (v, v′, {w}) is 1 if v = v′, and the infimum of the w� for � running
over the unique path from v to v′ in T if v �= v′. This measure is well-defined
because the matrix wT is positive.

Proof (sketched). This is the outcome of the universal tree formula of [2] in this
case. To explicit further this formula, consider a loop vertex Vv of coordination kv

in the tree, and let us compute more explicitly the outcome of the kv derivatives∏kv

i=1
δ

δσ(xi)
acting on

V = −1
2
Tr log(1 + iH)

which created this loop vertex.
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Consider the operator

Cj(σ) = Dj
1

1 + iH
Dj . (5)

Calling x1 the root position for the loop vertex Vv, that is the unique position
from which a path goes to the root of T , the loop vertex factor Vv after action of
the derivatives is[

kv∏
i=1

δ

δσ(xi)

]
Vv =

1
2
(−i

√
λ)kv

∑
τ

kv∏
i=1

Cj(σ, xτ(i), xτ(i+1)) (6)

where the sum is over all permutations τ of [2, . . . , k], completed by τ(1) = τ(k +
1) = 1.

To check it, we need only to move by cyclicity the local root of each loop
nearest to the global root in the tree. This global root point is chosen for simplicity
in formulas above at a particular root line �0, but in fact it could be fixed anywhere
in an arbitrarily chosen “root loop”, as shown on the right hand side of Figure 1
(with all loops oriented counterclockwise). �

There is another representation of the same object. A tree on connecting loops
such as the one shown in the right hand side of Figure 1 can also be drawn as a set
of dotted lines dividing in a planar way a single loop as in Figure 2. Each dotted
line carries a δ(x� − y�) function which identifies pairs of points on the border
of the loop joined by the dotted line, and is equipped with a coupling constant,
because it corresponds to an old φ4 vertex. This second picture is obtained by
turning around the tree. The pressure corresponds to the sum over such planar
partitions of a single big loop with an arbitrary root point fixed at the origin. The
corresponding interpolated measure dν can be described also very simply in this
picture. There is now a σv field copy for every domain v inside the big loop, a w
parameter for each dotted line, and the covariance of two σv and σv′ fields is the
ordinary δ function covariance multiplied by a weakening parameter which is the
infimum of the w parameters of the dotted lines one has to cross to go from v
to v′. The counterclockwise orientation of the big loop corresponds to the +iH
convention.

In this new picture we see indeed many loops. . . but the golden rule is not
violated. In this new representation it simply translates into

“Thou shall see only planar (or genus-bounded) structures. . . ”
(Recall that genus-bounded graphs are not many and don’t make perturba-

tion theory diverge.)
Let us prove now that the right hand side of formula (3) is convergent as

series in n.

Theorem 2.2. The series (3) is absolutely convergent for λ small enough, and the
sum is bounded by K|λ|M4j, where K is some constant.

Proof. To bound the integrals over all positions except the root, we proceed by
induction along the tree, starting from the leaves and working towards the root.
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Figure 2. The big loop representation.

For n = 1, that is for the empty tree corresponding to a single loop vertex, we
remark that H at σ = 0 being 0, hence log(1 + iH)|σ=0 = log 1 = 0, we can
perturb a first σ out of the Tr log(1+ iH) and Wick contract it. In this way we get
a contribution with one vertex and two loops, similar to the contribution at n = 2
where the tree has exactly one line (except that there is no w parameter. . . ). In
this way our induction can really start from n = 2.

The first step of the induction is a bound on a single loop or “leaf” uniform
in the position x of the root of that leaf:

Lemma 2.1. There exists K such that for any x and any v

|Cj(σv)(x, x)| ≤ KM2j ∀σv . (7)

Since iH is anti-hermitian we have ‖(1 + iH)−1‖ ≤ 1. It is obvious from (1)
that ‖Cj‖ ≤ KM−2j, hence ‖Dj‖ ≤ KM−j. We have

[
Cj(σv)

]
(x, x) =

∫
dydzDj(x, y)A(y, z)Dj(z, x) = 〈f, Af〉 (8)

for f = Dj(x, .) and A = (1+ iH)−1. The norm of the operator A is bounded by 1.
Since ‖f‖2 ≤ KM2j, the result follows. �

Remark that by combining the single coupling constant with two bounds M2j

of this type for the two leaves, we get the theorem for n = 2 (and also for n = 1
by the remark above).

We now consider a subgraph of the tree, obtained by cutting a particular
branch B at some place above the root, containing n ≥ 1 loop vertices. This
branch has a root at a point called x. We assume as our induction hypothesis a
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bound similar to (7) for the amplitude IB(x, x) of that branch. It reads:

|IB(x, x)| ≤ |λK|n−1M2j ∀σ . (9)

Then we prove the same bound for a branch with n+1 loop vertices which can be
seen as a root loop with root x0 with k branches B1, . . . , Bk (of order n1, . . . nk)
inserted at x1, . . . xk along the loop. We now use the induction hypothesis on these
branches and the fact that the bound (9) is uniform in x to deduce that the multi-
plication operator MIBi in x space (with diagonal coefficients IBi (x, x)) is bounded
in norm by |λK|ni−1M2j . This is the essential point. But the root loop corresponds
to 〈f, A1DjMIB1DjA2DjMIB1Dj . . . DjMIBk

DjAk+1f〉. Inserting the uniform
norm bounds on the operators along the loop (and taking into account the correct
number of coupling constants) proves the bounds at order n + 1 for that bigger
branch.

Remark however that when we complete the tree, the last root is common to
two branches. Multiplying the two corresponding M2j factors gives a M4j global n
independent factor, as should be the case for vacuum graphs in the φ4 theory in a
single RG slice.

To conclude the proof of the theorem the reader may worry about the combi-
natoric of trees and the w integrals. But we can integrate the previous bound over
the complicated measure dνT and over the {w�} parameters. But since our bound
is independent of σv, since the measure dν(σ) is normalized, and since each w�

runs from 0 to 1, this does not change the result.
Finally by Cayley’s theorem the sum over trees costs n!∏

v(kv−1)! . The n! cancels
with the 1/n! of (3) and the 1/(kv − 1)! factors compensate for the sums over
permutations τ in (6), which have exactly

∏
v(kv − 1)! elements. It remains a

geometric series bounded by 1
2M4j(λK)n−1 hence convergent for small λ, and the

sum is bounded by K.M4j . �

3. Uniform Borel summability

Rotating to complex λ and Taylor expanding out a fixed number of φ4 vertices
proves Borel summability in λ uniformly in j.

Definition. A family fj of functions is called Borel summable in λ uniformly in j
if

• Each fj is analytic in a disk DR = {λ|Re λ−1 > 1/R};
• Each fj admits an asymptotic power series

∑
k aj,kλk (its Taylor series at

the origin) hence:

fj(λ) =
r−1∑
k=0

aj,kλk + Rj,r(λ) (10)

such that the bound

|Rr,j(λ)| ≤ Ajρ
rr!|λ|r (11)
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holds uniformly in r and λ ∈ DR, for some constant ρ ≥ 0 independent of j
and constants Aj ≥ 0 which may depend on j.

Then every fj is Borel summable [29], i.e., the power series
∑

k aj,k
tk

k! con-
verges for |t| < 1/ρ, it defines a function Bj(t) which has an analytic continuation
in the j independent strip Sρ = {t| dist (t, R+) < 1/ρ}. Each such function satisfies
the bound

|Bj(t)| ≤ Bje
t
R for t ∈ R

+ (12)

for some constants Bj ≥ 0 which may depend on j. Finally each fj is represented
by the following absolutely convergent integral:

fj(λ) =
1
λ

∫ ∞

0

e−
t
λ Bj(t)dt for λ ∈ CR. (13)

Theorem 3.1. The series for the pressure is uniformly Borel summable with respect
to the slice index.

Proof. It is easy to obtain uniform analyticity for Reλ > 0 and |λ| small enough, a
region which obviously contains a disk DR. Indeed all one has to do is to reproduce
the previous argument but adding that for H Hermitian, the operator (1+ieiθH)−1

is bounded by
√

2 for |θ| ≤ π/4. Indeed if π/4 ≤ Argz ≤ 3π/4, we have |(1 +
iz)−1| ≤ √

2.
Then the uniform bounds (11) follow from expanding the product of resol-

vents in (6) up to order r−2(n−1) in λ by an explicit Taylor formula with integral
remainder followed by explicit Wick contractions. The sum over the contractions
leads to the ρrr! factor in (11). �

4. Connected functions and their decay

To obtain the connected functions with external legs we need to add resolvents
to the initial loop vertices. A resolvent is an operator Cj(σr, x, y). The connected
functions Sc(x1, . . . , x2p) are obtained from the normalized functions by the stan-
dard procedure. We have the analog of formula (3) for these connected functions:

Theorem 4.1.

Sc(x1, . . . , x2p) =
∑

π

∞∑
n=0

1
n!

∑
T

{∏
�∈T

[∫ 1

0

dw�

∫
d4x�d

4y�

]}

∫
dνT ({σv}, {σr}, {w})

{∏
�∈T

[
δ(x� − y�)

δ

δσv(�)(x�)
δ

δσv′(�)(y�)

]}

∏
v

Vv

p∏
r=1

Cj(σr , xπ(r,1), xπ(r,2)) , (14)

where
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• the sum over π runs over the pairings of the 2p external variables into pairs
(xπ(r,1), xπ(r,2)), r = 1, . . . , p,

• each line � of the tree joins two different loop vertices or resolvents Vv(�) and
Vv′(�) at point x� and y�, which are identified through the function δ(x� − y�)
because the covariance of σ is ultralocal,

• the sum is over trees joining the n + p loop vertices and resolvents, which
have therefore n + p − 1 lines,

• the measure dνT ({σv}, {σr}, {w}) over the {σ} fields has covariance

〈σα, σα′〉 = δ(x − y)wT
(
α, α′, {w})

where wT (α, α′, {w}) is 1 if α = α′ (where α, α′ ∈ {v}, {r}), and the infimum
of the w� for � running over the unique path from α to α′ in T if α �= α′.
This measure is well-defined because the matrix wT is positive.

Now we want to prove not only convergence of this expansion but also scaled
tree decay between external arguments:

Theorem 4.2. The series (14) is absolutely convergent for λ small enough, its sum
is uniformly Borel summable in λ and we have:

|Sc(z1, . . . , z2p)| ≤ (2p)!Kp|λ|p−1M2pje−cMjd(z1,...,z2p) (15)

where d(z1, . . . , z2p) is the length of the shortest tree which connects all the points
z1, . . . , zp.

The proof of convergence (and of uniform Borel summability) is similar to the
one for the pressure. We shall provide only a sketch of this proof and in particular
we do not take care of listing all different constants K ′ that occur in the induction
below. These constants K ′ do not build up into a problem for the proof because
each can be paired with a fractional power of a different coupling constant.

The tree decay (15) is well known and standard to establish through the
traditional cluster and Mayer expansion. It is due to the existence of a tree of Cj

propagators between external points in any connected function. In the present
expansion, this tree is hidden in the resolvents and loop vertices, so that an ex-
pansion on these resolvents (and loop vertices) is necessary in one form or another
to prove (15). It does not seem to follow from bounds on operator norms only: the
integral over the σ field has to be bounded more carefully.

The standard procedure to keep resolvent expansions convergent is a so-called
large/small field expansion on σ. In the region where σ is small the resolvent
expansion converges. In the large field region there are small probabilistic factors
coming from the dνT measure. This is further sketched in Subsection 5.2.

However the large/small field expansion again requires a discretization of
space into a lattice: a battery of large/small field tests is performed, on the average
of the field σ over each cube of the lattice. We prefer to provide a new and different
proof of (15). It relies on a single resolvent step followed by integration by parts,
to establish a Fredholm inequality on the modulus square of the 2p point function.
From this Fredholm inequality the desired decay follows easily. The rest of this
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Figure 4. The half-circle representation of Figure 3.

section is devoted to the proof of (15) in the simplest case p = 1. The most general
case is sketched in Subsection 5.1.

The two point function Sc is simply called S(x, y) from now on, and for p = 1
(15) reduces to

|S(x, y)| ≤ KM2je−cMj|x−y| . (16)

We work with n, T and {w} fixed in (14). We use the resolvent as root for T ,
from which grow q subtrees T1, . . . , Tq. In more pictorial terms, (14) represents a
chain of resolvents from x to y separated by insertions of q subtrees. Figure 3 is
therefore the analog of Figure 1 in this context3.

A representation similar to the big loop of Figure 2 pictures the decorated
resolvent as a half-circle going from x to y, together with a set of planar dotted lines
for the vertices. The +i convention again corresponds to a particular orientation.
For reason which should become clear below, we picture the planar dotted lines
all on the same side of the x-y line, hence inside the half-disk.

To each such drawing, or graph G, there is an associated Gaussian measure
dνG which is the one from which the drawing came as a tree. Hence it has a field
copy associated to each planar region of the picture, a weakening parameter w
associated to each dotted line, and the covariance between the σ fields of different
regions is given by the infimum over the parameters of the dotted lines that one
has to cross to join these two regions.

3A similar figure is a starting point for the 1PI expansion of the self-energy in [8, 25].
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There is also for each such G an amplitude. Let us write simply
∫

dνG for the
normalized integral

∫ 1

0

∏
�∈G dw�

∫
dνG({σ}, {w}). If the graph has n dotted lines

hence 2n + 1 resolvents from x to y, its amplitude is

AG(x, y) = λn

∫
dνG

∫ [∏
�∈G

d4x�

]
2n+1∏
i=1

Cj(σi, xi−1, xi) (17)

where the product over � runs over the dotted lines and the product over i runs
over the resolvents along the half-circle, with x0 = x and x2n+1 = y. In (17) σi is
the field copy of the region just before point xi and the 2n positions x1, . . . , x2n are
equal in pairs to the n corresponding x�’s according to the pairings of the dotted
lines.

We shall prove

Lemma 4.1. There exists some constant K such that for λ small enough

sup
G,n(G)=n

|AG(x, y)| ≤ (|λ|K)n/2M2je−cMj |x−y| . (18)

From this lemma (16) obviously follows. Indeed the remaining sum over Cay-
ley trees costs at most Knn!, which is compensated by the 1/n! in (14). In the
language of planar graphs the planar dotted lines cost only Kn. Hence the sum
over n converges for λ small enough because of the |λ|n/2 factor in (18). Remark
that this factor |λ|n/2 is not optimal; |λ|n is expected; but it is convenient to use
half of the coupling constants for auxiliary sums below.

We apply a Schwarz inequality to |AG(x, y)|2, relatively to the normalized
measure dνG:

|AG(x, y)|2 ≤ AG∪Ḡ(x, y) , (19)

AG∪Ḡ(x, y) = |λ|2n

∫
dνG

∫ [∏
�∈G

d4x�d
4x̄�

]

2n+1∏
i=1

Cj(σi, xi−1, xi)C̄j(σi, x̄i−1, x̄i) (20)

with hopefully straightforward notations.
The quantity on the right hand side is now pointwise positive for any σ.

It can be considered as the amplitude AG∪Ḡ(x, y) associated to a mirror graph
G∪ Ḡ. Such a mirror graph is represented by a full disk, with x and y diametrally
opposite, and no dotted line crossing the corresponding diameter. The upper half-
circle represents the complex conjugate of the lower part. Hence the upper half-disk
is exactly the mirror of the lower half-disk, with orientation reversed, see Figure 5.

The Gaussian measure associated to such a mirror graph remains that of G,
hence it has a single weakening w parameter for each dotted line and its mirror
line, and it has a single copy of a σ field for each pair made of a region of the
disk and its mirror region. Let’s call such a pair a “mirror region”. The covariance
between two fields belonging to two mirror regions is again the infimum of the w
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Figure 5. The mirror graph G ∪ Ḡ for the graph G of Figure 4.

parameters crossed from one region to the other, but, e.g., staying entirely in the
lower half-disk (or the upper half-disk).

We shall now perform a single resolvent expansion step and integration by
parts, together with a bound which reproduces an amplitude similar to AG∪Ḡ.
The problem is that the category of mirror graphs is not exactly stable in this
operation; this bound generates other graphs with “vertical” dotted lines between
the lower and upper half of the circle. To prove our bound inductively we need
therefore to generalize slightly the class of mirror graphs and their associated
Gaussian measures to a larger category of graphs G ∪ Ḡ ∪ V , called generalized
mirror graphs or GM graphs and pictured in Figure 6. They are identical to mirror
graphs except that they can have in addition a certain set V of “vertical” dotted
lines between the lower and upper half of the circle, again without any crossing.

There is a corresponding measure dνG,V with similar rules; there is a single w
parameter for each pair of dotted line and its mirror, in particular there is a w
parameter for each vertical line. Again the covariance between two fields belonging
to two mirror regions is the infimum of the w parameters crossed from one mirror
region to the other, staying entirely in, e.g., the lower half-disk. The upper half-
part is still the complex conjugate of the lower half-part. The order of a GM graph
is again the total number L = 2n + |V | of dotted lines and its amplitude is given
by a pointwise positive integral similar to (20):

AG∪Ḡ∪V (x, y) = |λ|L
∫

dνG∪V

∫ [∏
�∈G

d4x�d
4x̄�

][∏
�∈V

dy�

]

2n+|V |+1∏
i=1

Cj(σi, zi−1, zi)C̄j(σi, z̄i−1, z̄i) , (21)
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Figure 6. The generalized mirror graphs.

where the z’s and z̄’s are either x�’s, x̄�’s or y�’s according to the graph.
Defining the integrand IG∪Ḡ∪V (x, y) of a GM graph so that AG∪Ḡ∪V (x, y) =∫

dνG∪V IG∪Ḡ∪V (x, y), we have:

Lemma 4.2. For any GM graph we have, uniformly in σ, x and y:

IG∪Ḡ∪V (x, y) ≤ (K|λ|)LM4j . (22)

Indeed the quantity IG∪Ḡ∪V (x, y) is exactly the same as the amplitude of
a pressure graph but with two fixed points and some propagators replaced by
complex conjugates, hence the proof through the norm estimates of Lemma 2.1 is
almost identical to the one of Theorem 2.2.

We now write the resolvent step which results in an integral Fredholm in-
equality for the supremum of the amplitudes of any generalized mirror graph.

Let us define the quantity

ΓL(x, y) = sup
GM graphs G,V | L(G)=L

|λ|−L/2AG∪Ḡ∪V (x, y) . (23)

We shall prove by induction on L:

Lemma 4.3. There exists some constant K such that for λ small enough

ΓL(x, y) ≤ KM4j

(
e−cMj |x−y| + |λ|1/2

∫
dze−cMj|x−z|ΓL(z, y)

)
. (24)

From that lemma indeed obviously follows
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Lemma 4.4. There exists some constant K such that for λ small enough

ΓL(x, y) ≤ KM4je−cMj|x−y| . (25)

Indeed iterating the integral Fredholm equation (24) leads obviously to (25).
Taking (21) and (23) into account to reinstall the λL/2 factor, considering

the equation L = 2n + V and taking a square root because of (19), Lemma 4.1 is
then nothing but Lemma 4.4 for the particular case V = 0.

The rest of this section is therefore devoted to the proof of Lemma 4.3, by a
simple induction on L.

If L = 0, Γ0(x, y) =
∫

dνCj(σ, x, y, )C̄j(σ, x, y, ). Expanding the Cj(σ, x, y)
propagator, we get

Γ0(x, y) =
∫

dν

[
Cj(x, y) − i

√
λ

∫
dzCj(x, z)σ(z)Cj(σ, z, y)

]
C̄j(σ, x, y) . (26)

For the first term | ∫ dνCj(x, y)C̄j(σ, x, y)|, we simply use bounds (1) and (22) in
the case L = 0. For the second term we Wick contract the σ field (i.e., integrate
by parts over σ). There are two subcases: the Wick contraction δ

δσ hits either
Cj(σ, z, y) or C̄j(σ, x, y). We then apply the inequality

|ABC| ≤ A

2
(M2j |B|2 + M−2j |C|2) , (27)

which is valid for any positive A. In the first subcase we take A =
∫

dzCj(x, z),
B = Cj(σ, z, y) and C = Cj(σ, z, z)C̄j(σ, x, y), hence write

∣∣∣∣
∫

dzCj(x, z)Cj(σ, z, z)Cj(σ, z, y)C̄j(σ, x, y)
∣∣∣∣

≤
∫

dz
Cj(x, z)

2
[
M2j |Cj(σ, z, y)|2 + M−2j|Cj(σ, z, z)C̄j(σ, x, y)|2] (28)

and in the second subcase we write similarly
∣∣∣∣
∫

dzCj(x, z)Cj(σ, z, y)C̄j(σ, x, z)C̄j(σ, z, y)
∣∣∣∣

≤
∫

dz
Cj(x, z)

2
[
M2j |Cj(σ, z, y)|2 + M−2j |C̄j(σ, x, z)C̄j(σ, z, y)|2] . (29)

Using the uniform bound (22) on the “trapped loop” |Cj(σ, z, z)|2 or |C̄j(σ, x, z)|2
in the C term we obtain

Γ0(x, y) ≤ KM4je−cMj |x−y| + |λ|K
(

Γ0(x, y)

+ M4j

∫
dze−cMj|x−z|Γ0(z, y)

)
(30)

so that (24) hence Lemmas 4.3 and 4.4 hold for L = 0.
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We now assume that (24), hence also (25), is true up to order L and we want
to prove (24) at order L + 1. Consider a GM graph of order L + 1. If V ≥ 1 we
can decompose it as a convolution of smaller GM graphs:

AG∪Ḡ∪V (x, y) = λ

∫
dy1AG1∪Ḡ1

(x, y1)AG2∪Ḡ2∪V2
(y1, y) (31)

with total orders L1 for G1 and L2 for G2, V2 = V − {1} strictly smaller than
L + 1. Applying the induction hypothesis (25) to these smaller GM graphs we get
directly that

sup
G,V |L(G∪Ḡ∪V )=L+1,V >0

|λ|−(L+1)/2AG∪Ḡ∪V (x, y) ≤ KM4je−cMj |x−y| . (32)

Hence we have now only to prove (24) for mirror graphs with V = ∅. Consider
now such a mirror graph G. Because of the |λ|−L/2 in (23), we should remember
that we have only a remaining factor |λ|L/2 to use for our bounds on ΓL.

Starting at x we simply expand the first resolvent propagator Cj(σ, x, x1) as
Cj(x, x1) −

∫
dzCj(x, z)i

√
λσ(z)Cj(σ, z, x1).

For the first term we call xi1 the point to which x1 is linked by a dotted line
and apply a Schwarz inequality of the (27) type, with:

A =
∫

dx1Cj(x, x1) , (33)

B =
∫ ∏

i1+1≤i≤2n

dxi

∏
i1+1≤i≤2n+1

Cj(σ, xi−1, xi) ,

C =
∫ ∏

2≤i≤i1−1

dxi

∏
2≤i≤i1

Cj(σ, xi−1, xi)
2n∏
i=1

dx̄i

∏
1≤i≤2n+1

C̄j(σ, x̄i−1, x̄i) .

It leads, using again the norm bounds of type (22) on the “trapped loop” in the
first part of C, to a bound

|λ|1/2K

(
ΓL(x, y) + M4j

∫
dx1e

−cMj|x−x1|Γr(x1, y)
)

(34)

for some r < L. Applying the induction hypothesis concludes to the bound (24).
Finally for the second term we Wick contract again the σ field. There are

again two subcases: the Wick contraction δ
δσ hits either a Cj or a C̄j . Let us

call i the number of half-lines, either on the upper or on the lower circles, which
are inside the Wick contraction, and xi1 , . . . xik

or x̄i1 , . . . x̄ik
the positions of the

dotted lines crossed by the Wick contraction.
We have now two additional difficulties compared to the L = 0 case:

• we have to sum over where the Wick contraction hits, hence sum over i
(because the Wick contraction creates a loop, hence potentially dangerous
combinatoric). The solution is that the norm bound on the “trapped loop”
in the C term of (27) erases more and more coupling constants as the loop
gets longer: this easily pays for choosing the Wick contraction.
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Figure 7. The Wick contraction.

• the dotted lines crossed by the Wick contraction should be kept in the A
term in inequality (27). In other words they become vertical lines at the next
step, even if no vertical line was present in the initial graph. This is why we
had to extend our induction to the category of GM graphs. This extension is
what solves this difficulty.

We decompose the amplitude of the graph in the first subcase of Figure 7 as
∑

i

∫
dzdxi1 , . . . dxik

Cj(x, z)TLxi1 ,...xik
(z, z)Rxi1 ,...xik

(z, y)S̄(x, y) (35)

with hopefully straightforward notations, and we apply the Schwarz inequality
(27), with:

A = |λ|i/8
∑

i

∫
dzdxi1 , . . . dxik

∫
Cj(x, z) ,

B = Rxi1 ,...xik
(z, y) ,

C = |λ|−i/8TLxi1 ,...xik
(z, z)S̄(x, y) . (36)

Now the first remark is that i|λ|i/8 is bounded by K for small λ so we need
only to find a uniform bound at fixed i.

The A|B|2 is a convolution of an explicit propagator bounded by (1) with a
new GM graph (with vertical lines which are the crossed lines at xi1 , . . . xik

) either
identical to G or shorter. If it is shorter we apply the induction hypothesis. If it
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Figure 8. A connected 4 point function.

is not shorter we obtain a convolution equation term like in the right hand side
of (24).

The A|C|2 contains a trapped loop TL with i vertices. Each half-vertex of
the trapped loop has only |λ|1/8 because of the |λ|−i/8 factor in (36). The trapped
loop is again of the GM nature with vertical lines which are the crossed lines at
xi1 , . . . xik

. But we can still apply the bound (22) to this trapped loop. Therefore
the bound on the sum of the A|B|2 and A|C|2 is again of the type (34).

Finally the second subcase where the Wick contraction δ
δσ hits a C̄j , is ex-

actly similar, except that the “almost trapped loop” is now something of the type
T̄L(x, z) rather than TL(z, z), but the bound (22) also covers this case, so that
everything goes through.

Collecting the bounds (34) in every case completes the proof of Lemmas 4.3
and 4.4 for ΓL+1. This concludes the proof of Lemmas 4.3 and 4.4 for all L.

5. Further topics

5.1. Higher functions

The analysis of 2p point functions is similar to that of the previous section. The
general 2p point function Sc(x1, . . . , x2p) defined by (14) contains p resolvents of
the Cj(σ) type and a certain number of loop vertices joining or decorating them.
Turning around the tree we can still identify the drawing as a set of decorated
resolvents joined by local vertices or dotted lines as in Figures 8 and 9, which are
the analogs of Figures 3 and 4. This is because any chain of loop vertices joining
resolvents can be “absorbed” into decorations of one of these resolvents.

The factor 2p! in (15) can be understood as a first factor 2p!! to choose the
pairing of the points in p resolvents and an other p! for the choice of the tree
of connecting loop vertices between them. We can again bound each term of the
initial expansion by a “mirror” term pointwise positive in σ with p disks as shown
in Figure 10.

A Lemma similar to Lemma 4.1 is again proved by a bound on generalized
mirror graphs such as Figure 10 but with additional vertical lines between the p
disks. This bound is proved inductively by a single resolvent step followed by a
Fredholm bound similar to Lemmas 4.3 and 4.4. Verifications are left to the reader.
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Figure 9. The “half-disk” representation of that connected 4
point function.
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Figure 10. The mirror representation of the same connected 4
point function.

5.2. Large/small field expansion

To prove the tree decay of the 2p-point connected functions as external arguments
are pulled apart, it is possible to replace the Fredholm inequality of the previous
section by a so-called large/small field expansion. It still relies on a resolvent ex-
pansion, but integration by parts is replaced by a probabilistic analysis over σ. We
recall only the main idea, as this expansion is explained in detail in [4,20] but also
in a very large number of other publications.

A lattice D of cubes of side M−j is introduced and the expansion is

1 =
∏

Δ∈D

{
χ

(∫
Δ

M4j |λ|εσ2(x)dx

)
+

[
1 − χ

(∫
Δ

M4j|λ|εσ2(x)dx

)]}
(37)

where χ is a compact support function (eventually smooth).
The small field region S is the union of all the cubes for which the χ factor

has been chosen. The complement, called the large field region L, is decomposed as
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the union of connected pieces Lk. Every large field region has a small probabilistic
factor for each of its cube using, e.g., some standard Tchebycheff inequality.

The field is decomposed according to its localization as σ = σS +
∑

k σLk
.

Then the resolvent Cj(σ, x, y) is simply bounded in norm if x and y belong to the
same Lk region because the decay is provided by the probabilistic factor associated
to Lk.

The σS piece is expanded according to resolvent formulas such as

Cj(σS , x, y) = Cj(x, y) − i
√

λ

∫
dzCj(x, z)σS(z)Cj(σS , z, y) , (38)

which can be pushed to infinity because the σS field is not integrated with the
Gaussian measure but bounded with the help of the small field conditions.

Then inside each connected large field region Lk the resolvent Cj(σLk
, x, y)

is simply bounded in norm. The decay is provided by the probabilistic factor
associated to Lk. Between different connected large field regions, the decay is
provided by the small field resolvent expansion.

However one advantage of the loop expansion presented in this paper is to
avoid the need of any lattice of cubes for cluster/Mayer expansions. If possible, it
seems better to us to avoid reintroducing the lattice of cubes for the small/large
field analysis.

5.3. Multiscale expansions

The result presented in this paper for a single scale Bosonic model should be
extended to a multiscale analysis. This means that every loop-vertex or resolvent
should carry a scale index j which represents the lowest scale which appears in that
loop or resolvent. Then we know that the forest formula used in this paper should
be replaced by a so-called “jungle” formula [2] which is nothing but a multiforest
formula in which links are built preferentially between loop vertices and resolvents
of highest possible index.

This jungle formula is to be completed with a “vertical” expansion which
tests whether connected contributions of higher scales have less or more than four
external lower legs. A renormalization expansion then extracts the local parts of
such two and four point contributions and hides them into effective couplings. This
would provide a new completely explicit Bosonic renormalization-group-resummed
expansion, which in contrast with [4] would avoid any cluster and Mayer expansion.

The expansion could be completed by auxiliary resolvent expansions, either
with integration by parts in the manner of Section 4 or with a small/large field
analysis as in Subsection 5.2 above. This is necessary to establish scaled spatial
decay, which in turn is crucial to prove that the renormalized two and four point
contributions are small. But these new auxiliary expansions shall be used only to
prove the desired bounds, not to define the expansion itself.

5.4. Vector models

The method presented here is especially suited to the treatment of large N vector
models. Indeed we can decompose a vector φ4 interaction with an intermediate
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scalar field so that the flow of vector indices occur within the loop-vertices. Every
loop vertex simply carries therefore a global N factor where N is the number of
colors. Hence we expect that the loop expansion presented here is the right tool
to glue different regimes of the renormalization group governed respectively, e.g.,
in the ultraviolet regime by a small coupling expansion and in the infrared by a
“non-perturbative” large N expansion of vector type. This gluing problem occurs
in many different physical contexts, from mass generation of the two-dimensional
Gross–Neveu [20] or non-linear σ-model [21] to the BCS theory of supraconduc-
tivity [12]. These gluing problems have been considered until now too complicated
in practice for a rigorous constructive analysis.

5.5. Matrix models and φ�4
4

The loop expansion is also suited for the treatment of large N matrix models
and was in fact found for this reason [27]. Our first goal is to apply it to the full
construction of non-commutative φ�4

4 [16], either in the so-called matrix base [17,
28] or in direct space [18].

One needs again to develop for that purpose the multiscale version of the
expansion and the resolvent bounds analogs to Section 4 or Subsection 5.2 above.
Indeed neither the matrix propagator nor the Mehler x space propagator are diag-
onal (except at the very special ultraviolet fixed point where the matrix propagator
of φ�4

4 becomes diagonal).
Ultimately we hope better understanding of non commutative models of the

matrix or quasi-matrix type should be useful in many areas of physics, from physics
beyond the standard model [7, 10] to more down to earth physics such as quark
confinement [19] or the quantum Hall effect [23].
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