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A Positive Mass Theorem on Asymptotically
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Abstract. In this paper we take an approach similar to that in [13] to es-
tablish a positive mass theorem for spin asymptotically hyperbolic manifolds
admitting corners along a hypersurface. The main analysis uses an integral
representation of a solution to a perturbed eigenfunction equation to obtain
an asymptotic expansion of the solution in the right order. This allows us to
understand the change of the mass aspect of a conformal change of asymp-
totically hyperbolic metrics.

1. Introduction

In this paper we study the change of mass aspect for asymptotically hyperbolic
manifolds under a conformal change of metric and establish a positive mass theo-
rem for a class of asymptotically hyperbolic manifolds admitting corners along a
hypersurface. This work follows an approach similar to that in [13]. The dimensions
of all manifolds concerned in this paper are greater than 2. Positive mass theorems
for asymptotically hyperbolic manifolds have been studied in many works, notably
in [3,6,14,21]. A Riemannian manifold (M, g) with corners along a hypersurface Σ
is a manifold that is separated by an embedded hypersurface Σ ⊂M such that each
individual part is a smooth Riemannian manifold and the metric g is continuous
across the hypersurface Σ. An asymptotically hyperbolic manifold with corners
along a hypersurface is a Riemannian manifold with corners along a hypersurface
with one part compact and the other part asymptotically hyperbolic. The issue at
hand is to investigate the validity of a positive mass theorem for asymptotically
hyperbolic manifolds with corners along a hypersurface if each part satisfies the
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scalar curvature condition. A good motivation given in [13] to initiate the study
of such question is to use the Ricatti equation

R = RΣ − (|A|2 +H2
) − 2

∂H

∂n
, (1.1)

which allows one to consider the scalar curvature in distributional sense across the
hypersurface. It also turns out to relate to a notion of quasi-local mass in relativity
(cf. [4,13,19,20]. It is desirable to have a non-negative quantity associated with a
compact domain Ω of an asymptotically hyperbolic manifold M , which is zero
if and only if Ω can be isometrically embedded into the hyperbolic space and
converges to the total mass when Ω exhausts M . Analogous to the suggestion for
the asymptotically flat setting in [4], a natural candidate for such a quantity is
given by taking the infimum of the total mass over the class of all asymptotically
hyperbolic manifolds in which Ω can be isometrically embedded and to which
positive mass theorem can apply. For more details readers are referred to [4, 13,
19, 20].

In case of an asymptotically hyperbolic manifold with corners along a hy-
persurface we will call the compact part the inside and the non-compact part the
outside. We will denote the mean curvature of the hypersurface with respect to
the inside metric in the outgoing direction by H− and the mean curvature of the
hypersurface with respective to the outside metric in the direction inward to the
outside by H+. Our main theorem is as follows:

Theorem 1.1. Suppose that (Mn, g) is a spin asymptotically hyperbolic mani-
fold of dimension n ≥ 3 with corners along a hypersurface. And suppose that the
scalar curvature of both the inside and outside metrics are greater than or equal to
−n(n− 1) and that

H−(x) ≥ H+(x)
for each x on the hypersurface. Then, if in a coordinate system at the infinity,

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O(ρn+1)

)
,

then ∫

Sn−1
Trg0h(x)dvolg0 (x) ≥

∣
∣∣
∣

∫

Sn−1
xTrg0h(x)dvolg0 (x)

∣
∣∣
∣ . (1.2)

In [21] the vanishing of the mass is proved to imply the asymptotically hy-
perbolic manifold is isometric to the hyperbolic space. However, we did not find it
is a straightforward consequence to have the same conclusion in our context nor
did Miao in [13] in the context of asymptotically flat manifolds. We will give an
affirmative answer to this question in a forthcoming paper. We would like to point
out though it is easy to see that the scalar curvature should be the constant as
the hyperbolic space.

We adopt an approach from [13] to smooth the corners, then conformally
deform the metric so that the scalar curvature is greater than or equal to −n(n−1)
and then apply the positive mass theorem in [21]. Instead of solving an equation
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which is a perturbation of Laplace equation as in [13, 18] for asymptotically flat
case, we realize, with our experience in [5,16], that we should consider an equation
which is a perturbation of the eigenfunction equation

−Δv + nv = 0 (1.3)

on an asymptotically hyperbolic manifold, where

Δ =
n∑

i=1

∂2

∂x2
i

on Rn in our notation in this paper. We also learned that in fact in each case the
operator is simply the linearization of the Yamabe equation at the constant scalar
curvature one. One of the consequences of this consideration gives hope that v
decays in the right order to allow us to estimate the change of mass aspect after a
conformal change of metric while another is the following key observation.

Lemma 1.2. Suppose that (Mn, g) is a Riemannian manifold and v is a positive
smooth solution to the linear equation

−Δv + nv − n− 2
4(n− 1)

(
R+ n(n− 1)

)−
v =

n− 2
4(n− 1)

(
R+ n(n− 1)

)−
. (1.4)

Then the scalar curvature of the metric gv = (1 + v)
4

n−2 g satisfies

Rgv ≥ −n(n− 1) . (1.5)

To find a solution v to (1.4) we use the analysis of weighted function spaces
and uniformly degenerate elliptic equations, which are well developed in, for ex-
ample, [1, 2, 8–12]. The positivity of the solution v to (1.4) follows from a clever
use of a generalized maximum principle in [15]. We have noticed that the existence
of the expansion of the solution v was studied in [2, 12]. But we need the explicit
formula to estimate the change of mass aspects here. We followed the approach
taken in [18] which used an integral representation to obtain an asymptotic ex-
pansion. To obtain an integral representation we used an explicit formula for the
fundamental solution to the eigenfunction equation in the hyperbolic space

GH(x, y) =
cn

sinhn−2 dH(x, y) cosh2 dH(x, y)
θ
(
coshdH(x, y)

)
, (1.6)

where dH(x, y) is the hyperbolic distance between x and y in hyperbolic space Hn,

cn =
1

(n− 2)vol(Sn−1)
,

θ(s) =
1
θ0

(

1 +
∞∑

i=2

i∏

j=2

(
1 − n

2j + n− 1

)
s−2i+2

)

(1.7)

and

θ0 = 1 +
∞∑

i=2

i∏

j=2

(
1 − n

2j + n− 1

)
. (1.8)
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For more detailed account on the above generalized eigenfunctions please see [2,12].
Thus

Lemma 1.3. Suppose that (Mn, g) is an asymptotically hyperbolic manifold, Mc

is a compact set in M and r0 is a large number. Let

x = ψ(p) : M \Mc → Rn \Br0(0) ,

be a coordinate at the infinity in which

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O(ρn+1)

)
,

where sinh ρ = |x|−1. Suppose that v ∈ C2,α
δ (M) with δ > 0 solves the equation

−Δv + nv + fv = w ,

with
f ∈ C0,α

κ (M) and w ∈ C2,α
η (M) ,

for some κ > 2 and η > n+ 1. Then

v(x) = A

(
x

|x|
)
|x|−n +O

(
|x|−(n+1)

)
(1.9)

for some function A on Sn−1.

Note that the function A( x
|x|) in the above lemma in our proof will be given

as a sum of several integrals which later allow us to estimate the size of change of
the mass aspects, please see Lemma 6.5 in this note.

The paper is organized as follows: Section 2 is devoted to establishing an
isomorphism theorem for a class of uniformly degenerate operators based on work
in [10]. In Section 3 we introduce a linear equation whose solution gives a conformal
factor for a metric with the scalar curvature greater than or equal to −n(n− 1).
In Section 4 we derive an explicit formula for the fundamental solutions to the
eigenfunction equation on hyperbolic space Hn. In Section 5 we use the stan-
dard fundamental solution to construct an approximate fundamental solution on
an asymptotically hyperbolic manifold. This gives us an integral representation
of a solution to the eigenfunction equation and the desired asymptotic expansion.
In Section 6 we prove our main theorem by calculating the mass aspect of the
deformed metric and applying the positive mass theorem in [21].

2. Analytic preliminaries

In this section we discuss some preliminaries of the analysis on weakly asymptoti-
cally hyperbolic manifolds. Let M̄n be a smooth compact n-dimensional manifold
with boundary ∂M and Mn be its interior. A nonnegative smooth function ρ on M̄
is said to be a defining function for ∂M if

ρ > 0 in M

ρ = 0 on ∂M
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and dρ never vanishes on ∂M . For any non-negative integerm and any 0 ≤ β < 1, a
smooth Riemannian metric g on M is then said to be conformally compact of
class Cm,β if for any defining function ρ for ∂M , the conformal metric ḡ = ρ2g
extends as a Cm,β metric on M̄ . The metric ḡ restricted to T (∂M) induces a
metric ĝ := ḡ|T (∂M) on ∂M which rescales upon change in defining function and
therefore defines a conformal structure [ĝ] on ∂M called the conformal infinity of
(M, g).

When m + β ≥ 2, a straightforward computation as in [11] shows that the
sectional curvatures of g approach −|dρ|2ḡ at ∂M . As in [5], we define weakly
asymptotically hyperbolic manifolds as follows:

Definition 2.1. A connected complete Riemannian manifold (Mn, g) is said to be
weakly asymptotically hyperbolic of class Cm,β if g is conformally compact of class
Cm,β with m+ β ≥ 2 and |dρ|2ḡ = 1 on ∂M for a defining function ρ.

We will use the definitions of weighted function spaces from the papers of
Lee [9, 10] (see also [1, 8]. Let (Mn, g) be a weakly asymptotically hyperbolic
manifold and let ρ be a defining function. The weighted Hölder spaces are defined,
for δ ∈ R,

Ck,α
δ (M) := ρδCk,α(M) =

{
ρδu : u ∈ Ck,α(M)

}
(2.1)

with the norm
‖u‖Ck,α

δ (M) := ‖ρ−δu‖Ck,α(M) .

The weighted Sobolev spaces are defined, for δ ∈ R,

W k,p
δ (M) := ρδW k,p(M) =

{
ρδu : u ∈W k,p(M)

}
(2.2)

with the norm
‖u‖W k,p

δ
:= ‖ρ−δu‖W k,p(M) .

We recall the following weighted Sobolev embedding theorem from [10].

Lemma (Sobolev embedding). Let (Mn, g) be weakly asymptotically hyperbolic
manifold of class Cm,β and U ⊂M an open subset. For 1 < p, q <∞, 0 < α < 1,
δ ∈ R, 1 ≤ k ≤ m, and k + α ≤ m+ β, the inclusions

W k,q
δ (U) ↪→W j,p

δ (U) for k − n

q
≥ j − n

p
(2.3)

and
W k,p

δ (U) ↪→ Cj,α
δ (U) for k − n

p
≥ j + α (2.4)

are continuous.

The readers are referred to [10] (see also [1,8,9] for a more complete discussion
of properties of the weighted Hölder and Sobolev spaces on weakly asymptotically
hyperbolic manifolds. Our goal in this section is to derive an isomorphism result
from [8,10], particularly Theorem C in [10], for the operator −Δ +n+ f . We first
state a simpler version of Theorem C in [10].
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Lemma 2.2. Suppose that (Mn, g) is a weakly asymptotically hyperbolic manifold
of class Cm,β. Let k + 1 + α ≤ m+ β and f ∈ C0,α

γ for some γ > 0. Then

−Δ + n+ f : C2,α
δ (M) → C0,α

δ (M)

is a zero index Fredholm operator whenever δ ∈ (0, n). The possible kernel is the
L2-kernel of −Δ + n+ f .

Then we derive an isomorphism result by asking that −Δ + n + f is a per-
turbation of −Δ + n with the negative part of f small in integral sense. We will
denote

f = f+ − f−

where f+ = max{f, 0} and f− = −min{f, 0}.
Proposition 2.3. Suppose that (Mn, g) is a weakly asymptotically hyperbolic mani-
fold of class Cm,β. Let 4 ≤ m+ β and f ∈ C0,α

γ for some γ > 0. Then there is a
positive number ε0 such that, if

(∫

M

|f−|n
2 dvol

) 2
n

≤ ε0 , (2.5)

then
−Δ + n+ f : C2,α

δ (M) → C0,α
δ (M) (2.6)

is an isomorphism when δ ∈ (0, n).

Proof. Suppose that v is a function in the L2-kernel of the operator −Δ + n+ f .
Due to some standard weighted L2 estimates (cf. Lemma 4.8 in [10], for instance)
we know that v ∈W 2,2(M) and solves the equation

−Δv + nv + fv = 0 . (2.7)

Let ρ be a geodesic defining function for the weakly asymptotically hyperbolic
manifold (Mn, g). For ε > 0 let

Mε =
{
p ∈M : 0 < ρ(p) < ε

}
.

Multiplying (1) by v and integrating by parts over M\Mε we see

0 =
∫

M\Mε

−vΔv + fv2 + nv2

=
∫

M\Mε

(|∇v|2 + nv2) +
∫

M\Mε

fv2 +
∫

{ρ=ε}
v
∂v

∂�n
dσ .

Now v ∈ W 2,2(M) so for a fixed small number ε1 > 0
∫ ε1

0

∫

ρ=s

|v||∇v|dσds
s

=
∫

M\Mε1

|v||∇v| <∞ .

Therefore, there is a sequence of εi → 0 such that
∫

ρ=εi

|v||∇v|dσ → 0 ,
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which implies ∫

M

(|∇v|2 + nv2
)

= −
∫

M

fv2 .

Then, by Hölder inequality,
∫

M

(|∇v|2 + nv2
) ≤

∫

M

f−v2 ≤
(∫

M

(f−)
n
2

) 2
n

(∫

M

v
2n

n−2

)1− 2
n

.

Next we apply the Sobolev embedding theorem and obtain
∫

M

(|∇v|2 + nv2
) ≤ C

(∫

M

(f−)
n
2

) 2
n

∫

M

(|∇v|2 + v2
)
, (2.8)

where C here is the Sobolev constant, which is independent of v. Thus, for

ε0 =
1

2C
,

we may conclude that v = 0. So the proposition follows from Lemma 2.2. �

3. Conformal deformations

In this section we discuss the conformal deformation of the scalar curvature on
an asymptotically hyperbolic manifold (Mn, g). This idea comes from the work
in [18] where the analogous situation was treated in the context of asymptotically
flat manifolds.

Lemma 3.1. Suppose that v is a positive solution to the following equation

−Δv + nv − n− 2
4(n− 1)

(
R+ n(n− 1)

)−
v =

n− 2
4(n− 1)

(
R+ n(n− 1)

)− (3.1)

on a manifold (Mn, g). Then

R
[
(1 + v)

4
n−2 g

]
≥ −n(n− 1) .

Proof. Let u = 1 + v. Then

−Δu+
n− 2

4(n− 1)
Ru = −Δv +

n− 2
4(n− 1)

(
R+ n(n− 1)

)
u− n(n− 2)

4
u

≥ −Δv + nv − n− 2
4(n− 1)

(
R+ n(n− 1)

)−
v

− n− 2
4(n− 1)

(
R+ n(n− 1)

)−

− nv − n(n− 2)
4

(1 + v)

= − (n− 2)
4(n− 1)

n(n− 1)
1 + 4

n−2
v

1+v

(1 + v)
4

n−2
u

n+2
n−2 .
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Hence to prove the lemma is to show that

1 +
4

n− 2
− 4
n− 2

1
1 + v

≤ (1 + v)
4

n−2 . (3.2)

We differentiate the two sides with respect to v and compare
4

n− 2
(1 + v)−2 <

4
n− 2

(1 + v)
4

n−2−1 .

Therefore, by the fact that the two sides are the same when v = 0, the lemma
follows. �

The rest of this section is devoted to solving for a positive solution to the
equation

(−Δ + n+ f)v = h (3.3)
on an asymptotically hyperbolic manifold (Mn, g) with the function f suitably
small in an integral sense. By the isomorphism proposition in the previous section
we know, for δ ∈ (0, n) and each h ∈ C0,α

δ (M), there is a unique solution v ∈
C2,α

δ (M) to the equation (3.3). Hence what really need to do is to show that v > 0
in M . For simplicity we will denote

f = − n− 2
4(n− 1)

(
R+ n(n− 1)

)− ≤ 0 .

Proposition 3.2. Suppose that (Mn, g) is a weakly asymptotically hyperbolic mani-
fold of class Cm,β with m+ β ≥ 4. Let ε0 be the small positive number in Propo-
sition 2.3 in the previous section and α ∈ (0, 1). Suppose that f ∈ C0,α

δ (M) for
some δ ∈ (0, n) and that

(∫

M

|f |n
2

) 2
n

≤ ε0 . (3.4)

Then there is a positive solution v ∈ C2,α
δ (M) to the equation

−Δv + nv + fv = −f . (3.5)

Proof. We first prove that v has to be nonnegative in M . Assume otherwise that
v is negative somewhere in M so that

v− = min
{
v(p) : p ∈M

}
< 0 .

Let us consider instead the function u = v + v0 for a small positive number
v0 < min{1,− v−

2 }. Then

−Δu+ nu+ fu = −f(1 − v0) + nv0 > 0

in M and min{u(p) : p ∈ M} < 0. Since v ∈ C2,α
δ (M) for δ > 0, for a geodesic

defining function ρ, we may assume that

u > 0 on ∂(M \Mτ ) =
{
p ∈M : ρ(p) = τ

}

provided that τ > 0 is sufficiently small. Now we are going to apply the generalized
maximum principle in Section 2.5 in [15] to the function u on the manifold M \Mτ .
According the generalized maximum principle what we need is to verify that the



Vol. 9 (2008) Positive Mass Theorem 355

first eigenvalue of the operator −Δ+n+f on the domain M \Mτ ′ for some τ ′ < τ
with Dirichlet boundary condition is positive. Therefore, for any φ ∈ C∞

c (M \Mτ ′),
we consider the ratio

∫
M

(|∇φ|2 + nφ2 + fφ2)
∫

M
φ2

≥ 1∫
M φ2

(∫

M

(|∇φ|2 + φ2) − C

(∫

M

|f |n
2

)n
2

(∫

M

(|∇φ|2 + φ2)
) )

≥ 1
2
.

Thus the first eigenvalue of the operator −Δ+n+ f on the domain M \Mτ ′ with
the Dirichlet boundary condition is always positive. We may apply Theorem 10
in Section 2.5 of the book [15] to the function u/φ, where φ is the positive first
eigenfunction over M \Mτ ′, to obtain a contradiction. Therefore v is nonnegative
in M . To show that v is in fact positive in M , for each τ > 0, we apply the Hopf
strong maximum principle to the function v/φ on the domain M \Mτ , where φ is
the positive first eigenfunction over M \Mτ ′ for any 0 < τ ′ < τ . Thus the proof is
complete. �

4. The fundamental solutions on the hyperbolic space

The materials in this section are well known and readers are refered to [1, 2, 10,
12] for more detailed account on the references. But for the convenience of the
readers we will present a construction briefly. Let us first recall the definition of
the hyperbolic space as a hyperboloid in the Minkowski space-time. The Minkowski
space-time is Rn+1 equipped with the Minkowski metric −dt2 + |dx|2 for (t, x) ∈
Rn+1. The upper hyperboloid is the submanifold

Hn =
{
(t, x) ∈ Rn+1 : −t2 + |x|2 = −1, t > 0

}
. (4.1)

Hence

(Hn, gH) =
(
Rn,

(d|x|)2
1 + |x|2 + |x|2gSn−1

)
, (4.2)

where gSn−1 is the standard metric on the unit round (n− 1)-sphere. We want to
find the solution to the equation

−ΔHnG0(x) + nG0(x) = δ0(x) , (4.3)

which defines the Green’s function in x centered at the origin of the differential
operator −Δ + n on hyperbolic space Hn. We first compute, for r = |x|,

(−ΔHn + n)r−n+2t−k = −(k − 2)(k + n− 1)r−n+2t−k + k(k + 1)r−n+2t−k−2 .
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We then observe inductively that, for even number k

(−ΔHn + n)
(
r−n+2

(
t−2 +

2 · 3
2(n+ 3)

t−4 + · · · + 2 · 3 · 4 · 5 · · · (k − 1)
(2(n+ 3) · · · (k − 2)(k + n− 1)

t−k

))

=
2 · 3 · 4 · 5 · · ·k · (k + 1)

(2(n+ 3) · · · (k − 2)(k + n− 1)
r−n+2t−k−2 .

Therefore we consider the function

θ̃(t) =

(

1 +
∞∑

i=2

i∏

j=2

(
1 − n

2j + n− 1

)
1

t2i−2

)

. (4.4)

Notice that the infinite series θ̃ is obviously convergent when t > 1. In fact, when
t = 1, taking the logarithm of the general term we see

log
i∏

j=2

(
1 − n

2j + n− 1

)
≤ −n

2
log

(
i+

n− 1
2

)
+ c(n)

for some dimensional constant c(n). Thus the infinite series

θ̃(1) = 1 +
∞∑

i=2

i∏

j=2

(
1 − n

2j + n− 1

)
(4.5)

converges for all n ≥ 3. We set

θ(t) =
θ̃(t)
θ̃(1)

(4.6)

and easily conclude that

Lemma 4.1. Let

G0(x) =
θ(t)

(n− 2)vol(Sn−1)
1

rn−2t2
. (4.7)

Then
−ΔHnG0(x) + nG0(x) = δ0(x)

on hyperbolic space Hn.

To write the fundamental solution at any point in the hyperbolic space we
want to express hyperbolic translation in the hyperboloid model of hyperbolic
space Hn. Recall that the changes of coordinates between the ball model and
hyperboloid model of the hyperbolic space are

x =
2

1 − |x̄|2 x̄ , t =
1 + |x̄|2
1 − |x̄|2 ,

and
x̄ =

1
1 + t

x .
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Also recall that hyperbolic translation by b̄ in the ball model is given in [17] by

τb̄(x̄) =
1 − |b̄|2

|x̄|2|b̄|2 + 2x̄ · b̄+ 1
x̄+

|x̄|2 + 2x̄ · b̄+ 1
|x̄|2|b̄|2 + 2x̄ · b̄+ 1

b̄ , (4.8)

where tx =
√

1 + |x|2 and tb =
√

1 + |b|2. Therefore we have

Tb(x) = x+ txb +
x · b

1 + tb
b (4.9)

with
|Tb(x)| = sinh dH(x, −b) . (4.10)

One key fact here is that

coshdH(x, b) = txtb − x · b . (4.11)

Thus
GH(x, y) = Gy(x) = G0

(
T−y(x)

)
. (4.12)

and explicitly

GH(x, y) =
cn

sinhn−2 dH(x, y) cosh2 dH(x, y)
θ
(
cosh dH(x, y)

)
(4.13)

where
cn =

1
(n− 2)vol(Sn−1)

. (4.14)

5. Asymptotic behavior

So far, for a weakly asymptotically hyperbolic manifold (Mn, g) with
(
R+ n(n− 1)

)− ∈ C0,α
δ and

∫

M

((
R+ n(n− 1)

)−) n
2 ≤ ε

n
2
0 ,

we have obtained a conformal deformation gv = (1 + v)
4

n−2 g such that

R[gv] ≥ −n(n− 1)

and
0 < v ∈ C2,α

δ (M) ,
provided that δ ∈ (0, n). Unfortunately the decay rate of v just misses the decay
rate on which the mass aspect of an asymptotically hyperbolic manifold is defined.
We will use the Green’s function we constructed in the pervious section to obtain
an expansion at the infinity of the solution v to the equation

−Δv + nv − n− 2
4(n− 1)

(
R+ n(n− 1)

)−
v =

n− 2
4(n− 1)

(
R+ n(n− 1)

)−
.

We follow the idea used in [18] to write an integral representation of the solution v
with the help of the approximate Green’s function GH(x, y) on the asymptotically
hyperbolic manifold M . Let us start with a definition of asymptotically hyperbolic
manifolds, which should be compared with the definition of weakly asymptotically
hyperbolic manifolds given in Section 2. Since we will adopt the definition of mass
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aspect and mass for asymptotically hyperbolic manifolds from the work [21] we
use his definition for asymptotically hyperbolic manifolds.

Definition 5.1. (Mn, g) is said to be an asymptotically hyperbolic manifold if
(Mn, g) is a weakly asymptotically hyperbolic manifold with the standard round
sphere (Sn−1, [g0]) as its conformal infinity, and, for a geodesic defining function ρ,
in the conformally compact coordinates at the infinity,

g = sinh−2 ρ

(
dρ2 + g0 +

1
n
ρnh+O(ρn+1)

)
, (5.1)

where h is symmetric two tensors on Sn−1 at each point.

In the light of the above definition, we set up a conformally compact coordi-
nate at the infinity associated with a defining function ρ as follows. Let

ψ : M \Mc → Rn \Br0(0) ,

for some compact subset Mc ⊂M , such that

gH =
(d|x|)2
1 + |x|2 + |x|2g0 = sinh−2 ρ(dρ2 + g0) (5.2)

for |x| > r0 and sinh ρ = 1
|x| .

We construct an approximate Green’s function of an asymptotically hyper-
bolic manifold (Mn, g). At each point y ∈ Rn \Br0(0), we consider the hyperbolic
space Hn in the coordinate so that

gH(x) =
1

1 + r2y(x)
dr2 + r2y(x)g0 = (g̃H)ij(x)dxidxj ,

where
ry(x) =

√
Aij(y)xixj . (5.3)

This coordinate can be made into the standard coordinate by the linear transfor-
mation B : Rn → Rn such that B2 = A. More importantly we need to ask

(g̃H)ij(y) = gij(y) . (5.4)

A simple calculation yields

(g̃H)ij(x) = Aij − AikxkAjlxl

1 +Aklxkxl
. (5.5)

Hence

Aij(y) = gij(y) +
gik(y)ykgjl(y)yl

1 − gkl(y)ykyl
. (5.6)

Therefore, since
gij(x) = δij − xixj

1 + |x|2 +O
(|x|−n

)
h̃ij(x) (5.7)

and
h̃ij(x)xj = 0 , (5.8)
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we have
Aij(y) = gij(y) +

yiyj

1 + |y|2 = δij +O
(|y|−n

)
h̃ij(y) . (5.9)

Let d̃H(x, y) be the hyperbolic distance function in the metric (g̃H)ij(x)dxidxj

and let

Gy(x) =
1

(n− 2)vol(Sn−1)
θ
(
cosh d̃H(x, y)

)

sinhn−2 d̃H(x, y) cosh2 d̃H(x, y)
. (5.10)

In the geodesic ball B1(y) in the metric g we calculate

gij(x) = (g̃H)ij(x) + d̃H(x, y)O
(|y|−n

)
(5.11)

and

Δg =
1√

det g
∂j

(√
det ggij∂j

)

= ΔH + d̃H(x, y)O
(|y|−n

)
ΔH + (g̃H)ij∂i

(
O(|y|−n)d̃H(x, y)

)
∂j .

(5.12)

Thus, for any x ∈ B1(y) and x �= y,

Ψy(x) = −ΔgGy(x) + nGy(x) = O
(|y|−n

)
O

(
d̃H(x, y)−n+1

)
, (5.13)

as |x − y| → 0 and |y| → ∞. On the other hand, outside the geodesic ball B1(y),
we simply need

gij(x) = (g̃H)ij(x) +O
(|x|−n

)
h̃ij(x) +O

(|y|−n
)
ξij(x, y) ,

as |x| → ∞ and |y| → ∞, which follows from some calculations, where

ξij(x, y) = h̃ij(y) − h̃ik(y)xkxj + h̃jkxkxi

1 + |x|2 +
xixj

1 + |x|2
h̃klxkxl

1 + |x|2 .
Therefore

ξijxj =
h̃ijxj

1 + |x|2 − xi

1 + |x|2
h̃klxkxl

1 + |x|2
and

(g̃H)ij = δij + xixj +O
(|y|−n

)
ξij .

This implies

gij = (g̃H)ij +O
(|y|−n

)
ξij +O

(|x|−n
)
h̃ij + higher order terms .

Here we use the facts that

(δik + xixk)ξkl(δlj + xlxj) = ξij

and
(δik + xixk)h̃kl(δlj + xlxj) = h̃ij .

Therefore, outside the geodesic ball B1(y),

Δg = Δg̃H +
(
O

(|y|−n
)

+O
(|x|−n

))
Δg̃H

+ (g̃H)ij∂i

(
O(|y|−n) +O(|x|−n)

)
∂j .
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One last calculation we need is an estimate for Ψy(x) outside the geodesic ball
B1(y). We compute

∂id̃H(x, y) =
1

sinh d̃H(x, y)

(
Aik(y)xk

tx
ty −Aik(y)yk

)
,

G′(s) = cn

(
− (n− 2)θ(cosh s)

sinhn−1 s cosh s
− 2θ(cosh s)

sinhn−3 s cosh3 s
+

θ′(cosh s)
sinhn−3 s cosh2 s

)
,

and
coshn d̃H(y, x)G′(d̃H(y, x)

) → −ncn ,
as d̃H(y, x) → ∞. Thus, outside the geodesic ball B1(y),

Ψy(x) = −ΔgGy(x) + nGy(x)

=
(
O

(|x|−n
)

+O
(|y|−n

))
O

(
1

coshn d̃H(x, y)

)
. (5.14)

Lemma 5.2. Suppose that (Mn, g) is an asymptotically hyperbolic manifold. Then

−ΔGy(x) + nGy(x) = δy(x) + Ψy(x) (5.15)

where Ψy(x) satisfies the estimates (5.13) and (5.14).

As a consequence we have the following integral representation.

Proposition 5.3. Suppose that (Mn, g) is an asymptotically hyperbolic manifold
and that

ψ : M \Mc → Rn \Br0(0)

is a conformally compact coordinate associated with a defining function ρ in which

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O

(
ρn+1

))
.

Suppose that v ∈ C2,α
δ (M) solves the equation

−Δv + nv + fv = w ∈ C0,α
δ (M) ,

where f ∈ C0,α
δ (M) and δ ∈ (0, n). Then, for each x ∈ Rn \Br0(0),

v(x) = −
∫

Rn\Br0 (0)

v(y)Ψx(y)dvolg(y)

+
∫

Rn\Br0(0)

(
w(y) − f(y)v(y)

)
Gx(y)dvolg(y)

−
∫

∂Br0(0)

∂Gx

∂n
(y)v(y)dσg(y)

+
∫

∂Br0(0)

∂v

∂n
(y)Gx(y)dσg(y) .

(5.16)
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Proof. We use the density property (cf. [10]) of the the space C2,α
δ (M) to have a

sequence of functions vn ∈ C∞
c (M) such that

vn → v in C2,α
δ (M) .

Then from (5.16) we have, for vn,

vn(x) = −
∫

Rn\Br0 (0)

vn(y)Ψx(y)dvolg(y)

+
∫

Rn\Br0(0)

(−Δvn + nvn)Gx(y)dvolg(y)

−
∫

∂Br0(0)

∂Gx

∂n
(y)vn(y)dσg(y)

+
∫

∂Br0(0)

∂vn

∂n
(y)Gx(y)dσg(y) .

(5.17)

Hence, by taking the limit, we obtain (5.16) for v. �

Now we are ready to state and prove our main result of this section.

Theorem 5.4. Suppose that (Mn, g) is an asymptotically hyperbolic manifold and
that

ψ : M \Mc → Rn \Br0(0)

is a conformally compact coordinate associated with a defining function ρ in which

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O(ρn+1)

)
.

Suppose that v ∈ C2,α
δ (M) with δ > 0 solves the equation

−Δv + nv + fv = w

with
f ∈ C0,α

κ (M) and w ∈ C2,α
η (M)

for some κ > 2 and η > n+ 1. Then, for each x ∈ Rn \Br0(0),

v(x) = A

(
x

|x|
)
|x|−n +O

(
|x|−(n+1)

)
. (5.18)

Remark 5.5. We would like to point out that the expansion (5.18) is a simple
consequence of the work in [2, 12]. But we need some explicit expression of the
coefficientA in (5.18) to prove Theorem 6.3 and Lemma 6.5 in the following section,
which we did not find that it is easier to extract it from [2,12] than to obtain it in
the way presented here. The explicit expression of A will be obtained in the course
of the following proof of Theorem 5.5 based on the integral representation of the
solution v in (5.16).
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Proof of Theorem 5.4. We are going to study the asymptotic behavior of v(x) term
by term in (5.16). We treat the easy ones first. First we consider

|x|n
∫

∂Br0 (0)

∂v

∂n
(y)Gx(y)dσ(y) ,

as |x| → ∞ and y ∈ ∂Br0(0). Now

|x|nGx(y) =
|x|n

coshn d̃H(y, x)
cn coshn−2 d̃H(y, x)
sinhn−2 d̃H(y, x)

θ
(
cosh d̃H(y, x)

)
,

where
cosh d̃H(y, x) = txty −Aij(x)xi yj

and
Aij(x) = δij +O

(|x|−n
)
.

Hence

|x|nGx(y)=
1

(
tx

|x| ty −Aij(x) xi

|x| y
j
)n

cn coshn−2 d̃H(y, x)
sinhn−2 d̃H(y, x)

θ
(
cosh d̃H(y, x)

)∈ C1(M)

and

lim
λ→∞

λnGλ x
|x| (y) = cn

(
ty − x

|x| · y
)−n

.

Therefore

|x|n
∫

∂Br0 (0)

∂v

∂n
(y)Gx(y)dσ(y) ∈ C1(M)

and

A1

(
x

|x|
)

= lim
λ→∞

λn

∫

∂Br0(0)

∂v

∂n
(y)Gλ x

|x| (y)dσ(y)

= cn

∫

∂Br0(0)

∂v

∂n
(y)

(
ty − x

|x| · y
)−n

dσ(y) .
(5.19)

Next we consider

|x|n
∫

∂Br0 (0)

∂Gx

∂n
(y)v(y)dσ(y) ,

as |x| → ∞ and y ∈ ∂Br0(0). We compute

|x|n ∂Gx

∂n
(y) = |x|nρ(y)cnG′(d̃H(y, x)

)∂d̃H(y, x)
∂r

= |x|nρ(y)G′ tx
gijyi yj

|y|ty
− gijx

i yj

|y|
sinh d̃H(y, x)

,

where

G′(s) = cn

(
− (n− 2)θ(cosh s)

sinhn−1 s cosh s
− 2θ(cosh s)

sinhn−3 s cosh3 s
+

θ′(cosh s)
sinhn−3 s cosh2 s

)
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and
coshn d̃H(y, x)G′(d̃H(y, x)

) → −ncn
as d̃H(y, x) → ∞. Therefore

A2

(
x

|x|
)

= lim
λ→∞

λn

∫

∂Br0(0)

∂Gλ x
|x|

∂n
(y)v(y)dσ(y)

= −ncn
∫

∂Br0 (0)

v(y)
(
ty − x

|x| · y
)−n |y|

ty
− x · y

|x||y|
ty − x

|x| · y
dσ(y) .

(5.20)

For the term
|x|n

∫

Rn\Br0(0)

(h− fv)Gx(y)dvolg(y) ,

we know, for any given y ∈ Rn \Br0(0),

lim
λ→∞

λnGλ x
|x| (y) = cn

(
ty − x

|x| · y
)−n

.

We observe that

ty − x

|x| · y = ty − |y| cosφ ≥ (1 − cosφ)|y| ,
where φ is the angle between x and y. Fixing a direction x

|x| , we easily see that for
any ε0 > 0

lim
λ→∞

λn

∫

{y∈Rn\Br0 (0): cos φ≤1−ε0}
(h− fv)Gλ x

|x| (y)dvolg(y)

=
∫

{y∈Rn\Br0 (0): cos φ≤1−ε0}
(h− fv)

(
ty − x

|x| · y
)−n

dvolg(y) .

On the other hand, when cosφ > 1 − ε0, it suffices to verify the claim
∫ ∞

r0

∫

{cos φ>1−ε0}
(h− fv)(ty − r cosφ)−n r

n−1

ty
dσ0dr <∞ . (5.21)

Here we need to use the fact that η > n. We simply notice that

ty − |y| cosφ =
1 + sin2 φ|y|2
ty + |y| cosφ

.

Hence∫

{cos φ>1−ε0}

(
ty − |y| cosφ

)−n
dσ �

∫ ε0

0

∫

Sn−2

(
ty − |y| cosφ

)−n
φn−2dσdφ

�
∫ ε1

0

∫

Sn−2

(
ty − |y| cosφ

)−n
φn−2dσdφ

+
∫ ε0

ε1

∫

Sn−2

(
ty − |y| cosφ

)−n
φn−2dσdφ

� |y|nεn−1
1 + |y|−nε−n−1

1 � |y|
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for ε1 = |y|−1 < ε0. Therefore
∫

{cos φ>1−ε0}
(h− fv)

(
ty − r cosφ

)−n rn−1

ty
dσ0 = O

(
r−ι+n−1

)
,

where ι = min{η, n+ 1
2δ} > n, which implies our claim (5.21). Thus

A0

(
x

|x|
)

= lim
λ→∞

λn

∫

Rn\Br0(0)

(h− fv)Gλ x
|x| (y)dvolg(y)

=
∫

Rn\Br0(0)

(h− fv)
(
ty − x

|x| · y
)−n

dvolg(y) .
(5.22)

A similar argument yields the next order when we have κ > 2 and η > n+ 1. For
the last term

|x|n
∫

Rn\Br0(0)

v(y)Ψx(y)dvolg(y) ,

we need to use the estimates about the correction term Ψx(y) in (5.13) and (5.14).
We first look at

|x|n
∫

B1(x)

v(y)Ψx(y)dvolg(y) � |x|n
∫ 1

0

∫

Sn−1
v(y)Ψx(y) sinhn−1 rdσdr

� |x|n
∫ 1

0

|y|−n+ε|x|−nr−n+1rn−1dr

for any small positive number ε. Clearly

lim
|x|→∞

|x|n
∫

B1(x)

v(y)Ψx(y)dvolg(y) = 0 (5.23)

since |y| ≥ c|x| for y ∈ B1(x) and |x| → ∞. Next we look at

|x|n
∫

(Rn\Br0(0))\B1(x)

v(y)Ψx(y)dvolg(y) .

In the light of (5.14) and (5.23), using the argument we used to treat last term to
obtain (5.21) and (5.22), we have

A−1

(
x

|x|
)

= lim
λ→∞

λn

∫

Rn\Br0 (0)

v(y)Ψλ x
|x| (y)dvolg(y)

= lim
λ→∞

λn

∫

(Rn\Br0 (0))\B1(x)

v(y)Ψλ x
|x| (y)dvolg(y) .

(5.24)

We have thus proven the theorem with

A

(
x

|x|
)

= A−1

(
x

|x|
)

+A0

(
x

|x|
)

+A1

(
x

|x|
)

+A2

(
x

|x|
)
. (5.25)

�
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6. Proof of the main theorem

In this section we prove the main theorem. We first recall a positive mass theorem
for asymptotically hyperbolic manifolds from [21]. Readers are referred to [6] for
more elaborated and complete discussions of positive mass theorems for asymptot-
ically hyperbolic manifolds. Recall that, on an asymptotically hyperbolic manifold
(Mn, g) as defined in Definition 5.1, we have a coordinate at the infinity such that

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O

(
ρn+1

))
. (6.1)

In [21] it was proven that

Theorem 6.1 (Xiaodong Wang). Suppose that (Mn, g) is a spin asymptotically
hyperbolic manifold and that Rg ≥ −n(n− 1). Then

∫

Sn−1
Trg0h(x)dvolg0 (x) ≥

∣∣
∣
∣

∫

Sn−1
Trg0h(x)xdvolg0 (x)

∣∣
∣
∣ . (6.2)

Moreover the equality holds if and only if (Mn, g) is isometric to the standard
hyperbolic space Hn.

We adopt the idea from [13] to deal with asymptotically hyperbolic manifolds
with corners along a hypersurface.

Definition 6.2. A Riemannian manifold (Mn, g) is said to have corners along a
hypersurface Σ if there is a smooth embedded hypersurface Σ ⊂ M such that
M \ Σ = M−

⋃
M+ and the inside (M−, g−) = (M−, g) is a smooth compact

Riemannian manifold with a boundary Σ and the outside (M+, g+) = (M+, g)
is a smooth Riemannian manifold with a boundary Σ. Moreover g− and g+ agree
on the boundary Σ, that is, g continuous across the hypersurface Σ ⊂M .

We will consider the outward mean curvature H− of the hypersurface Σ in
(M−, g−) and the inward mean curvature H+ of the hypersurface Σ in (M+, g+).
Near the hypersurface Σ we may use Gauss coordinates, that is, for some ν0 > 0, a
point p within distance ν0 from the hypersurface Σ is labeled by a point x on the
hypersurface Σ and the signed distance d = dist(p,Σ) to the hypersurface Σ. We
now recall the smoothing operation given in Proposition 3.1 in [13] to have C2

metrics on M approximating g.

Proposition 6.3 (Pengzi Miao). Suppose that (M, g) is a manifold with corners
along a hypersurface Σ. Then there is a family of C2 metrics gν , for ν ∈ (0, ν0),
on M such that gν uniformly converges to g on M and gν = g outside Σ ×
(− 1

2ν,
1
2ν). Furthermore, the scalar curvature Rν of the metric gν satisfies

{
Rν(p) = O(1)in when d ∈ (

ν2

100 ,
ν
2

]

Rν(p) = O(1) + 2(H− −H+)
(

100
ν2 φ

(
100
ν2

))
when d ≤ ν2

100 ,
(6.3)

where O(1) stands for terms bounded independent of ν and φ(t) ∈ C∞
c (−1, 1) is a

standard mollifier.
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Our next goal is to conformally deform the metric gν so that the scalar
curvature is greater than or equal to −n(n− 1) so that the positive mass theorem
in [21] applies. The reason that gν admits such conformal deformation relies on
the fact that ∫

M

[
n− 2

4(n− 1)
(
Rν + n(n− 1)

)−
]n

2

dvolgν ≤ ε
n
2
0

whenever ν is sufficiently small and H−−H+ ≥ 0. Thus we are ready to state and
prove our main theorem.

Theorem 6.4. Suppose that (M, g) is a spin Riemannian manifold with corners
along a hypersurface Σ and that the outside is an asymptotically hyperbolic mani-
fold and the inside is compact. Suppose that the scalar curvature of both the inside
and outside metrics are greater than or equal to −n(n− 1) and that

H−(x) ≥ H+(x)

for each x on the hypersurface. Then, if in a coordinate system at the infinity,

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O(ρn+1)

)
,

then ∫

Sn−1
Trg0h(x)dvolg0 (x) ≥

∣
∣
∣
∣

∫

Sn−1
Trg0h(x)xdvolg0 (x)

∣
∣
∣
∣ .

Proof. We first use the smoothing operation given in [13] as stated in the above
proposition. For each small ν < ν0, we then solve the equation

−Δgνv + nv + fνv = −fν (6.4)

on M for
fν = − n− 2

4(n− 1)
(
Rν + n(n− 1)

)−
.

According to Proposition 6.2 above
∫

M

f
n
2

ν dvolgν ≤ C(g)ν ,

where C(g) depends only on the metric g. For sufficiently small ν we apply Propo-
sition 3.2 in Section 3 to obtain a positive solution vν to the above equation (6.4).
Then we consider the new metric

g̃ν = (1 + vν)
4

n−2 gν .

In the light of Lemma 3.1 in Section 3 we know that the scalar curvature R̃ν of
the new metric g̃ν is greater than or equal to −n(n − 1). To finish the proof we
need to establish the following two lemmas. �
Lemma 6.5. Suppose that (Mn, g) is an asymptotically hyperbolic manifold and
in a coordinate at the infinity associated with a geodesic defining function r

g = sinh−2 ρ

(
dρ2 + g0 +

ρn

n
h+O(ρn+1)

)
,



Vol. 9 (2008) Positive Mass Theorem 367

where

r =
cosh ρ− 1

sinh ρ
.

And suppose that

v = A

(
x

|x|
)
ρn +O(ρn+1)

is a positive function on M . Then there is a geodesic defining function r̃ for g̃ =
(1 + v)

4
n−2 g such that

g̃ = sinh−2 ρ̃

(
dρ̃2 + g0 +

ρ̃n

n
h̃+O(ρ̃n+1)

)
,

where

r̃ =
cosh ρ̃− 1

sinh ρ̃
and

h̃ =
4(n+ 1)
n− 2

A

(
x

|x|
)
g0 + h . (6.5)

Proof. First we recall that the geodesic defining function of the metric g is a
defining function s such that

|ds|s2g = 1

near the infinity. We refer the readers to Lemma 2.1 in [7] for the existence and
uniqueness of the geodesic defining function associated with each boundary metric
in the conformal infinity. We start with a geodesic defining function r for g. Then
for each θ ∈ Sn−1, let

r̃ = ewr and w(θ, 0) = 0 .

By the definition, w satisfies

2
∂w

∂r
+ r|dw|2r2g =

1
r

(
(1 + v)

4
n−2 − 1

)
=

4
n− 2

Arn−1 +O(rn) . (6.6)

By an inductive argument we obtain

∂kw

∂rk
(θ, 0) = 0

for k ≤ n− 1 and
∂nw

∂rn
(θ, 0) = (n− 1)!

2
n− 2

A(θ) . (6.7)

Hence

w(θ, r) =
2

n(n− 2)
A(θ)rn + O(rn+1) .

This gives

r̃(θ, r) = r +
2

n(n− 2)
A(θ)rn+1 +O(rn+2) . (6.8)
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By the construction of the coordinate associated with a geodesic defining function,
we need to compare the integral curves of the vector field ∂

∂r and ∂
∂r̃ . We know

dr̃ =
(

1 +
2(n+ 1)
n(n− 2)

Arn

)
dr +

2
n(n− 2)

rn+1 ∂A

∂θi
dθi +O(rn+1) ,

which implies
∂

∂r̃
= (1 + v)−

4
n−2

(
1 +

2(n+ 1)
n(n− 2)

Arn

)
∂

∂r

+ (1 + v)−
4

n−2

(
rn+1 2

n(n− 2)
∂A

∂θj
+O

(
rn+2

)
)
gij

r

∂

∂θi

=
∂

∂r
− 2(n− 1)
n(n− 2)

Arn ∂

∂r
+O

(
rn+1

)
.

(6.9)

Therefore
θ̃(θ, r) = θ +O

(
rn+1

)
. (6.10)

Thus

sinh2 ρ̃ g̃

(
∂

∂θ̃i

,
∂

∂θ̃j

)

= sinh2 ρ̃ (1 + v)
4

n−2 g

(
∂

∂θi
,
∂

∂θj

)
+O

(
rn+1

)
.

In the light of the fact that
sinh ρ̃

1 + cosh ρ̃
= r̃ = r

(
1 +

2
n(n− 2)

Arn +O(rn+1)
)

=
sinh ρ

1 + cosh ρ

(
1 +

2
n(n− 2)

Arn +O(rn+1)
)

we have

sinh2 ρ̃ = sinh2 ρ

(
1 + cosh ρ̃
1 + cosh ρ

)2 (
1 +

4
n(n− 2)

Arn +O
(
rn+1

)
)
,

where
1 + cosh ρ̃
1 + cosh ρ

= 1 +
cosh ρ̃− cosh ρ

1 + cosh ρ
= 1 +O(r)(ρ̃ − ρ)

= 1 +O(r)
(
tanh−1 r̃ − tanh−1 r

)

= 1 +O
(
rn+1

)
.

Finally, we arrive at

g0 +
ρ̃n

n
h̃+O(ρ̃n+1) = g0 +

(
4(n+ 1)
n− 2

ρnA(θ)g0 +
ρn

n
h(θ)

)
+O(ρn+1) , (6.11)

which gives

h̃ =
4(n+ 1)
n− 2

A

(
x

|x|
)
g0 + h (6.12)

So the calculation is completed. �
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The next lemma is an estimate of the perturbation of mass aspect 4(n+1)
n−2

Aν( x
|x|)g0 in terms of the small number ν as ν → 0 when v = vν .

Lemma 6.6. Suppose that (M, g) is a complete Riemannian manifold with corners
along a hypersurface and that the outside is an asymptotically hyperbolic manifold.
Suppose that the scalar curvature of both the inside and outside metrics are greater
than or equal to −n(n− 1) and that

H−(x) ≥ H+(x)

for each x on the hypersurface. Let gν be constructed as in Proposition 6.2. Then
there is a unique positive solution vν ∈ C2,α

δ (M) to the equation

−Δgνv + nv − n− 2
4(n− 1)

(
Rν + n(n− 1)

)−
v =

n− 2
4(n− 1)

(
Rν + n(n− 1)

)−
,

when ν is sufficiently small. Moreover, in a coordinate at the infinity associated
with a geodesic defining function r,

vν = Aν

(
x

|x|
)
rn +O(rn+1)

and ∣
∣∣
∣Aν

(
x

|x|
)∣

∣∣
∣ ≤ Cν

1
n+1 , (6.13)

where C is independent of ν.

Proof. By Proposition 6.2 we have
n− 2

4(n− 1)
(
Rν + n(n− 1)

)− ≤ C

with compact support inside ∂Ω × [− ν
2 ,

ν
2 ], where C is independent of ν. Hence

∫

M

(
n− 2

4(n− 1)
(
Rν + n(n− 1)

)−
)n

2

dvolgν ≤ Cν .

Therefore, by Proposition 3.2 and Theorem 5.5, there is exists the unique positive
solution to the equation

−Δgνv + nv − n− 2
4(n− 1)

(
Rν + n(n− 1)

)−
v =

n− 2
4(n− 1)

(
Rν + n(n− 1)

)−
,

when ν is sufficiently small and in a coordinate at the infinity associated with a
geodesic defining function r,

vν = Aν

(
x

|x|
)
rn +O(rn+1) ,

where A( x
|x| ) is given in (5.25).

First of all, since
∥
∥
∥
∥

n− 2
4(n− 1)

(
Rν + n(n− 1)

)−
∥
∥
∥
∥

W 0,n+1
γ (M)

≤ Cν
1

n+1 (6.14)
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for any γ, we know by an isomorphism theorem similar to Proposition 2.3 (cf.
Theorem C in [10]), that

‖vν‖W 2,n+1
γ (M) ≤ Cν

1
n+1

for any γ < n+1
2 . Then by the Sobolev embedding theorem ([10]) we have

‖vν‖C1,α
γ (M) ≤ Cν

1
n+1 (6.15)

for some α ∈ (0, 1).
Next we estimate A( x

|x|) term by term. We treat the easy terms first. For the
term

A0

(
x

|x|
)

=cn
∫

Rn\Br0 (0)

(
Rν+n(n−1)

)−(1+v)
(√

1+|y|2 − x

|x| · y
)−n

dvolgν (y) ,

we simply ask r0 is large enough so the support of (Rν + n(n− 1))− is outside of
Rn \Br0(0). Therefore, we may choose r0 so that

A0

(
x

|x|
)

= 0 . (6.16)

For the term

A1

(
x

|x|
)

= cn

∫

∂Br0 (0)

∂vν

∂n

(√
1 + |y|2 − x

|x| · y
)−n

dσgν (y) ,

we easily see that

A1

(
x

|x|
)

≤ Cν
1

n+1 . (6.17)

Similarly, for the term

A2

(
x

|x|
)

=−ncn
∫

∂Br0(0)

v(y)
(√

1 + |y|2− x

|x| · y
)−n

|y|√
1+|y|2 − x

|x| · y
|y|

√
1 + |y|2 − x

|x| · y
dσgν (y) ,

we easily derive from (6.15) that
∣
∣∣
∣A2

(
x

|x|
)∣

∣∣
∣ ≤ Cν

1
n+1 . (6.18)

The last term is

A−1

(
x

|x|
)

= lim
λ→∞

λn

∫

Rn\Br0 (0)

vν(y)Ψλ x
|x| (y)dvolg(y) .

Due to (6.15) and the estimate (5.14) we know

|A−1| ≤ Cν
1

n+1 lim
λ→∞

λn

∫
|y|−n

2O(|y|−n)O

(
1

coshn dH(λ x
|x| , y)

)

dvolg(y)

≤ Cν
1

n+1 ,

(6.19)
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where in the last step we use the same argument we used to establish (5.21)
and (5.22) to deal with the term (

√
1 + |y|2 − x

|x| · y)−n, which is only big when
y
|y| is very close to x

|x| . Thus we have proved that
∣
∣
∣
∣Aν

(
x

|x|
)∣

∣
∣
∣ ≤ Cν

1
n+1 (6.20)

for some C independent of ν. �

Proof of Theorem 6.3. To finish the proof of Theorem 6.3 we simply notice that
for each ν sufficiently small, by Lemma 3.1 in Section 3, we may apply the positive
mass theorem in [21] to the metric (1 + vν)

4
n−2 gν and obtain that

∫

Sn−1
Trg0 h̃dvolg0 (x) ≥

∣∣
∣
∣

∫

Sn−1
Trg0 h̃xdvolg0 (x)

∣∣
∣
∣

where

h̃ =
4(n+ 1)
n− 2

Aν

(
x

|x|
)
g0 + h .

Here we note that the mass aspect of gν is the same as the mass aspect of g since
gν is the same as g outside a compact set. Therefore, as ν → 0, we have

∫

Sn−1
Trg0hdvolg0(x) ≥

∣∣
∣
∣

∫

Sn−1
Trg0hxdvolg0 (x)

∣∣
∣
∣ .

So the proof is finished. �
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