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Asymptotics of Random Density Matrices

Ion Nechita

Abstract. We investigate random density matrices obtained by partial trac-
ing larger random pure states. We show that there is a strong connection
between these random density matrices and the Wishart ensemble of random
matrix theory. We provide asymptotic results on the behavior of the eigen-
values of random density matrices, including convergence of the empirical
spectral measure. We also study the largest eigenvalue (almost sure conver-
gence and fluctuations).

1. Introduction

Physicists and computer scientists working with finite size quantum systems are
often interested in properties of typical states, such as entanglement, entropy, etc.
In order to estimate such quantities, one has to endow the set of states (pure
or mixed) with a certain probability measure and compute averages with respect
to this measure. It has been known for a certain while now that there exists an
“uniform” (in a way which will precised later) measure on the set &, of pure states
of size n. However, the situation is less simple when dealing with density matrices:
there is no widely accepted candidate for a “canonical” measure on the set D,, of
all density matrices of size n.
One may find in the literature two classes of probabilities on D,,:

e the induced measures, where random density matrices are obtained by partial
tracing a larger random pure state,

e the metric measures, where the measure is the volume element associated to
a particular distance on D,,.

Depending on the physical nature of the model, one may choose different
measures from one class or the other. In this work we study the measures of the
first class.

The induced measures were introduced by Braunstein [2] and studied later by
Hall [5], Zyczkowski and Sommers [13,15]. In the first part of this work we provide
a rigorous construction of these measures. In the second part, we give some new
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explicit and recurrence formulas for the moments and we study the asymptotic
behavior of the spectrum of such random density matrices. Our approach is based
on the connection with the well-known theory of Wishart random matrices.

Our paper is organized as follows. In Section 2 we recall the construction
of the induced measures, adding mathematical rigor to the existing literature.
Section 3 is devoted to recalling some results on the Wishart ensemble and making
explicit the connection with random density matrices. We deduce the distribution
of the eigenvalues and we study the moments. In Section 4 we study two models of
large random density matrices, providing results on the behavior of the spectrum.
A discussion of the results as well as ideas for generalizing our work are presented
at the end of the paper.

2. From pure states to density matrices

We start by introducing and motivating the model of random density matrices
that we consider.

As explained in the Introduction, one would like to endow the set of density
matrices on a complex Hilbert space H with a “natural” probability measure. It
turns out that there is no straightforward way of doing this, so one has to make
some additional hypothesis in order for a probability measure to stand out as the
most natural one. Our approach here is based on the definition of a density matrix
as it is usually understood in the theory of open quantum systems. We consider
that the system described by the density matrix is coupled to an environment and
that the compound system is in a random pure state. More precisely, we shall
make two assumptions:

(A1) The system H is coupled to an environment K and the compound system
H ® K is in a pure state [¢).

(A2) The pure state |9) is uniformly distributed on the set of all pure states on
He K.

The first assumption is motivated by a large class of models considered in
physics or quantum information theory. The general framework is provided by a
system H ® K in a pure state, isolated from its environment. Suppose that one has
access only to the sub-system H. This may happen for several different reasons:
K may be not accessible (e.g., H and K are in distant galaxies) or K may be
too complicated to study (a heat bath or a noisy channel, for example). In these
situations, it is natural to make the assumption (Al). Let us turn now to the
second assumption. If one has no a priori information on the systems H and K, it
makes sense to suppose (A2). Moreover, it turns out that there exists an unique
uniform probability measure on the set of pure states of given size, so we shall
consider uniform pure states on the compound system.

However, there are situations when one of the two hypotheses (A1) or (A2)
is not physically motivated. For instance, when one has no knowledge of an envi-
ronment coupled to the system /C, there is no reason to suppose (Al). Instead, one
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should use other probability measures, such as the Bures measure (see the discus-
sion in [13]). On the other hand, even if (A1) corresponds to the physical reality,
one may have extra information on the system H or IC (or both). For example, it
may be that the state of the environment K has a particular form; thus, it makes
no sense to assume (A2) and our model would not be adapted to such situations.
In the next section, motivated by the assumption (A2), we shall construct the
uniform measure on the set of pure states of given size. Then, by partial tracing,
we shall provide the probability which verifies the assumptions (A1) and (A2).

2.1. The canonical probability measure on the pure states

In quantum mechanics, a pure state is described by a norm one vector in a n-
dimensional complex vector space H. The phase of pure states is not determined,
ie.,

) =¢) VOER. (1)

In order to make this definition rigorous, we introduce the following equiva-
lence relation on H ~ {0}:

r~y<INeC such that = M\y. (2)

Definition 1. A pure state |¢)) is an element of the quotient space (H ~\ {0})/ ~.
We denote by &, the set of pure states of size n.

As all complex Hilbert spaces are isomorphic to C", the set &, is the set
of rays in C". We endow &, with the associated quotient topology and the Borel
o-field. We now turn to the construction of the uniform probability measure on &,.

As stated in the assumption (A2), the probability on &, should be the most
uniform one, as there is no a priori information on the state |¢). In particular,
as there is no preferred basis of H, the uniform measure should be invariant by
changes of bases. In our framework (H is a complex Hilbert space), changes of
bases are provided by unitary applications. As a consequence, we ask that the
uniform probability measure should be unitarily invariant.

Definition 2. A measure v, on &, is unitarily invariant if
vn(UA) = vn(A),
for all unitary U € U(n) and for all Borel subset A C &,,.

It turns out that this condition is strong enough to completely specify a
measure on &,, i.e., there is an unique unitarily invariant probability measure
on &,. This follows from a well-known result in probability theory regarding group
actions (see [7]). Let us recall it here.

Let G be a topological group acting on a topological space X. We call its
action transitive if for all z,y € X, there exists ¢ € G such that y = ¢g - and
proper if for all g € G, the application X > x — g - x is proper, i.e., the pre-image
of a compact set is compact. We then have the following
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Theorem 1 ([7]). Let G be a topological group which acts transitively and properly
on a topological space X. Suppose that both G and X are locally compact and
separable. Then there ezists an unique (up to a constant) measure v on X which
is G-invariant.

In order apply this result to our situation, we consider the action of the
unitary group U(n) on the set &, by left multiplication. We obtain the following
proposition.

Proposition 1. The action of U(n) on &, is transitive and proper and thus there
exists an unique unitarily invariant probability measure v, on &,.

Proof. First of all, notice that this action is well defined: the class |Uw) does
not depend on v, but only on the class [¢); we say that the multiplication by
an unitary is a class application. In order to show that the action is transitive,
consider two classes |¢) and |¢) and an unitary U € U(n) such that Uy = ¢
(such an unitary always exists). It follows then that Uly) = |¢). Finally, the
action is compact, as the set &, is compact and the multiplication applications
are continuous. Thus, the action verifies the hypothesis of Theorem 1, and as a
consequence there is an unique unitarily invariant measure on &, . Moreover, given
the compacity of £, we can choose the measure of unit mass, which concludes the
proof of the proposition. O

Existence and unicity being settled, one would like to dispose of more concrete
descriptions on the distribution v,,. It turns out that there are two ways of doing
that.

First of all, let us recall the definition of a complex Gaussian random vari-
able. Let X and Y be two independent real Gaussian random variables of mean 0
and variance 1/2. Then Z = X + Y is said to have a complex Gaussian distribu-
tion of mean 0 and variance 1. We denote by N¢(0,1) the law of Z. A complex
vector (Z1,...,Z,) is said to have distribution NZ(0,1,) if the random variables
Zi,...,Zy are independent and have distribution N¢ (0, 1).

Consider now a complex Gaussian vector X ~ NZ(0,1,) and the projection
application

M:C"~H— &, (3)
x|z, (4)

It is well-known in probability theory that the law of X is unitarily invariant
in C™. This property remains valid for the projection II(X) and thus the law of
| X'} is unitarily invariant on &, . As there is only one unitarily invariant distribution
on &, we have | X) ~ vp,.

We can also obtain the law v, from another well-known probability distribu-
tion, the Haar measure on U(n). In order to do this, consider a Haar-distributed
unitary matrix U. Obviously, the distribution of U is unitarily invariant; the same
will hold true for the first column Y of U and for its class |Y). Thus |Y) has
distribution v,,. We sum up these results in the following
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Proposition 2. 1. Let X be a random complex vector of law NZ(0,1,,). Then the
class | X) of X is distributed along vy,.
2. Let U be a random unitary matriz distributed along the Haar measure onU(n)
and let Y be the first column of U. Then the class |Y) has distribution vy,.

2.2. The induced measure on density matrices

In this section we effectively construct the induced measures on density matrices
that will be studied in the rest of the article. As stated in the Introduction, the
induced measure of parameters n and k is obtained as follows:

e Counsider a product space H ® K of two complex Hilbert spaces H (of dimen-
sion n) and K — the environment — of dimension k. This is the global space
system + environment.

e Take an uniform random pure state |¢)) on H® K (see the assumption (A2)).

e Consider the (random) pure density matrix [¢) (1| corresponding to the pure
state |¢).

e Take p = Tric(|¢)(¢]), the partial trace of |1) (1| with respect to the environ-
ment K. The law of the random variable p is the desired probability measure,
which we shall note p,, .

As in our formalism [¢) is an equivalence class, we shall define the pure
density matrix 1) (3| by:

RN
Yl = € Mur(C). 5
9001 = 1 € Mat(©) 5)
Clearly, ¥ — |¥){2] is a class function (it does not depend on the rep-
resentant ¢ chosen, but only on the class |¢)), so |¥){¢| is well-defined. The

normalizing factor Tr(¢ - ©*) appears because we want the matrix |¢)(1)| to be
trace one; this could have been avoided by considering a norm one vector v, since
N 2
Tr(y - o) = |9
We now turn to the third step of the above construction and recall that the
partial trace is the unique application Tri : M1 (C) — M,,(C) such that

Tr ((A ® I;C)B) =Tr (A Tr;C(B)) VAe M,(C), Be M,;(C). (6)
Its expression for elementary matrices (a1, as € H,by,bs € K) is
Try [(al ®b1) - (a2 ® bg)*] = <b2, b1) - araj . (7)

We have now all the elements needed for the definition of the induced mea-
sures:

Definition 3. The induced measure of parameters n and k is the distribution py, 1
of the random density matrix

p = Trrc([¥) (&), (8)

where |t) is an uniform pure state on H ® K of distribution vy.
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In order to get a better understanding of the measure p,, ;, we write ¢ in an
orthonormal basis {e; ® f;;1 <i<n,1<j<k}of H®K:

-y
=17

k

Yije; ® fj. 9)
1

Thus the matrix |1) (1| has coordinates (in the same basis):
wlj wi/j/

n k 2"
Za:l Zg:l |¢aﬁ|
After taking the partial trace, we obtain

k
D — D=1 Yij Vi (1)
i = n k 2"
Ea:l ZB:I |w015|

Now, if we arrange the coordinates v;; of 1 in a n x k matrix X such that X (¢, j) =
i, we have

[0) (ligyir e = (10)

XX
P=me(x - X))
Several important remarks should be made at this point. First of all, consider
U € U(n) and the density matrix p’ obtained by replacing ¢ with (U ® Ic):

Pl =Trx ((U @ L)v) (U @ Ie)yl) . (13)

By the properties of the partial trace, we have that p’ = UpU*. But recall that
the law of |¢) is unitarily invariant; it is thus invariant by U ® Ix (which is an
element of U(nk)). Hence the law p, 5 is invariant by unitary conjugation. Being
positive, and thus self-adjoint, density matrices diagonalize:

p=VDV*, (14)

(12)

with V' an unitary and D a diagonal matrix with positive entries. The unitary
invariance of u, j corresponds to the fact that V' is distributed along the Haar
measure on U(n). Remains, of course, the question of the distribution of D, the
diagonal matrix of eigenvalues, which will be answered in Section 3.2 (see Propo-
sition 4).

Another important question concerns the law of the matrix X. Recall that
the coordinates of X are those of v, rearranged in a n X k matrix. Since the pure
state |¢) is distributed along the uniform measure v,;, we know, by the second
point of Proposition 2, that we can take for ¢ a complex Gaussian vector in C™*.
Thus, the elements of X are independent, complex Gaussian random variables.

Lemma 1. Let X be an x k complex matrixz such that the entries are independent
identically distributed (i.i.d.) N¢(0,1) random variables. Then, the matriz
X X

T OTe(X - X7) (15)

P

has distribution pp, k.



Vol. 8 (2007) Asymptotics of Random Density Matrices 1527

This lemma motivates the study of matrices of type W = X - X*, which will
be taken up in the next section.

3. Wishart matrices. Results at fixed size

3.1. The Wishart ensemble

This section is devoted to introducing the Wishart ensemble of random matrices.
Introduced in the 1930’s to study covariance matrices in statistics, Wishart matri-
ces have found many applications, both theoretical (random matrix theory) and
practical: principal component analysis, engineering, etc. Let us start by recalling
the definition of the Wishart ensemble:

Definition 4. Let X be a n X k complex matrix such that the entries are i.i.d.
Nc(0,1) random variables. The n X n matrix W = X - X* is called a Wishart
random matriz of parameters n and k.

In virtue of Lemma 1, there is a strong connection between the distribution
of Wishart matrices and the random density matrices we study. More precisely,
if W is a Wishart matrix, then

w

W (16)

p

has distribution fi,, .

We shall give a list of results on Wishart matrices that will be used later in
the study of random density matrices. As the results are rather classical in random
matrix theory, we will not supply proofs, but only references to the original papers.

We start with a result on the eigenvalues of a Wishart matrix. Being of the
form W = X - X*, Wishart matrices are positive and thus they admit n non-
negative eigenvalues A1, ..., \,. The next proposition provides the distribution of
the random vector (A1, ..., A,) (see [8]).

Proposition 3. Let W be a random n X n Wishart matriz with parameters n and k.
Then the distribution of the eigenvalues (A1, ..., ) has a density with respect to
the Lebesgue measure on R} which is given by

n

DY (A1, A) = CYYexp <— > /\i> X am?, (17)
=1

=1

where C)) is the constant [H;Z;Ol L(n+1— 5Tk —j)] ' and

AN = ] Mi=x). (18)
1<i<j<n

When studying large random matrices, one important question is to what
resembles the spectrum of a random matrix in the limit n — oo? In order to
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answer such a question, one introduces the empirical spectral measure
1 n
L, (W)= Ox; s 19
W)=, 36 (19)

which is a random probability measure (it depends on W, which is random). It
turns out that, almost surely, the random measures L, (W) converge to a deter-
ministic probability measure, the Marchenko-Pastur distribution.

Definition 5. For ¢ €]0, 00[, we denote by p. the Marchenko—Pastur probability
measure given by the equation

—a)(b—x)

_ Vi
pe = max{l —¢,0}do + 9

1[a,b] (x)dx y (20)
where a = (y/c—1)? and b = (y/c+ 1)%
The result is contained in the following theorem (see [4]).

Theorem 2. Assume that ¢ €]0,00[, and let (k(n)), be a sequence of integers such
that lim, o k(n)/n = c. Consider a sequence of random matrices (W), such
that for all n, Wy, is a Wishart matriz of parameters n and k(n). Define the
renormalized empirical eigenvalue distribution of W, by

1 n
L, = n Zén_l)\i(wn) ;
=1

where \y(Wh,), ..., A\ (W,,) are the eigenvalues of W,,. Then, almost surely, the
sequence (Ly, )y converges weakly to the Marchenko—Pastur distribution p..

Another object of interest in random matrix theory is the largest eigenvalue
of a large random matrix. The next result shows that in the Wishart case, it
converges almost surely to the right edge of the support of the Marchenko—Pastur
distribution; similarly to the Central Limit Theorem, the nature of the fluctuations
is known (see [1] and [6]).

Theorem 3. Assume that ¢ €]0,00[, and let (k(n)), be a sequence of integers such
that lim,,—.« k(n)/n = c. Consider a sequence of random matrices (W), such that
for all m, Wy, is a Wishart matriz of parameters n and k(n), and let \pq.(W,,) be
the largest eigenvalue of W,,. Then, almost surely,
1
lim n/\mam(Wn) =(Ve+1)2. (21)

Moreover, the following limit holds in distribution

hm A1’nax(VVn) - n(\/c + 1)2
n—oo n1/3(1 + /e)(1 4+ 1/4/c)1/3
Here, W5 is the Tracy—Widom law of order 2; as even the definition of this

probability distribution is well beyond the scope of this work, we encourage the
reader to look it up in [14], the original paper of Tracy and Widom.

=W, . (22)
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3.2. The spectrum of a density matrix

Recall from Section 2.2 that when considering the diagonalization of a random
density matrix

p=VDV*, (23)

the unitary matrix V is distributed along the Haar measure on the unitary group
U(n). In this section we compute the distribution of the diagonal matrix D, i.e.,
the spectrum of a density matrix with distribution s, .

Here, as well as in the next section, the parameters n and k will be fixed, and
we shall assume that k£ > n. If n > k, by a property of the partial trace application,
the matrix p will have n — k null eigenvalues and k eigenvalues identical to those
of the density matrix

o = Trw([P) ().

In consequence, the study of the spectrum of p is equivalent to the study of the
spectrum of o. Moreover, the size of ¢’s environment (n) is larger than the dimen-
sion of o itself (k), and we can apply the first case. In conclusion, whenever n is
larger than k, we interchange n and k, and we append n — k null eigenvalues to
the spectrum of p.

Recall that if W is a Wishart matrix of parameters n and k, then p =
W/ Tr W has distribution iy, k. It follows that if (A1,...,\,) are the eigenvalues
of W and (A1, ..., \,) are those of p, then we have

by

Ni = , V1i<i<n. (24)

Zj:l Aj
As the trace of a density matrix equals one, the (random) vector (A1, ..., An)
is confined in the (n — 1)-dimensional probability simplex ¥, 1 = {(z1,...,2,) €
R’ : 3" | ; = 1}. Note that A, is a function of A1, . .., An_1, so we will show that
the distribution of (A, ..., Ap_1) admits a density w.r.t. the Lebesgue measure on

Yno1.

Proposition 4. The distribution of the (unordered) eigenvalues Ai(p), ..., An—1(p)
has a density with respect to the Lebesgue measure on X,_1 given by

(I)n,k(j\la--- n— 1 nkH k nA (25)

where
T
O (nk)

. 26
E T T 1 0 - ) (26)

Remark 1. In the formula (25), there are only n—1 variables; A, is not a variable,
but merely the notation A, =1— (/\1 oo Ane 1)-
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Proof. Let us start from the Wishart distribution of eigenvalues and consider the
change of variables
()\1,...7)\n)'—>()\1,...,)\n,175)»—> (27)
= A/, Am1/8,8) = (M, Ane1, 9) (28)
where S = >"" | \; is the sum of the Wishart eigenvalues. The Jacobian of this
transformation equals 1/S™~1, and we get
o0 (M, A1, 8) = O exp(—=9) JT (SA)F " A(SA)28m 1 (29)
i=1
We get now to the crucial point of the proof. Clearly, the above density factorizes
as

NI (A, A1, §) = O x [H A2
=1

x [S™Lexp(—=9)].  (30)

Hence, the normalized eigenvalues (5\1, .. .,/N\n,l) and the sum of the Wishart
eigenvalues S are independent random variables.

In order to compute the distribution of (;\17 e 5\n71)7 it suffices to take the
marginal with respect to S; we get

(I)n,k(j\la- --75\11—1) = Cn,kHS\finA(x)zv (31)
=1
where
Crge=C) - / S 1e=5dS = T'(nk)C), (32)
0
I'(nk
=___ (nk) , N (33)
Hj:o P(n+1—4)I'(k—j)
O

As a byproduct of the proof, we also obtain the following characterization of
the induced measure.

Corollary 1. The law of a random density matriz p of parameters n and k is the
law of a Wishart matrizc W of the same parameters conditioned by Tr W = 1.

Proof. From the formula (30) we see that the normalized eigenvalues and the trace
of a Wishart matrix are independent random variables. Thus, taking the marginal
with respect to the trace is equivalent to conditioning on the event (TrW = 1).
Note however that (Tr W = 1) has zero probability. O

In Figure 1 we have plotted the density functions for n = 2 and several
values of k using the analytic formula (25). For n = 3 we have randomly generated
random density matrices and plotted the probability simplex ¥, along with the
points corresponding to the spectra (Figure 2). We notice that for large values of k&
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FIGURE 1. Theoretical eigenvalue distribution for (n = 2,k = 2),
(n=2,k=10) and (n =2,k = 50).

FIGURE 2. Empirical eigenvalue distribution (5000 matrices) for
(n=3,k=3), (n=3,k=10) and (n = 3,k = 100).

(the size of the environment), the spectrum concentrates to the middle point in
Yn—1. This is a general phenomenon and it will be studied in Section 4.1.

3.3. Moments

The aim of this section is to provide formulas for the moments of order ¢ of a
random density matrix of distribution g, . In order to do that, we shall introduce
the some notation: E,, ;[-] will denote the expectation with respect to the law i,
and Ezvk[] the expectation with respect to the law of Wishart matrices with pa-
rameters n and k. We will use the corresponding result on the Wishart ensemble
and derive explicit formulas, as well as recurrence relations. The following propo-
sition provides a bridge between the moments of a density matrix and those of a
Wishart matrix with the same parameters.

Proposition 5. Let E,, ;[Tr(p?)] be the moment of a random density matriz of
parameters n and k and let ]EZ‘fk [Tr(W1?)] be the moment of a Wishart matric
having the same parameters. Then,

]Em [Tr(Wq)]

k(nk+1)---(nk4+q—1)" (34)

]Emk[Tr(pq)] = n



1532 I. Nechita Ann. Henri Poincaré

Proof. By using the same technique as in the proof of Proposition 4, we get

I'(nk +q)
I'(nk)

which is the same as equation (34). O

EY [Tr(W?)] = Ey [ Tr(p?)] , (35)

We can find in the literature different explicit and recurrence formulas for
E)Y.[Tr(W?)]. From the one in [4], we get

a\] — - )= L[k +q—Jlgln+q—jlg
B 0] = g S0 TG

where [a], = a(a —1)---(a — ¢+ 1). The recurrence formula (see [4])
(20— D(n+ k)
(nk+q—1)(g+1)

(2-2)((¢—=1)* = (k—n)?)

Jj=1

En [ Tr(o7)] = En i [ Tr(o"™)] (37)

E, [ Tr(p?? 38
(nk+q—1)(nk+q—2)(g+1) [T (38)
allows us to easily compute some averages:
+k
B[ Tr(p?)] = 39
flm) =" (39)
2 2
+3nk+k*+1
E, [ Tr(p%)] = , 40
AT = s 1)k 4 2) (40)
34 6n%k +6nk?+k3+5 5k
En,k[Tr(p‘l)]:n + 6n°k + 6nk” + k° + on + ete. (41)

(nk +1)(nk + 2)(nk + 3)

These formulas are consistent with the ones of [13] and [15].

4. Asymptotics

The last part of this paper is devoted to the study of random density matrices
corresponding to large systems. We shall consider two models, both motivated
physically:

1. In the first model, the size of the density matrix n is constant and the size
of the environment k tends to infinity. Such a situation arises typically when
one studies a small system (a qubit, a pair of qubits, etc.) coupled to a much
larger environment. We show that in the limit & — oo, density matrices
distributed along iy, 5 converge to the maximally mixed (or chaotic) state
I/n.

2. In the second model, both n and k tend to infinity and k/n — ¢ > 0. This
model describes a large system coupled to a large environment with constant
ratio of size (dim/C/dimH ~ ¢). In this case we show that the spectral
measures of density matrices of law p,, ,, converge to a deterministic measure
known in random matrix theory as the Marchenko—Pastur distribution (see
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Definition 5). We also study the convergence and the fluctuations of the
largest eigenvalue of random density matrices.

4.1. The first model
Consider the density function of i, ; with n fixed and k£ — oo:

@ k(A Anc) = Gk [T AT AN (42)
=1

As n is fixed, the Vandermonde factor A(X) is constant. The other factor, prop-
erly normalized in order to get a probability density, is the Dirichlet measure of
parameter « = k —n + 1:

O, (A, ) = [0 (43)
=1

The next result is well-known in probability theory. We shall sketch its proof
for the sake of completeness.

Theorem 4. The Dirichlet measure converges weakly as o — oo to the Dirac mea-
sure 0(1/n,....1/n)

Proof. The idea behind the proof is to show that the variance of a Dirichlet-
distributed random variable converges to 0 as its parameter converges to infinity.
Let X be such a random variable. X has a density with respect to the Lebesgue
measure on the probability simplex given by:

flze,...,zy) = ?EZ?Q sz'a_l .
i=1

It is easy to compute
1 1
[x=(en)
n n

As the maximally mixed state I/n is the unique state having spectrum
{1/n,...,1/n}, we get:

Corollary 2. Density matrices of the first model converge almost surely to the
mazimally mized (or chaotic) state I /n.

E

2
2 1 1 1
1:711}3{95%— zl—’—n?}: ot —0. (44)

Remark 2. The same result can be obtained by an entropic argument. It turns out
that the mean von Neumann entropy S(p) = — Tr(plog p) can be computed for a
random density matrix distributed along p,, x:

nk

Ealso)= Y =",
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This formula has been conjectured by Page [9] and has been subsequently proved
(see [11,12]) using various methods. Let us explain how it implies the corollary.
First, fix n and let k grow to infinity, as in our model. The mean entropy is easily
seen to converge to log n. This turns out to be the maximum von Neumann entropy
for a system with n degrees of freedom. It is attained at the state I/n, the unique
state of maximum uncertainty.

4.2. The second model

In the second model, both the size of the density matrix and the size of the
environment tend to infinity. In order to use the results on the Wishart ensemble
(Theorems 2 and 3), we need appropriate results on the behavior of the trace S of
a Wishart matrix.

Lemma 2. Assume that ¢ €]0,00][, and let (k(n)), be a sequence of integers such
that lim,, o k(n)/n = c. Consider a sequence of random matrices (Wy)y such
that for all n, W,, is a Wishart matriz of parameters n and k(n). Let S,, = Tr W,
be the trace of W,,. Then

Sn
k() — 1 almost surely (45)
and g N
kM) v0,1), (46)

V/nk(n)

where “=" denotes the convergence in distribution.

Proof. Recall that W,, = X,,- X, when X, is a n x k(n) matrix with i.i.d. complex
Gaussian entries. We have

n k(n) n k(n)
Su=> 3 1Xul =D (Re(Xy)* + Im(X5)?) . (47)
i=1 j=1 i=1 j=1

The random variables {Re(X;;), Im(X;;)}; are i.i.d. with distribution N(0,1/2)
and thus, by the law of large numbers, we have, almost surely,

s 1
A k() 2 (48)

completing the proof of the first result. The second result follows from the Central
Limit Theorem. (]

We can now state and prove the analogue of Theorem 2 for random density
matrices:

Theorem 5. Assume that ¢ €]0,00[, and let (k(n)), be a sequence of integers such
that lim, .o k(n)/n = c. Consider a sequence of random density matrices (pn)n
such that for all n, pn has distribution i, ). Define the renormalized empirical
distribution of p, by

1
L, = n Z 6671)\i(pn) ) (49)
=1
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where A1 (pn), -+, An(pn) are the eigenvalues of p,. Then, almost surely, the se-
quence (Ly,), converges weakly to the Marchenko—Pastur distribution pi..

Proof. We know (Theorem 2) that the empirical distribution of eigenvalues for the
Wishart ensemble

1 n
= Zl Op=1 0 (W) 5 (50)

converges almost surely to the Marchenko—Pastur distribution of parameter c.
Recall that the eigenvalues of the density matrix p, = W,/ Tr(W,,) are those of
W,, divided by the trace S,, of W,,. We have thus the following formula for the
empirical spectral measure of p:
1« 1«
L, = n ;5cn)\,i(Wn)/Sn = n 215n 10 (W) Cn: . (51)
1= 1=
The last equation is the same as equation (50) with the Dirac measures per-
turbed by a factor of cn?/S,, which converges, almost surely, to 1 (by the preceding
lemma). We are now going to show that such a perturbation does not change the
limit in distribution. In order to achieve this, recall that when the limit measure is
compactly supported, the convergence in distribution is equivalent to the conver-
gence of moments. If we compute the g-th moment of the measures L)Y and L,
we find:

(z?, LWV = Z (n=N(Wa)?, (52)
z:l
and, respectively,

1 — en?\ !
(z9, L) = n=IN(W,))? - . (53)
20 ()

These expressions have the same limit as n — oo for all ¢, and thus L,, converges
to the Marchenko-Pastur distribution. O

In Figure 3, we have plotted for several values of ¢ and large n and k a
histogram of the spectrum for one density matrix and the theoretical density of
the Marchenko-Pastur distribution (see Remark 3). We can see that the empirical
histogram matches closely the theoretical curve for rather mild values of n (here
n = 1000).

We now turn to the study of the largest eigenvalue of random density matri-
ces. As before, we use the corresponding result on the Wishart ensemble (Theo-
rem 3) and the control over the trace (Lemma 2):

Theorem 6. Assume that ¢ €]0,00[, and let (k(n)), be a sequence of integers such
that lim, .o k(n)/n = c. Consider a sequence of random matrices (pn)n such that
for all n, p, has distribution pi, ), and let Amaz(pn) be the largest eigenvalue
of pn. Then, almost surely,

lim cnAmaz(pn) = (Ve + 1), (54)

n—oo
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FIGURE 3. Empirical and limit measures for (n = 1000,k =
1000), (n = 1000, k = 2000) and (n = 1000, k = 10000).

Moreover,

. n*[enAmaz(pn) — (Ve +1)?] o
nlggo (14 o)1+ 1/y/c)1/3 =Wy in distribution. (55)

Proof. By the first part of Theorem 3, the (normalized) largest eigenvalue

Y Xas (W) of a Wishart matrix converges almost surely to (y/c+1)2. Obviously,

we have

A1’nax(VVTL)
S, )

and, by Lemma 2, S,,/(cn?) converges (almost surely) to 1. Finally, we obtain
formula (54).

For the second part of the theorem, what we need to do, normalizations
apart, is to show that the trace of a Wishart matrix fluctuates less than the largest
eigenvalue. For the Wishart case, we have

A1’nax (pn) = (56)

Amaz (W) = n(ve+ 1)+ 031+ Vo) (1+1/ve) P Wy +0(1)),  (57)

and

Sn = nk(n) + v/nk(n)(N +o(1)). (58)
Again, Aoz (pn) = Amaz (W) /S, and after simplifications, one obtains the desired
formula (55). d

Remark 3. Note that Theorem 5 and the first part of Theorem 6 deal with almost
sure convergences. This means that when considering sequences of random density
matrices of increasing size, the respective convergences will fail only on a set of null
measure. This is to be compared with typicality results for random density matrices
obtained recently in [3,10] by concentration of measure techniques. These results
give bounds (at fixed matrix size) on the probability that a random matrix is far
from its expected value, while our results deal with the more subtle convergence
of rescaled quantities, such as the spectral distribution or the largest eigenvalue.
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5. Conclusions

We investigated random density matrices distributed along the so-called induced
measures. After introducing them as partial traces of larger random pure states,
we provided some explicit and recurrence relations for the moments of such den-
sity matrices. Using results on Wishart matrices, we then considered large density
matrices. In a first model, a fixed size system was coupled to a very large environ-
ment; we showed that an uniform pure state on the compound system corresponds
to the maximally mixed (or chaotic) density matrix on the fixed-size system. In
parallel with Wishart matrices, we studied the regime dim K/ dimH — ¢. We ob-
tained the almost sure convergence of the empirical spectral measure and of the
largest eigenvalue, as well as the fluctuations of the largest eigenvalue. Results
from random matrix theory were easily adapted for density matrices. Other im-
portant quantities, such as correlation functions, require a more detailed analysis,
and this will be the subject of further work. Also, it may be interesting to study
such asymptotics for other probability measures on density matrices, such as the
Bures measure.
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