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Abstract. We consider the perturbed harmonic oscillator TDψ = −ψ′′ +
x2ψ + q(x)ψ, ψ(0) = 0, in L2(R+), where q ∈ H+ = {q′, xq ∈ L2(R+)}
is a real-valued potential. We prove that the mapping q �→ spectral data =
{eigenvalues of TD}⊕{norming constants} is one-to-one and onto. The com-
plete characterization of the set of spectral data which corresponds to q ∈ H+

is given.

1. Introduction and main results

Consider the Schrödinger operator

H = − ∂2

∂x2
+ |x|2 + q(|x|) x ∈ R

3 , (1.1)

acting in the space L2(R3). Let x = |x| and q be a real-valued bounded func-
tion. The operator H has pure point spectrum. Using the standard transformation
u(x) �→ xu(x) and expansion in spherical harmonics, we obtain that H is unitary
equivalent to a direct sum of the Schrödinger operators acting on L2(R+). The
first operator from this sum is given by

TDψ = −ψ′′ + x2ψ + q(x)ψ , ψ(0) = 0 , x ≥ 0 . (1.2)

The second is − d2

dx2 +x2 + 2
x2 + q(x) etc. Below we consider the simplest case, i.e.,

the operator TD . In our paper we assume that

q ∈ H+ =
{
q ∈ L2(R+) : q′, xq ∈ L2(R+)

}
.

The similar class of potentials was used to solve the corresponding inverse problem
on the real line [5]. Define the unperturbed operator T 0

Dψ = −ψ′′+x2ψ , ψ(0) = 0 .
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The spectrum σ(TD) of TD is the increasing sequence of simple eigenvalues σn =
σ0

n + o(1) , where σ0
n = 4n+ 3, n ≥ 0 , are the eigenvalues of T 0

D . Note that σ(TD)
does not determine q uniquely, see Theorem 1.3. Then what does the isospectral
set

IsoD(q) =
{
p ∈ H+ : σn(p) = σn(q) for all n ≥ 0

}

of all potentials p with the same Dirichlet spectrum as q look like?
The inverse problem consists of two parts:

1) to characterize the set of all sequences of real numbers which arise as the
Dirichlet spectra of q ∈ H+.

2) to describe the set IsoD(q).
We shall give the complete solution of these problems in Theorem 1.3. To

describe the set IsoD(q) we define the norming constants νn(q) by1

νn(q) = log
∥∥ϕ

(·, σn(q), q
)∥∥−2

+
= 2 log |ψ′

n,D(0, q)| , n ≥ 0 , (1.3)

where ϕ(x) = ϕ(x, λ, q) is the solution of the equation

−ϕ′′ + x2ϕ+ q(x)ϕ = λϕ , ϕ(0) = 0 , ϕ′(0) = 1 , (λ, q) ∈ C × H+ , (1.4)

and ψn,D is the n-th normalized (in L2(R+)) eigenfunction of the operator TD .

Remark. Let Ψn,0(x) = Ψn,0(|x|) be the n-th normalized (in L2(R3)) spherically-
symmetric eigenfunction of the operator H given by (1.1). Then we obtain

Ψn,0(x) =
ψn,D(|x|)
2
√
π|x| and |Ψn,0(0)|2 =

eνn(q)

4π
, n ≥ 0 .

We describe papers about the inverse problem for the perturbed harmonic
oscillator, which are relevant to our paper. McKean and Trubowitz [11] considered
the problem of reconstruction on the real line. They gave an algorithm for the
reconstruction of q from norming constants for the class of real infinitely differ-
entiable potentials, vanishing rapidly at ±∞ , for fixed eigenvalues λn(q) = λ0

n

for all n and “norming constants” → 0 rapidly as n → ∞. Later on, Levi-
tan [10] reproved some results of [11] without an exact definition of the class
of potentials. Some uniqueness theorems were proved by Gesztesy, Simon [7] and
Chelkak, Kargaev, Korotyaev [4]. Chelkak, Kargaev, Korotyaev [5] obtained the
characterization and described the isospectral set for the case on the real line for
q ∈ H = {q ∈ L2(R) : q′, xq ∈ L2(R)}. For uniqueness theorems we need some
asymptotics of fundamental solutions and eigenvalues at high energy. For charac-
terization we need “sharp” asymptotics of these values. Usually it is not simple.
Note that recently the asymptotics λn(q) were determined for bounded potentials
in [9]. Gesztesy and Simon [6] proved that the each IsoD(q) is connected for various
classes of potentials. Note that the inverse problem for harmonic oscillator on the
half-line for the boundary conditions ψ′(0) = bψ(0), b ∈ R is solved in [3].

1Here and below we use the notations ‖ · ‖+ = ‖ · ‖L2(R+) , 〈·, ·〉+ = 〈·, ·〉L2(R+) .
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Our approach is based on the methods from [5] and [13] (devoted to the
inverse Dirichlet problem on [0, 1]). The main point in the inverse problem for
the perturbed harmonic oscillator TD on R+ is the characterization of IsoD(q).
Note that, in contrast to the case of perturbed harmonic oscillator on the real-
line [5], the characterization of {νn}∞n=0 , i.e., the parameterization of isospectral
manifolds, is given in terms of the standard weighted 	 2- space. Thus there is a
big difference between the case of the real line and the case of the half-line.

The present paper continues the series of papers [4,5] devoted to the inverse
spectral problem for the perturbed harmonic oscillator on the real line. Note that
the set of spectra which correspond to potentials from H+ (see Section 3 for
details) is similar to the space of spectral data in [5] . In particular, the range of
the linear operator f(z) �→(1− z)−1/2f(z) acting in some Hardy–Sobolev space in
the unit disc plays an important role. As a byproduct of our analysis, we give the
simple proof of the equivalence between two definitions of the space of spectral
data (Theorem 4.2 in [5]), which was established in [5] using a more complicated
techniques.

We recall some basic results from [5]. Consider the operator

Tψ = −ψ′′ + x2ψ + q(x)ψ ,

q ∈ Heven =
{
q ∈ L2(R) : q′, xq ∈ L2(R); q(x) = q(−x), x ∈ R

}
,

acting in the space L2(R). The spectrum σ(T ) is an increasing sequence of simple
eigenvalues given by

λn(q) = λ0
n + μn(q) , where λ0

n = λn(0) = 2n+ 1 , n ≥ 0 ,

and μn(q) → 0 as n→ ∞ .

Define the real weighted 	 2-space

	 2
r =

⎧
⎨

⎩
c = {cn}∞n=0 : cn ∈ R , ‖c‖2

� 2
r

=
∑

n≥0

(1 + n)2r|cn|2 < +∞
⎫
⎬

⎭
, r ≥ 0 ,

and the Hardy–Sobolev space of analytic functions in the unit disc D={z : |z|<1}:
H2

r = H2
r (D)

=

⎧
⎨

⎩
f(z) ≡

∑

n≥0

fnz
n, z∈D : fn∈R , |f‖H2

r
= ‖{fn}∞n=0‖� 2

r
< +∞

⎫
⎬

⎭
, r ≥ 0 .

Introduce the space of spectral data from [5]

H =

⎧
⎨

⎩
h = {hn}∞n=0 :

∑

n≥0

hnz
n ≡ f(z)√

1 − z
, f ∈ H2

3
4

⎫
⎬

⎭
, ‖h‖H = ‖f‖H2

3/4
. (1.5)
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Theorem 1.1 ([5]). The mapping q → {λn(q) − λ0
n}∞n=0 is a real-analytic isomor-

phism2 between the space of even potentials Heven and the following open convex
subset

S =
{{hn}∞n=0 ∈ H : λ0

0 + h0 < λ0
1 + h1 < λ0

2 + h2 < · · ·} ⊂ H .

Remark. The inequalities in the definition of S correspond to the monotonicity of
eigenvalues.

Recall the following sharp representation from [5]:

λn(q) = λ0
n +

∫
R
q(t)dt

π
√
λ0

n

+ μ̃n(q) ,
{
μ̃n(q)

}∞
0

∈ H0 , q ∈ H ,

where the subspace H0 ⊂ H of codimension 1 is given by

H0 =

⎧
⎨

⎩
h ∈ H :

√
1 − z

∑

n≥0

hnz
n

∣∣
∣
∣
∣
∣
z=1

= f(1) = 0

⎫
⎬

⎭
. (1.6)

Remark that Lemma 3.4 yields μ̃n(q) = O(n−3/4 log1/2 n) as n → ∞ . Also, we
need

Proposition 1.2 (Trace formula). For each q ∈ Heven the following identity holds:

q(0) = 2
∑

n≥0

(
λ2n(q) − λ2n+1(q) + 2

)
, (1.7)

where the sum converges absolutely.

We come to the inverse problem for the operator TD on R+ . For each q ∈ H+

we set q(−x) = q(x) , x ≥ 0 . This gives a natural isomorphism between H+

and Heven . Then
σn(q) = λ2n+1(q) , n ≥ 0 .

Let
SD =

{{hn}∞n=0 ∈ H : σ0
0 + h0 < σ0

1 + h1 < σ0
2 + h2 < · · ·} . (1.8)

We formulate our main result.

Theorem 1.3.

(i) The sequence {σn(q) − σ0
n}∞n=0 belongs to SD for each potential q ∈ H+ .

(ii) For each q ∈ H+ the sequence {rn(q)}∞n=0 ∈ 	 2
3/4, where rn is given by

νn(q) = ν0
n − q(0)

2(2n+ 1)
+ rn(q) , and ν0

n = νn(0) = log
[

4(2n+ 1)!√
π 22n[n!]2

]
.

2By definition, the mapping of Hilbert spaces F : H1 → H2 is a local real-analytic isomorphism iff

for any y ∈ H1 it has an analytic continuation F̃ into some complex neighborhood y ∈ U ⊂ H1C

of y such that F̃ is a bijection between U and some complex neighborhood F (y) ∈ F̃ (U) ⊂ H2C

of F (y) and both F̃ , F̃−1 are analytic. The local isomorphism F is a (global) isomorphism iff it
is a bijection.
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(iii) The mapping q �→ ({σn(q)− σ0
n}∞n=0 , q(0) , {rn(q)}∞n=0) is a real-analytic iso-

morphism between H+ and SD × R × 	 2
3/4.

Remark. In particular, (p(0) , {rn(p)}∞n=0) ∈ R × 	 2
3/4 are “independent coordi-

nates” in IsoD(q).

The ingredients of the proof of Theorem 1.3 are:

i) Uniqueness Theorem. We adopt the proof from [13] and [4]. This proof re-
quires only some estimates of the fundamental solutions.

ii) Analysis of the Fréchet derivative of the nonlinear spectral mapping
{potentials} �→ {spectral data} at the point q = 0 . We emphasize that this
linear operator is complicated (in particular, it is not the Fourier transform,
as it was in [13]). Here we essentially use the technique of generating functions
(from [5]), which are analytic in the unit disc.

iii) Asymptotic analysis of the difference between spectral data and its Fréchet
derivatives at q = 0 . Here the calculations and asymptotics from [5] play an
important role.

iv) The proof that the spectral mapping is a surjection, i.e., the fact that each
element of an appropriate Hilbert space can be obtained as spectral data of
some potential q ∈ H+ . Here we use the standard Darboux transform of
second-order differential equations.

The plan of the paper. Section 2 is devoted to the basic asymptotics of the eigenval-
ues σn(q) and the values log[(−1)nψ′

+(0, σn(q), q)] . In Section 3 we introduce the
space H and obtain its equivalent definition (Corollary 3.6). Furthermore, we con-
sider a kind of linear approximation of our spectral data and prove Theorem 3.10
that is, in a sense, the linear analogue of the main Theorem 1.3. Section 4 is de-
voted to the asymptotics of the norming constants νn(q). Also, in this sect. we
prove Proposition 1.2. In Section 5 we prove the main Theorem 1.3. All needed
properties of fundamental solutions, gradients of spectral data and some technical
lemmas are collected in Appendix.

2. Basic asymptotics

Let ψ0
+(x, λ) = Dλ−1

2
(
√

2x) be the decreasing near +∞ solution of the unperturbed
equation

−ψ′′ + x2ψ = λψ .

We use the standard notation Dμ(x) for the Weber functions (or the parabolic
cylinder functions), see [1]. Note that for each q ∈ H+ the perturbed equation

−ψ′′ + x2ψ + q(x)ψ = λψ

has the unique solution ψ+(x, λ, q) such that ψ+(x) = ψ0
+(x)(1+o(1)) as x→ +∞

(see (A.11)).
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Lemma 2.1. For each q ∈ H+ and n ≥ 0 the following identities hold:

νn(q) = 2 log

[

−ψ
′
+

(
0, σn(q), q

)

ψ̇+

(
0, σn(q), q

)

]

, (2.1)

ψ̇+

(
0, σn(q), q

)
=
ψ0

+

(
0, σn(q)

)

σn(q) − σ0
n

·
∏

m:m �=n

σn(q) − σm(q)
σn(q) − σ0

m

,
∂

∂λ
ψ+ = ψ̇+ . (2.2)

Remark. It is important that the values ψ̇+(0, σn(q), q) are uniquely determined
by the spectrum σ(TD) . In particular, ψ̇+(0, σn(p), p) = ψ̇+(0, σn(q), q) for all
p ∈ IsoD(q) and n ≥ 0 .

Proof. The standard identity3 ψ2
+ = {ψ̇+ , ψ+}′ yields

∫ +∞

0

ψ2
+(x)dx =

{
ψ̇+ , ψ+

}∣∣
∣
+∞

0
= −ψ̇+(0)ψ′

+(0) ,

where we omit σn(q) and q for short. Therefore,

eνn(q) =
[
ψ′

n,D(0, q)
]2 =

[
ψ′

+

(
0, σn(q), q

)

‖ψ+

(·, σn(q), q
)‖+

]2

= −ψ
′
+

(
0, σn(q), q

)

ψ̇+

(
0, σn(q), q

) .

Using the Hadamard Factorization Theorem, we obtain

ψ+(0, σ, q) = ψ0
+(0, σ) ·

∏

m≥0

σ − σm(q)
σ − σ0

m

, σ ∈ C .

The differentiation of ψ+(0, σ, q) gives (2.2). �

Let ψ0
n be the normalized (in L2(R)) eigenfunctions of the unperturbed har-

monic oscillator on R. Note that ψ0
n,D(·) = ψn,D(·, 0) =

√
2ψ0

2n+1(·) . It is well-
known that

ψ0
n(x) =

(
n!
√
π
)− 1

2Dn

(√
2x
)

=
(
2nn!

√
π
)− 1

2Hn(x)e−
x2
2 , n ≥ 0 ,

where Hn(x) are the Hermite polynomials. For each n ≥ 0 we consider the second
solution

χ0
n(x) =

(
n!
√
π

2

)1/2
{

(−1)
n
2 ImD−n−1(i

√
2x) , n is even ,

(−1)
n−1

2 ReD−n−1(i
√

2x) , n is odd ,

of the equation −ψ′′ + x2ψ = λ0
nψ which is uniquely defined by the conditions

{χ0
n , ψ

0
n} = 1 , (ψ0

nχ
0
n)(−x) = −(ψ0

nχ
0
n)(x) , x ∈ R .

Note that (ψ0
nχ

0
n)(x) = (−1)n+1x + O(x2) as x → 0 , and (ψ0

nχ
0
n)(x) = −x−1 +

O(x−2) as x→ ∞, see [5]. Following [5], for q ∈ H+, we introduce
∧
qn =

〈
q, (ψ0

n)2
〉
+
,

∨
qn =

〈
q, ψ0

nχ
0
n

〉
+

n ≥ 0 . (2.3)

3Here and below we use the notations {f, g} = fg′ − f ′g , u′ = ∂
∂x

u , u̇ = ∂
∂λ

u .
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Also, we introduce the constants

κn = ψ0
+(0, λ0

n) , κ′n = (ψ0
+)′(0, λ0

n) , κ̇n = ψ̇0
+(0, λ0

n) and so on .

Theorem 2.2. For each q ∈ H+ the following asymptotics4 hold:

σn(q) = σ0
n + 2

∧
q2n+1 + 	 2

3
4+δ(n) , (2.4)

log
ψ′

+(0, σn(q), q)
κ′2n+1

=
κ̇′2n+1

κ′2n+1

(
σn(q) − σ0

n

)− ∨
q 2n+1 + 	 2

3
4+δ(n) , (2.5)

uniformly on bounded subsets of H+ , for some absolute constant δ > 0.

Remark.

i) Proposition 3.2 immediately yields { ∧
qn}∞n=0 ∈ H . Using basic properties of

the spaces H, H0 (see Proposition 3.3 and Lemma 3.4), we obtain

∧
q 2n+1 = π−1

∫
R+
q(t)dt · (σ0

n)−
1
2 +O

(
n− 3

4 log
1
2 n

)
.

ii) In the proof we use some technical results from [5], formulated in Appendix
A.1–A.4.

Proof. Let μ = σn(q) − σ0
n and m = 2n+ 1. Recall that σ0

n = λ0
m and ψ+(0, λ0

m +
μ, q) = 0. Lemma A.4 (i) yields μ = O(m−1/2). Due to Corollary A.3 and asymp-
totics (A.13), we have

0 =
ψ+(0, λ0

m + μ, q)
κ̇m

=
ψ

(1)
+ (0, λ0

m, q) + κ̇m · μ
κ̇m

+O
(
m−1 logm

)
.

Hence, Lemma A.7 (ii) gives μ = 2
∧
qm + O(m−1 log2m) . Using the similar argu-

ments, we deduce that

0 =
1
κ̇m

(
ψ

(1)
+ +ψ̇0

+·μ+ψ(2)
+ +ψ̇(1)

+ ·2 ∧
qm+

ψ̈0
+

2
(2

∧
qm)2

)
(0, λ0

m, q)+O
(
m− 3

2 log3m
)
.

Together with Lemmas A.7 (ii), A.6, this yields

μ

2
=

∧
qm − ∨

qm
∧
qm +

(
κ̇′m
κ′m

∧
qm +

1
2

∨
qm

)
· 2 ∧
qm − κ̈m

κm
(

∧
qm)2 + 	 2

3
4+δ(m)

=
∧
qm +

(
2κ̇′m
κ′m

− κ̈m

κm

)
· (∧
qm)2 + 	 2

3
4+δ(m) =

∧
qm + 	 2

3
4+δ(m) .

4Here and below an = bn + � 2
r (n) means that {an − bn}∞n=0 ∈ � 2

r . We say that an(q) =

bn(q) + � 2
r (n) holds true uniformly on some set iff norms ‖{an(q) − bn(q)}∞n=0‖� 2

r
are uniformly

bounded on this set.
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Furthermore, using Corollary A.3 and Lemma A.7 (ii), we obtain

ψ′
+

(
0, σn(q), q

)

κ′m

=

(
ψ0

+ + ψ
(1)
+ + ψ

(2)
+

)
(0, λ0

m + μ, q)

κ′m
+O(m− 3

2 )

=

(
ψ0

+ + ψ
(1)
+ + ψ̇0

+ · μ+ ψ
(2)
+ + ψ̇

(1)
+ · 2 ∧

qm + 1
2 ψ̈

0
+ · (2 ∧

qm)2
)′

(0, λ0
m, q)

κ′m
+O

(
m− 3

2 log3m
)

= 1 − ∨
qm +

κ̇′m
κ′m

· μ+
(

1
2

(
∨
qm)2 − π2

8
(

∧
qm)2

)
+
(
− κ̇

′
m

κ′m

∨
qm +

π2

8
∧
qm

)
· 2 ∧
qm

+
2κ̈′m
κ′m

(
∧
qm)2 + 	 2

3
4+δ(m) .

Hence,

log
ψ′

+

(
0, σn(q), q

)

κ′2n+1

= − ∨
qm +

κ̇′m
κ′m

· μ+ 2
(
κ̈′m
κ′m

− (κ̇′m)2

(κ′m)2
+
π2

16

)
· (∧
qm)2 + 	 2

3
4+δ(m)

= − ∨
qm +

κ̇′m
κ′m

· μ+ 	 2
3
4+δ(m) ,

where we have used Lemma A.6. �

3. Coefficients
∧
q2n+1 ,

∨
q2n+1 and

∼
qn

Let

ψ̃0
n(x) = 21/4ψ0

n(
√

2x) , n ≥ 0 .

Note that the mapping

q �→ {〈q, ψ̃0
n〉
}∞

n=0
, H → 	 2

1/2 . (3.1)

is a linear isomorphism5. Moreover, since {ψ̃0
2m}∞m=0 is the orthogonal basis of the

space Heven , it is the orthogonal basis of H+ . On the contrary, {ψ̃0
2m+1}∞m=0 is

the orthogonal basis of the subspace

H0
+ = {q ∈ H+ : q(0) = 0} � H+ .

5We say that the linear operator is a linear isomorphism iff it is bounded and its inverse is
bounded too.
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Following [5], for each potential q ∈ H+ we define two (analytic in the unit
disc D) functions

(Fq)(z) ≡ 1
(2π)1/4

∑

k≥0

√
Ek 〈q, ψ̃0

2k〉+ · zk , z ∈ D ,

(Gq)(z) ≡ − (2π)1/4

2

∑

k≥0

〈q, ψ̃0
2k+1〉+√

(2k + 1)Ek

zk , z ∈ D ,

(3.2)

where

Ek =
(2k)!

22k(k!)2
∼ π− 1

2 k−
1
2 as k → ∞ . (3.3)

Lemma 3.1.

(i) The mapping q �→ Fq is a linear isomorphism between H+ and H2
3/4.

(ii) The mapping q �→ Gq is a linear isomorphism between H0
+ and H2

3/4.
(iii) (Gq)(·) ∈ C(T \ {−1}) and (Gq)(·) ∈ L1(T) for each q ∈ H+.

Proof. (i), (ii) Using (3.1) and (3.3), we deduce that the mappings

q �→ {〈q, ψ̃0
2m〉+

}∞
m=0

�→ Fq , H+ → 	 2
1/2 → H2

3/4

q �→ {〈q, ψ̃0
2m+1〉+

}∞
m=0

�→ Gq , H0
+ → 	 2

1/2 → H2
3/4

are linear isomorphisms.
(iii) Let q ∈ H+ . Since ψ̃0

0(0) = 21/4π−1/4 (see (3.8)), we obtain

q(x) = 2−
1
4π

1
4 q(0) · ψ̃0

0(x) + q0(x) , x ≥ 0 ,

for some q0 ∈ H0
+ . Due to (ii), we have Gq0 ∈ H2

3/4 ⊂ C(T) ⊂ L1(T). Furthermore,
(3.9) yields

(Gψ̃0
0)(z) = − (2π)1/4

2
√

2π

∑

m≥0

(−1)mzm

2m+ 1
.

Hence, Gψ̃0
0 ∈ C(T \ {−1}), Gψ̃0

0 ∈ L1(T) and the same holds for Gq . �

Lemma 3.2 ([5]). Let q ∈ H+. Then the following identities6 hold:
∑

n≥0

∧
qnz

n ≡ (Fq)(z)√
1 − z

,
∑

n≥0

∨
qnz

n ≡ P+

[
(Gq)(ζ)
√

1 − ζ

]
, z ∈ D , (3.4)

(Fq)(1) = (2π)−
1
2

∫

R+

q(t)dt , (Fq)(−1) = 2−
3
2 q(0) , (3.5)

where the coefficients
∧
qn and

∨
qn , n ≥ 0 , are defined by (2.3).

6We write f(z) ≡ g(z) iff the identity f(z) = g(z) holds true for all z ∈ D .
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Remark.
i) Here and below we put (P+f)(z) ≡ 1

2πi

∫
|ζ|=1

f(ζ)dζ
ζ−z for any f ∈ L1(T) and

z ∈ D . In particular, the identity (P+

∑k
n=−k cnζ

n)(z) ≡ ∑k
n=0 cnz

n holds
true for any cn ∈ C .

ii) Definition (1.5) of the space H is directly motivated by asymptotics (2.4)
and (3.4)

Proof. Identities (3.4) were proved in [5] (Propositions 1.2 and 2.9). Also, in [5] it
was shown that

1 =
∑

k≥0

ψ̃0
2k(x)

∫

R

ψ̃0
2k(t)dt = (2π)

1
4

∑

k≥0

√
Ek ψ̃

0
2k(x) ,

in the sense of distributions, which gives (Fq)(1) = (2π)−1/2
∫

R+
q(t)dt . Further-

more,

δ(x) =
∑

k≥0

ψ̃0
2k(x) · ψ̃0

2k(0) =
∑

k≥0

ψ̃0
2k(x) · 21/4H2k(0)

(√
π 22k(2k)!

)1/2

=
(

2
π

) 1
4 ∑

k≥0

(−1)k
√
Ek ψ̃

0
2k(x)

in the sense of distributions. Together with (3.2), this implies (Fq)(−1) =
2−1/2 · q(0)/2 . �

We need some results from [5] (see Lemmas 2.10, 2.11 [5]).

Proposition 3.3.

(i) For each {hn}∞n=0 ∈ H there exist unique v ∈ R and {h(0)
n }∞n=0 ∈ H0 such

that hn = v · (λ0
n)−1/2 + h

(0)
n . The mapping

h �→ (
v, h(0)

)

is a linear isomorphism between H and R × H0 . If h = { ∧
qn}∞n=0 , q ∈ H+ ,

then

v = 2
1
2π− 1

2
√

1 − z

+∞∑

n=0

hnz
n
∣
∣
∣
z=1

= π−1

∫

R+

q(t)dt .

(ii) The set of finite sequences {(h0 , . . . , hk , 0 , 0 , . . . ), k ≥ 0 , hj ∈ R} is dense
in H0 .

(iii) The embeddings 	 2
3/4 ⊂ H0 ⊂ 	 2

1/4 are fulfilled.
(iv) If {hn}∞n=0 ∈ H, then {hn − hn+1}∞n=0 ∈ 	23/4.

Remark. Since H0 ⊂ 	 2
1/4 , the sequence of leading terms {(λ0

n)−1/2v}∞n=0 doesn’t
belong to H0 .

The next lemma gives the O-type estimate for sequences from H0 .

Lemma 3.4. Let {hn}∞n=0 ∈ H0 . Then hn = O(n−3/4 log1/2 n) as n→ ∞ .
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Proof. The proof is similar to the proof of Lemma 2.1 in [2]. Definition (1.6) of H0

yields
∑

n≥0

hnz
n ≡

∑
k≥0 fkz

k

√
1 − z

, {fk}∞k=0 ∈ 	 2
3
4
,

∑

k≥0

fk = f(1) = 0 .

Recall that (1 − z)−1/2 ≡ ∑
m≥0Emz

m . Hence,

hn =
n∑

k=0

En−kfk =
n∑

k=1

(En−k − En)fk − En

∞∑

k=n+1

fk .

It is easy to see that En = O(n−1/2) and En−k − En = O(kn−1(n− k + 1)−1/2) .
Therefore,

∣
∣
∣∣
∣
En

∞∑

k=n+1

fk

∣
∣
∣∣
∣
≤ En

(
+∞∑

k=n+1

k−
3
2

) 1
2
(

+∞∑

k=n+1

k
3
2 |fk|2

) 1
2

= O(n− 3
4 ) ,

∣∣
∣
∣
∣

n∑

k=1

(En−k − En)fk

∣∣
∣
∣
∣
≤
(

n∑

k=1

O

(
k

1
2

n2(n− k + 1)

))1/2( n∑

k=1

k
3
2 |fk|2

)1/2

= O(n− 3
4 log

1
2 n) ,

where the estimate
∑+∞

k=1 k
3/2|fk|2 < +∞ has been used. �

Recall that Fq and Gq are defined by (3.2) and the system of functions
{ψ̃0

2k}∞k=0 is a basis of H+. Therefore, it is possible to rewrite Gq in terms of Fq .
Note that this situation differs from the case q ∈ H (the perturbed harmonic oscil-
lator on the whole real line [5]), where the functions Fq and Gq are “independent
coordinates” in the space of potentials.

For ζ = eiφ ∈ T, φ ∈ (−π, π) , ζ �= −1 , we define
√
ζ = e

iφ
2 . We have the

identity
1√
ζ

=
2
π

∑

s∈Z

(−1)s

2s+ 1
ζs in L2(T) . (3.6)

Lemma 3.5. For each q ∈ H+ the following identity holds:

(Gq)(z) ≡ −π
2
P+

[
(Fq)(ζ)√

ζ

]
, z ∈ D . (3.7)

Proof. We determine the coefficients of the function ψ0
2m+1 with respect to the

basis {ψ0
2k}∞k=0. The standard identity {ψ0

2k , ψ
0
2m+1}′ = (λ0

2k − λ0
2m+1)ψ

0
2kψ

0
2m+1

yields

(ψ0
2m+1 , ψ

0
2k)+ =

∫

R+

ψ0
2m+1(x)ψ

0
2k(x)dx =

{ψ0
2k , ψ

0
2m+1}(0)

λ0
2m+1 − λ0

2k

=
ψ0

2k(0)(ψ0
2m+1)

′(0)
2
(
2(m− k) + 1

) .
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Note that

ψ0
2k(0) =

H2k(0)
(√
π 22k(2k)!

)1/2
=

(−1)k2k(2k − 1)!!
(√
π 22k(2k)!

)1/2
=

(−1)k

π1/4

√
Ek , (3.8)

(ψ0
2m+1)

′(0) =
H ′

2m+1(0)
(√
π 22m+1(2m+ 1)!

)1/2
=

(−1)m2m+1(2m+ 1)!!
(√
π 22m+1(2m+ 1)!

)1/2

=
(−1)m

√
2

π1/4

√
(2m+ 1)Em .

Therefore,

(ψ̃0
2m+1 , ψ̃

0
2k)+ = (ψ0

2m+1 , ψ
0
2k)+ =

1√
2π

· (−1)m−k

2(m− k) + 1

√
(2m+ 1)EmEk . (3.9)

Since ‖ψ̃0
2k‖2

+ = 1/2 , we obtain

ψ̃0
2m+1√

(2m+ 1)Em

=

√
2
π

+∞∑

k=0

(−1)m−k

2(m− k) + 1
·
√
Ek ψ̃

0
2k .

This gives

P+

[
(Fq)(ζ)√

ζ

]
≡ 23/4

π5/4
P+

[
+∞∑

l=−∞

(−1)l

2l + 1
ζl ·

+∞∑

k=0

√
Ek(q, ψ̃0

2k)+ζk

]

≡ 21/4

π3/4

+∞∑

m=0

(q, ψ̃0
2m+1)+√

(2m+ 1)Em

zm ≡ − 2
π

(Gq)(z) , z ∈ D ,

where definition (3.2) of the functions Fq and Gq has been used. �

We introduce the formal linear operator A by

(Af)(z) ≡ P+

[
f(ζ)√−ζ

]
≡ P+

[√
1 − ζ · f(ζ)√

1 − ζ

]
, f ∈ L1(T) . (3.10)

Let ◦
H

2
3/4 =

{
f ∈ H

2
3/4 : f(1) = 0

} ⊂ H
2
3/4 .

Using Lemma 3.5 we shall obtain the simple proof of Theorem 4.2 from [5]
about the equivalent definition of H0 .

Corollary 3.6.

(i) The operator A :
◦
H2

3/4 → H2
3/4 and its inverse are bounded.

(ii) The following identity holds:

H0 =

⎧
⎨

⎩
{hn}∞n=0 :

∑

n≥0

hnz
n ≡ P+

[
g(ζ)

√
1 − ζ

]
, g ∈ H2

3/4

⎫
⎬

⎭
. (3.11)

The norms ‖h‖H and ‖g‖H2
3/4

are equivalent, i.e., C1‖g‖H2
3/4

≤ ‖h‖H ≤ C2‖g‖H2
3/4

for any g ∈ H2
3/4 and some absolute constants C1 , C2 > 0.
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Remark. This equivalence was proved in [5] using different and complicated argu-
ments.

Proof. (i) Recall that the mapping q �→ (Gq)(−z) is a linear isomorphism between
H0

+ and H2
3/4 . Also, due to the identity (Fq)(−1) = 2−3/2q(0) (see Lemma 3.2),

the mapping q �→ (Fq)(−z) is a linear isomorphism between H0
+ and

◦
H2

3/4 . There-
fore, the mapping

f(z) ≡ (Fq)(−z) �→ q �→ (Gq)(−z) ≡ −π
2
P+

[
(Fq)(−ζ)√

ζ

]
≡ Af(z)

is a linear isomorphism between
◦
H2

3/4 , H0
+ and H2

3/4 respectively.

(ii) If g ∈ H2
3/4 , then g0(z) ≡ g(z)−g(1) ∈ ◦

H2
3/4 and so |g0(ζ)| ≤ C|ζ−1|1/4,

|ζ| = 1 , for some constant C > 0 . Hence, the following equivalence is valid:

c
∑

n≥0

hnz
n ≡ P+

[
g(ζ)

√
1 − ζ

]
⇔

∑

n≥0

hnz
n ≡ g(1) +

g0(z)√
1 − z

− P−

[
g0(ζ)√
1 − ζ

]

⇔ P+

[√
1 − ζ

∑

n≥0

hnζ
n

]

≡ g(1) + g0(z) ≡ g(z) ,

where P−f ≡ f − P+f is the projector to the subspace of antianalytic functions
in D . Therefore, the equation

f(z)√
1 − z

≡
∑

n≥0

hnz
n ≡ P+

[
g(ζ)

√
1 − ζ

]
, where f ∈ ◦

H
2
3/4 , g ∈ H

2
3/4 ,

is equivalent to g(z) ≡ (Af)(z) . Then, (3.11) follows from (i). �

Lemma 3.7. For each q ∈ H+ the following identity holds:

∑

n≥0

∨
q2n+1z

n ≡ π

2
P+

[
1√−ζ

∑

n≥0

∧
q 2nζ

n

]

, z ∈ D . (3.12)

Proof. Due to identities (3.2) and Lemma 3.5, we have

∑

n≥0

∨
qnz

n ≡ P+

[
(Gq)(ζ)
√

1 − ζ

]

≡ −π
2
P+

[
(Fq)(ζ)√
ζ
√

1 − ζ

]

≡ −π
2
P+

[ √
1 − ζ√

ζ
√

1 − ζ

∑

n≥0

∧
qnζ

n

]

≡ −π
2
P+

[√−ζ√
ζ

∑

n≥0

∧
qnζ

n

]

.



1128 D. Chelkak and E. Korotyaev Ann. Henri Poincaré

Therefore,

∑

n≥0

∨
q 2n+1z

2n+1 ≡ −π
4
P+

[√−ζ√
ζ

∑

n≥0

∧
qnζ

n −
√
ζ√−ζ

∑

n≥0

∧
qn(−ζ)n

]

≡ π

4
P+

[ √
ζ√−ζ

∑

n≥0

∧
qn (ζn + (−ζ)n)

]

≡ π

2
P+

[ √
ζ√−ζ

∑

n≥0

∧
q2nζ

2n

]

.

This yields

∑

n≥0

∨
q 2n+1z

2n ≡ π

2
P+

[
1
ζ
·

√
ζ√−ζ

∑

n≥0

∧
q 2nζ

2n

]

≡ π

2
P+

[
1

√−ζ2

∑

n≥0

∧
q 2nζ

2n

]

,

since
√−ζ · √ζ =

√
−ζ2 for ζ ∈ T , ζ �= ±1 . �

We consider linear terms { ∧
q2n+1}∞n=0 and { ∨

q2n+1}∞n=0 in asymptotics (2.4),
(2.5).

Proposition 3.8.

(i) For each q ∈ H+ the following identity is fulfilled:
∑

n≥0

∧
q 2n+1z

n ≡ (FDq)(z)√
1 − z

, z ∈ D , (3.13)

where

(FDq)(z2) ≡ 1
2z

(
(Fq)(z)

√
1 + z − (Fq)(−z)√1 − z

)
.

(ii) For each q ∈ H+ the following identity is fulfilled:

∑

n≥0

∨
q 2n+1z

n ≡ π

2
P+

[
1√−ζ

(
(GDq)(ζ) +

∑

n≥0

∧
q2n+1ζ

n

)]

, z ∈ D , (3.14)

where

(GDq)(z2) ≡ 1
2z

(
(Fq)(−z)√1 + z − (Fq)(z)

√
1 − z

)
.

(iii) The mapping
q �→ (FDq ;GDq)

is a linear isomorphism between H+ and H2
3/4 ×H2

3/4 .

Proof. (i) Due to (3.2), we have
∑

n≥0

∧
q 2n+1z

2n ≡ 1
2z

(
(Fq)(z)√

1 − z
− (Fq)(−z)√

1 + z

)
≡ (FDq)(z2)√

1 − z2
.

This gives (3.13).
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(ii) Recall that Lemma 3.7 yields

∑

n≥0

∨
q 2n+1z

n ≡ π

2
P+

[
1√−ζ

∑

n≥0

∧
q 2nζ

n

]

.

Using (3.2), we obtain
∑

n≥0

(
∧
q 2n − ∧

q 2n+1)z2n ≡ 1
2

(
(Fq)(z)√

1 − z
+

(Fq)(−z)√
1 + z

)
− (FDq)(z2)√

1 − z2
≡ (GDq)(z2) .

This gives (3.14).
(iii) Recall that the mapping q �→ Fq is a linear isomorphism between H+

and H2
3/4 . Therefore, we need to prove that Fq �→ (FDq ;GDq) is a linear iso-

morphism between H2
3/4 and H2

3/4 ×H2
3/4 . Due to definitions of FD and GD , the

direct mapping is bounded. Since

(Fq)(z) ≡ (FDq)(z2)
√

1 + z + (GDq)(z2)
√

1 − z ,

the inverse mapping is bounded too. �

Definition 3.9. For q ∈ H+ define coefficients
∼
qn , n ≥ 0 , by

∑

n≥0

∼
q nz

n ≡ π

2
P+

[
1√−ζ

(
(GDq)(ζ) − (GDq)(1)

)
]

, z ∈ D .

Remark. Due to Proposition 3.8, we haveGDq ∈ H2
3/4 . Hence, (GDq)(·)−(GDq)(1)

∈ ◦
H2

3/4 and Corollary 3.6 gives {∼
q n}∞n=0 ∈ 	 2

3/4 .

Theorem 3.10.

(i) For each q ∈ H+ the following identities hold:

∨
q 2n+1 =

q(0)
4(2n+ 1)

+
∼
q n +

∑

m≥0

∧
q 2m+1

2(n−m) + 1
, n ≥ 0 . (3.15)

(ii) The mapping

q �→ ({ ∧
q2n+1}∞n=0 ; q(0) ; {∼

qn}∞n=0

)

is a linear isomorphism between H+ and H× R × 	 2
3/4 .

Proof. (i) Due to identity (3.14) and Definition 3.9, we have

∑

n≥0

∨
q 2n+1z

n ≡
∑

n≥0

∼
q nz

n +
π

2
P+

[
1√−ζ

(
(GDq)(1) +

∑

n≥0

∧
q2n+1z

n

)]

. (3.16)

Note that (GDq)(1) = 2−1/2(Fq)(−1) . Then, identity (3.5) yields (GDq)(1) =
1
4q(0) . Substituting the identity 1/

√−ζ = 2
π

∑
s∈Z

ζs

2s+1 in L2(T) (see (3.6))
into (3.16), we obtain (3.15).
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(ii) Due to Proposition 3.8 and identity (3.13), the mappings

q �→ (FDq ;GDq) �→ ({ ∧
q2n+1}∞n=0 ;GDq

)
,

H+ → H2
3/4 ×H2

3/4 → H×H2
3/4 ,

are linear isomorphisms. Using Corollary 3.6, we deduce that the mapping

GDq �→
(
(GDq)(1) ; {∼

q n}∞n=0

)
, H2

3/4 → R × 	 2
3/4 ,

is a linear isomorphism too. The identity (GDq)(1) = 1
4q(0) completes the proof.

�

4. Asymptotics of νn(q) and proof of Proposition 1.2

Lemma 4.1. For each q ∈ H+ the following identity holds:
∑

n≥0

(
σn(q) − σ0

n − 2
∧
q2n+1

)
= 0 . (4.1)

where the series converges absolutely.

Proof. By asymptotics (2.4), the series
∑

n≥0(σn(q) − σ0
n − 2

∧
q2n+1) converges

absolutely. Due to Lemma A.47, ∂σn(q)
∂q(x) = ψ2

n,D(x, q) , where ψn,D is the n-th
normalized (in L2(R+)) eigenfunction of the operator TD . Therefore,

σn(q) − σ0
n =

∫ 1

0

d

ds
σn(sq)ds =

∫ 1

0

〈
ψ2

n,D(x, sq), q(x)
〉
+
ds .

Recall that ψ2
n,D(x, 0) = 2(ψ0

2n+1)
2(x) . Then,

σn(q) − σ0
n − 2

∧
q2n+1 =

∫ 1

0

〈
ψ2

n,D(x, sq) − ψ2
n,D(x, 0), q(x)

〉
L2(R+ , dx)

ds .

The standard perturbation theory (e.g., see [8]) yields

∂ψn,D(x, q)
∂q(y)

=
∑

m:m �=n

ψn,D(y, q)ψm,D(y, q)
σn(q) − σm(q)

ψm,D(x, q) .

Hence,
〈
ψ2

n,D(x, sq) − (ψ0
n,D)2(x), q(x)

〉
L2(R+ , dx)

=
∫ s

0

〈
d

dt
ψ2

n,D(x, tq), q(x)
〉

L2(R+ , dx)

dt

7Here and below ∂ξ(q)
/
∂q = ζ(q) means that for any v ∈ L2 the equation (dqξ)(v) = 〈v, ζ〉L2

holds true.
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=
∫ s

0

〈

2ψn,D(x, tq)

×
〈 ∑

m:m �=n

ψn,D(y, tq)ψm,D(y, tq)
σn(q) − σm(q)

ψm,D(x, tq), q(y)
〉

L2(dy)

q(x)

〉

L2(dx)

dt .

This gives

∑

n≥0

(
σn(q) − σ0

n − 2
∧
q2n+1

)
= 2

∫ 1

0

ds

∫ s

0

∑

n≥0

∑

m:m �=n

〈
(ψn,Dψm,D)(tq), q

〉2
+

σn(tq) − σm(tq)
dt .

Let

Sk =
k∑

n=0

∑

m:m �=n

〈
(ψn,Dψm,D)(tq), q

〉2
+

σn(tq) − σm(tq)
=

k∑

n=0

+∞∑

m=k+1

〈
(ψn,Dψm,D)(tq), q

〉2
+

σn(tq) − σm(tq)
.

Due to Lemma A.8, for some absolute constant ε > 0 we have

〈
(ψn,Dψm,D)(tq), q

〉2
+

=

{
O
(
n− 1

2 m− 1
2
)

for all n,m ≥ 0 ,
O
(
n− 1

2− ε
2m− 1

2
)
, if m ≥ n+ n

1
2+ε .

Using the simple estimate |σn(tq) − σm(tq)|−1 = O(|n − m|−1) and technical
Lemma A.9, we obtain Sk → 0 as k → ∞ , i.e.,

∑
n≥0(σn(q)−σ0

n−2
∧
q2n+1) = 0 . �

Proof of Proposition 1.2. Repeating the proof of Lemma 4.1, we obtain
∑

n≥0

(
λn(q) − λ0

n − 2
∧
qn

)
= 0 ,

for q ∈ Heven . Recall that λ2n+1(q) = σn(q) and λ0
2n+1 = σ0

n . Using (4.1), we get
∑

n≥0

(−1)n
(
λn(q) − λ0

n − 2
∧
qn

)
=
∑

n≥0

(
λn(q) − λ0

n − 2
∧
qn

)

− 2
∑

n≥0

(
σn(q) − σ0

n − 2
∧
q2n+1

)
= 0 .

Due to Lemma 3.2, Propsition 3.3 (iv) this yields
∑

n≥0

(−1)n
(
λn(q) − λ0

n

)
= 2

∑

n≥0

(−1)n ∧
qn = 2 · (Fq)(z)√

1 − z

∣
∣
∣
z=−1

=
q(0)
2

.

Hence, q(0) = 2
∑

n≥0(−1)n(λn(q) − λ0
n), which gives (1.2). �

Recall that each sequence {σn(q) − σ0
n}, q ∈ H+ belongs to the set SD ⊂ H

given by (1.8).
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Theorem 4.2.

(i) Each function rn(q) = νn(q) − ν0
n + q(0)

2(2n+1) , q ∈ H+ satisfies

rn(q) = −2
∼
q n +Rn (μ) + 	 2

3
4+δ(n) , μ = {μm}∞m=0 =

{
σm(q) − σ0

}∞
m=0

(4.2)

uniformly on bounded subsets of H+,where δ > 0 is some absolute constant
and

Rn (μ) = −2 log

[
ψ0

+(0, σ0
n + μn)

κ̇2n+1 · μn

∏

m:m �=n

(σ0
n + μn) − (σ0

m + μm)
(σ0

n + μn) − σ0
m

]

+
2κ̇′2n+1

κ′2n+1

· μn −
∑

m≥0

μm

2(n−m) + 1
, n ≥ 0 .

(4.3)

(ii) For each {μm}∞m=0 ∈ SD the sequence {Rn}∞n=0 belongs to the space 	 2
3/4 .

Moreover, the mapping R : SD → 	 2
3/4 given by {μm}∞m=0 �→ {Rn}∞n=0 , is

locally bounded.

Remark. Note that
∼
q n = 	 2

3/4(n) due to Theorem 3.10 (ii). Therefore, {rn(q)}∞n=0 ∈
	 2
3/4.

Proof. (i) Let σn = σn(q) and μn = σn(q) − σ0
n , n ≥ 0 . Lemma 2.1 yields

νn(q) − ν0
n

2
= log

[
ψ′

+(0, σn, q)

ψ̇+(0, σn, q)
· κ̇2n+1

κ′2n+1

]
.

Using Theorem 2.2 (ii) and Theorem 3.10 (i), we obtain

log
ψ′

+(0, σn, q)
κ′2n+1

=
κ̇′2n+1

κ′2n+1

μn − q(0)
4(2n+ 1)

− ∼
q n −

∑

m≥0

∧
q 2m+1

2(n−m) + 1
+ 	 2

3
4+δ(n) .

Furthermore, identity (2.2) gives

log
ψ̇+(0, σn, q)
κ̇2n+1

= log

[
ψ0

+(0, σn)
κ̇2n+1 · μn

∏

m:m �=n

σn − σm

σn − σ0
m

]

Hence,

rn(q) = νn(q) − ν0
n +

q(0)
2(2n+ 1)

= −2
∼
q n +Rn(μ) + 	 2

3
4 +δ(n) + hn ,

where

hn =
∑

m≥0

μm − 2
∧
q2m+1

2(n−m) + 1
, n ≥ 0 .

In order to prove that hn = 	 2
3/4+δ(n), we note that identity (3.6) yields

h(z) ≡
∑

n≥0

hnz
n ≡ π

2
P+

[
g(ζ)√−ζ

]
, where g(z) ≡

∑

m≥0

(μm − 2
∧
q2m+1)zm
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Due to asymptotics (2.4) and identity (4.1), we have g ∈ H2
3/4+δ and g(1) = 0 .

Hence8,
g(ζ)√−ζ ∈W 2

3
4+δ(T) , and so P+

[
g(ζ)√−ζ

]
∈ H2

3
4 +δ .

Thus,
∑

n≥0 hnz
n ∈ H2

3/4+δ , i.e., {hn}∞n=0 ∈ 	 2
3/4+δ .

(ii) Let {μm}∞m=0 ∈ SD . We rewrite (4.3) in the form Rn = R
(1)
n +R(2)

n +R(3)
n ,

where

R(1)
n = −2 log

[
ψ0

+(0, σ0
n + μn)

κ̇2n+1 · μn

]
+

2κ̇′2n+1

κ′2n+1

· μn ,

R(2)
n = −

∑

m:m �=n

(

2 log
[
1 − μm

4(n−m) + μn

]
+

μm

2(n−m)

)

,

R(3)
n =

1
2

∑

m:m �=n

μm

n−m
−
∑

m≥0

μm

2(n−m) + 1
.

In the following Lemmas 4.3–4.5 we will analyze these terms separately. Recall
that Proposition 3.3 and Lemma 3.4 give μn = O(n−1/2) as n→ ∞ and

μn = v · (n+ 1)−
1
2 + 	 2

1/4(n) , (4.4)

where v ∈ R is some constant.

Lemma 4.3. The asymptotics R(1)
n = π2v2

48 (n+ 1)−1 + 	 2
3/4(n) hold true.

Proof. Due to ψ0
+(0, σ0

n) = 0, μn = O(n−1/2) and the estimates from Corol-
lary A.3, we have

ψ0
+(0, λ0

n + μn)
κ̇2n+1 · μn

= 1 +
κ̈2n+1

2κ̇2n+1
μn +

...
κ2n+1

6κ̇2n+1
μ2

n +O(n− 3
2 log4 n) .

Therefore,

R(1)
n =

(
2κ̇′2n+1

κ′2n+1

− κ̈2n+1

κ̇2n+1

)
μn − 2

( ...
κ2n+1

6κ̇2n+1
− (κ̈2n+1)2

8(κ̇2n+1)2

)
μ2

n +O(n− 3
2 log4 n)

=
π2

48
μ2

n +O(n− 3
2 log4 n) =

π2v2

48
(n+ 1)−1 + 	 2

3/4(n) ,

where we have used Lemma A.6 and (4.4). �

Lemma 4.4. The asymptotics R(2)
n = −π2v2

48 (n+ 1)−1 + 	 2
3/4(n) hold true.

8Here and below W 2
r (T) is the Sobolev space on the unit circle T = {ζ ∈ C : |ζ| = 1}.
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Proof. For m �= n we have

2 log
[
1 − μm

4(n−m) + μn

]
+

μm

2(n−m)
=

μmμn

2(n−m)
(
4(n−m) + μn

)

− μ2
m(

4(n−m) + μn

)2 +O

(
m−3/2

(n−m)3

)

=
μmμn

8(n−m)2
− μ2

m

16(n−m)2

+O

(
m−3/2 +m−1/2n−1

(n−m)3

)
.

Therefore,

16R(2)
n = −2μn ·

∑

m:m �=n

μm

(n−m)2
+

∑

m:m �=n

μ2
m

(n−m)2
+O(n− 3

2 ) .

Recall that μn = v(n + 1)−1/2 + 	 2
1/4(n) and μ2

n = v2(n + 1)−1 + 	 2
3/4(n) . Using

simple technical Lemma A.10, we deduce that

16R(2)
n = −2

(
v

(n+ 1)1/2
+ 	 2

1
4
(n)

)(
π2v

3(n+ 1)1/2
+ 	 2

1
4
(n)

)

+
(

π2v2

3(n+ 1)
+ 	 2

3
4
(n)

)
+O(n− 3

2 ) .

This gives 48R(2)
n = −π2v2(n+ 1)−1 + 	 2

3/4(n) . �

Lemma 4.5. The asymptotics R(3)
n = 	 2

3/4(n) hold true.

Proof. Note that the following identities are fulfilled in L2(T):

2
+∞∑

l=−∞

ζl

2l + 1
=

π√−ζ ,
∑

l:l �=0

ζl

l
= − log(−ζ) ,

where the branches of
√−ζ and log(−ζ), ζ ∈ T \ {1} are such that

√
1 = 1 and

log 1 = 0 . Then,

∑

n≥0

R(3)
n zn ≡ −1

2
P+

[(
π√−ζ + log(−ζ)

)
·
∑

n≥0

μnζ
n

]

.

Since {μn}∞n=0 ∈ H , we have
∑

n≥0

μnz
n ≡ F (z)√

1 − z
, where F ∈ H2

3/4 .

Introduce the function

γ(ζ) =
π
/√−ζ + log(−ζ)√

1 − ζ
, ζ ∈ T . (4.5)
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It is clear that γ ∈ C∞(T \ {1}) . Note that γ(ζ) → 0 as ζ → 1±i0. This yields
γ ∈W 2

3/4(T), γF ∈W 2
3/4(T) and P+[γF ] ∈ H2

3/4 . The last statement is equivalent

to {R(3)
n }∞n=0 ∈ 	 2

3/4 . �

Lemmas 4.3–4.5 give Rn = R
(1)
n + R

(2)
n + R

(3)
n = 	 2

3/4(n) . Note that all
estimates are uniform on bounded subsets of SD . The proof of Theorem 4.2 is
finished. �

5. Proof of Theorem 1.3

Introduce the mapping

Φ : q �→
({
μn(q)

}∞
n=0

; q(0) ;
{
rn(q)

}∞
n=0

)
,

where μn(q) = σn(q) − σ0
n . Due to Theorems 1.1, 4.2, we have

Φ : H+ → SD × R × 	 2
3
4
.

Theorem 1.3 claims that Φ is a real-analytic isomorphism. The proof given below
consists of five steps: Φ is injective (Section 5.1); Φ is real-analytic (Section 5.2);
the Fréchet derivative dqΦ is a Fredholm operator for each q ∈ H+ (Section 5.3);
dqΦ is invertible for each q ∈ H+ , i.e., Φ is a local real-analytic isomorphism
(Section 5.4); Φ is surjective (Section 5.5).

5.1. Uniqueness theorem

Let ({μn(p)}∞n=0 ; p(0) ; {rn(p)}∞n=0) = ({μn(q)}∞n=0 ; q(0) ; {rn(q)}∞n=0) for some
p, q ∈ H+. By definitions of μn and rn , it is equivalent to

σn = σn(p) = σn(q) and νn = νn(p) = νn(q) for all n ≥ 0 .

Using Lemma 2.1, we obtain

ψ′
+(0, σn, p) = ψ′

+(0, σn, q) for all n ≥ 0 .

The rest of the proof is standard (see also [4]). Recall that ϕ(x, λ, q) is the solution
of (1.4) such that ϕ(0, λ, q) = 0 , ϕ′(0, λ, q) = 1 . Introduce the functions

f1(λ;x, q, p) =
F1(λ;x, q, p)
ψ+(0, λ, q)

,

F1(λ;x, q, p) = ψ+(x, λ, p)ϕ′(x, λ, q) − ϕ(x, λ, p)ψ′
+(x, λ, q) ,

f2(λ;x, q, p) =
F2(λ;x, q, p)
ψ+(0, λ, q)

,

F2(λ;x, q, p) = ψ+(x, λ, p)ϕ(x, λ, q) − ϕ(x, λ, p)ψ+(x, λ, q) .
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Both f1 and f2 are entire with respect to λ for each x ∈ R+ . Indeed, all roots
σn , n ≥ 0 , of the denominator ψ+(0, ·, q) are simple and all these values are roots
of the numerators F1 , F2 , since

ψ+(x, σn, p)
ϕ(x, σn, p)

= ψ′
+(0, σn, p) = ψ′

+(0, σn, q) =
ψ+(x, σn, q)
ϕ(x, σn, q)

for all x ∈ R+ and n ≥ 0 . Standard estimates (see Lemma A.2 and asymp-
totics (A.6)) of ϕ and ψ+ give

f1(λ;x, p, q) = 1+O
(
|λ|− 1

2

)
, f2(λ;x, p, q) = O

(
|λ|− 1

2

)
, |λ|=λ0

2k , k → ∞ .

Then, the maximum principle implies

f1(λ;x, p, q) = 1 , f2(λ;x, p, q) = 0 , λ ∈ C .

This yields ϕ(x, λ, p) = ϕ(x, λ, q) and ψ+(x, λ, p) = ψ+(x, λ, q), i.e., p = q . �

5.2. Φ is a real-analytic mapping

Recall that for some δ > 0 the following asymptotics are fulfilled (see (2.4)
and (4.2)):

μn(q) = 2
∧
q2n+1+	 2

3
4+δ(n) , rn(q) = −2

∼
qn+Rn

({
μm(q)

}∞
m=0

)
+	 2

3
4+δ(n) , (5.1)

where
R : SD → 	 2

3
4
, R : {μm}∞m=0 �→ {Rn}∞n=0 ,

is a locally bounded mapping given by (4.3). Let H+C be the complexification of
H+ . Due to Lemma A.4 (ii), for each q∈H+ all functions σn(q) and ψ′

+(0, σn(q), q),
n ≥ 0 , have analytic continuations into some complex neighborhood of q . More-
over, due to Lemma 2.1, all functions νn(q) have analytic continuations into some
complex neighborhood of q. Therefore, for each real potential q ∈ H+ all “coordi-
nate functions” μn(q) , q(0) , rn(q) of the mapping Φ have an analytic continuation
into some small complex neighborhood Q of q.

Repeating the proof of (5.1) we obtain that these asymptotics hold true
uniformly on bounded subsets of Q . Let

Φ(0) : q �→ ({2 ∧
q2n+1}∞n=0 ; q(0) ; {−2

∼
q n}∞n=0

)
.

Due to Theorem 3.10 (i), Φ(0) is a linear isomorphism between H+ and H×R×	 2
3/4 .

In particular, Φ(0) is a real-analytic mapping. Consider the difference

Φ − Φ(0) : q �→
({
μn(q) − 2

∧
q2n+1

}∞
n=0

; 0 ;
{
rn(q) + 2

∼
q n

}∞
n=0

)
,

Φ − Φ(0) : H+ → 	 2
3
4+δ × R × 	 2

3
4
.

All “coordinate functions” μn(q)− 2
∧
q2n+1 , rn(q) +2

∼
qn are analytic and Φ−Φ(0)

is correctly defined and bounded in some small complex neighborhood of each real
potential (since (5.1) holds true uniformly on bounded subsets). Then, Φ−Φ(0) is
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a real-analytic mapping from H+ into 	 2
3/4+δ×R×	 2

3/4 and Φ is real-analytic too,
since 	 2

3/4+δ ⊂ 	 2
3/4 ⊂ H . �

5.3. The Fréchet derivative dqΦ is a Fredholm operator for each q ∈ H+

In other words, we will prove that dqΦ is the sum of invertible and compact
operators. Let

Φ(1) : q �→
(

0 ; 0 ;R
({
μm(q)

}∞
m=0

))
and Φ(2) = Φ − Φ(0) − Φ(1) .

Using the same arguments as above, we obtain that RD : SD → 	 2
3/4 is a real-

analytic mapping (since it is locally bounded in some small complex neighborhood
of each real point μ ∈ SD and all “coordinate function” Rn are analytic). Then,
Φ(1) is real-analytic as a composition of real-analytic mappings. Theorems 2.2, 4.2
yield

Φ(2) : H+ → 	 2
3
4 +δ × R × 	 2

3
4 +δ .

Repeating above arguments again, we obtain that Φ(2) is a real-analytic mapping
too.

Fix some q ∈ H+ . The Fréchet derivatives dqΦ , dqΦ(j) of the analytic map-
pings Φ, Φ(j) at the point q are bounded linear operators and

dqΦ = dqΦ(0) + dqΦ(1) + dqΦ(2) =
(
Φ(0) + dqΦ(1)

)
+ dqΦ(2) .

Note that the operator

dqΦ(2) : H+ → H× R × 	 2
3
4

is compact since it maps H+ into 	 2
3/4+δ ×R× 	 2

3/4+δ and the embedding 	 2
3/4+δ ⊂

	 2
3/4 is compact. In order to prove that Φ(0) + dqΦ(1) is invertible, we introduce

two linear operators

A : H+ → H , p �→ Ap = {2∧
p2n+1}∞n=0 ,

B : H+ → 	 2
3
4
, p �→ Bp = {−2

∼
pn}∞n=0 .

Recall that Φ(0)p = (Ap ; p(0) ;Bp) . The chain rule implies
(
dqΦ(1)

)
p =

(
0 ; 0 ; (dμ(q)R)Ap

)
,

where dμ(q)R is the Fréchet derivative of the mapping R at the point μ(q) =
{μm(q)}∞m=0 ∈ SD . Hence, Φ(0) + dqΦ(1) = CΦ(0) , where both operators C and
C−1 given by

C±1 : H× R × 	 2
3/4 → H× R × 	 2

3/4 ,

C : (h; t; r) �→ (
h; t; r±(dμ(q)RD)h

)

are bounded. Recall that (Φ(0)
D )−1 is bounded due to Theorem 3.10 (ii). Therefore,

the operator (Φ(0) + dqΦ(1))−1 is bounded too. �
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5.4. Φ is a local real-analytic isomorphism

By Fredholm’s Theory, in order to prove that (dqΦ)−1 is bounded, it is sufficient
to check that the range Ran dqΦ is dense:

H× R × 	 2
3/4 = Ran dqΦ . (5.2)

Note that Lemma A.4 (ii) gives

∂σn(q)
∂q(t)

= ψ2
n,D(t, q) ,

∂ log
[
(−1)nψ′

+

(
0, σn(q), q

)]

∂q(t)
= −(ψn,Dχn,D)(t, q) , (5.3)

where ψn,D(·, q) is the n-th normalized eigenfunction of TD and χn,D(·, q) is some
special solution of (1.4) for λ = σn(q) such that {χn,D , ψn,D} = 1 . In particular,

(ψn,Dχn,D)(t, q) ∼ t , t→ 0 ,

(ψn,Dχn,D)(t, q) ∼ −t−1, t→ +∞ .

Due to Lemma A.5 (i), for each q ∈ H+ the following standard identities are
fulfilled:

(
(ψ2

n,D)′(q), ψ2
m,D(q)

)
+

= 0 ,
(
(ψ2

n,D)′(q), ψm,Dχm,D)(q)
)
+

= 1
2 δmn ,

(
(ψn,Dχn,D)′(q), (ψm,Dχm,D)(q)

)
+

= 0 , n,m ≥ 0 .

(5.4)

Note that (ψ2
m,D)′(·, q) ∈ H+ . Using (5.3), (5.4), we obtain

(
∂μn(q)
∂q

, (ψ2
m,D)′(q)

)

+

= 0

and (
∂ log

[
(−1)nψ′

+(0, σn(q), q)
]

∂q
, (ψ2

m,D)′(q)
)

+

=
δnm

2
for all n,m ≥ 0 . Due to Lemma 2.1, this implies
(
∂ψ̇+(0, σn(q), q)

∂q
, (ψ2

m,D)′(q)
)

+

= 0 and
(
∂νn(q)
∂q

, (ψ2
m,D)′(q)

)

+

= δnm .

The identity (
∂q(0)
∂q

, (ψ2
m,D)′(q)

)

+

= (ψ2
m,D)′(0) = 0

gives (
∂rn(q)
∂q

, (ψ2
m,D)′(q)

)

+

=
(
∂νn(q)
∂q

, (ψ2
m,D)′(q)

)

+

= δnm .

Thus,
(dqΦ)

(
(ψ2

m,D)′(q)
)

= (0 ; 0 ; em) ,
where 0 = (0, 0, 0, . . . ) , e0 = (1, 0, 0, . . . ) , e1 = (0, 1, 0, . . . ) and so on. Therefore,

{
(0; 0)

}× 	 2
3/4 =

{
(0; 0; c) : c ∈ 	 2

3/4

} ⊂ RandqΦ . (5.5)
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We come to the second component of (dqΦ)ξ , i.e., to the value ξ(0) . We
consider the lowest eigenvalue λ0(q) of the operator TN (with the same potential q
and the Neumann boundary condition ψ′(0) = 0) and the function

ξ(t) = (ϕϑ)′
(
t, λ0(q), q

)
, t ∈ R ,

where ϑ(t) is the solution of −ψ′′ + x2ψ + q(x)ψ = λψ such that ϑ(0) = 1 and
ϑ′(0) = 1. Note that ξ(0) = 1. Asymptotics (A.11), (A.12) give ξ ∈ H+ since
ϑ(·, λ0(q), q) is proportional to ψ+(·, λ0(q), q). Moreover, using ϕ(0, λ0(q), q) =
ψn,D(0, q) = 0, we obtain

(
∂μn(q)
∂q

, ξ

)

+

=
(
ψ2

n,D(q) , ξ
)
+

=
−{ψn,D , ϕ}{ψn,D , ϑ}(0, λ0(q), q

)

2
(
σn(q) − λ0(q)

) = 0 .

Hence,

(dqΦ)ξ =
(
0 ; 1 ; (dqr)ξ

)
, where (dqr)ξ =

{(
∂rn(q)
∂q

, ξ

)

+

}∞

n=0

∈ 	 2
3/4 .

Together with (5.5) this implies

{0} × R × 	 2
3/4 ⊂ Ran dqΦ .

Furthermore, we consider the functions −2(ψm,Dχm,D)′(q) ∈ H+ (see asymp-
totics (A.11), (A.12)). Identities (5.3), (5.4) and (ψm,Dχm,D)′(0, q) = 1 give

(dqΦ)
(− 2(ψm,Dχm,D)′(q)

)
=
(
em ;−2 ; (dqr)

(− 2(ψm,Dχm,D)′(q)
))
.

Due to Proposition 3.3 (ii), the set of finite sequences is dense in H0. Therefore,

H0 × R × 	 2
3/4 ⊂ RandqΦ . (5.6)

In conclusion, we consider an arbitrary function ζ ∈ H+ such that
∫

R+
ζ(t)dt �= 0.

Proposition 3.3 (i) implies

(dqΦ)ζ /∈ H0 × R × 	 2
3/4 .

Together with (5.6) this yields (5.2), since the codimension of H0 in H is equal
to 1. �
5.5. Φ is surjective

Lemma 5.1. Let q ∈ H+ , n ≥ 0 and t ∈ R . Denote

qt
n(x) = q(x) − 2

d2

dx2
log ηt

n(x, q) ,

ηt
n(x, q) = 1 + (et − 1)

∫ +∞

x

ψ2
n,D(s, q)ds .

Then qt
n ∈ H+ and

σm(qt
n) = σm(q) ,

νm(qt
n) = νm(q) + tδmn

for all m ≥ 0. Moreover, qt
n(0) = q(0).
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Remark. Therefore, rm(qt
n) = rm(q) + tδnm for all m ≥ 0 .

Proof. This Lemma is similar to [5] Theorem 3.5 and can be proved by direct calcu-
lations using the so-called Darboux transform of second-order differential equation
(see also [11], [13]) and Lemma 2.1. Note that ηt

n(x, q)=et−(et−1)
∫ x

0ψ
2
n,D(s, q)ds=

et +O(x3) , x ↓ 0 . This implies qt
n(0)=q(0) . �

We consider an arbitrary spectral data (h∗;u∗; c∗) ∈ SD × R × 	 2
3/4 . Due to

Theorem 1.1 and Proposition 1.2, there exists a potential q∗ ∈ H+ such that

μn(q∗) = h∗n for all n ≥ 0 and q∗(0) = u∗ .

This yields
(
h∗;u∗; r(q∗)

) ∈ Φ(H+) , where r(q∗) =
(
r0(q∗) , r1(q∗) , . . .

)
.

Due to Proposition 3.3 (ii), for each ε > 0 there exist a finite sequence tε =
(t0 , ... , tk , 0 , ...) such that

‖(c∗ − tε) − r(q∗)‖ =
∥∥(c∗− r(q∗)

)− tε
∥∥ < ε .

Since Φ is a local isomorphism, for some ε > 0 we have

(h∗;u∗; c∗ − tε) =
(
h∗;u∗; (c∗0 − t0 , . . . , c

∗
k − tk , c

∗
k+1 , c

∗
k+2 , . . . )

) ∈ Φ(H+) .

It means that (h∗;u∗; c∗ − tε) = Φ(qk+1) for some qk+1 ∈ H+. Using Lemma 5.1
step by step, we construct the sequence of potentials

qj = (qj+1)
tj

j ∈ H+ , j = k, k − 1, . . . , 1, 0 ,

such that

Φ(qj) =
(
h∗;u∗; (c∗0 − t0 , . . . , c

∗
j−1 − tj−1 , c

∗
j , c

∗
j+1 , . . . )

)
.

Then, Φ(q0) = (h∗;u∗; c∗). �

A. Appendix

Here we collect some technical results from [4], [5] which are essentially used above.

A.1 The unperturbed equation

For each λ ∈ C the equation −ψ′′ + x2ψ = λψ has the solution ψ0
+(x, λ) = Dλ−1

2

(
√

2x) , where Dμ(x) is the Weber function (or the parabolic cylinder function,
see [1]). For each x the functions ψ0

+(x, ·) and (ψ0
+)′(x, ·) are entire and the follow-

ing asymptotics are fulfilled:

ψ0
+(x, λ) = (

√
2x)

λ−1
2 e−

x2
2
(
1 +O(x−2)

)
, x→ +∞ ,

(ψ0
+)′(x, λ) = − 1√

2
(
√

2x)
λ+1

2 e−
x2
2
(
1 +O(x−2)

)
, x→ +∞ ,

(A.1)
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uniformly with respect to λ on bounded domains. Note that (see [1])

ψ0
+(0, λ) = Dλ−1

2
(0) = 2

λ−1
4

Γ(1
2 )

Γ(3−λ
4 )

= cos
(λ− 1)π

4
· 2

λ−1
4√
π

Γ
(
λ+ 1

4

)
,

(ψ0
+)′(0, λ) =

√
2D′

λ−1
2

(0) = 2
λ−1
4

Γ(− 1
2 )

Γ(1−λ
4 )

= sin
(λ− 1)π

4
· 2

λ+3
4√
π

Γ
(
λ+ 3

4

)
.

(A.2)

Let J0(x, t;λ) be the solution of −ψ′′ + x2ψ = λψ such that J0(t, t;λ) = 0,
(J0)′x(t, t;λ) = 1 . Then

J0(0, t;λ) = −ϕ0(t, λ) = −ϕ(t, λ, 0) ,

(J0)′x(0, t;λ) = ϑ0(t, λ) = ϑ(t, λ, 0) .
(A.3)

In order to estimate ψ0
+ and J0, we introduce real-valued functions

a(λ) =
∣
∣
∣∣
λ

2e

∣
∣
∣∣

Re λ
4

e
π−φ

4 Im λ ,

λ = |λ|eiφ, φ ∈ [0, 2π) ,

ρ(x, λ) = 1 + |λ|1/12 + |x2 − λ|1/4 ,

σ(x, λ) = Re
∫ x

0

√
y2 − λdy , x ≥ 0 ,

(A.4)

where
√
y2 − λ = y + o(1) as y → +∞ (it is equivalent to Re

√
y2 − λ ≥ 0 , if

y ≥ 0).

Lemma A.1. For all (x, t, λ) ∈ R+ × R+ × C the following estimates are fulfilled:

|ψ0
+(x, λ)| ≤ C0a(λ) · e

−σ(x,λ)

ρ(x, λ)
,

|(ψ0
+)′(x, λ)| ≤ C0a(λ) · ρ(x, λ)e−σ(x,λ) ,

(A.5)

|J0(x, t;λ)| ≤ C1

ρ(x, λ)ρ(t, λ)
e|σ(x,λ)−σ(t,λ)| ,

|(J0)′x(x, t;λ)| ≤ C1
ρ(x, λ)
ρ(t, λ)

e|σ(x,λ)−σ(t,λ)| ,

where C0, C1 are some absolute constants.

Proof. See Lemmas 2.1 and 2.3 [4]. Note that the proof is based on the result
of [12]. �
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Remark. If x = 0 and |λ| ≥ 1, then9 σ(0, λ) = 0 and ρ(0, λ)� |λ|1/4. It follows
from identities (A.2) and routine calculations that

|ψ0
+(0, λ)| � |λ|−1/4a(λ) , if |λ| = k �= λ0

2n+1 ,

|(ψ0
+)′(0, λ)| � |λ|1/4a(λ) , if |λ| = k �= λ0

2n ,
k, n ∈ N . (A.6)

In other words, the estimates (A.5) of |ψ+(0, λ)| and |ψ′
+(0, λ)| are exact on these

contours.

A.2 The perturbed equation

The solutions ψ+ , ϑ , ϕ of the perturbed equation −ψ′′+x2ψ+q(x)ψ = λψ , λ ∈ C ,
can be constructed by iterations:

ψ+(x, λ, q) =
∑

n≥0

ψ
(n)
+ (x, λ, q) ,

ψ
(n+1)
+ (x, λ, q) = −

∫ +∞

x

J0(x, t;λ)ψ(n)
+ (t, λ, q)q(t)dt , (A.7)

ϑ1,2(x, λ, q) =
∑

n≥0

ϑ
(n)
1,2 (x, λ, q) ,

ϑ
(n+1)
1,2 (x, λ, q) =

∫ x

0

J0(x, t;λ)ϑ(n)
1,2 (t, λ, q)q(t)dt , (A.8)

where we use the notations ϑ1 = ϑ and ϑ2 = ϕ for short and ϑ(0)
1 = ϑ0, ϑ

(0)
2 = ϕ0,

see (A.3).
Introduce functions

β+(x, λ, q) = C1

∫ +∞

x

|q(t)|dt
ρ2(t, λ)

,

β0(x, λ, q) = C1

∫ x

0

|q(t)|dt
ρ2(t, λ)

dt .

It is easy to see ([5] Lemma 5.5) that

β(λ, q) = β+(x, λ, q) + β0(x, λ, q) = C1

∫ +∞

0

|q(t)|dt
ρ2(t, λ)

= O
(|λ|−1/2‖q‖H+

)
. (A.9)

Lemma A.2. For all (x, λ, q) ∈ R+×C×H+C the following estimates are fulfilled:

|ψ(n)
+ (x, λ, q)| ≤ C0a(λ)

e−σ(x,λ)

ρ(x, λ)
· β

n
+(x, λ, q)
n!

,

|ϑ(n)
j (x, λ, q)| ≤ 2C1

(1 + |λ|1/4)2j−3
· e

σ(x,λ)

ρ(x, λ)
· β

n
0 (x, λ, q)
n!

, j = 1, 2 .

In particular, series (A.7), (A.8) converge uniformly on bounded subsets of
R+ × C × H+C . Moreover, the similar estimates with ρ(x, λ) instead of 1

ρ(x,λ) in

right-hand sides hold true for the values |(ψ(n)
± )′(x, λ, q)| and |(ϑ(n)

j )′(x, λ, q)| .
9Here and below f  g means that C1|f | ≤ |g| ≤ C2|f | for some absolute constants C1, C2 > 0.
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Proof. See [4] Lemma 3.1 and [5] Lemmas 5.2, 5.3. �

Corollary A.3. For all (λ, q) ∈ C × H+C , n,m ≥ 0 and some absolute constant
C > 0 the following estimates are fulfilled:

∣
∣∣
∣
∂mψ

(n)
+ (0, λ, q)
∂λm

∣
∣∣
∣ ≤

m!Cn+m+1‖q‖n
H+

n!
· logm(|λ| + 2) · a(λ)

(|λ| + 1)
n
2 + 1

4
,

∣
∣
∣∣
∂m(ψ(n)

+ )′(0, λ, q)
∂λm

∣
∣
∣∣ ≤

m!Cn+m+1‖q‖n
H+

n!
· logm(|λ| + 2) · a(λ)

(|λ| + 1)
n
2 − 1

4
.

(A.10)

Proof. Note that σ(0, λ) = 0 and ρ(0, λ) � 1 + |λ|1/4 . Hence, Lemma (A.2)
and (A.9) give (A.10) for m = 0 . Recall that ψ(n)

+ (0, λ, q), (ψ(n)
+ )′(0, λ, q) are

entire functions. Therefore, the simple estimate

a
(
λ(φ)

)
= O

(
a(λ)

)
, if λ(φ) = λ+ eiφ log−1

(|λ| + 2
)
,

and the integration over the contour λ(φ) , φ ∈ [0, 2π] , imply (A.10) in the case
m > 0 . �

Let

β̃+(x, q) =
1

x2 + 1
+
∫ +∞

x

∣
∣∣
∣
q(t)
t

∣
∣∣
∣ dt .

The following asymptotics as x→ +∞ are fulfilled uniformly on bounded subsets
of C × H+C (see [5] p. 139 and p. 169):

ψ+(x, λ, q) = (
√

2x)
λ−1

2 e−
x2
2

(
1 +O

(
β̃+(x, q)

))
,

ψ′
+(x, λ, q) = − 1√

2
(
√

2x)
λ+1
2 e−

x2
2

(
1 +O

(
β̃+(x, q)

))
.

(A.11)

Moreover, if χ+(x, λ, q) is a solution of −ψ′′ + x2ψ + q(x)ψ = λψ such that
k = {χ+, ψ+} �= 0 , then

χ+(x, λ, q) = − k√
2
(
√

2x)
−λ−1

2 e
x2
2

(
1 +O

(
β̃+(x, q)

))
,

χ′
+(x, λ, q) = −k

2
(
√

2x)
−λ+1

2 e
x2
2

(
1 +O

(
β̃+(x, q)

))
.

(A.12)

Remark. If q ∈ H+C , then (A.11), (A.12) give (ψ+χ+)′ ∈ H+C (see [5] p. 172).

A.3 Analyticity of spectral data and its gradients

Recall that H+C is the complexification of the space H+ .

Lemma A.4.

(i) There exist absolute constants N0 , r0 > 0 such that for any q ∈ H+C and
n > N0‖q‖H+C

the function ψ+(0, ·, q) has exactly n roots, counted with mul-
tiplicities, in the disc {λ : |λ| < 4n} and exactly one simple root in the disc
{λ : |λ− σ0

n| < r0n
−1/2}.
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(ii) For each real potential q ∈ H+ all eigenvalues σn(q) extend analytically to
some complex ball {p ∈ H+C : ‖p− q‖H+C

< R(q)}. Its gradients10 are given
by

∂σn(q)
∂q(t)

= ψ2
n,D(t, q) ,

where ψn,D is the n-th normalized eigenfunction of TD. Moreover,

∂ log
[
(−1)nψ′

+

(
0, σn(q), q

)]

∂q(t)
= −(ψn,Dχn,D)(t, q) ,

where

χn,D(t, q) =
ϑ
(
t, σn(q), q

)

ψ′
n,D(0, q)

− ψ̇′
+

ψ′
+

(
0, σn(q), q

) · ψn,D(t, q) .

Proof. (i) The proof repeats the proof of [4] Lemma 4.1 (see also [3] Lemma 3.1).
(ii) The proof of the analyticity repeats the proof of [5] Lemma 2.3 (p. 172). In

order to calculate gradients note that the standard arguments (see [5] Lemma 5.6)
give

∂ψ+(0, λ, q)
∂q(t)

= (ϕψ+)(t, λ, q)

∂ψ′
+(0, λ, q)
∂q(t)

= −(ϑψ+)(t, λ, q) , t ≥ 0 .

Applying the Implicit Function Theorem to the equation ψ+(0, σn(q), q) = 0 and
using the identity

∫
R+
ψ2

+(t, λ, q)dt = {ψ+, ψ̇+}(0, λ, q), we obtain

∂σn(q)
∂q(t)

= −∂ψ+(0)/∂q(t)
∂ψ+(0)/∂λ

= − (ϕψ+)(t)
ψ̇+(0)

= − ψ2
+(t)

ψ′
+(0)ψ̇+(0)

=
ψ2

+(t)

{ψ+, ψ̇+}(0)
= ψ2

n,D(t)

and

∂ log
[
(−1)nψ′

+

(
0, σn(q), q

)]

∂q(t)
=

−(ϑψ+)(t) + ψ̇′
+(0) · ψ2

n,D(t)
ψ′

+(0)
= −(ψn,Dχn,D)(t) ,

where we omit σn(q) and q for short. �

10Recall that ∂ξ(q)
/
∂q = ζ(q) means that for any v ∈ L2 the equation (dqξ)(v) = (v, ζ)L2 holds

true.
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Lemma A.5. (i) For each q ∈ H+ and n,m ≥ 0 the following identities are fulfilled:
(
(ψ2

n,D)′, ψ2
m,D

)
+

= 0 ,
(
(ψn,Dχn,D)′, ψ2

m,D

)
+

= −1
2
δmn ,

(
(ψ2

n,D)′, ψm,Dχm,D

)
+

=
1
2
δmn ,

(
(ψn,Dχn,D)′, ψm,Dχm,D

)
+

= 0 .

Remark. This Lemma is similar to [5] Lemma 2.6 (see also [13, p. 44–45]).

Proof. For instance, we prove the third identity. Integration by parts gives

Inm =
∫

R+

(ψ2
n,D)′(t, q)(ψm,Dχm,D)(t, q)dt

=
1
2

∫

R+

{
ψm,Dχm,D , (ψ2

n,D)
}
(t, q)dt

=
1
2

∫

R+

(
χm,Dψn,D{ψm,D , ψn,D} + ψm,Dψn,D{χm,D , ψn,D})(t, q)dt .

For n �= m , this implies

Inm =
1

2
(
σm(q) − σn(q)

)
({ψm,D , ψn,D}{χm,D , ψn,D})′(x, q, t)

∣
∣
∣
+∞

x=0
= 0 .

If n = m , then {ψm,D , ψn,D} = 0 , {χm,D , ψn,D} = 1 . Hence, Inn =
1/2

∫
R+
ψ2

n,D(t, q)dt = 1/2 . �

A.4 The leading terms of asymptotics of ψ+(0, λ) and ψ′
+(0, λ)

Recall that κn = ψ0
+(0, λ0

n) , κ′n = (ψ0
+)′(0, λ0

n) , κ̇n = ψ̇0
+(0, λ0

n) and so on. (A.2)
yields

κ2n+1 = 0 , κ′2n+1 � |λ0
2n+1|1/4 · a(λ0

2n+1) , κ̇2n+1 � |λ0
2n+1|−1/4 · a(λ0

2n+1) .
(A.13)

Lemma A.6. The following asymptotics are fulfilled:

κ̇′2n+1

κ′2n+1

− κ̈2n+1

2κ̇2n+1
= O(n−1) ,

κ̈′2n+1

κ′2n+1

− (κ̇′2n+1)
2

(κ′2n+1)2
+
π2

16
= O(n−1) ,

...
κ2n+1

3κ̇2n+1
− (κ̈2n+1)2

4(κ̇2n+1)2
+
π2

48
= O(n−1) as n→ ∞ .
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Proof. We prove the last asymptotics, the others are similar. Let f(λ) = π−1/22
λ−1
4

Γ(λ+1
4 ) . Identity (A.2) yields

κ̇2n+1 =
(−1)n+1π

4
f(4n+ 3) ,

κ̈2n+1 = 2 · (−1)n+1π

4
· df(λ)
dλ

∣∣
∣
λ=4n+3

and
...
κ2n+1 =

(−1)nπ3

64
f(4n+ 3) + 3 · (−1)n+1π

4
· d

2f(λ)
dλ2

∣
∣
∣
λ=4n+3

.

Hence,
...
κ2n+1

3κ̇2n+1
− (κ̈2n+1)2

4(κ̇2n+1)2
+
π2

48
=
[
d2f(λ)
dλ2

−
(
df(λ)
dλ

)2]∣
∣
∣
λ=4n+3

=
d2

dλ2
log f(λ)

∣
∣∣
λ=4n+3

= O(n−1)

since d2

dx2 log Γ(x) = O(x−1) as x→ +∞ . �

Lemma A.7. Let ψ(1)
+ = ψ

(1)
+ (0, σ0

n, q) , ψ̇(1)
+ = ψ̇

(1)
+ (0, σ0

n, q) and so on. For some
absolute constant δ > 0 and all q ∈ H+ the following identities and asymptotics
are fulfilled:

ψ
(1)
+ = −2κ̇2n+1

∧
q 2n+1 ,

ψ̇
(1)
+ = −2κ̇2n+1

(
κ̇′2n+1

κ′2n+1

∧
q 2n+1 +

1
2

∨
q2n+1 + 	 2

1
4+δ(n)

)
,

(
ψ

(1)
+

)′
= −κ′2n+1 ·

∨
q2n+1 ,

(
ψ̇

(1)
+

)′
= κ′2n+1

(
− κ̇

′
2n+1

κ′2n+1

∨
q 2n+1 +

π2

8
∧
q 2n+1 + 	 2

1
4 +δ(n)

)
,

ψ
(2)
+ = −2κ̇2n+1

(
− ∨
q2n+1

∧
q 2n+1 + 	 2

3
4+δ(n)

)
,

(
ψ

(2)
+

)′
= κ′2n+1

(
1
2
(

∨
q2n+1)2 − π2

8
(

∧
q 2n+1)2 + 	 2

3
4+δ(n)

)
,

uniformly on bounded subsets of H+ .

Proof. See [5] Lemmas 5.11, 5.12 and [5] Theorem 6.4. �

A.5 Three technical lemmas

Lemma A.8. Let q, p ∈ H+ . Then for all ε ∈ (0, 1/8) the following asymptotics is
fulfilled:

anm =
(
q, (ψnψm)(p)

)2
+

=

{
O(n− 1

2 m− 1
2 ) for all n,m ≥ 0 ,

O(n− 1
2− ε

2m− 1
2 ) , if m ≥ n+ n

1
2+ε.

(A.14)
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Proof. Using Lemma (A.2), Corollary (A.3) and asymptotics (A.6), we obtain

ψn(x, p) =
√

2ψ0
n(x) +O

(
n− 1

2 logn · ρ−1(x, λ0
n)
)
,

ψ0
n(x) = O

(
ρ−1(x, λ0

n)
)
,

where ψ0
n is the n-th unperturbed eigenfunction of the harmonic oscillator on R.

Note that
∫ +∞

0

dt

(t1+ε + 1) · ρ4(t, λ0
n)

≤
∫ +∞

0

dt

(t1+ε + 1)(1 + |λ0
n − t2|) = O(n−1) .

Therefore, for each R ≥ 0 we have
[∫ +∞

R

|q(t)|dt
ρ(t, λ0

n)ρ(t, λ0
m)

]2

≤ O(n− 1
2m− 1

2 )·
∫ +∞

R

(t1+ε + 1) |q(t)|2dt = O
(
n− 1

2m− 1
2 (R+ 1)−(1−ε)

)
.

If R = 0 , this gives anm = O(n−1/2m−1/2) . Let m− n ≥ n1/2+ε. In this case we
put R = nε and obtain

anm =
(
q, (ψ0

nψ
0
m)
)2
+

+O(log n · n−1m− 1
2 )

=
[∫ nε

0

q(t)ψ0
n(t)ψ0

m(t)dt
]2

+O
(
n− 1

2−(1−ε)εm− 1
2

)
.

Using WKB-bounds, it is easy to see (e.g., see [5] Lemma 6.7) that

ψ0
n(t) =

√
2
/
π · (λ0

n)−
1
4 cos

(√
λ0

n · t− πn
2

)
+O(n− 3

4+3ε) , |t| ≤ nε .

Since m ≥ n + n1/2+ε , we have
√
λ0

m −√
λ0

n ≥ nε . Integration by parts and
q′ ∈ L2(R) imply

∫ nε

0

q(t)ψ0
n(t)ψ0

m(t)dt = O
(
n− 1

4−εm− 1
4

)
·
∫ nε

0

|q′(t)|dt+O(n− 3
4+3εm− 1

4 )

= O
(
n− 1

4− ε
2m− 1

4

)
.

Therefore, anm =O(n−1/2−εm−1/2)+O(n−1/2−(1−ε)εm−1/2)=O(n−1/2−ε/2m−1/2) .
�

Lemma A.9. Let {anm}n,m≥0 satisfy asymptotics (A.14) for some ε ∈ (0, 1/2) .
Then

Sk =
k∑

n=0

+∞∑

m=k+1

anm

m− n
→ 0 as k → ∞ .

Proof. Let

S
(1)
k =

k∑

n=0

k+k
1
2+ε

∑

m=k+1

anm

m− n
and S

(2)
k =

k∑

n=0

+∞∑

m=k+k
1
2 +ε

anm

m− n
.
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Using the simple estimate

k+k
1
2+ε

∑

m=k+1

1
m− n

= O

(
log

k + k
1
2 +ε − n

k + 1 − n

)
= O

(
k

1
2+ε

k + 1 − n

)
,

we get

S
(1)
k = O(kε)

k∑

n=0

O
(
n− 1

2 (k + 1 − n)−1
)

= O
(
k−

1
2+ε log k

)
.

Also, we have

S
(2)
k =

k∑

n=0

+∞∑

m=k+k
1
2 +ε

O(n− 1
2− ε

2m− 1
2 )

m− n
≤

k∑

n=0

O(n− 1
2− ε

2 )
+∞∑

m=k+1

O(m− 1
2 )

m− n
.

Note that
∑k

n=0O(n−1/2−ε/2) = O(k1/2−ε/2) and
∑+∞

m=k+1
O(m−1/2)

m−n = O(log k ·
k−1/2) . Hence, S(2)

k = O(k−ε/2 log k) as k → ∞ . Summarizing, we obtain Sk → 0
as k → ∞ . �

Lemma A.10. Let hn = O(n−β) and hn = v · (n+ 1)−β + 	 2
β−1/4(n) , where v ∈ R

and β ∈ [1/2 , 1] . Then,

∑

m:m �=n

hm

(n−m)2
=

π2v

3(n+ 1)β
+ 	 2

β− 1
4
(n) .

Proof. Let
∑

m:m �=n

1
(m+ 1)β(n−m)2

=
∑

m:|m−n|≤√
n

+
∑

m:|m−n|>√
n

= S1 + S2 .

Since
∑

m:|m−n|≤√
n (n−m)−2 = 1

3 π
2 +O(n−1/2) , we have

S1 =
(

1
(n+ 1)β

+O
(
n−β− 1

2

))
·
(
π2

3
+O(n− 1

2 )
)

=
π2

3(n+ 1)β
+O

(
n−β− 1

2

)
.

Note that S2 = O(n−1−β), if β < 1, and S2 = O(n−2 log n), if β = 1 . In any case,
we obtain

∑

m:m �=n

v · (m+ 1)−β

(n−m)2
=

π2v

3(n+ 1)β
+ 	 2

β− 1
4
(n) .

Let h̃m = hm − v · (m+ 1)−β . We have
(

∑

m:m �=n

h̃m

(n−m)2

)2

≤
∑

m:m �=n

1
(m+ 1)2β− 1

2 (n−m)2
·
∑

m:m �=n

(m+ 1)2β− 1
2 h̃2

m

(n−m)2
.
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Using the simple estimate
∑

m:m �=n (m+ 1)−2β+1/2(n−m)−2 =O((n+1)−2β+1/2) ,
we deduce that

∑

n≥0

(

(n+1)β− 1
4

∑

m:m �=n

h̃m

(n−m)2

)2

≤O(1)·
∑

m≥0

(m+1)2β− 1
2 h̃2

m

∑

n:n�=m

1
(n−m)2

=O(1)

since h̃m = 	 2
β−1/4(m) . Therefore,

∑
m:m �=n h̃m · (n−m)−2 = 	 2

β−1/4(n) . �
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789.

[10] B. Levitan, Sturm–Liouville operators on the entire real axis with the same discrete
spectrum, Math. USSR-Sb. 60 (1988), No. 1, 77–106.

[11] H. P. McKean and E. Trubowitz, The spectral class of the quantum-mechanical har-
monic oscillator, Comm. Math. Phys. 82 (1981/82), No. 4, 471–495.

[12] F. Olver, Two inequalities for parabolic cylinder functions, Proc. Cambridge Philos.
Soc. 57 (1961), 811–822.

[13] P. Pöschel, E. Trubowitz, Inverse Spectral Theory, Boston: Academic Press, 1987.



1150 D. Chelkak and E. Korotyaev Ann. Henri Poincaré
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