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Entropy of Semiclassical Measures
of the Walsh-Quantized Baker’s Map

Nalini Anantharaman and Stéphane Nonnenmacher

Abstract. We study the baker’s map and its Walsh quantization, as a toy
model of a quantized chaotic system. We focus on localization properties of
eigenstates, in the semiclassical régime. Simple counterexamples show that
quantum unique ergodicity fails for this model. We obtain, however, lower
bounds on the entropies associated with semiclassical measures, as well as
on the Wehrl entropies of eigenstates. The central tool of the proofs is an
“entropic uncertainty principle”.

1. Introduction

In the semiclassical (highly-oscillatory) framework, one can generally express the
solution of the time-dependent Schrödinger equation as an �-expansion based on
the classical motion. Classical mechanics is then the 0-th order approximation to
wave mechanics.

However, such expansions are not uniform in time, and generally fail to cap-
ture the infinite-time evolution of the quantum system, or its stationary proper-
ties. Unless the system is completely integrable, the instabilities of the classical
dynamics will ruin the semiclassical expansion beyond the Ehrenfest time, which
is of order | log � |.

Nevertheless, the domain dubbed as “quantum chaos” expresses the belief
that strongly chaotic properties of the classical system induce certain typical pat-
terns in the stationary properties of the quantum system, like the statistical prop-
erties of the eigenvalues (the Random Matrix conjecture [4]), or the delocalization
of the eigenfunctions over the full accessible phase space [3, 40].

The first rigorous result in this frame of ideas is the “Quantum Ergodicity
Theorem” [37]: it states that, if the classical system is ergodic on the accessible
phase space (the energy shell for a Hamiltonian system, respectively the full phase
space for an ergodic symplectic map), then, in the semiclassical régime, “almost
all” the eigenstates become uniformly distributed on that phase space. This stands
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in sharp contrast to the case of completely integrable systems, where eigenstates
are known to be localized near well-prescribed Liouville–Arnold tori, due to a
maximal number of invariants of the motion. “Quantum Ergodicity” has first been
proven for the eigenstates of the Laplacian on surfaces of negative curvature [8, 43],
then for general Hamiltonians [15], ergodic Euclidean billiards [13, 46], quantized
ergodic maps [7, 45] or C∗-dynamical systems [44].

The “Quantum Unique Ergodicity” conjecture goes further in this direction:
originally expressed in the framework of geodesic flows on compact manifolds of
negative curvature [33], it predicts that, for a strongly chaotic system, all the
eigenstates should be uniformly distributed on the accessible phase space, in the
semiclassical limit.

This conjecture has been tested on a number of models. If the classical system
admits a unique invariant measure, then it boils down to a proof of the quantum-
classical correspondence; Quantum Unique Ergodicity has thus been proven for
several families of uniquely ergodic maps on the torus [7, 28, 32].

On the opposite, Anosov systems admit a vast variety of invariant measures.
Applied to these systems, the conjecture states that quantum mechanics singles out
a unique measure out of the set of invariant ones. So far, the conjecture has only
be proven for Anosov systems enjoying an arithmetic structure, in the form of a
commutative algebra of Hecke operators: this allows to define a preferred eigenbasis
of the quantum system, namely the joint eigenbasis of all Hecke operators. Number
theory comes to the rescue of dynamics to understand these eigenstates [33, 42, 6].
E. Lindenstrauss proved the semiclassical equidistribution of all Hecke eigenstates
of the Laplacian on compact arithmetic surfaces [25]; in that case, the eigenstates
of the Laplacian are believed to be nondegenerate, which would make the “Hecke”
condition unnecessary.

Studying the quantized automorphisms of the 2-torus (or “quantum cat
maps”), Kurlberg and Rudnick had exhibited such a commutative Hecke algebra,
and proven that all joint eigenstates become equidistributed as � → 0 [20]. How-
ever, the eigenvalues of quantum cat maps can be highly degenerate when Planck’s
constant belongs to a certain sparse sequence (�k → 0): imposing the Hecke condi-
tion then strongly reduces the dimensions of the eigenspaces. In particular, it was
shown in [12] that, along the same sequence (hk), certain non Hecke eigenstates
can be partly localized near a classical periodic orbit, therefore disproving Quan-
tum Unique Ergodicity for the quantum cat maps. Still, the localized part of the
eigenstate cannot represent more that one half of its total mass [5, 11]. Very re-
cently, Kelmer obtained interesting results about quantized symplectomorphisms
of higher-dimensional tori [18]: if the classical automorphism admits a rational
isotropic invariant subspace, he exhibits a family of Hecke eigenstates (he calls
“superscars”), which are fully localized on a dual invariant submanifold.

In the present paper we study another toy model, the baker’s map defined in
terms of an integer parameterD ≥ 2 (we will sometimes call this map theD-baker).
It is a well-known canonical map on the 2-torus, which is uniformly hyperbolic
(Anosov) with uniform Liapounov exponent λ = logD. Its Weyl quantization [2,
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34] has been a popular model of “quantum chaos” in the last twenty years. We will
use here a different quantization, based on the Walsh–Fourier transform [31]: this
choice makes the quantum model amenable to an analytic treatment. The map and
its quantization will be described in more detail in Sections 2–3. The localization
in phase space of an eigenfunction ψ� will be analyzed using its Walsh–Husimi
measure WHψ�

, which is a probability measure on the torus, associated with the
state ψ�. For any sequence of eigenfunctions (ψ�)�→0 of the quantized map, one
can extract a subsequence of

(
WHψ�j

)
�j→0

which weakly converges towards a
probability measure µ. We call such a limit µ a semiclassical measure. From the
quantum-classical correspondence, µ is invariant through the classical baker’s map.
Like any Anosov system, the baker’s map admits plenty of invariant measures: for
instance, each periodic orbit carries an invariant probability measure; we will also
describe some (multi)fractal invariant measures.

Since the baker’s map is ergodic with respect to the Lebesgue measure, we
can easily prove Quantum Ergodicity for the Walsh-quantized map, stating that
the limit measure µ is “almost surely” the Lebesgue measure (Theorem 3.4).

Yet, in Section 4 we will exhibit some examples of semiclassical measures
different from the Lebesgue measure, thereby disproving Quantum Unique Ergod-
icity for the Walsh-quantized baker. We notice that, as in the case of the quantum
cat map, the presence of partially localized eigenstates is accompanied by very
high spectral degeneracies.

Our goal is to characterize the possible semiclassical limits µ among the set
of invariant measures. The tools we will use for this aim are the various entropies
associated with invariant measures [17] (we will recall the definitions of these
entropies). Our first theorem characterizes the support of µ.

Theorem 1.1. Let µ be a semiclassical measure of the Walsh quantized D-baker,
and suppµ its support. The topological entropy of that support must satisfy

htop(suppµ) ≥ logD
2

=
λ

2
.

The theorem implies, in particular, that the measure µ cannot be entirely
concentrated on periodic orbits (for any periodic orbit O, htop(O) = 0); it still
allows its support to be thinner than the full torus (htop(T2) = logD). This theo-
rem was proved in [1] for the eigenstates of the Laplacian on compact Riemannian
manifolds with Anosov geodesic flows. The proof of Theorem 1.1 presented below
uses the same strategy, but is made much shorter by the simplicity of the particu-
lar model (see Section 6). In fact, we present Theorem 1.1 mostly for pedagogical
reasons, since we can prove a stronger result:

Theorem 1.2. Let µ be a semiclassical measure of the Walsh quantized D-baker.
Then its Kolmogorov–Sinai entropy satisfies

hKS(µ) ≥ logD
2

=
λ

2
.
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Theorem 1.2 is stronger than 1.1, because of the Ruelle–Pesin inequality,
hKS(µ) ≤ htop(suppµ) [17, Theorem 4.5.3]. For instance, the counterexamples to
Quantum Unique Ergodicity constructed in [12] for the quantum cat map sat-
isfy htop(suppµ) = λ (the support of µ is the full torus), but hKS(µ) = λ/2,
showing that the above lower bound is sharp in that case (here, λ is the positive
Liapounov exponent for the cat map). In the case of the Walsh-baker’s map, we
will exhibit examples of semiclassical measures µ which saturate the lower bound
logD

2 for both the metric entropy hKS(µ) and the topological entropy htop(suppµ)
(see Section 4). The lower bound of Theorem 1.2 is somehow half-way between a
completely localized measure (hKS(δO) = 0 if δO is the invariant measure carried
on a periodic orbit O) and the equidistribution (hKS(µLeb) = logD).

One can decompose any semiclassical measure into its pure point, singular
continuous and Lebesgue parts

µ = βppµpp + βscµsc + βLebµLeb, with β∗ ≥ 0, βpp + βsc + βLeb = 1 . (1.1)

Because the functional hKS is affine, Theorem 1.2 straightforwardly implies the
inequality βpp ≤ βsc + βLeb. Actually, one can also adapt the methods of [11] to
the Walsh-baker, and obtain a sharper inequality between these weights:

Theorem 1.3. Let µ be a semiclassical measure of the Walsh quantized D-baker.
The weights appearing in the decomposition (1.1) must satisfy:

βpp ≤ βLeb .

In [11], the analogous result had raised a question on the existence of semi-
classical measures of purely singular continuous nature, in the case of the quantum
cat map. For the Walsh quantized baker, we answer this question by the affirma-
tive, by constructing explicit examples of such semiclassical measures, with simple
self-similarity properties (see Section 4).

In the course of the proof of Theorem 1.2, we obtain a lower bound for the
Walsh–Wehrl entropies associated with the individual eigenstates (these entropies
are defined in Section 5.2). The “standard” Wehrl entropy [41] has been used to
characterize the localization of eigenstates in “quantum chaotic” systems [47, 30].
For the present model, the Walsh–Wehrl entropies of any eigenstate are equal to
its Shannon entropy, another indicator of localization [16].

Theorem 1.4. The Wehrl and Shannon entropies of any eigenstate ψ� of the Walsh
quantized baker are bounded from below as follows:

hWehrl(ψ�) = hShannon(ψ�) ≥ | log 2π�|
2

.

Once more, this lower bound is situated “half-way” between the case of max-
imal localization (hWehrl = 0) and maximal equidistribution (hWehrl = | log 2π�|).
A “typical” state ψ�, drawn from one of the ensemble of Gaussian random states
described in [30, Section 5.1], will have a Wehrl entropy of order hWehrl(ψ�) =
| log 2π�| − C ± �

1/2 | log �|, where the last term denotes the standard deviation
(the constant C = 1− γEuler was first derived in [47]). The lower bound | log 2π�|

2 is
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far outside this “typical interval”. We can construct eigenstates of the Walsh-baker
which saturate this lower bound: they are quite different from “typical” states.

The proof of the above theorem relies on an “Entropic Uncertainty Princi-
ple” [19, 26], which is a variation around the Heisenberg Uncertainty Principle.
It gives some consistency to the belief that the Uncertainty Principle (the cen-
tral property of quantum mechanics), combined with the mixing properties of the
Anosov dynamics, leads to some degree of delocalization of the eigenfunctions.

Another essential ingredient of the proof is the control of the quantum evolu-
tion up to the Ehrenfest time | log �|

λ , which is the time where the quantum-classical
correspondence breaks down. For the Walsh-baker, this evolution can be described
in a simple algebraic way, without any small remainders, which makes the analysis
particularly simple.

In a forthcoming paper we plan to generalize Theorem 1.2 along the follow-
ing lines. Our aim is to deal with arbitrary Anosov canonical maps on a compact
symplectic manifold, respectively arbitrary Anosov Hamiltonian flows on some
compact energy shell. Quantizing such systems à la Weyl and studying their eigen-
states in the semiclassical limit, we conjecture the following lower bound for the
semiclassical measures µ:

Conjecture 1.5. Let µ be a semiclassical measure for an Anosov canonical map
(resp. Hamiltonian flow) on a compact symplectic manifold (resp. a compact energy
shell) M . Then its Kolmogorov–Sinai entropy should satisfy

hKS(µ) ≥ 1
2

∫

M

| log Ju(x)| dµ(x) ,

where Ju(x) is the unstable Jacobian [17] of the system at the point x.

In the case of an Anosov geodesic flow, this lower bound is close to the one
proven by the first author for htop(suppµ) [1]. For a quantized hyperbolic sym-
plectomorphism of T

2d, this lower bound takes the value 1
2

∑
|λj |>1 log |λj |, where

one sums over the expanding eigenvalues of the classical map. The “superscars”
constructed in [18] do indeed satisfy this lower bound. The proof of that conjecture
will necessarily be more technical than in the present paper, due to the presence
of small remainders, and also the more complicated nonlinear classical dynamics.

Let us now outline the structure of the paper. In Section 2 we describe the
model of the classical baker’s map. Its Walsh quantization is presented in Sec-
tion 3, and some of its properties are analyzed. Some particular eigenstates with
interesting localization properties are exhibited in Section 4. In Section 5 we prove
Theorems 1.2 and 1.4 using the Entropic Uncertainty Principle. Section 6 is de-
voted to the proof of Theorem 1.1, using the strategy of [1]. Finally, in Section 7
we sketch the proof of Theorem 1.3, adapted from [11].
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Figure 2.1. Schematic representation of the baker’s map (2.1)
for D = 3. The arrows show the vertical contraction and horizon-
tal dilation.

2. The baker’s map and its symbolic dynamics

2.1. The baker’s map on the torus

The phase space we consider is the 2-dimensional torus T
2 = (R/Z)2 ≡ [0, 1) ×

[0, 1), with position (horizontal) and momentum (vertical) coordinates x = (q, p).
We select some integer D > 1, and define the D-baker’s map B as follows:

∀(q, p) ∈ T
2, B(q, p) =

(
Dq mod 1,

p+ �Dq�
D

)
∈ T

2 . (2.1)

Here �x� denotes the largest integer smaller or equal to x ∈ R.
This map is invertible on T

2, piecewise affine with discontinuities along the
segments {p = 0} and {q = j/D}, j = 0, . . . , D − 1. In Fig. 2.1 we schematically
represent the map in the case D = 3. The map preserves the symplectic form
dp ∧ dq. It is uniformly hyperbolic, with constant Liapounov exponent λ = logD.
The stable (resp. unstable) directions are the vertical (resp. horizontal) directions.

2.2. Symbolic dynamics

The map B can be easily expressed in terms of the D-nary representation of the
coordinates (q, p). Indeed, let us represent the position q ∈ [0, 1) and momentum
p ∈ [0, 1) of any point x = (q, p) ∈ T

2 through their D-nary sequences

q = 0.ε1ε2 . . . , p = 0.ε′1ε
′
2 . . . , where the “symbols” εi, ε′i ∈ {0, . . . , D − 1} ≡ ZD .

We then associate with x = (q, p) the following bi-infinite sequence

x ≡ . . . ε′2ε
′
1 · ε1ε2 . . . .

Symbolic sequences will be shortly denoted by ε = ε1ε2 . . ., without precising their
lengths (either finite or infinite), and from there x ≡ ε′ · ε.

More formally, we call Σ+ = {0, . . . , D − 1}N∗ the set of one-sided infinite
sequences, and Σ = Σ+ ×Σ+, the set of two-sided infinite sequences. The D-nary
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decomposition then generates a map

J : Σ −→ [0, 1) × [0, 1)

ε′ · ε 
−→ x = (0.ε, 0.ε′) .

The map J is one-to-one except on a denumerable set where it is two-to-one (for
instance, . . . 00 · 100 . . . is sent to the same point as . . . 11 · 011 . . .). Let us equip
Σ with the distance

dΣ(ε′ · ε, α′ · α) = max(D−n′
0 , D−n0) , (2.2)

where n0 = min {n ≥ 0 : εn+1 �= αn+1} and similarly for n′
0. The map J is

Lipschitz-continuous with respect to this distance.
J gives a semiconjugacy between, on one side, the action of B on the torus,

on the other side, the simple shift on Σ:

B
(
J(ε′ · ε)) = J(. . . ε′2ε

′
1ε1 · ε2ε3 . . .) . (2.3)

This is a very simple example of symbolic coding of a dynamical system. The
action of B on Σ is Lipschitz-continuous, as opposed to its discontinuous action
on T

2 equipped with its standard topology. As long as we are only interested in
characterizing the entropies of invariant measures, it is harmless to identify the
two systems. In the following discussion we will go back and forth between the two
representations.

2.3. Topological and metric entropies

Let (X, d) be a compact metric space, and T : X → X a continuous map. In this
section, we give the definitions and some properties of the topological and metric
entropies associated with the map T on X . We then consider the particular case
of the map B, seen as the shift acting on Σ.

2.3.1. Topological entropy. The topological entropy of the dynamical system
(X,T ) is defined as follows: for any n > 0, define the distance

dTn (x, y) def= max
m=0,...,n

d(Tmx, Tmy) .

For any r > 0, let NT (r, n) be the minimal cardinal of a covering of X by balls
of radius r for the distance dTn . Then the topological entropy of the set X with
respect to the map T is defined as

htop(X,T ) def= lim
r→0

lim sup
n→∞

1
n

logNT (r, n) .

In many cases, it is not necessary to let r → 0: there exists r0 > 0 such that, for
any 0 < r ≤ r0, the topological entropy is equal to lim supn→∞

1
n logNT (r, n).

In the case X = Σ (equipped with the metrics dΣ given in (2.2)), the topo-
logical entropy can be expressed using cylinder sets. Given two sequences ε, ε′ of
finite lengths |ε| = n, |ε′| = n′, we define the cylinder set [ε′ · ε] ⊂ Σ as the set of
sequences starting with ε on the right side and with ε′ on the left side. If n = n′,
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it is a ball of radius D−n for the distance dΣ. The image of [ε′ · ε] on the torus is
the rectangle

J([ε′ · ε]) =
[
j

Dn
,
j + 1
Dn

]
×
[
j′

Dn′ ,
j′ + 1
Dn′

]
,

where
j

Dn
= 0.ε1 · · · εn, j′

Dn′ = 0.ε′1 · · · ε′n′ .

In the following we will often identify cylinders and rectangles.
Since we are interested in the action of the shift, we can focus our attention to

one-sided cylinder sets, of the form [·ε], corresponding on the torus to “vertical”
rectangles [ j

Dn ,
j+1
Dn ] × [0, 1]. The set of cylinders [·ε] of length n = |ε| will be

called Σn.
Let now F be a closed subset of Σ, invariant under the action of B. Call

NB(n, F ) the minimal number of cylinder sets [·ε] of length n necessary to cover F .
The topological entropy htop(F,B), also denoted by htop(F ), is then given by

htop(F ) = lim sup
n→∞

1
n

logNB(n, F ) . (2.4)

Examples. If F = O is a periodic orbit, we find htop(O) = 0. If F = T
2, we find

htop(T2) = logD. It is also useful to note that, if F and G are two closed invariant
subsets, then htop(F ∪G) = max(htop(F ), htop(G)).

2.3.2. Metric entropy. Going back to the general framework, we consider a T -
invariant probability measure µ on the metric space X .

If P = (P1, . . . , Pn) is a finite measurable partition of X (meaning that X is
the disjoint union of the Pis), we define the entropy of the measure µ with respect
to the partition P by

hP(µ) = −
∑

i

µ(Pi) logµ(Pi) . (2.5)

For P = (P1, . . . , Pn) and Q = (Q1, . . . , Qm) any two partitions of X , we can
define a new partition P ∨ Q as the partition composed of the sets Pi ∩Qj . The
entropy has the following subadditivity property:

hP∨Q(µ) ≤ hP(µ) + hQ(µ) . (2.6)

We may now use the map T to refine a given partition P : for any n ≥ 1 we define
the partition

P(n) = P ∨ T−1P ∨ · · · ∨ T−(n−1)P .

By the subadditivity property, they satisfy

hP(n+m)(µ) ≤ hP(n)(µ) + hT−nP(m)(µ) .

If the measure µ is T -invariant, hT−nP(m)(µ) = hP(m)(µ). The subadditivity of the
sequence (hP(n)(µ))n≥1 implies the existence of the limit:

lim
n→∞

1
n
hP(n)(µ) = inf

n≥1

1
n
hP(n)(µ) def= hP(µ, T ) . (2.7)
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This number hP(µ, T ) is the entropy of the measure µ for the action of T , with
respect to the partition P . The Kolmogorov–Sinai entropy of the triplet (X,T, µ),
denoted by hKS(µ, T ), is the supremum of hP(µ, T ) over all finite measurable
partitions P .

2.3.3. Generating partition for the baker’s map. In the case we will be interested
in, namely the shift B acting on Σ, this supremum is reached if we start from
the partition P made of the cylinder sets of length one, that is of the form [.ε1]
for ε1 ∈ ZD. Each such cylinder is mapped on the torus into a vertical rectangles
[ ε1D ,

ε1+1
D ] × [0, 1). Obviously, the refined partition P(n) is made of the cylinder

sets [.ε] of length n, representing vertical rectangles [ j
Dn ,

j+1
Dn ] × [0, 1). For any

B-invariant measure µ on T
2, the metric entropy hKS(µ,B) = hKS(µ) is given by

hKS(µ) = inf
n≥1

1
n
hP(n)(µ) = lim

n→∞
1
n
hP(n)(µ) . (2.8)

Examples. If µ = δO is an invariant measure carried on a periodic orbit, we find
hKS(δO) = 0. Another class of interesting examples are Bernoulli measures: given
some probability weights p0, . . . , pD−1 (pε ≥ 0,

∑
ε pε = 1), the infinite product

measure µBer =
(∑D−1

ε=0 pεδε
)⊗Z

on Σ is invariant under the shift. On T
2, it

gives a B-invariant probability measure, with simple self-similarity properties. Its
Kolmogorov–Sinai entropy is hKS(µBer) = −∑ε pε log pε. The Lebesgue measure
corresponds to the case pε ≡ D−1 and has maximal entropy, hKS(µLeb) = logD.
It is also useful to know that the functional hKS is affine on the convex set of
invariant probability measures.

Let us now describe the quantum framework we will be working with.

3. Walsh quantization of the baker’s map

3.1. Weyl quantization of the 2-torus

The usual way to “quantize” the torus phase space T
2 consists in periodizing

quantum states ψ ∈ S′(R) in both position and momentum; the resulting vector
space HN is nontrivial if and only if Planck’s constant � = (2πN)−1, N ∈ N,
in which case it has dimension N . An orthonormal basis of HN is given by the
“position eigenstates”

{
qj , j = 0, . . . , N − 1

}
localized at positions qj = j/N . The

“momentum eigenstates” are obtained from the latter by applying the inverse of
the Discrete Fourier Transform FN ,

(FN )jk =
1√
N
e−2iπkj/N , j, k = 0, . . . , N − 1 . (3.1)

This Fourier transform was the basic ingredient used by Balazs and Voros to
quantize the baker’s map [2, 34]. Precisely, in the case where N is a multiple of
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D, the (Weyl) quantum baker is defined as the following unitary matrix in the
position basis:

BBVN = F−1
N

⎛

⎜
⎝

FN/D 0 0

0
. . . 0

0 0 FN/D

⎞

⎟
⎠ . (3.2)

These matrices have been studied in detail [35], but little rigorous is known about
their spectrum. They suffer from diffraction effects due to the classical disconti-
nuities of B (the Egorov property is slightly problematic, but still allows one to
prove Quantum Ergodicity [9]). It was recently observed [29] that some eigenstates
of the 2-baker in the case N = 2k, (k ∈ N) have an interesting multifractal struc-
ture in phase space. These eigenstates were analyzed using the Walsh–Hadamard
transform.

3.2. Walsh quantum kinematics

In the present work, we will use the Walsh transform as a building block to quantize
the baker’s map. As we will see, the resulting Walsh quantization of B respects
its D-nary coding, and allows for an exact spectral analysis. It has already been
used in [31] in the case of “open” baker’s maps.

Before quantizing the map B itself, we must first describe the Walsh quan-
tum setting on the 2-dimensional torus, obtained by replacing the usual Fourier
transform by the Walsh–Fourier transform. The latter was originally defined in
the framework of signal processing [24]. More recently, it has been used as a toy
model in several problems of harmonic analysis (see, e.g., the introduction to the
“Walsh phase space” in [38]).

3.2.1. Walsh transform. We will use a Walsh transform adapted to the D-baker
(2.1). The values of Planck’s constant we will be considering are of the form{
� = �k = (2πDk)−1, k ∈ N

}
, so the semiclassical limit reads k → ∞. The quan-

tum Hilbert space is then isomorphic to C
D ⊗ · · · ⊗ C

D (with k factors). More
precisely, if we call {e0, . . . , eD−1} an orthonormal basis of C

D, and identify each
index j ∈ {0, . . . , Dk − 1

}
with its D-nary expansion j ≡ ε1 · · · εk, then the iso-

morphism HDk � (CD)⊗k is realized through the orthonormal basis of position
eigenstates:

qj = eε1 ⊗ eε2 ⊗ · · · ⊗ eεk . (3.3)

Each factor space C
D is called a “quantum Dit”, or quDit, in the quantum com-

puting framework. We see that each quDit is associated with a particular position
scale.

The Walsh transform on HDk , which we denote by WDk , is a simplification
of the Fourier transform FDk . It can be defined in terms of the D-dimensional
Fourier transform FD (see (3.1)) through its action on tensor product states

WDk(v(1)⊗· · ·⊗v(k)) = FDv(k)⊗FDv(k−1)⊗· · ·⊗FDv(1), v(i) ∈ C
D, i = 1, . . . , k .

(3.4)
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The image of position eigenstates throughW ∗
Dk yields the orthonormal basis of mo-

mentum eigenstates. To each momentum pl = l/Dk = 0.ε′1 . . . ε′k, l = 0, . . . , Dk−1
is associated the state

pl =
Dk−1∑

j=0

(
W ∗
Dk

)
lj

qj = F∗
Deε′k ⊗F∗

Deε′k−1
⊗ · · · ⊗ F∗

Deε′1 .

Therefore, each quDit also corresponds to a particular momentum scale (in reverse
order with respect to its corresponding position scale).

From now on, we will often omit the subscript D on the Fourier transform,
and simply write F = FD.

3.2.2. Quantum rectangles and Walsh coherent states. Given any integer 0 ≤ 	 ≤
k, two sequences ε = ε1 · · · ε� ∈ Σ�, ε′ = ε′1 · · · ε′k−� ∈ Σk−� define a rectangle [ε′ ·ε]
of area ∆q∆p = D−k = hk: for this reason, we call it a quantum rectangle (in the
time-frequency framework [38], such rectangles are called tiles). To this rectangle
we associate the Walsh coherent state |ε′ · ε′〉 defined as follows:

|ε′ · ε〉 def= eε1 ⊗ eε2 ⊗ · · · eε� ⊗F∗eε′
k−�

⊗ · · · ⊗ F∗eε′1 . (3.5)

For each choice of 	, 0 ≤ 	 ≤ k, we consider the family of quantum rectangles

Rk,� def= {[ε′ · ε] : ε ∈ Σ�, ε′ ∈ Σk−�} . (3.6)

The corresponding family of coherent states
{|ε′ · ε〉 : [ε′ · ε] ∈ Rk,�

}
then forms

an orthonormal basis of HDk , which we will call the 	-basis, or basis of 	-coherent
states. The state |ε′ · ε〉 is strictly localized in the corresponding rectangle [ε′ · ε],
in the following sense:

∀j ≡ α1 · · ·αk,
{
|〈qj |ε′ · ε〉| = D−�/2 if α1 = ε1, . . . , α� = ε�, 0 otherwise
|〈pj |ε′ · ε〉| = D−(k−�)/2 if α1 = ε′1, . . . , αk−� = ε′k−�, 0 otherwise .

This property of strict localization in both position and momentum is the main
reason why Walsh harmonic analysis is easier to manipulate than the usual Fourier
analysis (where such a localization is impossible). Obviously, for 	 = k (resp. 	 = 0)
we recover the position (resp. momentum) eigenbasis.

Each 	-basis provides a Walsh–Husimi representation of ψ ∈ HDk : it is the
non-negative function WHk,�

ψ on T
2, constant inside each rectangle [ε′ · ε] ∈ Rk,�,

where it takes the value:

WHk,�
ψ (x) def= Dk |〈ψ|ε′ · ε〉|2 , x ∈ [ε′ · ε] . (3.7)

The standard (“Gaussian”) Husimi function of a state ψ contains all the infor-
mation about that state (apart from a nonphysical phase prefactor) [21]. On the
opposite, the Walsh–Husimi function WHk,�

ψ only contains “half” the information
on ψ (namely, the moduli of the components of ψ in the 	-basis). This important
difference will not bother us in the following.



48 N. Anantharaman and S. Nonnenmacher Ann. Henri Poincaré

In the case of a tensor-product state ψ = v(1)⊗v(2)⊗· · ·⊗v(k) (each v(i) ∈ C
D)

relevant in Section 4.2, we have:

WHk,�
ψ (x) = Dk

∣
∣v(1)
ε1

∣
∣2 · · · ∣∣v(�)

ε�

∣
∣2
∣
∣(Fv(k))ε′1

∣
∣2 · · · ∣∣(Fv(�+1))ε′k−�

∣
∣2 , x ∈ [ε′ · ε] .

If ψ is normalized, WHk,�
ψ defines a probability density on the torus (or on Σ).

For any measurable subset A ⊂ T
2, we will denote its measure by

WHk,�
ψ (A) =

∫

A

WHk,�
ψ (x) dx .

In the semiclassical limit, a sequence of coherent states {|ε′ · ε〉} can be associated
with a single phase space point x ∈ T

2 only if both sidelengths D−�, Dk−� of the
associated rectangles decrease to zero. This is the case if and only if the index
	 = 	(k) is chosen to depend on k, in the following manner:

	(k) → ∞ and k − 	(k) → ∞ as k → ∞ . (3.8)

Therefore, to define semiclassical limit measures of sequences of eigenstates
(
ψk ∈

HDk

)
k→∞, we will consider sequences of Husimi representations

(
WHk,�

)
satis-

fying the above conditions. For instance, we can consider the “symmetric” choice
	 = �k/2�.
3.2.3. Anti-Wick quantization of observables. In standard quantum mechanics,
coherent states may also be used to quantize observables (smooth functions on T

2),
using the anti-Wick procedure. In the Walsh framework, a similar (Walsh–)anti-
Wick quantization can be defined, but now it rather makes sense on observables
f on T

2 � Σ which are Lipschitz-continuous with respect to the distance (2.2),
denoted by f ∈ Lip(Σ). The reason to choose this functional space (instead of
some space of smooth functions on T

2) is that we want to prove Egorov’s theorem,
which involves both f and its iterate f ◦ B. It is therefore convenient to require
that both these functions belong to the same space (we could also consider Hölder-
continuous functions on Σ).

The Walsh–anti-Wick quantization is defined as follows. For any k, one selects
a family of quantum rectangles (3.6), such that 	 = 	(k) satisfies the semiclassical
condition (3.8). The quantization of the observable f is the following operator on
HDk :

Opk,�(f) def= Dk
∑

[ε′·ε]∈Rk,�

|ε′ ·ε〉〈ε′ ·ε|
∫

[ε′·ε]
f(x) dx =

∑

[ε′·ε]∈Rk,�

|ε′ ·ε〉〈ε′ ·ε| f [ε′·ε]
.

(3.9)
Here and in the following, we denote by f

R
the average of f over the rectangle R.

For each 	, the above operators form a commutative algebra, namely the algebra
of diagonal matrices in the 	-basis. The quantization Opk,� is in some sense the
dual of the Husimi representation WHk,�:

∀f ∈ Lip(Σ), ∀ψ ∈ HDk , 〈ψ|Opk,�(f)|ψ〉 =
∫

T2
WHk,�

ψ (x) f(x) dx . (3.10)
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The following proposition shows that this family of quantizations satisfy a
certain number of “reasonable” properties. We recall that the Lipschitz norm of
f ∈ Lip(Σ) is defined as

‖f‖Lip def= sup
x∈Σ

|f(x)| + sup
x 	=y∈Σ

|f(x) − f(y)|
dΣ(x, y)

.

Proposition 3.1. i) For any index 0 ≤ 	 ≤ k and observable f ∈ Lip(Σ), one
has

Opk,�(f
∗) = Opk,�(f)∗, tr

(
Opk,�(f)

)
= Dk

∫

T2
f(x) dx .

ii) For any 0 ≤ 	 ≤ k and observables f, g ∈ Lip(Σ),

‖Opk,�(f g) − Opk,�(f)Opk,�(g)‖ ≤ ‖f‖Lip ‖g‖LipD−min(�,k−�) . (3.11)

iii) For any pair of indices 0 ≤ 	′ ≤ 	 ≤ k, the two quantizations Opk,�, Opk,�′
are related as follows:

∀f ∈ Lip(Σ), ‖Opk,�(f) − Opk,�′(f)‖ ≤ 2 ‖f‖LipD−min(�′,k−�) .

The first two statements make up the “correspondence principle for quantum
observables” of Marklof and O’Keefe [27, Axiom 2.1], which they use to prove
Quantum Ergodicity (see Theorem 3.4 below).

The third statement implies that if 	′ ≤ 	 (depending on k) both satisfy
the semiclassical condition (3.8), then the two quantizations are asymptotically
equivalent.

Proof. The statement i) is obvious from the definition (3.9) and the fact that
	-coherent states form an orthonormal basis.

To prove ii) and iii) we use the Lipschitz regularity of the observables. The
variations of f ∈ Lip(Σ) inside a rectangle R = [α′ · α] are bounded as follows:

∀x, y ∈ R, |f(x) − f(y)| ≤ ‖f‖Lip dΣ(x, y) ≤ ‖f‖Lip diam(R) ,

where the diameter of the rectangle R for the metrics dΣ is diam(R) =
D−min(|α|,|α′|). As a consequence,

∀x ∈ R,
∣
∣
∣f(x) − f

R
∣
∣
∣ ≤ ‖f‖Lip diam(R) . (3.12)

To show ii), we expand the operator in the left hand side of (3.11):

Opk,�(f g)−Opk,�(f)Opk,�(g) =
∑

[ε′·ε]∈Rk,�

|ε′ ·ε〉〈ε′ ·ε|
(

(fg)
[ε′·ε] − f

[ε′·ε]
g[ε′·ε]

)
.

Using (3.12) for R = [ε′ · ε] ∈ Rk,�, we easily bound the terms on the right hand
side:

∀[ε′ · ε] ∈ Rk,� ,

∣
∣
∣
∣(fg)

[ε′·ε] − f
[ε′·ε]

g[ε′·ε]
∣
∣
∣
∣ ≤ ‖f‖Lip ‖g‖LipD−min(�,k−�) .
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Since the 	-coherent states are orthogonal, Pythagore’s theorem gives the bound
(3.11).

To prove the statement iii), we need to consider “mesoscopic rectangles” of
the type R = [α′ · α] where |α| = 	′, |α′| = k − 	. Such a rectangle R supports
D�−�′ quantum rectangles of type Rk,�, and the same number of rectangles of type
Rk,�′ . We want to analyze the partial difference

∆ Op(f)|R
def=

∑

[ε′·ε]∈Rk,�

[ε′·ε]⊂R

|ε′ · ε〉〈ε′ · ε| f [ε′·ε] −
∑

[ε′·ε]∈Rk,�′

[ε′·ε]⊂R

|ε′ · ε〉〈ε′ · ε| f [ε′·ε]
. (3.13)

Both terms of the difference act inside the same subspace

VR = span
{|ε′ · ε〉 : [ε′ · ε] ∈ Rk,�, [ε′ · ε] ⊂ R

}
.

We then use (3.12) to show that the average of f over any quantum rectangle
[ε′ · ε] ⊂ R satisfies ∣

∣
∣f

[ε′·ε] − f
R
∣
∣
∣ ≤ ‖f‖Lip diam(R) .

Inserted in (3.13), this estimate yields the upper bound:

‖∆ Op(f)|R‖ ≤ 2 ‖f‖Lip diam(R) .

Finally, since the subspaces VR, V ′
R associated with two disjoint rectangles R �= R′

are orthogonal, Pythagore’s theorem implies the statement iii). �

3.3. Walsh-quantized baker

We are now in position to adapt the Balazs–Voros quantization of the D-baker’s
map (2.1) to the Walsh framework, by mimicking (3.2). We define the Walsh
quantization of B by the following unitary matrix Bk in the position basis:

Bk
def= W−1

Dk

⎛

⎜
⎝

WDk−1 0 0

0
. . . 0

0 0 WDk−1

⎞

⎟
⎠ . (3.14)

This operator acts simply on tensor product states:

Bk(v(1) ⊗ · · · ⊗ v(k)) = v(2) ⊗ v(3) ⊗ · · · ⊗ v(k) ⊗F∗
Dv

(1) . (3.15)

Similarly, a tensor-product operator on HDk will be transformed as follows by the
quantum baker:

Bk(A(1) ⊗ · · · ⊗A(k))B−1
k = A(2) ⊗A(3) ⊗ · · · ⊗A(k) ⊗F∗

DA
(1)FD . (3.16)

These formulas are clearly reminiscent of the shift (2.3) produced by the classical
map. The main difference lies in the fact that “quantum sequences” are of finite
length k, the shift acting cyclically on the sequence, and one needs to act with F∗

D

on the last quDit.
This quantization of the baker’s map has been introduced before, as the

extreme member among a family of different quantizations [36], and some of its
semiclassical properties have been studied in [39]. In particular, it was shown that,
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within the standard Wigner–Weyl formalism, this family of quantum propagators
does not quantize the baker’s map, but a multivalued version of it.

On the other hand, in this paper we will stick to the Walsh–anti-Wick formal-
ism to quantize observables, and in this setting we prove in the next proposition
that the quantum baker (3.14) quantizes the original baker’s map.

Proposition 3.2 (Egorov theorem). Let us select a quantization Opk,� satisfying
the semiclassical conditions (3.8). Then, for any observable f ∈ Lip(Σ), we have
in the semiclassical limit

‖B−1
k Opk,�(f)Bk − Opk,�(f ◦B)‖ ≤ 2 ‖f‖LipD1−min(�,k−�−1) .

For the “symmetric” choice 	 = �k/2�, the right hand side is of order D−k/2 ∼
�

1/2.

Proof. The crucial argument is the fact that, for any index 0 < 	 ≤ k, the Walsh-
baker maps 	-coherent states onto (	−1)-coherent states. This fact is obvious from
the Definition (3.5) and the action of Bk on tensor product states (3.15):

∀[ε′ · ε] ∈ Rk,�, Bk|ε′ · ε〉 = |B(ε′ · ε)〉 = |ε′k−� · · · ε′2ε′1ε1 · ε2 · · · ε�〉 . (3.17)

Notice that the shifted rectangle B([ε′ · ε]) ∈ Rk,�−1. As a result, the evolved
operator B−1

k Opk,�(f)Bk will be a sum of terms of the form

|B−1(ε′ · ε)〉〈B−1(ε′ · ε)| f [ε′·ε]
= |B−1(ε′ · ε)〉〈B−1(ε′ · ε)| fB

−1([ε′·ε])
,

which implies the exact formula

B−1
k Opk,�(f)Bk = Opk,�+1(f ◦B) . (3.18)

The third statement of Proposition 3.1 and the inequality ‖f ◦B‖Lip ≤ D ‖f‖Lip
yield the estimate. �

Remark 1. The exact evolution (3.17) is similar with the evolution of Gaussian
coherent states through quantum cat maps [12]. It is also the Walsh counterpart of
the coherent state evolution through the Weyl-quantized baker BBVN , used in [9]
to prove a weak version of Egorov’s property. In that case, the coherent states
needed to be situated “far away” from the discontinuities of B, which implied
that Egorov’s property only held for observables vanishing in some neighbourhood
of the discontinuities. In the present framework, we do not need to take care of
discontinuities, since B is continuous in the topology of Σ.

Remark 2. The integer k satisfies k = | log h|
logD , where h = hk = D−k is Planck’s

constant, and logD the uniform Liapounov exponent of the classical baker’s map:
k is the Ehrenfest time for the quantum baker. As in the Weyl formalism [9], the
Egorov property can be extended to iterates (Bk)n up to times n ≈ (1 − δ)k/2,
for any fixed δ > 0.
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The exact evolution of coherent states (3.17) also implies the following prop-
erty, dual of Eq. (3.18):

∀ψ ∈ HDk , WHk,�
Bkψ

= WHk,�−1
ψ ◦B−1 .

In particular, if ψ is an eigenstate of Bk, one has

WHk,�
ψ = WHk,�−1

ψ ◦B−1 ,

meaning that the classical map sends one Husimi representation to the next one.
The Egorov estimate of Proposition 3.2 leads to the following

Corollary 3.3 (Invariance of semiclassical measures). Consider a semiclassical se-
quence (ψk ∈ HDk)k∈N∗ such that each ψk is an eigenstate of Bk. It induces a
sequence of Husimi measures

(
WHk,�

ψk

)
, where 	 = 	(k) is assumed to satisfy (3.8).

Up to extracting a subsequence, one can assume that this sequence converges to a
probability measure µ on Σ.

Then the measure µ is invariant through the baker’s map B.

This measure µ projects to a measure on T
2, which we will also (with a

slight abuse) call µ. The proof of Quantum Ergodicity [7, 45], starting from the
ergodicity of the classical map with respect to the Lebesgue measure, is also valid
within our nonstandard quantization. Indeed, as shown in [27], the statements i),ii)
of Proposition 3.1 and the Egorov theorem (Prop. 3.2) suffice to prove Quantum
Ergodicity for the Walsh-quantized baker:

Theorem 3.4 (Quantum ergodicity). For any k ∈ N∗, select an orthonormal eigen-
basis (ψk,j ∈ HDk)j=0,...,Dk−1 of the Walsh-quantized baker Bk.

Then, for any k ≥ 1, there exists a subset Jk ⊂ {0, . . . , Dk − 1
}

such that

• limk→∞ �Jk

Dk = 1 (“almost all eigenstates”)
• if 	(k) satisfies (3.8) and j(k) ∈ Jk for all k ≥ 1, then the sequence of Husimi

measures (WH
k,�(k)
ψk,j(k)

) weakly converges to the Lebesgue measure on T
2.

Remark 3. In the following section we will be working with partitions into the ver-
tical rectangles [·α], |α| = n, which make up the partition P(n) (see Section 2.3.3).
For any state ψ ∈ HDk , the measure WHk,k

ψ assigns the weight |〈qj |ψ〉|2 to each
vertical quantum rectangle [·ε], |ε| = k. With respect to the partition P(n), all
Husimi measures WHk,�

ψ , n ≤ 	 ≤ k are equivalent: for any cylinder [·α] ∈ P(n),
we indeed have

∀	, n ≤ 	 ≤ k, WHk,�
ψ ([·α]) = WHk,k

ψ ([·α]) . (3.19)

4. Some explicit eigenstates of Bk

The interest of the quantizationBk lies in the fact that its spectrum and eigenstates
can be analytically computed.
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4.1. Short quantum period

The crucial point (derived from the identity (3.15) and the periodicity of the
Fourier transform) is that this operator is periodic, with period 2k (when D = 2)
or 4k (when D ≥ 3):

D = 2 =⇒ ∀k ≥ 1, (Bk)2k = I2k

D ≥ 2 =⇒ ∀k ≥ 1, (Bk)4k = IDk .

More precisely, (Bk)2k is the involution

(Bk)2k = Π ⊗ Π · · · ⊗ Π , (4.1)

where Π is the “parity operator” on C
D, which sends eε to eε̄, with ε+ε̄ ≡ 0 mod D.

As we noticed above, k = | log h|
logD is the Ehrenfest time of the system, so the

above periodicity can be compared with the “short quantum periods” of the quan-
tum cat map [5, 12], which allowed one to construct eigenstates with a partial
localization on some periodic orbits. The first consequence of this logarithmic pe-
riod is the very high degeneracy of the eigenvalues

{
e2iπr/4k, r = 0, . . . , 4k − 1

}
:

each of them is approximately Dk

4k -degenerate. In the case of the cat map, this
huge degeneracy gives sufficient freedom to construct eigenstates which are par-
tially scarred on a periodic orbit [12]. In the Walsh-baker case, although 4k is
the double of what was called a “short period” in [12], (Bk)2k sends a coherent
state |ε′ · ε〉 to another coherent state |ε̄′ · ε̄〉, and we are still able to construct
half-scarred eigenstates. Due to (4.1), a state scarred on the periodic orbit indexed
by the periodic sequence (ε1ε2 · · · εp) is also scarred, with the same weight, on the
“mirror” orbit (ε̄1ε̄2 · · · ε̄p).
4.2. Tensor-product eigenstates

A new feature, compared with the quantum cat map, is that we straightforwardly
obtain eigenstates of Bk which are not “scarred” on any periodic orbit, but still
have a nontrivial phase space distribution: the associated semiclassical measure
is a singular Bernoulli measure. These states are constructed as follows: take any
eigenstate w ∈ C

D of the inverse Fourier transform F∗
D. Then, for any k ≥ 1, the

tensor-product state
ψ = w ⊗ · · · ⊗ w ∈ HDk (4.2)

is an eigenstate of Bk. From (3.7), its Husimi measure WHk,�
ψ has the following

weight on a quantum rectangle [ε′ · ε] ∈ Rk,�:

WHk,�
ψ ([ε′ · ε]) = |wε1 |2 · · · |wε� |2 |wε′1 |2 · · · |wε′k−�

|2 . (4.3)

This shows that WHk,�
ψ is the product of a measure ν� on the horizontal interval

by a measure νk−� on the vertical interval. ν� (resp. νk−�) can be obtained by
conditioning a certain self-similar measure ν on subintervals of type [ j

D� ,
j+1
D� )

(resp. [ j
Dk−� ,

j+1
Dk−� )). This measure ν is constructed by iteration: the first step

consists in splitting [0, 1) into D subintervals [ εD ,
ε+1
D ), and allocating the weight
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Figure 4.1. Eigenstates of Bk for D = 2. The grey scale cor-
responds to a logarithmic representation of WHk,�

ψ (x) (black =
large; white = small). Left: eigenstate half-scarred at the origin,
k = 10, 	 = 5. Right: tensor product eigenstate (4.2), k = 11,
	 = 6. Bottom: eigenstate (4.6) with a fractal support, k = 11,
	 = 6 (white = zero).

pε = |wε|2 to the ε-th subinterval. The next step splits each subinterval, etc. In
other words, for any finite sequence ε ∈ Σn, the measure of the interval [·ε] is given
by

ν([·ε]) = pε1pε2 · · · pεn .
In the symbolic representation [0, 1) ∼ Σ+, ν is a Bernoulli measure.

The Husimi measure WHk,�
ψ is therefore the measure

µ = ν(dq) × ν(dp), conditioned on the rectangles [ε′ · ε] ∈ Rk,� .
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Assuming that 	 satisfies the condition (3.8) (so that the diameters of the rectangles
vanish as k → ∞), we get

lim
k→∞

WHk,�
ψ = µ ,

where the limit should be understood in the weak sense.
The measure µ is obviously a Bernoulli invariant measure, of the type shown

in the Examples of Section 2.3.3. Let us describe some particular cases, forgetting
for a moment that the state w is an eigenstate of F∗

D, and taking for w any
normalized state in C

D.
• if the coefficients pε are all equal, pε = 1/D, then µ = dx is the Lebesgue

measure.
• if there is a single ε ∈ {0, . . . , D − 1} such that pε = 1 and the others vanish,

then µ = δxo , where xo ≡ . . . εε · εεε . . . is a fixed point of B. Obviously, this
is impossible if w an eigenstate of F∗

D.
• in the remaining cases, µ is a purely singular continuous measure on T

2, with
simple self-similarity properties.

Topological entropy of tensor product eigenstates. An eigenstate w of F∗
D can

have a certain number of vanishing coefficients. Call S ⊂ {0, . . . , D − 1} the set
of non-vanishing coefficients, and d = �S its cardinal. If d < D, the corresponding
measure µ is then supported on a proper invariant subset Fµ of T

2, corresponding
to the sequences ε′ · ε ∈ Σ with all coefficients εi, ε′i ∈ S. One can easily check that
the topological entropy of Fµ is given by

htop(Fµ) = log(d) .

Now, because all the matrix elements of F∗
D are of modulus D−1/2, the number d

of non-vanishing components of w is bounded as

d ≥
√
D , so that htop(Fµ) ≥ logD

2
. (4.4)

This proves that semiclassical measures µ obtained from sequences of tensor-
product eigenstates (4.2) satisfy the general lower bound of Theorem 1.1.

The simplest example of such eigenstates seems to be for D = 4: F∗
4 admits

the eigenstate w = (1, 0, 1, 0)/
√

2. The corresponding limit measure µ is supported
on a subset Fµ which saturates the lower bound (4.4): htop(Fµ) = log 2 = log 4

2 .

Metric entropy of tensor product eigenstates. For a normalized state w ∈ C
D, the

Kolmogorov–Sinai entropy of the measure µ can be shown to be

hKS(µ) = −
D−1∑

ε=0

pε log pε = −
D−1∑

ε=0

|wε|2 log |wε|2 def= h(w) .

A priori, this function could take any value between 0 and logD, the topological
entropy of T

2 with respect to the baker’s map. However, as in the case of the topo-
logical entropy, imposing w to be an eigenstate of F∗

D restricts the possible range
of h(w). Indeed, the following “Entropic Uncertainty Principle”, first conjectured
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by Kraus [19] and proven in [26], directly provides the desired lower bound for
h(w).

Theorem 4.1 (Entropic uncertainty principle [26]). For any M ∈ N∗, let U be a
unitary M ×M matrix and c(U) def= supi,j |Uij |. Then, for any normalized state
ψ ∈ C

M , one has

h(ψ) + h(Uψ) ≥ −2 log c(U) ,

where the entropy is defined as h(ψ) = −∑i |ψi|2 log |ψi|2.
The proof of this theorem (which is the major ingredient in the proof of

Theorem 1.2, see Section 5) is outlined in the Appendix.
Applying this theorem to the matrix U = F∗

D, and using the fact that w is
an eigenstate of that matrix, we obtain the desired lower bound

hKS(µ) = h(w) ≥ logD
2

. (4.5)

The above example of tensor-product eigenstates of the 4-baker, constructed from
w = (1, 0, 1, 0)/

√
2, also saturate this inequality: hKS(µ) = htop(Fµ) = log 4

2 .

4.3. A slightly more complicated example

In the case of D = 2, although none of the eigenvectors of F2 has any vanishing
component, one can still construct eigenstates converging to a fractal measure
supported on a proper subset of T

2. Indeed, we notice that F2 e0 = e0+e1√
2

def= e+,
and F2

2 = I2. As a result, in the case k is odd, the state

ψ =
1√
2

(e0 ⊗ e+ ⊗ e0 ⊗ · · · e+ ⊗ e0 + e+ ⊗ e0 ⊗ e+ ⊗ · · · e0 ⊗ e+) (4.6)

is an eigenstate ofBk. It becomes normalized in the limit k → ∞, and one can check
that the associated semiclassical measure is µ = 1/2 (ν1(dq) × ν2(dp) + ν2(dq)×
ν1(dp)), where ν1 (resp. ν2) is the self-similar measures on [0, 1) obtained by split-
ting [0, 1) in 4 equal subintervals, which are allocated the weights (1/2, 1/2, 0, 0)
(resp. (1/2, 0, 1/2, 0)), and so on. One can easily show that this semiclassical mea-
sure µ saturates both lower bounds: hKS(µ) = htop(Fµ) = log 2

2 .

5. Proof of Theorem 1.2: lower bound on the metric entropy

Applying Theorem 4.1 in a more clever way, we can generalize the lower bound (4.5)
to any semiclassical measure µ, thereby proving Theorem 1.2. In this section we
give ourselves a sequence

(
ψk ∈ HDk

)
of eigenstates of Bk, and assume that the

associated Husimi measures converge to an invariant probability measure µ.
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5.1. Quantum partition of unity

The definition of metric entropy given in Section 2.3.2 starts from the “coarse”
partition P (made ofD rectangles [·ε]), which is then refined into a sequence of par-
titions P(n) using the classical dynamics. A natural way to study the Kolmogorov–
Sinai entropy of quantum eigenstates is to transpose these objects to the quantum
framework. For any anti-Wick quantization Opk,� satisfying the condition (3.8),
the characteristic functions 1l[·ε] are quantized into the orthogonal projectors

Pε = πε ⊗ (I)⊗k−1 , ε = 0, . . . , D − 1 . (5.1)

Here, πε is the orthogonal projector on the basis state eε ∈ C
D, and I = ID is the

identity operator on C
D. This family of projectors make up a “quantum partition

of unity”:
D−1∑

ε=0

Pε = (I)⊗k = IDk .

Like its classical counterpart, this partition can be refined using the dynamics. To
an evolved rectangle B−l([·ε]) corresponds the projector

Pε(l)
def= B−l

k PεB
l
k .

From there, the quantum counterpart of the refined partitionP(n) = {[·ε], ε ∈ Σn}
is composed of the following operators:

Pε
def= Pεn(n− 1) ◦ · · · ◦ Pε2(1) ◦ Pε1 . (5.2)

Using the formula (3.16), we find that

n ≤ k =⇒ Pε = πε1 ⊗ πε2 ⊗ · · ·πεn ⊗ (I)⊗k−n . (5.3)

This shows that Pε is an orthogonal projector associated with the rectangle [·ε]. It
is equal to Opk,�(1l[·ε]) if n ≤ 	. In the extreme case n = k, these operators project
on single position eigenstates:

∀j = ε1 · · · εk ∈ {0, . . . , Dk − 1
}
, Pε = |qj〉〈qj | .

Using Remark 3, we see that these projectors can be directly used to express the
weight of the Husimi measures on rectangles. Indeed, if n ≤ 	 ≤ k and [·ε] ∈ Σn,
then

WHk,�
ψk

([·ε]) = ‖Pε ψk‖2 . (5.4)
From there, we straightforwardly deduce the:

Lemma 5.1. Provided n ≤ 	 ≤ k, the entropy (2.5) of the Husimi measure WHk,�
ψk

,
relative to the refined partition P(n), can be written as follows:

hP(n)(WHk,�
ψk

) = −
∑

|ε|=n
‖Pε ψk‖2 log

(‖Pε ψk‖2
)
. (5.5)

For some values of the indices, this quantity corresponds to well-known
“quantum entropies”.
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5.2. Shannon and Wehrl entropies

By setting n = 	 = k in the above Lemma, we obtain a “quantum” entropy
which has been used before to characterize the localization properties of individual
states [16]. It is simply the Shannon entropy of the state ψ ∈ HN , when expressed
in the position basis

{
qj , j = 0, . . . , N − 1

}
:

hShannon(ψ) def= hP(k)(WHk,k
ψ ) = −

N−1∑

j=0

|〈qj |ψ〉|2 log
(|〈qj |ψ〉|2

)
. (5.6)

This entropy obviously selects a preferred “direction” in phase space: one could
as well consider the Shannon entropy in the momentum basis. To avoid this type
of choice, it has become more fashionable to use a quantum entropy based on the
Husimi representation of quantum states, introduced by Wehrl [41]. In the Weyl
framework, it is given by the integral over the phase space of η(|〈x|ψ〉|2), where
η(s) = −s log s, and

{|x〉 : x ∈ T
2
}

is a continuous family of Gaussian coherent
states.

In the Walsh framework, the coherent states form discrete families, so the
integral is effectively a sum. For any index 	, we define the Walsh–Wehrl entropy
of ψ ∈ HDk as:

hk,�Wehrl(ψ) = −
∑

[ε′·ε]∈Rk,�

|〈ε′ · ε|ψ〉|2 log
(|〈ε′ · ε|ψ〉|2) . (5.7)

Notice that the Shannon entropy (5.6) is a particular case of the Wehrl entropy,
obtained by setting 	 = k. Eq. (3.17) implies that all quantum entropies of eigen-
states are equal:

Proposition 5.2. If ψk ∈ HDk is an eigenstate of the Walsh-baker Bk, then its
Wehrl and Shannon entropies are all equal:

∀	 ∈ [0, k], hk,�Wehrl(ψk) = hShannon(ψk) .

As in the case of Gaussian coherent states [41, 23], localized states have a
small Wehrl entropy: the minimum of hk,�Wehrl(ψ) is reached for ψ = |ε′·ε〉 a coherent
state in the 	-basis, where the entropy vanishes. On the opposite, the entropy is
maximal when ψ is equidistributed with respect to the 	-basis, and the entropy
then takes the value logN = | log 2π�|. Notice that the extremal properties of the
entropy hk,�Wehrl of pure quantum states are much easier to analyze than those of
the “Gaussian” Wehrl entropies on the plane, the torus or the sphere [23, 30, 22]

The Shannon or Wehrl entropies can be now bounded from below using the
Entropic Uncertainty Principle, Theorem 4.1. Indeed, ψk is an eigenstate of the
iterate (Bk)k, which is the tensor product operator

(Bk)k = F∗
D ⊗F∗

D ⊗ · · · ⊗ F∗
D . (5.8)



Vol. 8 (2007) Entropy of Semiclassical Measures 59

The matrix elements of this operator in the position basis are all of modulusD−k/2.
Thus, Theorem 4.1 implies that

hShannon(ψk) = hP(k)(WHk,k
ψk

) ≥ k

2
logD . (5.9)

Using the property that the Wehrl entropies (5.7) of an eigenstate are all equal to
each other (see Proposition 5.2), this proves Theorem 1.4.

In the expression for the Shannon entropy, both the Husimi measure WHk,�
ψk

and the partition P(n) depend on the semiclassical parameter k in a rigid way,
namely 	 = n = k. On the other hand, if we want to understand the entropy
of the semiclassical measure µ, we should first estimate the entropy of some k-
independent partition P(n), then take the semiclassical limit (k → ∞) of the
Husimi measures WHk,�

ψk
with the condition (3.8) satisfied, and only send n to

infinity afterwards. In other words, we need to control the entropies (5.5) for a
fixed n ∈ N while sending k, 	→ ∞.

In the following sections, we present two different approaches to realize this
program, both yielding a proof of Theorem 1.2.

5.3. First method: use of subadditivity

The first approach consists in estimating the entropy (5.5) of the partition P(n)

for some fixed n, starting from the lower bound (5.9) on the entropy of P(k). Both
these entropies are taken on the measure µk

def= WHk,k
ψk

. This estimation uses the
subadditivity property (2.6).

Using Euclidean division, we can write k = qn+ r with q, r ∈ N, r < n. The
subadditivity of entropy implies that

hP(k)(µk) ≤ hP(n)(µk) + hB−nP(n)(µk) + · · · + hB−(q−1)nP(n)(µk) + hB−qnP(r)(µk) .
(5.10)

The very last term, being the entropy of a partition of Dr elements, is less than
r logD.

Using the fact that ψk is an eigenstate of Bk, we prove below that the Husimi
measure µk is invariant under B until the Ehrenfest time:

Lemma 5.3. For any n-rectangle [·ε] of the partition P(n), for any index 0 ≤ l ≤
k − n, we have

µk(B−l[·ε]) = µk([·ε]) .
This straightforwardly implies the following property:

l ≤ k − n =⇒ hB−lP(n)(µk) = hP(n)(µk) .

Injecting this equality in the subadditivity (5.10), and using the lower bound (5.9)
for hP(k)(µk), we obtain a lower bound for the entropy of the fixed partition P(n):

hP(n)(µk) ≥ 1
q

(
hP(k)(µk) − r logD

)
≥ 1
q

(
k

logD
2

− r logD
)
. (5.11)
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From the identity (3.19), and assuming that �k/2� > n, the left hand side is
also the entropy of the Husimi measure WH

k,�k/2
ψk

, which converges to µ in the
semiclassical limit. On the right hand side, k/q → n and r/q → 0 as k → ∞, so in
the limit,

hP(n)(µ) ≥ n

2
logD .

We can finally let n→ ∞, and get Theorem 1.2. �

Proof of Lemma 5.3. For any n-rectangle [·ε] of the partition P(n), we have

µk([·ε]) =
∥
∥πε1 ⊗ · · ·πεn ⊗ (I)⊗k−nψk

∥
∥2

=
∥
∥(Bk)−l

(
πε1 ⊗ · · ·πεn ⊗ (I)⊗k−n

)
(Bk)lψk

∥
∥2

,

where we have used the facts that ψk is an eigenfunction of Bk, and that Bk is
unitary. Now, using (3.16), the last line can be transformed into

∥∥(I)⊗l ⊗ πε1 ⊗ · · ·πεn ⊗ (I)⊗k−n−l ψk
∥∥2

=
D−1∑

α1,··· ,αl=0

∥
∥πα1 ⊗ . . . παl

⊗ πε1 ⊗ . . . πεn ⊗ (I)⊗k−n−l ψk
∥
∥2

=
∑

α1,...,αl

‖Pαεψk‖2 =
∑

α=(α1,...,αl)

µk([·αε]) = µk(B−l[·ε]) .

The last equality is due to the fact that the set B−l[·ε] is the disjoint union

B−l[·ε] =
D−1⋃

α1,...,αl=0

[·αε] . (5.12)

�

5.4. Second method: vectorial entropic uncertainty principle

The second approach to bound (5.5) from below is to directly apply to that sum
the vectorial version of the Entropic Uncertainty Principle, given in Theorem A.3
in the Appendix.

Indeed, for any n ≤ k, the family of orthogonal projectors {Pε, |ε| = n}
satisfy PεPε′ = δεε′Pε, and the resolution of unity

∑

|ε|=n
P ∗

ε Pε = I .

Any state ψ ∈ HDk can be decomposed into the sequence of states
{ψε = Pεψ, |ε| = n}, in terms of which the entropy (5.5) can then be written
as

hP(n)(µk) = −
∑

|ε|=n
‖ψε‖2 log ‖ψε‖2 def= hn(ψ) . (5.13)

The vectorial Entropic Uncertainty Principle (Theorem A.3), specialized to this
family of orthogonal projectors, reads as follows:
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Theorem 5.4. For a given n ≤ k, and any normalized state ψ ∈ HDk , let us define
the entropy

hn(ψ) = −
∑

|ε|=n
‖ψε‖2 log ‖ψε‖2 .

Let U be a unitary operator on HDk . For any sequences ε, ε′ of length n, we call
Uε,ε′ = PεUPε′ , and cn(U) = sup|ε|=|ε′|=n ‖Uε,ε′‖.

Then, for any normalized state ψ ∈ HDk , one has

hn(ψ) + hn(Uψ) ≥ −2 log cn(U) .

We apply this theorem to the eigenstates ψk ∈ HDk , using the operator
U = (Bk)k. It gives a lower bound for the entropy of the Husimi measure µk:

hP(n)(µk) ≥ − log cn(U) .

To compute cn(U), we expand the operators Uε,ε′ as tensor products, using (5.3),
(5.8):

Uε,ε′ = Pε(Bk)kPε′ = πε1F∗πε′1 ⊗ πε2F∗πε′2 ⊗ · · · ⊗ πεnF∗πε′n ⊗F∗ ⊗ · · · ⊗ F∗ .

Each of the first n tensor factors can be written as

πεiF∗πε′i = F∗
εiε′i

|eεi〉〈eε′i | ,
where we used Dirac’s notations for states and linear forms on C

D. The norm of
such an operator on C

D is |F∗
εiε′i

| = D−1/2. The norm of a tensor product operator

is the product of the norms, so for any ε, ε′ of length n, one has ‖Uε,ε′‖ = D−n/2.
We thus get cn(U) = D−n/2, so that

hP(n)(µk) ≥ n

2
logD . (5.14)

This lower bound is slightly sharper than the one obtained in the previous para-
graph, Eq. (5.11). However, the first approach seems more susceptible to general-
izations, so we decided to present it. The rest of the proof follows as before. �

6. Lower bound on the topological entropy

In this section, we prove the lower bound for the topological entropies of supports
of semiclassical measures (Theorem 1.1), using the same strategy as for Anosov
flows [1]. Although, for the case of the Walsh-baker, this theorem is a consequence
of Theorem 1.2, we decided to present this proof, which does not use the En-
tropic Uncertainty Principle, but rather an interplay of estimates between “long”
logarithmic times, “short” logarithmic times and finite times. As in the previous
section, we are considering a certain sequence

(
ψk ∈ HDk

)
of eigenstates of Bk,

the Husimi measures of which converge to a semiclassical measure µ, supported
on an invariant subset of T

2.
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To prove Theorem 1.1, we consider an arbitrary closed invariant subset F ⊂
T

2, which has a “small” topological entropy. Precisely, we assume that

htop(F ) <
logD

2
.

Our aim is then to prove that µ(F ) < 1, implying that F cannot be the support
of µ.

6.1. Finite-time covers of F

The assumption on htop(F ) implies that there exists δ > 0, fixed from now on,
such that

htop(F ) <
logD

2
− 10 δ . (6.1)

Given an integer no, we say that the set Wo ⊂ Σno of no-cylinders covers the set F
if and only if

F ⊂
⋃

ε∈Wo

[·ε] .

In the limit of large lengths no, the topological entropy of F measures the minimal
cardinal of such covers. Precisely, let Nno(F ) be the minimum cardinal for a set
of no-cylinders covering F . For the above δ > 0, there exists nδ such that

∀no ≥ nδ, Nno(F ) ≤ exp
{
no
(
htop(F ) + δ

)}
. (6.2)

Using the notations of Section 5, the semiclassical measure of such a collection of
no-cylinders is

µ(Wo) = lim
k→∞

µk(Wo) . (6.3)

On the other hand, from (5.4) we have, as long as k ≥ no,

µk(Wo) =
∥∥
∥
∑

ε∈Wo

Pε ψk

∥∥
∥

2

=
∑

ε∈Wo

〈ψk, Pε ψk〉 . (6.4)

To show that µ(Wo) < 1, we would like to bound each term in the above sum. Since
the Pε are orthogonal projectors, a trivial bound for each term is |〈ψk, Pε ψk〉| ≤ 1.
This is clearly not sufficient for our aims. We therefore need a less direct method
to bound from above µk(Wo).

The next section presents the first step of this method. We show there that the
norm of the operators Pε satisfy exponential upper bounds for “large logarithmic
times” n, namely when n > k (we recall that k = | log h|/ logD is the Ehrenfest
time of the system).

6.2. Norms of the operators Pε

The major ingredient in the proof of Theorem 1.1 is an exponentially decaying
upper bound for the norms of the operators Pε, for arbitrarily large times n = |ε|. In
the case of Anosov flows, such bounds require a heavy machinery [1]. In the present
case, we are able to compute these norms exactly, in a rather straightforward
manner:
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Proposition 6.1. For any sequence ε of length |ε| = n, the norm of the operator Pε

is given by

‖Pε‖ = D−max(0,n−k)/2 . (6.5)

We see that the norm shows a “transition” at the Ehrenfest time n = k: it is
constant for n ≤ k, and decreases exponentially for n > k.

Proof. For n ≤ k, Pε is an orthogonal projector, so the proposition is trivial in
that case.

To deal with times n > k, we need to analyze the evolved projectors Pε(l)
coming into play in (5.2) (ε = 0, . . . , D−1). Using (3.16) and the division l = qk+r,
r < k, they can be written as:

Pε(l) = (I)⊗r ⊗ Fq πε F−q ⊗ (I)⊗k−r−1 .

Hence, two evolved projectors Pε1(l1), Pε2(l2) will commute with each other if
r1 �= r2: they act on different quDits. As a result, within the product (5.2), we
may group the factors Pεl(l− 1) according to the equivalence class of l modulo k,
indexed by r = 0, . . . , k − 1. Each class contributes a product of q′ + 1 operators,
of the form

Pεr+q′k+1
(r + q′k) · · ·Pεr+k+1(r + k)Pεr+1(r) = (I)⊗r ⊗Ar+1 ⊗ (I)⊗k−r−1, (6.6)

where Ar+1 = Fq′ πεr+1+q′k
F−1 πεr+1+(q′−1)k

F−1 · · ·πεr+1+k
F−1 πεr+1 .

Here q′ depends on r, it is the largest integer such that r + 1 + q′k ≤ n. Using
Dirac’s notations for states and linear forms on C

D, the operator Ar+1 reads

Ar+1 = γr+1 Fq′ |eεr+1+q′k〉〈eεr+1 | ,
where the prefactor γr+1 is the product of q′ entries of the matrix F∗. Since each
entry has modulus D−1/2, we obtain ‖Ar+1‖ = |γr+1| = D−q′/2.

There remains to count the number q′ + 1 of factors appearing in (6.6), for
each equivalence class in the product 5.2. If we set n = n1k + n2, with n1 ≥ 1
and n2 < k, then each of the first n2 classes (that is, such that 0 ≤ r ≤ n2 − 1)
contains q′ + 1 = n1 + 1 factors, while the remaining k − n2 classes each contain
n1 factors. Since each equivalence class acts on a different quDit, the norm of Pε

is given by

‖Pε‖ =
k−1∏

r=0

‖Ar+1‖ = (D−n1/2)n2(D−(n1−1)/2)k−n2 = D(−n+k)/2 . �

The estimate (6.5) starts to be interesting only for times n > k, that is beyond
the Ehrenfest time. On the other hand, the operators Pε have a clear semiclassical
meaning (they project on the rectangles [·ε]) only when n ≤ k. We need to connect
these two disjoint time domains.
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6.3. Connecting “long” and “short” logarithmic times

In this section we connect “short logarithmic” times n ≈ ck, 0 < c ≤ 1 to “long
logarithmic” times n ≈ Ck, with C constant but arbitrary large. To this aim,
we fix θ ∈ (0, 1) and consider, for any n ∈ N, the sets Wn ⊂ Σn of n-cylinders
satisfying the following condition:

∥
∥
∥

∑

ε∈Σn\Wn

Pε ψk

∥
∥
∥ ≤ θ . (6.7)

Such a set is called a (k, 1 − θ, n)-cover of the state ψk. Intuitively, the inequal-
ity (6.7) means that the complement of Wn in Σn, denoted by �Wn in the sequel,
has a small measure for the state ψk. We call Nk(n, θ) the minimal cardinal of a
(k, 1 − θ, n)-cover. Using the estimate (6.5), we can easily bound from below this
cardinal for “large times”:

Lemma 6.2. For any time n > k, the minimal cardinal of a (k, 1 − θ, n)-cover
satisfies

Nk(n, θ) ≥ D(n−k)/2 (1 − θ) . (6.8)

Notice that the above lemma does not use the fact that ψk is an eigenstate
of Bk.

The next lemma is the crucial ingredient to connect the “long times” de-
scribed by the lower bound (6.8), to the shorter times n ≈ ck (0 < c ≤ 1). This
lemma uses the fact that ψk is an eigenstate of Bk.

Lemma 6.3 (Submultiplicativity). For any 1 ≤ n ≤ k, 1 ≤ 	 and 0 < θ < 1,

Nk(	n, θ) ≤ Nk(n, θ/	)� .

Proof. Assume W = Wn is a set satisfying (6.7) with θ/	 instead of θ. Define W �

as the set of sequences of length n	, formed of 	 blocks of length n, ε(1) ε(2) . . . ε(�),
with all ε(i) ∈ W . Obviously, �(W �) = (�W )�. To prove the lemma, it suffices to
show that W � satisfies (6.7). To do so, we decompose the set �(W �) = Σ�n \W �

in the disjoint union:

�(W �) =
�−1⊔

j=0

Σn · · ·Σn︸ ︷︷ ︸
j

�W W · · ·W︸ ︷︷ ︸
�−j−1

. (6.9)

In other words, for a sequence of length n	 to belong to the complement �(W �),
there must exist 0 ≤ j ≤ 	 − 1 such that the j + 1-th block of length n does not
belong to W , the j first blocks are arbitrary and the 	− j − 1 last ones are in W .

In the sum
∑

ε∈�(W �) Pε ψk, each term in the union (6.9) contributes
( ∑

ε∈W
B

−(�−1)n
k PεB

(�−1)n
k

)
· · ·
( ∑

ε∈W
B

−(j+1)n
k PεB

(j+1)n
k

)( ∑

ε∈�W
B−jn
k PεB

jn
k

)

×
( ∑

ε∈Σn

B
(1−j)n
k PεB

(j−1)n
k

)
· · ·
( ∑

ε∈Σn

B−n
k PεB

n
k

)( ∑

ε∈Σn

Pε

)
ψk .
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Each sum on the second line yields the identity operator. Because ψk is an eigen-
state of B, and using the assumption on W , applying the last sum in the first line
to ψk gives a state of norm:

∥
∥
∥
∑

ε∈�W
B−jn
k PεB

jn
k ψk

∥
∥
∥ =

∥
∥
∥
∑

ε∈�W
Pε ψk

∥
∥
∥ ≤ θ/	 .

Finally, from the fact that the Pε are orthogonal projectors for |ε| = n ≤ k, the
previous sums in the first line are contracting operators: ‖∑ε∈W Pε‖ ≤ 1. As a
result, each term of the union (6.9) corresponds to a state of norm ≤ θ/	. Finally
summing over j, the triangle inequality leads to ‖∑ε∈�(W �) Pε ψk‖ ≤ θ. �

Taking n ≈ ck, 0 < c ≤ 1 and 	 > 1/c, we can now exploit both Lemmas 6.2
and 6.3, to get a lower bound for the cardinals of (k, 1 − θ/	, n)-covers:

Nk(n, θ/	) ≥ D
�n−k

2� (1 − θ)1/� .

Taking 	 > (cδ)−1, and 	 large enough so that (1− θ)1/� > 1/2, this can be recast
in the form:

Nk(n, θ/	) ≥ 1
2

exp
(n logD

2
(1 − δ)

)
. (6.10)

This lower bound shows that a (k, 1− θ/	, n)-cover of the state ψk cannot be “too
thin”.

6.4. Connecting “short logarithmic” to finite times

We need to use another trick to relate the time n ≈ ck, 0 < c ≤ 1, to the
fixed time no considered in Section 6.1. This will finally yield an upper bound for
µk(Wo), where Wo is the union of no-cylinders covering F described in Section 6.1.

The trick consists in using the following sets of n-cylinders, defined relatively
to Wo, and depending on a parameter ρ ∈ (0, 1):

Σn(Wo, ρ)
def=
{

ε ∈ Σn :
� {0 ≤ j ≤ n− no, εj+1 · · · εj+no ∈Wo}

n− no + 1
≥ ρ

}
.

This set is made of n-cylinders which will spend a fraction of time larger than ρ
inside Wo, when evolved by the classical map. A purely combinatorial argument
(which we won’t reproduce) yields the following lemma:

Lemma 6.4. Taking any 0 < ρ < 1, Wo ⊂ Σno fixed and n > no, the cardinal of
Σn(Wo, ρ) is bounded from above by

�Σn(Wo, ρ) ≤
(�n/no�

n

)2

× (�Wo)
[n/no] ×D(1−ρ)non+no .

Let us take no large enough such that, in the limit n→ ∞, the first binomial
factor is less than eδn. Then, take for Wo ∈ Σno a cover of F , with its cardinal
bounded from above by (6.2). For n large enough, the above upper bound then
becomes:

�Σn(Wo, ρ) ≤ e2δn en(htop(F )+δ) e((1−ρ)non+n0) logD ≤ en{htop(F )+(1−ρ)no logD+4δ} .
(6.11)
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Let us take ρ sufficiently close to 1, such that (1 − ρ)no logD + 4δ ≤ 5δ. In that
case, comparing the growth rate with (6.10) and the assumption (6.1) on htop(F ),
we see that the sets Σn(Wo, ρ) are too small to cover ψk:

∥
∥
∥

∑

ε∈�Σn(Wo,ρ)

Pε ψk

∥
∥
∥ ≥ θ/	 .

Because the operators Pε are orthogonal projectors, this inequality can be written

µk
(
�Σn(Wo, ρ)

)
=

∑

ε∈�Σn(Wo,ρ)

〈Pε ψk, ψk〉 =
∥
∥∥

∑

ε∈�Σn(Wo,ρ)

Pε ψk

∥
∥∥

2

≥ (θ/	)2 ,

so that
µk
(
Σn(Wo, ρ)

) ≤ 1 − (θ/	)2 . (6.12)

We are now ready to compute µk(Wo):

µk(Wo) =

〈

ψk,

(∑

ε∈Wo

1
n− no + 1

n−no∑

j=0

B−jPεB
j

)
ψk

〉

=
∑

α∈Σn

〈ψk, Pα ψk〉
(
� {0 ≤ j ≤ n− no, αj+1 · · ·αj+no ∈Wo}

n− no + 1

)
.

(6.13)

In the first line, we used the fact that ψk is an eigenstate of Bk. To get the second
line, we have written B−jPεB

j as

B−jPεB
j =

∑

α∈Σn,αj+1=ε1,...,αj+no=εno

Pα ,

and rearranged the sum.
By definition, an n-cylinder [.α] belongs to Σn(Wo, ρ) if and only if its cor-

responding coefficient

� {0 ≤ j ≤ n− no, αj+1 · · ·αj+no ∈Wo}
n− no + 1

is greater than ρ. As a consequence, (6.13) is bounded from above by

µk(Wo) ≤ µk
(
Σn(Wo, ρ)

)
+ ρ µk

(
�Σn(Wo, ρ)

)
.

Using the upper bound (6.12) for the measure of Σn(Wo, ρ), we obtain

µk(Wo) ≤ (1 − ρ)
(
1 − (θ/	)2

)
+ ρ .

Finally, we may send k → ∞, and use (6.3) to get the required upper bound:

µ(F ) ≤ µ(Wo) ≤ (1 − ρ)
(
1 − (θ/	)2

)
+ ρ < 1 .

This ends the proof of Theorem 1.1.
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7. Proof of Theorem 1.3

Since the proof of the theorem is the same as for the cat map [11], we will only
explain the strategy for a sequence of eigenstates (ψk) converging towards an
invariant measure µ of the following form:

µ = βδ(0) + (1 − β)ν , (7.1)

where δ(0) is the delta measure on the fixed point (0) def= . . . 000 ·000 . . . of Σ (which
maps to the origin of the torus), and ν is any invariant probability measure on Σ
which does not charge (0). We will prove the

Proposition 7.1. A semiclassical measure µ of the form (7.1) necessarily contains
a Lebesgue component of weight larger or equal to β.

The same statement holds (with a similar proof) if we replace δ(0) by a finite
combination of Dirac measures on periodic orbits, and directly gives Theorem 1.3.

Proof. To localize on (0), we will consider the rectangles R�
def= [0� ·0�], where 0� is

the sequence of length 	 only made of zeros. As long as 	 ≤ �k/2�, the characteristic
function on R� is quantized into an orthogonal projector:

Opk,�k/2(1lR�
) = (π0)⊗� ⊗ (I)⊗k−2� ⊗ (F∗

Dπ0FD)⊗� def= PR�
.

Because the sequence of eigenstates (ψk) converges towards µ, it is possible
to find a sequence 	(k) → ∞ such that

〈ψk,Opk,�k/2(1lR�(k))ψk〉 k→∞−→ β . (7.2)

The divergence of the sequence 	(k) can be taken arbitrarily slow, so we can assume
that 	(k) < k/2 for all k. Equipped with such a sequence, we decompose ψk into
ψk = ψk,(0) + ψk,ν with

ψk,(0)
def= PR�(k) ψk, ψk,ν

def=
(
1 − PR�(k)

)
ψk .

Equation (7.2), together with the assumptions on µ, show that the Walsh–Husimi
measures of ψk,(0), resp. ψk,ν , converge to the measure βδ(0), resp. (1 − β)ν.

The observables we will use to test the various measures are characteristic
functions on rectangles R = [ε′ · ε] of lengths n′ + n. For k large enough, such a
fixed rectangle is quantized into the orthogonal projector

PR = πε1 ⊗ · · · ⊗ πεn ⊗ I ⊗ · · · I ⊗F∗πε′
n′F ⊗ · · · ⊗ F∗πε′1F .

To prove the theorem, we will consider the matrix elements 〈ψk, PR ψk〉, which by
assumption converges to µ(R) as k → ∞.

Since ψk is an eigenstate of Bk, we can replace PR by P ′
R

def= Bk
−k PR Bkk

in this matrix element, and then split the eigenstate:

〈ψk, PR ψk〉 = 〈ψk,(0), P ′
R ψk,(0)〉+ 〈ψk,ν , P ′

R ψk,ν〉+2�(〈ψk,(0), P ′
R ψk,ν〉

)
. (7.3)
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Using (5.8), we easily compute P ′
R:

P ′
R = Fπε1F∗ ⊗ · · · ⊗ FπεnF∗ ⊗ I ⊗ · · · I ⊗ πε′

n′ ⊗ · · · ⊗ πε′1 .

In the first term on the right hand side of (7.3), this operator is sandwiched
between two projectors PR�(k) . By taking k large enough, we make sure that 	 =
	(k) ≥ max(n, n′). Under this condition, PR�

P ′
R PR�

is a tensor product operator,
with each of the n first tensor factors of the form

π0FπεiF∗π0 = |F0εi|2 π0 = D−1 π0 .

Similarly, each of its n′ last factors readsD−1 F∗π0F , while the remaining k−n−n′

factors inbetween make up

Acenter
def= (π0)⊗(�−n) ⊗ (I)⊗(k−2�) ⊗ (F∗π0F)⊗(�−n′) . (7.4)

As a result, PR�
P ′
R PR�

= D−n−n′
PR�

. From the definition of ψk,(0), this implies
that

lim
k→∞

〈ψk,(0), P ′
R ψk,(0)〉 = β D−n−n′

= β µLeb(R) . (7.5)

This identity shows that the states Bkk ψk,(0) are semiclassically equidistributed,
as in the case of the cat map [11, Prop. 3.1]. Due to the positivity of the operator
P ′
R, the second term on the right hand side of (7.3) is positive.

The last term in (7.3) is dealt with in the following lemma, analogous to [11,
Prop. 3.2]:

Lemma 7.2. With the above notations, we have

lim
k→∞

〈ψk,(0), P ′
R ψk,ν〉 = 0 .

With this lemma, (7.3) and (7.5), we deduce that

µ(R) = lim
k→∞

〈ψk, PR ψk〉 = lim
k→∞

〈ψk, P ′
R ψk〉

≥ lim
k→∞

〈ψk,(0), P ′
R ψk,(0)〉 = β µLeb(R) .

This shows that the Lebesgue component of µ necessarily has a weight ≥ β. �

Proof of Lemma 7.2. We want to prove that 〈ψk, PR�
P ′
R(1−PR�

)ψk〉 vanishes as
k → ∞. We start by expanding the operator PR�

P ′
R. Its first n tensor factors are

of the type

π0FπεiF∗ = D−1 π0 +
D−1∑

α=1

F0εiF∗
εiα |e0〉〈eα| . (7.6)

The subsequent k − n− n′ factors make up the operator Acenter described above,
and the last n′ factors have the form

F∗π0Fπε′i = D−1 F∗π0F +
D−1∑

α=1

F0ε′iF∗
ε′iα

F∗|e0〉〈eα|F . (7.7)
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In (7.6), (7.7) we voluntarily separated from the sum the term appearing in the
tensor decomposition of D−n−n′

PR�
. As a consequence, the operator PR�

P ′
R can

be written as the sum of Dn+n′
operators of the form

D−n−n′
Aα ⊗Acenter ⊗A′

α′ , (7.8)

where we use (7.4) and the tensor products

Aα = eiϕ(ε,α) (|e0〉〈eα1 |) ⊗ · · · ⊗ (|e0〉〈eαn |) ,
A′

α′ = eiϕ′(ε′,α′) (F∗|e0〉〈eα′
n′ |F) ⊗ · · · ⊗ (F∗|e0〉〈eα′

1
|F) .

The phase prefactors are not important, so we omit their explicit expression. The
sequences α′ · α = α′

n′ · · ·α′
1 · α1 · · ·αn can take all values in (ZD)n

′+n.
The term A0n ⊗ Acenter ⊗ A′

0n′ exactly equals the projector PR�
, so that

PR�
P ′
R(1 − PR�

) is the sum of the terms (7.8) over all sequences α′ · α �= 0n′ · 0n.
Our last task consists in proving that for any such sequence,

〈ψk, Aα ⊗Acenter ⊗A′
α′ ψk〉 k→∞−→ 0 . (7.9)

From the structure of Aα and A′
α′ , this scalar product is unchanged if we replace

the state ψk on the right by its projection on the rectangle R̃� = [0�−n′α′ ·α0�−n].
Because the above operator has norm unity and ψk is normalized, the left-hand
side of (7.9) is bounded from above by ‖PR̃�

ψk‖. For any m ≥ max(n, n′), the
rectangle R̃� is contained in R̃m = [0m−n′α′ · α0m−n] as soon as 	 = 	(k) ≥ m,
so that ‖PR̃�(k)

ψk‖ ≤ ‖PR̃m
ψk‖. On the other hand, we know that ‖PR̃m

ψk‖2

converges to µ(R̃m) as k → ∞.
We finally use the fact that µ is an invariant probability measure to show

that µ(R̃m) m→∞−→ 0. Indeed, in this limit, the rectangles R̃m shrink to the point
. . . 00α′ · α00 . . ., which is homoclinic to the fixed point (0). If µ were charging
that point, it would equally charge all its iterates, which form an infinite orbit: this
would violate the normalization of µ. Finally, we can find a sequence m(k) → ∞
such that m(k) ≤ 	(k) and ‖PR̃m(k)

ψk‖ → 0, which proves (7.9). The lemma
follows by summing over the finitely many sequences α′ · α of length n′ + n. �

Appendix A. The entropic uncertainty principle

Let us recall the statement of the Riesz interpolation theorem (also called “Riesz
convexity theorem”), in the basic case when it is applied to a linear operator T
acting on C

N . We denote lp(N) the Banach space obtained by endowing C
N with

the norm

‖ψ‖p =

⎛

⎝
N∑

j=1

|ψj |p
⎞

⎠

1/p

,

where (ψj)j=1,...,N is the representation of ψ in the canonical basis. We also denote

‖ψ‖∞ = max{|ψj |, j = 1, . . . , N} .
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We are interested in the norm ‖T ‖p,q of the operator T , acting from lp to lq, for
1 ≤ p, q ≤ ∞. The following theorem holds true [10, Section VI.10]:

Theorem A.1 (Riesz interpolation theorem). The function log ‖T ‖1/a,1/b is a con-
vex function of (a, b) in the square 0 ≤ a, b ≤ 1.

From this theorem, we now reproduce the derivation of Maassen and Uffink
[26] to obtain nonstandard uncertainty relations. We denote (Tjk) the matrix of T
in the canonical basis. In the case a = 1, b = 0, we have for any ψ

‖Tψ‖∞ = sup
j

|(Tψ)j| ≤ sup
j,k

|Tj,k|
∑

k′
|ψk′ | = sup

j,k
|Tj,k| ‖ψ‖1 ,

which can be written as ‖T ‖1,∞ ≤ supj,k |Tj,k| def= c(T ).
Let us assume that T is contracting on l2: ‖T ‖2,2 ≤ 1. We take t ∈ [0, 1] and

at = 1+t
2 , bt = 1−t

2 to interpolate between (1/2, 1/2) and (1, 0); the above theorem
implies that

‖T ‖1/at,1/bt
≤ c(T )t .

This is equivalent to the following

Corollary A.2. Let the N × N matrix T satisfy ‖T ‖2,2 ≤ 1 and call c(T ) def=
supj,k |Tj,k|. Then, for all t ∈ [0, 1], for all ψ ∈ C

N ,

‖Tψ‖ 2
1−t

≤ c(T )t ‖ψ‖ 2
1+t

.

Keeping the notations of [26], we define for any r > 0 and −1 < r < 0 the
“moments”

Mr(ψ) def=

⎛

⎝
∑

j

|ψj |2+2r

⎞

⎠

1/r

.

The above corollary leads to the following family of “uncertainty relations”:

∀t ∈ (0, 1), ∀ψ ∈ C
D, M t

1−t
(Tψ)M −t

1+t
(ψ) ≤ c(T )2 . (A.1)

In the case ‖ψ‖2 = 1, we notice that the moments converge to the same value
when r → 0 from above or below:

lim
r→0

Mr(ψ) = e−h(ψ) , where h(ψ) = −
∑

j

|ψj |2 log |ψj |2 .

If furthermore ‖Tψ‖2 = 1, in particular if T = U is unitary, then the limit t → 0
of the inequalities (A.1) yield the Entropic Uncertainty Principle stated in Theo-
rem 4.1.
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Vectorial entropic uncertainty principle. This theorem can be straightforwardly
generalized in the following way. Let (H, ‖.‖) be a Hilbert space, and suppose we
are given a family of operators (Pj)j=1,...,N on H, satisfying

N∑

j=1

P ∗
j Pj = IH . (A.2)

Using these operators, we decompose any Ψ ∈ H into the states Ψj
def= PjΨ. The

above identity implies that

‖Ψ‖2 =
∑

j

‖Ψj‖2 .

Using this decomposition, the vector space H can be endowed with different norms,
all equivalent to the Hilbert norm ‖.‖ since N is finite:

‖Ψ‖p def=

⎛

⎝
N∑

j=1

‖Ψj‖p
⎞

⎠

1/p

, ‖Ψ‖∞ = max{‖Ψj‖, j = 1, . . . , N} .

Notice that ‖Ψ‖2 = ‖Ψ‖.
Given a bounded operator T on H, we define the operators Tjk = PjTP

∗
k , in

terms of which T acts on Ψ ∈ H as follows:

(TΨ)j =
∑

k

TjkΨk .

Let us denote c(T ) = max ‖Tjk‖. The Riesz interpolation theorem still holds in
this setting, and yields, provided ‖T ‖ = ‖T ‖2,2 ≤ 1,

∀t ∈ [0, 1], ∀Ψ ∈ H, ‖TΨ‖ 2
1−t

≤ c(T )t ‖Ψ‖ 2
1+t

. (A.3)

This implies the following vectorial Entropic Uncertainty Principle, which we use
in Section 5.4:

Theorem A.3. Let U be a unitary operator on H, and, using a partition of unity
(A.2), define c(U) def= supj,k ‖Ujk‖ and, for any normalized Ψ ∈ H, the entropy

h(Ψ) = −
∑

j

‖Ψj‖2 log ‖Ψj‖2
.

This entropy satisfies the following inequality:

h(UΨ) + h(Ψ) ≥ −2 log c(U) .
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