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Eigenfunction Statistics in
the Localized Anderson Model

Rowan Killip and Fumihiko Nakano

Abstract. We consider the localized region of the Anderson model and study
the distribution of eigenfunctions simultaneously in space and energy. In a
natural scaling limit, we prove convergence to a Poisson process. This provides
a counterpoint to recent work, [9], which proves repulsion of the localization
centres in a subtly different regime.

1. Introduction

The purpose of this note is to describe the distribution of eigenfunctions (in space
and energy) for the Anderson model in the localized regime. We will prove that
one obtains a Poisson process in a natural scaling limit.

The Anderson model is an ensemble of random operators on �2(Zd),

(Hϕ)(x) =
∑

|y−x|=1

ϕ(y) + Vω(x)ϕ(x) ,

where {Vω(x) : x ∈ Z
d} are a family of independent identically distributed random

variables. We will assume throughout that the common probability distribution is
absolutely continuous with density ρ ∈ L∞. Expectation over the random potential
will be denoted E.

For this model, there is always an interval of energies exhibiting Anderson
localization, that is, dense pure point spectrum with exponentially decaying eigen-
functions, with probability one. The size and location of this interval depend on
the dimension d and the strength of the random potential. By simple ergodic-
ity arguments, the spectrum (as a set) and the spectral type are almost surely
constant.
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Early proofs of localization can be found in [3,4]; however, the fractional mo-
ment method introduced by Aizenman and Molchanov, [1], is better suited to the
matters we wish to discuss. Indeed, for the model we treat, it is not unreasonable
to redefine Anderson localization as exponential decay of fractional moments of
the resolvent. (As described in [2, §4.4] this conclusion can be deduced from other
natural notions of localization.) With this in mind, we make the

Definition 1.1. The ensemble of operators H obeys FM-localization on [a, b] if this
interval belongs to the spectrum of H (with probability one) and for all E ∈ [a, b]
and all ε > 0,

E
{∣∣〈δy|(H − E − iε)−1δx〉

∣∣s} ≤ Ae−µ|x−y|, ∀ x, y ∈ Z
d , (1.1)

with fixed s ∈ (0, 1), µ > 0, and A > 0.

The natural way to describe the location of eigenvectors simultaneously in
space and energy is in terms of the random measure dξ on R

1+d defined by
∫

R×Rd

f(E)g(x) dξ = Tr
(
g(x)f(H)

)
,

for all f ∈ Cc(R) and all g ∈ Cc(Rd). Note that dξ will be supported only on R×Z
d.

On the right-hand side of this equation, we are considering g(x) as a multiplication
operator on �2(Zd). An equivalent and perhaps more appealing definition can be
given when H has pure point spectrum:

∫

R×Rd

f(E, x) dξ =
∑

j

∑

x∈Zd

f(Ej , x)|ψj(x)|2 ,

where Ej enumerate the eigenvalues (according to multiplicity) and ψj , the corre-
sponding �2-normalized eigenfunctions.

The measure dξ can be studied in two natural scaling limits. The first is the
macroscopic limit where space (and the measure) are rescaled, but not energy.
Using ergodicity under space translations, it is not difficult to see that for any
f ∈ Cc(R1+d),

L−d

∫
f(E, x/L) dξ(E, x) →

∫

R

∫

Rd

f(E, y) dν(E) dy

as L→ ∞. Here dν denotes the density of states measure, which is defined by
∫
g(E) dν(E) = E

{〈
δx

∣∣g(H) δx
〉}
,

for all g ∈ Cc(R). Let us note for future reference that for the model we consider
the density of states measure is absolutely continuous with bounded density. This
follows from Wegner’s estimate; see Lemma 2.1.

We will show that in the localized regime, the random measure dξ converges
to a Poisson process in the microscopic scaling limit, that is, when both energy



Vol. 8 (2007) Eigenfunction Statistics in the Localized Anderson Model 29

and space are rescaled. Given a length scale L, which will eventually be taken to
infinity, and a reference energy E0, we define a rescaled measure dξL by

∫
f(E, x) dξL =

∫
f

(
Ld(E − E0),

x

L

)
dξ .

In order to prove convergence of dξL, we need to make a mild assumption on the
reference energy, E0, namely that it is a Lebesgue point of the density of states
measure:

dν

dE
(E0) = lim

r↓0
1
r
ν([E0, E0 + r]) = lim

r↓0
1
r
ν([E0 − r, E0]) (1.2)

(and both limits exist). This is slightly stronger that the symmetrical version
commonly found in textbooks, but still holds Lebesgue almost everywhere.

Theorem 1.1. Let E0 be a Lebesgue point of the density of states measure and lie
inside an interval of FM-localization, then the random measure dξL converges in
distribution to a Poisson point process on R × R

d with intensity dν
dE (E0) dE ⊗ dx.

Minami, [7], studied the eigenvalue statistics of finite volume Anderson Hamil-
tonians in this limit and proved convergence to a Poisson process. (This was shown
earlier for a related one-dimensional model by Molchanov, [8].) The main obser-
vation in this note is that Minami’s methods extend without too much difficulty
to give a proof of Theorem 1.1.

Our interest in this question stems from earlier work of the second author, [9],
which showed that when eigenvalues are anomalously close (relative to the natural
scaling) the eigenfunctions must live far apart. Note that such nearby eigenvalues
do occur. Minami’s result merely says that they are rare in a small neighbourhood
of a fixed energy; whereas, [9] considers proximate eigenvalues wherever they lie
in the region of localization.

The related result that in the localized regime, eigenvalues are simple (with
probability one) was proved by Simon, [10]. A new proof of this, based on Minami’s
work, can be found in [6].

Perhaps the main message to be taken from this note and its companion, [9],
is that the physically natural mantra of eigenfunction repulsion is more subtle than
it seems. After all, a Poisson process is the very model of non-repulsion, indeed of
total non-interaction.

2. Proof of Theorem 1.1

The key to proving that dξL converges to a Poisson process is the effective inde-
pendence of distant regions of space, which follows from the exponential decay of
the Green function. The way to exploit this is to compare H with a direct sum of
finite volume Anderson Hamiltonians.

To each sufficiently large L let us associate an integer lL; we merely require
that lL ∼ Lα for some 0 < α < 1. We define HL by replacing by zero all matrix
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elements of H that connect distinct boxes

Bp(L) =
{
x ∈ Z

d : xj ∈ [pjlL, (pj + 1)lL) for all 1 ≤ j ≤ d
}
, p ∈ Z

d .

In this way, HL is the direct sum of the restrictions HL,p of H to each Bp(L). Note
also that these summands are statistically independent.

Just as we defined the family of measures dξL associated to H , we can define
a measure associated to each HL,p in the analogous way:

∫

R×Rd

f(E, x) dη̃L,p =
∑

j

∑

x∈Bp(L)

f
(
Ld(Ej − E0),

x

L

)
|ψj(x)|2 (2.1)

where Ej enumerate the eigenvalues and ψj , the �2-normalized eigenfunctions of
HL,p; remember, HL,p is a finite matrix.

It will be convenient to have a notation for the analogue of Bp(L) under the
scaling given in (2.1). To this end, we partition R

d into cubes whose sides have
length lL/L:

Cp(L) =
{
x ∈ R

d : xj ∈ [pj lL/L, (pj + 1)lL/L) for all 1 ≤ j ≤ d
}
, p ∈ Z

d .

Note that the support of dη̃L,p is contained in R × Cp(L).
Wegner’s estimate, [11], is useful for bounding various error terms that appear

in the proof. We formulate it as follows:

Lemma 2.1. For any f ∈ L1(R) and any x ∈ Z
d, we have

∫
f(E) dν(E) = E

{〈
δx

∣∣f(H) δx
〉} ≤ ‖ρ‖∞‖f‖1 (2.2)

and
E

{〈
δx

∣∣f(HL) δx
〉} ≤ ‖ρ‖∞‖f‖1 . (2.3)

Recall that ρ is the probability density for the random potential.

Proposition 2.1. Suppose FM-localization holds in a neighbourhood of E0. Then,
for any function f ∈ Cc(R × R

d),

E

{∣∣∣∣
∫
f dξL −

∑

p

∫
f dη̃L,p

∣∣∣∣

}
→ 0 (2.4)

as L → ∞. This remains true if f is the characteristic function of a rectangle
(with sides parallel to the axes).

Proof. This synthesizes Steps 3 and 5 in Minami’s paper [7].
It suffices to prove the result for f of the form f(E, x) = h(E)g(x). Linear

combinations of such functions, with f and g continuous, are dense in Cc(R×R
d),

while the characteristic function of a rectangle is already of this form. In this case,
∣∣∣∣
∫
f dξL −

∑

p

∫
f dη̃L,p

∣∣∣∣ ≤
∑

x

|gL(x)| ∣∣〈δx|[hL(H) − hL(HL)]δx〉
∣∣ (2.5)

≤ ‖g‖∞
∑

x∈supp(gL)

∣∣〈δx|[hL(H) − hL(HL)]δx〉
∣∣ (2.6)
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where gL(x) = g(x/L) and hL(E) = h([E − E0]Ld).
As supp(gL) intersects only O(Ld/ldL) many cubes Bp(L), the problem re-

duces to showing

lim
L→∞

Ld

ldL

∑

x∈Bp(L)

E

{∣∣〈δx|[hL(H) − hL(HL)]δx〉
∣∣
}

= 0 . (2.7)

We need just one further reduction, namely, it is sufficient to prove (2.7) for

h(E) =
τ

(E − σ)2 + τ2
.

The reason is two-fold: finite linear combinations of these functions are dense in L1

and by Lemma 2.1, this level of approximation is sufficient. To see this, one should
note that ‖LdhL(E)‖1 = ‖h(E)‖1.

To recap, we need to prove
1
ldL

∑

x∈Bp(L)

E

{∣∣∣ImG(x, x;E0 + zL−d) − ImGL,p(x, x;E0 + zL−d)
∣∣∣
}
→ 0 (2.8)

where z = σ + iτ and G,Gp denote the Green’s functions of H and HL,p respec-
tively. The proof of this can be found in the part of [7] cited above. We will review
the argument, which involves breaking the sum into two pieces.

If x is close to the boundary of Bp(L), which means within log2(L), we make
a very crude estimate. We replace the absolute value of the difference of Green’s
functions by the sum of their absolute values and then apply Lemma 2.1:

E

{∣∣∣ImG(x, x;E0 + zL−d) − ImGL,p(x, x;E0 + zL−d)
∣∣∣
}
≤ 2π .

This is satisfactory because the number of x ∈ Bp(L) that are this close to the
boundary is O(log2(L)ld−1

L ) and so o(ldL).
For x far from the boundary, we obtain smallness from the exponential decay

provided by FM-localization. By the resolvent identity,
∣∣∣ImG(x, x;E0 + zL−d) − ImGL,p(x, x;E0 + zL−d)

∣∣∣

≤
∑

y,y′

∣∣∣GL,p(x, y;E0 + zL−d)G(y′, x;E0 + zL−d)
∣∣∣

(2.9)

where the sum is over neighbouring points y ∈ Bp(L) and y′ �∈ Bp(L). There are
O(ld−1

L ) such pairs. Freezing one such pair for the moment we have

E

{∣∣∣GL,p(x, y;E0 + zL−d)G(y′, x;E0 + zL−d)
∣∣∣
}

≤ Ld

Im z

(
Ld

Im z

)1−s

E

{∣∣∣G(y′, x;E0 + zL−d)
∣∣∣
s} (2.10)

using ‖(B − z)−1‖ ≤ (Im z)−1 for any self-adjoint operator B. By hypothesis, the
last factor is no larger than A exp[−µ log2(L)]. This is small enough to beat the
other contributions (including both sums), which grow as a power of L. �
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Because there are clean results in the literature proving the convergence of
certain point processes to the Poisson process, it is convenient to approximate dξL
by a such a process rather than a general random measure. We implement this by
moving all the mass of dη̃L,p into one corner of the cube Cp(L). More precisely,
let us define dηL,p to be the point process

∫

R×Rd

f(E, x) dηL,p =
∑

j

f
(
Ld(Ej − E0), p lL/L

)

where Ej are the eigenvalues of HL,p. The results of the previous proposition carry
over as we now show.

Corollary 2.1. (a) For each f ∈ Cc(R1+d), E{| ∫ f dξL − ∑
p

∫
f dηL,p|} → 0 as

L→ ∞.
(b) Let Q ⊂ R

d be a rectangle with sides parallel to the axes and let I be a finite
interval, then E{|ξL(I ×Q) − ∑

p ηL,p(I ×Q)|} → 0 as L→ ∞.
(c) If

∑
p dηL,p converges in distribution to a Poisson process, then this is also

true of dξL.

Proof. In view of Proposition 2.1, we can prove parts (a) and (b) by controlling
the difference between η̃L,p and ηL,p.

(a) Choose a, b ∈ R so that f(E, x) = 0 for all E �∈ [a, b]. Then
∣∣∣
∫
f dη̃L,p −

∫
f dηL,p

∣∣∣ ≤ ω(lL/L) ηL,p([a, b] × R
d) ,

where ω(δ) = sup{|f(E, x) − f(E, y)| : |x − y| < δ, E ∈ R}. As f is uniformly
continuous, ω(δ) = o(1) as δ → 0.

As E{ηL,p([a, b] × R
d)} is the average number of eigenvalues of HL,p in the

interval [E0 + aL−d, E0 + bL−d], it follows from (2.3) that E{ηL,p([a, b] × R
d)} =

O(ldL/L
d). In this way, we find that

∑

p

E

{∣∣∣
∫
f dη̃L,p −

∫
f dηL,p

∣∣∣
}

= O(ω(lL/L)) = o(1) ,

because the number of cubes Cp(L) that intersect the support of f is O(Ld/ldL).
This proves (a).

(b) Note that η̃L,p(I ×Q) − ηL,p(I ×Q) is only non-zero if Cp(L) intersects
the boundary of Q. The number of such cubes is O(Ld−1/ld−1

L ), while as we saw
in part (a), E{ηL,p(I × R

d)} = O(ldL/L
d). Putting these two facts together gives

∑

p

E
{∣∣η̃L,p(I ×Q) − ηL,p(I ×Q)

∣∣} = O(lL/L)

and so the result follows.
(c) As described in [5], convergence in distribution is precisely convergence

of Laplace functionals,

Lf (ξ) = E

{
e−

∫
f dξ

}
,
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for each non-negative f ∈ Cc(Rd+1). Using part (a), we have

E

{∣∣∣e−
∫

f dξL − e−
∑

p

∫
f dηL,p

∣∣∣
}
≤ E

{∣∣∣
∫
f dξL −

∑

p

∫
f dηL,p

∣∣∣
}

= o(1) ,

because |e−x − e−y| ≤ |x− y| for x, y ≥ 0. �

From the corollary, we see that dξL can be approximated by a sum of inde-
pendent point processes. The next proposition provides an important bound on
the summands. The statement and proof are taken more or less directly from [7]; it
is the most ingenious part of that paper. It is worth noting that while the previous
proposition is directly contingent on localization, the next is not – it holds even
in the regime where delocalization is expected.

Proposition 2.2. For each finite interval I,

E
{
ηp,L(I × R

d)
[
ηp,L(I × R

d) − 1
]}

= O

(
l2d
L

L2d

)
(2.11)

as L→ ∞.

Proof. Recall that dηL,p is a measure on space and energy, however the statement
concerns only its energy marginal. After integrating out the spacial variables, we
see that dηL,p consists of a unit point mass at each (Ej−E0)Ld whereEj enumerate
the eigenvalues of the finite-volume operator HL,p. In particular, if we write I =
[a, b], then ηp,L(I × R

d) is the number of eigenvalues of HL,p in the interval

IL = [E0 + aL−d, E0 + bL−d] .

As noted the proof of (2.11) can be found in Minami’s paper. In scant detail his
argument is as follows: By a two-site spectral averaging argument, [7, Lemma 2],
he proves

E
{
Tr

(
f(HL,p) ∧ f(HL,p)

)} ≤ ‖ρ‖2
∞ l2d

L

for all functions f of the form

f(E) =
1
π

τ

(E − σ)2 + τ2

with σ ∈ R and τ > 0. (Recall that A∧A is the restriction ofA⊗A to antisymmetric
two-tensors.) If we choose σ = E0 and τ = (|a|+ |b|)L−d, then 2πτf(E) ≥ χIL(E).
Therefore,

2 × LHS(2.11) = E{number of unordered pairs of eigenvalues of HL,p in IL}
= E

{
Tr

(
χIL(HL,p) ∧ χIL(HL,p)

)}

≤ 4π2(|a| + |b|)2 L−2d‖ρ‖2
∞ l2d

L ,

which proves (2.11). �
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Proof of Theorem 1.1. By Corollary 2.1, it suffices to show that
∑

p

ηL,p

converges to a Poisson process. Notice that each summand is independent and
identically distributed; moreover as we will prove momentarily, each makes neg-
ligible contribution. This is the natural setting for a central limit theorem. The
specific version we need is Corollary 7.5 of [5]. It says that it is sufficient to show
that for each compact rectangle I ×Q ⊂ R × R

d with sides parallel to the axes,
∑

p

P
{
ηp,L(I ×Q) ≥ 1

} → |I| · |Q| · dν
dE

(E0) (2.12)

and
∑

p

P
{
ηp,L(I ×Q) ≥ 2

} → 0 (2.13)

as L→ ∞.
The second requirement follows easily from Minami’s estimate, (2.11):

∑

p

P
{
ηp,L(I ×Q) ≥ 2

} ≤
∑

p : Cp(L)∩Q�=∅
E

{
ηp,L(I × R

d)
[
ηp,L(I × R

d) − 1
]}

= O

(
Ld

ldL
· l

2d
L

L2d

)
,

which is considerably stronger than (2.13).
In view of the formula immediately above, (2.12) will follow once we prove

∑

p

E
{
ηp,L(I ×Q)

} → |I| · |Q| · dν
dE

(E0) ,

which can itself be deduced from

E
{
ξL(I ×Q)

} → |I| · |Q| · dν
dE

(E0) , (2.14)

by means of part (b) of Corollary 2.1. The proof of (2.14) requires just two ingre-
dients. First, by (1.2),

Ldν
(
[E0 + aL−d, E0 + bL−d]

) → (b− a) · dν
dE

(E0) . (2.15)

And secondly, by the definition of the density of states,

E
{
ξL

(
[a, b] ×Q

)}
= NL(Q)ν

(
[E0 + aL−d, E0 + bL−d]

)
, (2.16)

where NL(Q) = #{x ∈ Z
d : L−1x ∈ Q}. It is easy to see that

NL(Q) = |Q| · Ld +O(Ld−1) .

Combining this with (2.15) and (2.16) proves (2.14) and so the theorem. �
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