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Abstract. This article is devoted to an extensive study of an infinite-dimen-
sional Lie algebra sv, introduced in [14] in the context of non-equilibrium
statistical physics, containing as subalgebras both the Lie algebra of invari-
ance of the free Schrödinger equation and the central charge-free Virasoro
algebra Vect(S1). We call sv the Schrödinger-Virasoro Lie algebra. We study
its representation theory: realizations as Lie symmetries of field equations,
coadjoint representation, coinduced representations in connection with Car-
tan’s prolongation method (yielding analogues of the tensor density modules
for Vect(S1)). We also present a detailed cohomological study, providing in
particular a classification of deformations and central extensions; there ap-
pears a non-local cocycle.

0. Introduction

There is, in the physical literature of the past decades – without mentioning the
pioneering works of Wigner for instance –, a deeply rooted belief that physical
systems – macroscopic systems for statistical physicists, quantum particles and
fields for high energy physicists – could and should be classified according to which
group of symmetries acts on them and how this group acts on them.

Let us just point at two very well-known examples: elementary particles on
the (3+1)-dimensional Minkowski space-time, and two-dimensional conformal field
theory.

From the point of view of ‘covariant quantization’, introduced at the time of
Wigner, elementary particles of relativistic quantum mechanics (of positive mass,
say) may be described as irreducible unitary representations of the Poincaré group
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p4 � so(3, 1) � R4, which is the semi-direct product of the Lorentz group of rota-
tions and relativistic boosts by space-time translations: that is to say, the physical
states of a particle of mass m > 0 and spin s ∈ 1

2N are in bijection with the
states of the Hilbert space corresponding to the associated irreducible representa-
tion of p4; the indices (m, s) characterizing positive square mass representations
come from the two Casimir of the enveloping algebra U(p4).

This ‘covariant quantization’ has been revisited by the school of Souriau in the
60’es and 70’es as a particular case of geometric quantization; most importantly
for us, the physicists J.-J. Lévy-Leblond and C. Duval introduced the so-called
Newton-Cartan manifolds (which provide the right geometric frame for Newtonian
mechanics, just as Lorentz manifolds do for relativistic mechanics) and applied the
tools of geometric quantization to construct wave equations in a geometric context.

Two-dimensional conformal field theory is an attempt at understanding the
universal behaviour of two-dimensional statistical systems at equilibrium and at
the critical temperature, where they undergo a second-order phase transition.
Starting from the basic assumption of translational and rotational invariance,
together with the fundamental hypothesis (confirmed by the observation of the
fractal structure of the systems and the existence of long-range correlations, and
made into a cornerstone of renormalization-group theory) that scale invariance
holds at criticality, one is1 naturally led to the idea that invariance under the
whole conformal group Conf(d) should also hold. This group is known to be finite-
dimensional as soon as the space dimension d is larger than or equal to three, so
physicists became very interested in dimension d = 2, where local conformal trans-
formations are given by holomorphic or anti-holomorphic functions. A systematic
investigation of the theory of representations of the Virasoro algebra (considered
as a central extension of the algebra of infinitesimal holomorphic transformations)
in the 80’es led to introduce a class of physical models (called unitary minimal
models), corresponding to the unitary highest weight representations of the Vira-
soro algebra with central charge less than one. Miraculously, covariance alone is
enough to allow the computation of the statistic correlators – or so-called ‘n-point
functions’ – for these highly constrained models.

A systematic investigation of the consequences of Lie symmetries has been
conducted since the mid-nineties (see short survey [17]) in the same spirit in two re-
lated fields: strongly anisotropic critical systems and out-of-equilibrium statistical
physics (notably ageing phenomena). Theoretical studies and numerical models
coming from both fields have been developed, in which invariance under space
rotations and anisotropic dilations (t, r) → (eλzt, eλr) (λ ∈ R) plays a central
rôle. Here r ∈ R

d is considered as a space coordinate and t ∈ R is (depending
on the context) either the time coordinate or an extra (longitudinal, say) space
coordinate; the parameter z �= 1 is called the anisotropy or dynamical exponent.

Let us restrict to the value z = 2. Then the simplest wave equation invari-
ant under translations, rotations and anisotropic dilations is the free Schrödinger

1for systems with sufficiently short-ranged interactions
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equation 2M∂tψ = Δdψ, where Δd :=
∑d
i=1 ∂

2
ri

is the Laplacian in spatial coor-
dinates. So it is natural to believe that this equation should play the same rôle as
the Klein-Gordon equation in the study of relativistic quantum particles, or the
Laplace equation in conformal field theory, whose maximal group of Lie symme-
tries is the conformal group; in other words, one may also say that one is looking
for symmetry groups arising naturally in a non-relativistic setting, while hoping
that their representations might be applied to a classification of non-relativistic
systems, or, more or less equivalently, to (z = 2) anisotropic systems.

This program, as we mentioned earlier in this introduction, was partially car-
ried out by Duval, Künzle and others through the 70’es and 80’es (see for instance
[6, 7, 8, 9]). We skip the arguments that can be found in [30] or [31] which prove
that the maximal group of Lie symmetries of the Schrödinger group, Schd, called
the Schrödinger group, appears in some sense as the natural substitute for the
conformal group in Newtonian mechanics. Unfortunately, it is finite-dimensional
for every value of d, and its unitary irreducible representations are well-understood
and classified (see [27]), giving very interesting though partial informations on two-
and three-point functions in anisotropic and out-of-equilibrium statistical physics
at criticality that have been systematically pursued in the past ten years of so (see
[33, 34, 35, 15, 16, 2]) but relying on rather elementary mathematics, so this story
could well have stopped here short of further arguments.

Contrary to the conformal group though, which corresponds to a rather ‘rigid’
Riemannian or Lorentzian geometry, the Schrödinger group is only one of the
groups of symmetries that come out of the much more ‘flexible’ Newtonian geom-
etry, with its loosely related time and space directions. In particular (restricting
here to one space dimension for simplicity, although there are straightforward gen-
eralizations in higher dimensions), there arises a new group SV, which will be our
main object of study, and that we shall call the Schrödinger-Virasoro group for
reasons that will become clear shortly. Its Lie algebra sv was originally introduced
by M. Henkel in 1994 (see [14]) as a by-product of the computation of n-point
functions that are covariant under the action of the Schrödinger group. It is given
abstractly as

sv = 〈Ln〉n∈Z ⊕ 〈Ym〉m∈ 1
2+Z

⊕ 〈Mp〉p∈Z (0.1)

with relations

[Ln, Lp] = (n− p)Ln+p (0.2)

[Ln, Ym] = (
n

2
−m)Yn+m, [Ln,Mp] = −pMp (0.3)

[Ym, Ym′ ] = (m−m′)Mm+m′ , [Ym,Mp] = 0, [Mn,Mp] = 0 (0.4)

(n, p ∈ Z, m,m′ ∈ 1
2 + Z). Denoting by Vect(S1) = 〈Ln〉n∈Z the Lie algebra of

vector fields on the circle (with brackets [Ln, Lp] = (n−p)Ln+p), sv may be viewed
as a semi-direct product sv � Vect(S1) � h, where h = 〈Ym〉m∈ 1

2+Z
⊕〈Mp〉p∈Z is a

two-step nilpotent Lie algebra, isomorphic to F 1
2
⊕F0 as a Vect(S1)-module (see

Definition 1.3 for notations).
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This article is made of two parts which are relatively independent: the first
part (the longer one actually), including Sections 1 through 3, is concerned with
the representation theory of the Lie algebra sv; the second one contains a detailed
cohomological study of sv with applications to its deformation theory and to the
systematic investigation of central extensions.

Section 1 is partially introductory; we define sv, give some notations and
show that sv can be integrated to a group.

In Section 2, we decompose sv as a sum of tensor density modules for
Vect(S1). Introducing its central extension ŝv � Vir � h which contains both the
Virasoro algebra and the Schrödinger algebra (hence its name!), we shall study its
coadjoint action on its regular dual (ŝv)∗. We shall also study the action of sv on a
certain space of Schrödinger-type operators and on some other spaces of operators
related to field equations.

In Section 3, we shall see that ‘half of sv’ can be interpreted as a Cartan
prolongation ⊕∞

k=−1gk with g−1 � R
3 and g0 three-dimensional solvable, and study

the related co-induced representations by analogy with the case of the algebra of
formal vector fields on R, where this method leads to the tensor density modules
of the Virasoro representation theory.

Section 4 is devoted to a systematic study of deformations and central ex-
tensions of sv.

The authors chose to present in this article the most significant mathematical
results on the Schrödinger-Virasoro algebra known at the time of writing. A more
comprehensive presentation of sv, in relation with Newton-Cartan geometry (see
[6, 7, 8, 9] for instance), conformal structures, Poisson structures and the algebra
of pseudo-differential operators on the line can be found in [35, 30] and will appear
shortly in a lecture notes or book style, together with a construction of vertex alge-
bra representations of sv with applications to strongly anisotropic critical systems
and out-of-equilibrium statistical physics (see [31]), and a study of induced rep-
resentations which would have made this article much too long. One could object
that this physical introduction would fit better with a more physically-minded ar-
ticle, but the authors think it would have been a pity to dispense with it and start
from a mathematical definition of sv out of the blue in this volume of the Annales
de l’Institut Henri Poincaré, which is after all dedicated to mathematical physics.

1. Definition of the Schrödinger-Virasoro algebra and integration
to a group

1.1. Definitions and notations

Let us first recall some well-known facts about the Virasoro algebra, that we shall
use throughout the article.

We represent an element of Vect(S1) by the vector field f(z)∂z, where f ∈
C[z, z−1] is a Laurent polynomial. Vector field brackets [f(z)∂z, g(z)∂z] = (fg′ −
f ′g)∂z, may equivalently be rewritten in the basis (ln)n∈Z, ln = −zn+1∂z (also
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called Laurent components), which yields [�n, �m] = (n − m)�n+m. Notice the
unusual choice of signs, justified (among other arguments) by the precedence of [14]
on our subject.

The Lie algebra Vect(S1) has only one non-trivial central extension (see [12]
or [18] for instance), given by the so-called Virasoro cocycle c ∈ Z2(Vect(S1),R)
defined by

c(f∂z, g∂z) =
∫
S1
f ′′′(z)g(z) dz, (1.1)

or, in Laurent components,

c(�n, �m) = δn+m,0(n+ 1)n(n− 1). (1.2)

The resulting centrally extended Lie algebra, called Virasoro algebra, will be de-
noted by vir.

The Lie algebra Vect(S1) has a one-parameter family of representations
Fλ, λ ∈ R.

Definition 1.1. We denote by Fλ the representation of Vect(S1) on C[z, z−1] given
by

�n.z
m = (λn−m)zn+m, n,m ∈ Z. (1.3)

An element of Fλ is naturally understood as a (−λ)-density φ(z)dz−λ, acted
by Vect(S1) as

f(z)∂z.φ(z)dz−λ = (fφ′ − λf ′φ)(z)dz−λ. (1.4)

In the bases �n = −zn∂z and am = zmdz−λ, one gets �n.am = (λn−m)an+m.

Definition 1.2. We denote by sv the Lie algebra with generators Ln, Ym,Mn (n ∈ Z,
m ∈ 1

2 + Z) and following relations (where n, p ∈ Z, m,m′ ∈ 1
2 + Z):

[Ln, Lp] = (n− p)Ln+p

[Ln, Ym] = (
n

2
−m)Yn+m,

[Y im, Y
j
m′ ] = (m−m′)Mm+m′ ,

[Ym,Mp] = 0, [Mn,Mp] = 0.

Remark. The Lie subalgebra sch = 〈〈L−1, L0, L1〉 � 〈Y− 1
2
, Y 1

2
,M0〉 is isomorphic

to the Schrödinger Lie algebra in one space dimension.
One sees immediately that sv has a semi-direct product structure sv �

Vect(S1) � h, with Vect(S1) � 〈Ln〉n∈Z and h = 〈Y im〉m∈Z,i≤d ⊕ 〈Mp〉p∈Z. The
Lie algebra h is a two-step nilpotent infinite dimensional Lie algebra.

The Lie algebra sv was originally found in its following realization dπλ that
we give for future reference (see Sections 2 and 3).
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Definition 1.3 (see [33]).
1. Denote by dπ̃λ the representation of sv as differential operators of order one

on R3 with coordinates t, r, ζ defined by

dπ̃λ(Ln) = −tn+1∂t − 1
2
(n+ 1)tnr∂r − 1

4
(n+ 1)ntn−1r2∂ζ − (n+ 1)λtn

dπ̃λ(Ym) = −tm+ 1
2 ∂r − (m+

1
2
)tm− 1

2 r∂ζ

dπ̃λ(Mp) = −tp∂ζ . (1.5)

2. Denote by dπλ the mass M-representation obtained from dπ̃λ by formally
replacing ∂ζ with M.

The representation dπ̃λ may be derived from dπλ by taking a Laplace trans-
form in the mass coordinate, yielding the supplementary coordinate ζ, while the
constant λmay be interpreted as the scaling dimension of a corresponding physical
field (see [33] for details).

1.2. Integration of the Schrödinger-Virasoro algebra to a group

We let Diff(S1) be the group of orientation-preserving C∞-diffeomorphisms of the
circle. Orientation is important since we shall need to consider the square-root of
the Jacobian of the diffeomorphism (see Proposition 1.2).

Theorem 1.1.

1. Let H = C∞(S1)×C∞(S1) be the product of two copies of the space of infin-
itely differentiable functions on the circle, with its group structure modified
as follows:

(α2, β2).(α1, β1) = (α1 + α2, β1 + β2 +
1
2
(α′

1α2 − α1α
′
2)). (1.6)

Then H is a Fréchet-Lie group which integrates h.
2. Let SV = Diff(S1) �H be the group with semi-direct product given by

(1; (α, β)).(φ; 0) = (φ; (α, β)) (1.7)

and
(φ; 0).(1; (α, β)) = (φ; ((φ′)

1
2 (α ◦ φ), β ◦ φ)). (1.8)

Then SV is a Fréchet-Lie group which integrates sv.

Proof.
1. From Hamilton (see [13]), one easily sees that H is a Fréchet-Lie group, its

underlying manifold being the Fréchet space C∞(S1) × C∞(S1) itself.
One sees moreover that its group structure is unipotent.
By computing commutators

(α2, β2)(α1, β1)(α2, β2)−1(α1, β1)−1 = (0, α′
1α2 − α1α

′
2) (1.9)

one recovers the formulas for the nilpotent Lie algebra h.
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2. It is a well-known folk result that the Fréchet-Lie group Diff(S1) integrates
the Lie algebra Vect(S1) (see Hamilton [13], or [12], Chapter 4, for details).
Here the group H is realized (as Diff(S1)-module) as a product of modules
of densities F 1

2
×F0, hence the semi-direct product Diff(S1) �H integrates

the semi-direct product Vect(S1) � h. �

The representation dπ̃0, defined in Proposition 1.3, can be exponentiated into
a representation of SV , given in the following proposition:

Proposition 1.2 (see [33]).
1. Define π̃0 : SV → Diff(S1 × R

2) by

π̃(φ; (α, β)) = π̃(1; (α, β)).π̃(φ; 0)

and

π̃(φ; 0)(z, r, ζ) = (φ(z), r
√
φ′(z), ζ − 1

4
φ′′(z)
φ′(z)

r2).

Then π̃0 is a representation of SV .
2. The infinitesimal representation of π̃0 is equal to dπ̃0.

Proof. Point 1. may be checked by direct verification (note that the formulas were
originally derived by exponentiating the vector fields in the realization dπ̃).

For 2., it is plainly enough to show that, for any f ∈ C∞(S1) and g, h ∈
C∞(R),

d

du
|u=0π̃(expuLf ) = dπ̃(Lf ),

d

du
|u=0π̃(expuYg) = dπ̃(Yg),

d

du
|u=0π̃(expuMh) = dπ̃(Mh).

Put φu = expuLf , so that d
du |u=0φu(z) = f(z). Then

d

du
r(φ′u)

1
2 =

1
2
r(φ′u)

− 1
2
d

du
φ′u →u→0

1
2
rf ′(z),

d

du
(r2

φ′′u
φ′u

) = r2

(
d
duφ

′′
u

φ′u
− φ′′u

(φ′u)2
d

du
φ′u

)
→u→0 r

2f ′′(z)

so the equality d
du |u=0π̃(expuLf ) = dπ̃(Lf ) holds. The two other equalities can be

proved in a similar way. �

Let us introduce other related representations by using the ‘triangular’ struc-
ture of the representation π̃. The action π̃ : SV → Diff(S1 ×R2) can be projected
onto an action π̄ : SV → Diff(S1 × R) by ‘forgetting’ the coordinate ζ, since the
way coordinates (t, r) are transformed does not depend on ζ. Note also that π̃
acts by (time- and space-dependent) translations on the coordinate ζ, so one may
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define a function Φ: SV → C∞(R2) with coordinates (t, r) by

π̃(g)(t, r, ζ) = (π̄(g)(t, r), ζ + Φg(t, r))

(independently of ζ ∈ R). This action may be further projected onto π̄S1 : SV →
Diff(S1) by ‘forgetting’ the second coordinate r this time, so

π̄S1(φ; (α, β)) = φ.

Proposition 1.3.

1. One has the relation

Φg2◦g1(t, r) = Φg1(t, r) + Φg2(π̄(g1)(t, r)).

In other words, Φ is a trivial π-cocycle: Φ ∈ Z1(G,C∞(R2)).
2. The application πλ : SV → Hom(C∞(S1 × R), C∞(S1 × R)) defined by

πλ(g)(φ)(t, r) =
(
π̄′
S1 ◦ π̄−1

S1 (t)
)λ
eMΦg(π̄(g)−1.(t,r)) φ(π̄(g)−1.(t, r))

defines a representation of SV in C∞(S1 × R).

Proof. Straightforward. �

Note that the function Φ comes up naturally when considering projective
representations of the Schrödinger group in one space dimension Sch � SL(2,R)�

Gal, where Gal is the Galilei Lie group (see [27]).
Let us look at the associated infinitesimal representation. Introduce the func-

tion Φ′ defined by Φ′(X) = d
du |u=0Φ(expuX), X ∈ sv. If now g = expX, X ∈ sv,

then
d

du
|u=0πλ(expuX)(φ)(t, r) = (MΦ′(X) + λ(dπ̄S1(X))′(t) + dπ̄(X))φ(t, r)

(1.10)

so d
du |u=0πλ(expuX) may be represented as the differential operator of order one

dπ̄(X) + MΦ′(X) + λ(dπ̄S1(X))′(t).

Hence the infinitesimal representation of πλ is dπλ (see Definition 1.3), as should be.

1.3. About graduations and deformations of the Lie algebra sv

We shall say in this paragraph a little more on the algebraic structure of sv and
introduce another related Lie algebra tsv (‘twisted Schrödinger-Virasoro algebra’).

The reader may wonder why we chose half-integer indices for the field Y .
The shift in the indices is due to the fact that Y behaves as a (−1

2 )-density, or,
in other words, Y has conformal weight 3

2 under the action of the Virasoro field L
(see, e.g., [18] or [4] for a mathematical introduction to conformal field theory and
its terminology).

Note in particular that, although its weight is a half-integer, Y is a bosonic
field, which would contradict spin-statistics theorem, were it not for the fact that
Y is not meant to represent a relativistic field (and also that we are in a one-
dimensional context).
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Nevertheless, as in the case of the double Ramond/Neveu-Schwarz superalge-
bra (see [19]), one may define a ‘twisted’ Schrödinger-Virasoro algebra tsv which is
a priori equally interesting, and exhibits to some respects quite different properties
(see Section 4).

Definition 1.4. Let tsv be the Lie algebra generated by (Ln, Ym,Mp)n,m,p∈Z with
relations

[Ln, Lm] = (n−m)Ln+m, [Ln, Ym] = (
n

2
−m)Yn+m, [Ln,Mm] = −mMn+m

(1.11)

[Yn, Ym] = (n−m)Mn+m, [Yn,Mm] = 0, [Ln, Ym] = 0, (1.12)

where n,m are integers.

Notice that the relations are exactly the same as for sv (see Definition 1.2),
except for the values of the indices.

The simultaneous existence of two linearly independent graduations on sv or
tsv sheds some light on this ambiguity in the definition.

Definition 1.5. Let δ1, resp. δ2, be the graduations on sv or tsv defined by

δ1(Ln) = n, δ1(Ym) = m, δ1(Mp) = p (1.13)

δ2(Ln) = n, δ2(Ym) = m− 1
2
, δ2(Mp) = p− 1 (1.14)

with n, p ∈ Z and m ∈ Z or 1
2 + Z.

One immediately checks that both δ1 and δ2 define graduations and that they
are linearly independent.

Proposition 1.4. The graduation δ1, defined either on sv or on tsv, is given by the
inner derivation δ1 = ad(−L0), while δ2 is an outer derivation, δ2 ∈ Z1(sv, sv) \
B1(sv, sv) and δ2 ∈ Z1(tsv, tsv) \B1(tsv, tsv).

Remark. As we shall see in Section 4, the space H1(sv, sv) or H1(tsv, tsv) of outer
derivations modulo inner derivations is three-dimensional, but only δ2 defines a
graduation on the basis (Ln, Ym,Mp).

Proof. The only non-trivial point is to prove that δ2 is not an inner derivation.
Suppose (by absurd) that δ2 = adX, X ∈ sv or X ∈ tsv (we treat both cases
simultaneously). Then δ2(M0) = 0 since M0 is central in sv and in tsv. Hence the
contradiction. �

Note that the graduation δ2 is given by the Lie action of the Euler vector
field t∂t + r∂r + ζ∂ζ in the representation dπ̃λ (see Definition 1.3).

Let us introduce a natural deformation of sv (we shall need the following
definition in Section 4):
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Definition 1.6. Let svε, ε ∈ R (resp. tsvε) be the Lie algebra generated by Ln, Ym,
Mp, n, p ∈ Z,m ∈ 1

2 + Z (resp. m ∈ Z), with relations

[Ln, Lm] = (n−m)Ln+m, [Ln, Ym] = (
(1 + ε)n

2
−m)Yn+m,

[Ln,Mm] = (εn−m)Mn+m

[Yn, Ym] = (n−m)Mn+m, [Yn,Mm] = 0, [Mn,Mm] = 0. (1.15)

One checks immediately that this defines a Lie algebra, and that sv = sv0.
All these Lie algebras may be extended by using the trivial extension of the

Virasoro cocycle of Section 1.1, yielding Lie algebras denoted by s̃v, t̃sv, s̃vε, t̃svε.

2. On some natural representations of sv

We introduce in this section several natural representations of sv that split into two
classes: the (centrally extended) coadjoint action on the one hand; some apparently
unrelated representations on spaces of functions or differential operators that can
actually all be obtained as particular cases of the general coinduction method
for sv (see Section 3).

It is interesting by itself that the coadjoint action should not belong to the
same family of representations as the others. We shall come back to this later on
in this section.

2.1. Coadjoint action of sv

Let us recall some facts about coadjoint actions of centrally extended Lie groups
and algebras, referring to [12], Chapter 6, for details. So let G be a Lie group with
Lie algebra g, and let us consider central extensions of them, in the categories of
groups and algebras respectively:

(1) −→ R −→ G̃ −→ G −→ (1) (2.1)

(0) −→ R −→ g̃ −→ g −→ (0) (2.2)

with g̃ = Lie(G̃), the extension (2.2) representing the tangent spaces at the identity
of the extension (2.1) (see [12], II 6.1.1. for explicit formulas). Let C ∈ Z2

diff(G,R)
and c ∈ Z2(g,R) the respective cocycles. We want to study the coadjoint action
on the dual g̃∗ = g∗ × R. We shall denote by Ad∗ and Ãd

∗
the coadjoint actions

of G and G̃ respectively, and ad∗ and ãd
∗

the coadjoint actions of g and g̃. One
then has the following formulas

Ãd
∗
(g, α)(u, λ) = (Ad∗(g)u+ λΘ(g), λ) (2.3)

and
ãd

∗
(ξ, α)(u, λ) = (Ad∗(ξ)u+ λθ(ξ), 0) (2.4)

where Θ: G → ĝ∗ and θ : g → ĝ∗ are the Souriau cocycles for differentiable
and Lie algebra cohomologies respectively; for θ one has the following formula:
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〈θ(ξ), η〉 = c(ξ, η). For details of the proof, as well as ‘dictionaries’ between the
various cocycles, the reader is referred to [12], Chapter 6.

Note that formulas (2.3) and (2.4) define affine actions ofG and g respectively,
different from their coadjoint actions when λ �= 0. The actions on hyperplanes
g∗λ = {(u, λ) | u ∈ g∗} ⊂ g̃∗ with fixed second coordinate will be denoted by ad∗

λ

and Ad∗
λ respectively.

Here we shall consider the central extension s̃v of sv inherited from Virasoro
algebra, defined by the cocycle c such that

c(Ln, Lp) = δn+p,0 n(n+ 1)(n− 1)

c(Ln, Ym) = c(Ln,Mp) = c(Ym, Ym′) = 0 (2.5)

(with n, p ∈ Z and m,m′ ∈ 1
2 + Z). Note that we shall prove in Section 4 that this

central extension is universal (a more ‘pedestrian’ proof was given in [14]).
As usual in infinite dimension, the algebraic dual of s̃v is untractable, so let

us consider the regular dual, consisting of sums of modules of densities of Vect(S1)
(see Definition 1.3): the dual module F∗

μ is identified with F−1−μ through

〈u(dx)1+μ, f dx−μ〉 =
∫
S1
u(x)f(x) dx. (2.6)

So, in particular, Vect(S1)∗ � F−2, and (as a Vect(S1)-module)

sv∗ = F−2 ⊕F− 3
2
⊕F−1; (2.7)

we shall identify the element Γ = γ0dx
2 + γ1dx

3
2 + γ2dx ∈ sv∗ with the triple( γ0

γ1
γ2

)
∈ (C∞(S1))3. In other words,

〈
⎛⎝ γ0

γ1

γ2

⎞⎠ , Lf0 + Yf1 +Mf2〉 =
2∑
i=0

∫
S1

(γifi)(z) dz. (2.8)

The following lemma describes the coadjoint representation of a Lie algebra
that can be written as a semi-direct product.

Lemma 2.1. Let s = s0 � s1 be a semi-direct product of two Lie algebra s0 and s1.
Then the coadjoint action of s on s∗ is given by

ad∗
s(f0, f1).(γ0, γ1) = 〈ad∗

s0
(f0)γ0 − f̃1.γ1, f̃

∗
0 (γ1) + ad∗

s1
(f1)γ1〉

where by definition

〈f̃1.γ1, X0〉s∗
0×s0 = 〈γ1, [X0, f1]〉s∗

1×s1

and
〈f̃∗0 (γ1), X1〉s∗

1×s1 = 〈γ1, [f0, X1]〉s∗
1×s1 .

Proof. Straightforward. �
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Theorem 2.2. The coadjoint action of sv on the affine hyperplane sv∗λ is given by
the following formulas:

ad∗(Lf0)

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎝ cf ′′′0 + 2f ′0γ0 + f0γ
′
0

f0γ
′
1 + 3

2f
′
0γ1

f0γ
′
2 + f ′0γ2

⎞⎠ (2.9)

ad∗(Yf1)

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎝ 3
2γ1f

′
1 + 1

2γ
′
1f1

2γ2f
′
1 + γ′2f1
0

⎞⎠ (2.10)

ad∗(Mf2)

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎝ −γ2f
′
2

0
0

⎞⎠ . (2.11)

Proof. The action of Vect(S1) ⊂ sv follows from the identification of sv∗λ with
vir∗λ ⊕F− 3

2
⊕F−1.

Applying the preceding lemma, one gets now

〈ad∗(Yf1).

⎛⎝ γ0

γ1

γ2

⎞⎠ , Lh0〉 = −〈Ỹf1 .
⎛⎝ 0

γ1

γ2

⎞⎠ , Lh0〉

= 〈
⎛⎝ 0

γ1

γ2

⎞⎠ , Y 1
2h

′
0f1−h0f ′

1
〉

=
∫
S1
γ1(

1
2
h′0f1 − h0f

′
1) dz

=
∫
S1
h0(−3

2
γ1f

′
1 −

1
2
γ′1f1) dz;

〈ad∗(Yf1).

⎛⎝ γ0

γ1

γ2

⎞⎠ , Yh1〉 = 〈ad∗
h(Yf1).

⎛⎝ 0
γ1

γ2

⎞⎠ , Yh1〉

= −〈
⎛⎝ 0

γ1

γ2

⎞⎠ ,Mf ′
1h1−f1h′

1
〉

= −
∫
S1
γ2(f ′1h1 − f1h

′
1) dz

=
∫
S1
h1(−2γ2f

′
1 − γ′2f1) dz

and

〈ad∗(Yf1)

⎛⎝ γ0

γ1

γ2

⎞⎠ ,Mh2〉 = 0.

Hence the result for ad∗(Yf1).
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For the action of ad∗(Mf2), one gets similarly

〈ad∗(Mf2).

⎛⎝ γ0

γ1

γ2

⎞⎠ , Lh0〉 = −〈
⎛⎝ 0

γ1

γ2

⎞⎠ ,Mf ′
2h0〉

= −
∫
S1
γ2f

′
2h0 dz

and

〈ad∗(Mf2).

⎛⎝ γ0

γ1

γ2

⎞⎠ , Yh1〉 = 〈ad∗(Mf2).

⎛⎝ γ0

γ1

γ2

⎞⎠ ,Mh2〉 = 0.

Hence the result for ad∗(Mf2). �

One can now easily construct the coadjoint action of the group SV , which
“integrates” the above defined coadjoint action of sv; as usual in infinite dimension,
such an action should not be taken for granted and one has to construct it explicitly
case by case. The result is given by the following.

Theorem 2.3. The coadjoint action of SV on the affine hyperplane s̃v
∗
λ is given by

the following formulas:
Let (ϕ, α, β) ∈ SV , then:

Ad∗(ϕ)

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎜⎝ λΘ(ϕ) + (γ0 ◦ ϕ)(ϕ′)2

(γ1 ◦ ϕ)(ϕ′)
3
2

(γ2 ◦ ϕ)ϕ′

⎞⎟⎠ (2.12)

Ad∗(α, β)

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎜⎝ γ0 + 3
2γ1α

′ + γ′
1
2 α+ γ2β

′ − γ2
2 (3α′2 + αα′′) − 3

2γ
′
2αα

′ − γ′′
2
4 α

2

γ1 + 2γ2α
′ + γ′2α

γ2

⎞⎟⎠ . (2.13)

Proof. The first part (2.12) is easily deduced from the natural action of Diff(S1)
on s̃v

∗
λ = vir∗λ ⊕ F−3/2 ⊕ F−1. Here Θ(ϕ) denotes the Schwarzian derivative of ϕ.

Let’s only recall that it is the Souriau cocycle in H1(Vect(S1), vir∗) associated
to Bott-Virasoro cocycle in H2(Diff(S1) , R), referring to [12], Chap. IV, VI for
details.

The problem of computing the coadjoint action of (α, β) ∈ H can be split
into two pieces; the coadjoint action of H on h∗ is readily computed and one finds:

Ad∗(α, β)
(
γ1

γ2

)
=
(
γ1 + 2γ2α

′ + γ′2α
γ2

)
.
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The most delicate part is to compute the part of coadjoint action of (α, β)
∈ H coming from the adjoint action on Vect(S1), by using:

〈Ad∗(α, β)

⎛⎝ γ0

γ1

γ2

⎞⎠ , f∂〉 = 〈
⎛⎝ γ0

γ1

γ2

⎞⎠ , Ad(α, β)−1(f∂, 0, 0)〉.

One can now use conjugation in the group SV and one finds

Ad(α, β)−1(f∂, 0, 0) =(
f∂, fα′ − 1

2
αf ′, fβ′ +

1
2
(fα′′α+

f ′

2
αα′ − α2

2
f ′′ − fα′2 +

f ′

2
αα′′)

)
.

Now, using integration by part, one finds easily the formula (2.13) above. �
2.2. Action of sv on the affine space of Schrödinger operators

The next three sections aim at generalizing an idea that appeared at a crossroads
between projective geometry, integrable systems and the theory of representations
of Diff(S1). We shall, to our own regret, give some new insights on SV from the
latter point of view exclusively, leaving aside other aspects of a figure that will
hopefully soon emerge.

Let ∂ = ∂
∂x be the derivation operator on the torus T = [0, 2π]. A Hill operator

is by definition a second order operator on T of the form Lu := ∂2 +u, u ∈ C∞(T).
Let πλ be the representation of Diff(S1) on the space of (−λ)-densities Fλ (see
Definition 1.3). One identifies the vector spaces C∞(T) and Fλ in the natural way,
by associating to f ∈ C∞(T) the density fdx−λ. Then, for any couple (λ, μ) ∈ R2,
one has an action Πλ,μ of Diff(S1) on the space of differential operators on T

through the left-and-right action

Πλ,μ(φ) : D → πλ(φ) ◦D ◦ πμ(φ)−1,

with corresponding infinitesimal action

dΠλ,μ(φ) : D → dπλ(φ) ◦D −D ◦ dπμ(φ).

For a particular choice of λ, μ, namely, λ = −3
2 , μ = 1

2 , this representation
preserves the affine space of Hill operators; more precisely,

π−3/2(φ) ◦ (∂2 + u) ◦ π1/2(φ)−1 = ∂2 + (φ′)2(u ◦ φ′) +
1
2
Θ(φ) (2.14)

where Θ stands for the Schwarzian derivative. In other words, u transforms as
an element of vir∗1

2
(see Section 2.1). One may also – taking an opposite point of

view – say that Hill operators define a Diff(S1)-equivariant morphism from F 1
2

into F− 3
2
.

This program may be completed for actions of SV on several affine spaces of
differential operators. This will lead us to introduce several representations of SV
that may all be obtained by the general method of coinduction (see Section 3).
Quite remarkably, when one thinks of the analogy with the case of the action
of Diff(S1) on Hill operators, the (affine) coadjoint action of SV on sv∗λ does
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not appear in this context, and morerover cannot be obtained by the coinduction
method, as one concludes easily from the formulas of Section 3 (see Theorem 3.2).

Definition 2.1. Let S lin be the vector space of second order operators on R2 defined
by

D ∈ S lin ⇔ D = h(2M∂t − ∂2
r ) + V (r, t), h, V ∈ C∞(R2)

and Saff ⊂ S lin the affine subspace of ‘Schrödinger operators’ given by the hyper-
plane h = 1.

In other words, an element of Saff is the sum of the free Schrödinger operator
Δ0 = 2M∂t − ∂2

r and of a potential V .

The following theorem proves that there is a natural family of actions of the
group SV on the space S lin: more precisely, for every λ ∈ R, and g ∈ SV , there is
a ‘scaling function’ Fg,λ ∈ C∞(S1) such that

πλ(g)(Δ0 + V )πλ(g)−1 = Fg,λ(t)(Δ0 + Vg,λ) (2.15)

where Vg,λ ∈ C∞(R2) is a ‘transformed potential’ depending on g and on λ (see
Definition 1.3 and Proposition 1.3 and commentaries thereafter for the definition
of πλ and the associated infinitesimal representation dπλ). Taking the infinitesimal
representation of sv instead, this is equivalent to demanding that the ‘adjoint’
action of dπλ(sv) preserve S lin, namely

[dπλ(X),Δ0 + V ](t, r) = fX,λ(t)(Δ0 + VX,λ), X ∈ sv (2.16)

for a certain infinitesimal ‘scaling’ function fX,λ and with a transformed potential
VX,λ.

We shall actually prove that this last property even characterizes in some
sense the differential operators of order one that belong to dπλ(sv).

Theorem 2.4.

1. The Lie algebra of differential operators of order one X on R2 preserving the
space S lin, i.e., such that

[X ,S lin] ⊂ S lin

is equal to the image of sv by the representation dπλ (modulo the addition
to X of operators of multiplication by an arbitrary function of t).

2. The action of dπλ+1/4(sv) on the free Schrödinger operator Δ0 is given by

[dπλ+1/4(Lf ),Δ0] = f ′Δ0 +
M2

2
f ′′′r2 + 2Mλf ′′ (2.17)

[dπλ+1/4(Yg),Δ0] = 2M2rg′′ (2.18)

[dπλ+1/4(Mh),Δ0] = 2M2h′. (2.19)

Proof. Let X = f∂t + g∂r + h preserving the space S lin: this is equivalent to the
existence of two functions φ(t, r), V (t, r) such that [X ,Δ0] = φ(Δ0 +V ). It is clear
that [h,Slin] ⊂ Slin if h is a function of t only.
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By considerations of degree, one must then have [X , ∂r] = a(t, r)∂r + b(t, r),
hence f is a function of t only. Then

[f∂t, 2M∂t − ∂2
r ] = −2Mf ′∂t (2.20)

[g∂r, 2M∂t − ∂2
r ] = −2M∂tg∂r + 2∂rg∂2

r + ∂2
rg∂r (2.21)

[h,−∂2
r ] = 2∂rh∂r + ∂2

rh (2.22)

so, necessarily,
f ′ = 2∂rg = −φ

and
(2M∂t − ∂2

r )g = −2∂rh.

By putting together these relations, one gets points 1 and 2 simultaneously. �

Using a left-and-right action of sv that combines dπλ and dπ1+λ, one gets
a new family of representations dσλ of sv which map the affine space Saff into
differential operators of order zero (that is to say, into functions):

Proposition 2.5. Let dσλ : sv → Hom(S lin,S lin) defined by the left-and-right infin-
itesimal action

dσλ(X) : D → dπ1+λ(X) ◦D −D ◦ dπλ(X).

Then dσλ is a representation of sv and dσλ(sv)(Saff) ⊂ C∞(R2).

Proof. Let X1, X2 ∈ sv, and put dπ̄S1(Xi) = fi(t), i = 1, 2: then, with a slight
abuse of notations, dσλ(Xi) = ad dπλ(Xi) + f ′i , so

[dσλ(X1), dσλ(X2)] = [ad(dπλ(X1)) + f ′1, ad(dπλ(X2)) + f ′2] (2.23)

= ad dπλ([X1, X2]) + ([dπλ(X1), f ′2(t)] − [dπλ(X2), f ′1(t)]) .
(2.24)

Now ad dπλ commutes with operators of multiplication by any function of time g(t)
if X ∈ h, and

[dπλ(Lf ), g(t)] = [f(t)∂t, g(t)] = f(t)g′(t)

so as a general rule
[dπλ(Xi), g(t)] = fi(t)g′(t).

Hence

[dσλ(X1), dσλ(X2)] = ad dπλ([X1, X2]) + (f1(t)f ′′2 (t) − f2(t)f ′′1 (t)) (2.25)

= ad dπλ([X1, X2]) + (f1f ′2 − f2f
′
1)

′(t) (2.26)

= dσλ([X1, X2]). (2.27)

By the preceding theorem, it is now clear that dσλ(sv) sends Saff into differ-
ential operators of order zero. �
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Remark. Choosing λ = 1
4 leads to a representation of the Schrödinger Lie alge-

bra sch (see remark following Definition 1.2) preserving the kernel of Δ0, see [33].
So, in some sense, λ = 1

4 is the ‘best’ choice.

Clearly, the (affine) subspace Saff
≤2 ⊂ Saff of Schrödinger operators with po-

tentials that are at most quadratic in r, that is,

D ∈ Saff
≤2 ⇔ D = 2M∂t − ∂2

r + g0(t)r2 + g1(t)r + g2(t)

is mapped into potentials of the same form under dσλ(SV ).
Let us use the same vector notation for elements of Saff

≤2 and for potentials
that are at most quadratic in r (what is precisely meant will be clearly seen from
the context): set D =

( g0
g1
g2

)
, respectively V =

( g0
g1
g2

)
for D = Δ0+g0(t)r2+g1(t)r+

g2(t) ∈ Saff
≤2, respectively V (t, r) = g0(t)r2 + g1(t)r + g2(t) ∈ C∞(R2). Then one

can give an explicit formula for the action of dσλ on Saff
2 .

Proposition 2.6.

1. Let D =
( g0
g1
g2

)
∈ Saff

≤2 and f0, f1, f2 ∈ C∞(R). Then the following formulas
hold:

dσλ+1/4(Lf0)(D) = −

⎛⎜⎝ −M2

2 f ′′′0 + 2f ′0g0 + f0g
′
0

f0g
′
1 + 3

2f
′
0g1

f0g
′
2 + f ′0g2 − 2Mλf ′′0

⎞⎟⎠ (2.28)

dσλ+1/4(Yf1)(D) = −
⎛⎝ 0

2f1g0 − 2M2f ′′1
f1g1

⎞⎠ (2.29)

dσλ+1/4(Mf2)(D) =

⎛⎝ 0
0

2M2f ′2

⎞⎠ . (2.30)

2. Consider the restriction of dσ1/4 to Vect(S1) ⊂ sv. Then dσ1/4|Vect(S1) acts

diagonally on the 3-vectors
( g0
g1
g2

)
and its restriction to the subspaces Saff

i :=

{Δ0 + g(t)ri | g ∈ C∞(R)}, i = 0, 1, 2, is equal to the coadjoint action of
Vect(S1) on the affine hyperplane vir∗1/4 (i = 2), and to the usual action
of Vect(S1) on F−3/2 � F∗

1/2 (when i = 1), respectively on F−1 � F∗
0

(when i = 0). Taking λ �= 0 leads to an affine term proportional to f ′′0
on the third coordinate, corresponding to the non-trivial affine cocycle in
H1(Vect(S1),F−1).

In other words, if one identifies Saff
≤2 with sv∗1

4
by

〈
⎛⎝ g0

g1
g2

⎞⎠ ,
(
f0 f1 f2

)〉Saff
≤2×sv =

2∑
i=0

∫
S1

(gifi)(z) dz,
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then the restriction of dσ1/4 to Vect(S1) is equal to the restriction of the coadjoint
action of sv on sv∗1

4
.

But mind that dσ1/4 is not equal to the coadjoint action of sv.

Proof. Point 2 is more or less obvious, and we shall only give some of the com-
putations for the first one. One has [dπλ+1/4(Lf0),Δ0] = f ′0Δ0−M

2 f
′′′
0 r

2+2Mλf ′′0 ,
[dπλ+1/4(Lf0), g2(t)] = −f0(t)g′2(t), [dπλ+1/4(Lf0), g1(t)r] = −(f0(t)g′1(t) +
1
2f

′
0(t)g1(t))r, [dπλ+1/4(Lf0), g0(t)r

2] = −(f0(t)g′0(t) + f ′0(t)g0(t))r
2, so

dσλ+1/4(Lf0)(D) = −f ′0.D + [dπλ+1/4(Lf0), D]

= −(f0g′2 + f ′0g2 − 2Mλf ′′0 ) − (f0g′1 +
3
2
f ′0g1)r

− (
M2

2
f ′′′0 + 2f ′0g0 + f0g

′
0)r

2.

Hence the result for dσλ+1/4(Lf0). The other computations are similar though
somewhat simpler. �

This representation is easily integrated to a representation σ of the group SV .

We let Θ(φ) = φ′′′

φ′ − 3
2

(
φ′′

φ′

)2

(φ ∈ Diff(S1)) be the Schwarzian of the function φ.

Proposition 2.7. Let D =
( g0
g1
g2

)
∈ Saff

≤2, then

σλ+1/4(φ; (a, b))D = σλ+1/4(1; (a, b))σλ+1/4(φ; 0)D (2.31)

σλ+1/4(φ; 1).D =

⎛⎜⎝ (φ′)2.(g0 ◦ φ) − M2

2 Θ(φ)
(φ′)

3
2 (g1 ◦ φ)

φ′(g2 ◦ φ) − 2Mλφ
′′

φ

⎞⎟⎠ (2.32)

σλ+1/4(1; (a, b)).D =

⎛⎝ g0
g1 − 2ag0 + 2M2a′′

g2 − ag1 + a2g0 + M2(2b′ − aa′′)

⎞⎠ (2.33)

defines a representation of SV that integrates dσ, and maps the affine space Saff
≤2

into itself.
In other words, elements of Saff

≤2 define an SV -equivariant morphism from Hλ

into Hλ+1, where Hλ, respectively Hλ+1, is the space C∞(R2) of functions of t, r
that are at most quadratic in r, equipped with the action πλ, respectively πλ+1 (see
(1.5)).

Proof. Put SV = G�H. Then the restrictions σ|G and σ|H define representations
(this is a classical result for the first action, and may be checked by direct com-
putation for the second one). The associated infinitesimal representation of sv is
easily seen to be equal to dσ. �
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In particular, the orbit of the free Schrödinger operator Δ0 is given by the
remarkable formula

σλ+1/4(φ; (a, b))Δ0 =

⎛⎝ −M2

2 Θ(φ)
2M2a′′

M2(2b′ − aa′′)

⎞⎠+ λ

⎛⎝ 0
0

−2Mφ′′

φ

⎞⎠ , (2.34)

mixing a third-order cocycle with coefficient M2 which extends the Schwarzian co-
cycle φ→ Θ(φ) with a second-order cocycle with coefficient −2Mλ which extends
the well-known cocycle φ → φ′′

φ in H1(Vect(S1),F−1). The following paragraph
shows that all affine cocycles of sv with coefficients in the (linear) representation
space Saff

≤2 are of this form.

2.3. Affine cocycles of sv and SV on the space of Schrödinger operators

The representations of groups and Lie algebras described above are of affine type; if
one has linear representations of the groupG and Lie algebra G on a moduleM , one
can deform these representations into affine ones, using the following construction.

Let C : G → M (resp. c : G −→ M) be a 1-cocycle in Z1
diff(G,M) (resp.

Z1(G,M)); it defines an affine action of G (resp. G) by deforming the linear action
as follows:

g ∗m = g.m+ C(g)

ξ ∗m = ξ.m+ c(ξ)

respectively. Here the dot indicates the original linear action and ∗ the affine
action. One deduces from the formulas given in Propositions 2.5 and 2.6 that
the above representations are of this type; the first cohomology of SV (resp. sv)
with coefficients in the module Saff

≤2 (equipped with the linear action) classifies all
the affine deformations of the action, up to isomorphism. They are given by the
following theorem:

Theorem 2.8. The degree-one cohomology of the group SV (resp. Lie algebra sv)
with coefficients in the module Saff

≤2 (equipped with the linear action) is two-dimen-
sional and can be represented by the following cocycles:

C1(φ, (a, b)) =

⎛⎝ −1
2Θ(φ)
2a′′

2b′ − aa′′

⎞⎠– for SV :

C2(φ, (a, b)) =

⎛⎝ 0
0
φ′′

⎞⎠
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c1(Lf0 + Yf1 +Mf2) =

⎛⎝ 1
2f

′′′
0

−2f ′′1
−2f ′2

⎞⎠– for sv:

c2(Lf0 + Yf1 +Mf2) =

⎛⎝ 0
0
f ′′0

⎞⎠
(one easily recognizes that C1 and c1 correspond to the representations given in
Prop. 3.7 and Prop. 3.6 respectively.)

Proof. One shall first make the computations for the Lie algebra and then try
to integrate explicitly; here, the “heuristical” version of Van-Est theorem, gener-
alized to the infinite-dimensional case, guarantees the isomorphism between the
H1 groups for SV and sv (see [12], Chapter IV).

So let us compute H1(sv,M) � H1(G � h,M) for M = Saff
≤2 (equipped with

the linear action). Let c : G × h −→ M be a cocycle and set c = c′ + c′′ where
c′ = c|G and c′′ = c|h. One has c′ ∈ Z1(G,M) and c′′ ∈ Z1(h,M), and these two
cocycles are linked together by the compatibility relation

c′′([X,α]) −X.(c′′(α)) + α.(c′(X)) = 0. (2.35)

As a G-module, M = F−2⊕F−3/2⊕F−1, so one determines easily that H1(G,F−2)
and H1(G,F−1) are one-dimensional, generated by Lf0 −→ f ′′′0 dx

2 and Lf0 −→
f ′′0 dx respectively, and H1(G,F−3/2) = 0 (see [12], Chapter IV). One can now
readily compute the 1-cohomology of the nilpotent part h; one easily remarks that
the linear action on Saff

≤2 is defined as follows:

(Yf1 +Mf2) .

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎝ 0
2f1γ0

f1γ1

⎞⎠ .

We can then deduce the cocycles in Z1(h,M) through a direct computation.
One obtains:

c′′(Yf1 +Mf2) =

⎛⎝ d0(f1)
d1(f1) + d̃1(f2)
d2(f1) + d̃2(f2)

⎞⎠
where d2 is an arbitrary differential operator, and d0 and d̃1 on one side, d1 and
d̃2 on the other, are linked together as follows:
– one has three potential cases for d0 and d̃1

(i) d0(f1) = f1
2 d̃1(f2) = 0

(ii) d0(f1) = f ′
1
2 d̃1(f2) = f2

(iii) d0(f1) = f ′′
1
2 d̃1(f2) = f ′2

– one has two potential cases for d1 and d̃2

(iv) d1(f1) = f ′1 d̃2(f2) = f2
(v) d1(f1) = f ′′1 d̃2(f2) = f ′2
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Our theorem then states that only cocycle (v) will survive to compatibility condi-
tions (3.35) above. This can be seen as follows. The compatibility conditions imply
that d0 : F1/2 −→ F−2 is G-invariant. As there are no such invariants, the d0- and
d̃1-terms must cancel. An analogous argument works for d2. For the last two cases
(iv) and (v), the compatibility condition gives:

c′′([Lf0 , Yf1 +Mf2 ]) − Lf0 .(c
′′(Yf1 +Mf2)) =

⎛⎝ 0
−f ′0f ′1 − 1

2f1f
′′
0

−f ′0f2

⎞⎠
for (iv) and

c′′([Lf0 , Yf1 +Mf2 ]) − Lf0 .(c
′′(Yf1 +Mf2)) =

⎛⎝ 0
−1

2f1f
′′′
0

0

⎞⎠
for (v).

On the other hand one finds:

(Yf1 +Mf2).(c
′(Lf0)) = (Yf1 +Mf2) .

⎛⎝ f ′′′0

0
f ′′0

⎞⎠ =

⎛⎝ 0
2f1f ′′′0

0

⎞⎠ .

Hence the result, with the right proportionality coefficients, and one obtains the
formula for c1.
One also remarks that the term with f ′′0 dx disappears through the action of h, so
it will induce an independent generator in H1(sv,Saff), precisely c2.
Finally the cocycles C1 and C2 in H1(SV,Saff

≤2) are not so hard to compute, once
we have determined the action of H on Saff

≤2, which is unipotent as follows:

(a, b).

⎛⎝ γ0

γ1

γ2

⎞⎠ =

⎛⎝ γ0

γ1 + 2aγ0

γ2 + aγ1 − a2γ0

⎞⎠ .

�
2.4. Action on Dirac-Lévy-Leblond operators

Lévy-Leblond introduced in [21] a matrix differential operator D0 on R
d+1 (with

coordinates t, r1, . . . , rd) of order one, similar to the Dirac operator, whose square is

equal to −Δ0⊗Id = −
(

Δ0

. . .
Δ0

)
for Δ0 = 2M∂t−

∑d
i=1 ∂

2
ri
. So, in some sense,

D0 is a square-root of the free Schrödinger operator, just as the Dirac operator is
a square-root of the D’Alembertian. The group of Lie invariance of D0 has been
studied in [36], it is isomorphic to the Schrödinger Lie group in d space dimensions.

Let us restrict to the case d = 1 (see [34] for details). Then D0 acts on spinors,
or couples of functions

(
φ1
φ2

)
of two variables t, r, and may be written as

D0 =
(
∂r −2M
∂t −∂r

)
. (2.36)

One checks immediately that D2
0 = −Δ0 ⊗ Id.
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From the explicit realization of the Schrödinger Lie algebra sch on spinors
(see [34]), one may easily guess a realization of sv that extends the action of sch,
and, more interestingly perhaps, acts on an affine space Daff of Dirac-Lévy-Le-
blond operators with potential, in the same spirit as in the previous section. More
precisely, one has the following theorem (we need to introduce some notations
first).

Definition 2.2. Let Dlin be the vector space of first order matrix operators on R
2

defined by

D ∈ Dlin ⇔ D = h(r, t)D0 +
(

0 0
V (r, t) 0

)
, h, V ∈ C∞(R2)

and Daff, Daff
≤2 be the affine subspaces of Dlin such that

D ∈ Daff ⇔ D = D0 +
(

0 0
V (r, t) 0

)
,

D ∈ Daff
≤2 ⇔ D = D0 +

(
0 0

g0(t)r2 + g1(t)r + g2(t) 0

)
.

We shall call Dirac potential a matrix of the form
(

0 0
V (r,t) 0

)
, with V ∈

C∞(R2).

Definition 2.3. Let dπσλ (λ ∈ C) be the infinitesimal representation of sv on the
space H̃σ

λ � (C∞(R2))2 with coordinates t, r, defined by

dπσλ(Lf ) = (−f(t)∂t − 1
2
f ′(t)r∂r − 1

4
Mf ′′(t)r2) ⊗ Id

− f ′(t) ⊗
(
λ− 1

4
λ+ 1

4

)
− 1

2
f ′′(t)r ⊗

(
0 0
1 0

)
; (2.37)

dπσλ(Yg) = (−g(t)∂r −Mf ′(t)r) ⊗ Id − f ′(t) ⊗
(

0 0
1 0

)
; (2.38)

dπσλ(Mh) = −Mf(t) ⊗ Id. (2.39)

Theorem 2.9.

1. Let dσ : sv → Hom(Dlin,Dlin) defined by the left-and-right infinitesimal ac-
tion

dσ(X) : D → dπσ1 (X) ◦D −D ◦ dπσ1
2
(X).

Then dσ maps Daff
≤2 into the vector space of Dirac potentials.

2. If one represents the Dirac potential V =
(

0 0
g0(t)r

2+g1(t)r+g2(t) 0

)
or, indiffer-

ently, the Dirac operator D0 + V , by the vector
( g0
g1
g2

)
, then the action of dσ

on Daff
≤2 is given by the same formula as in Proposition 2.6, except for the

affine terms (with coefficient proportional to M or M2) that should all be
divided by 2M.
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We shall skip the proof (in the same spirit as Theorem 2.4, Proposition 2.5
and Proposition 2.6) which presents no difficulty, partly for lack of space, partly
because the action on Dirac operators doesn’t give anything new by comparison
with the case of Schrödinger operators.

Note that, as in the previous section, one may define a ‘shifted’ action

dσλ(X) : D → dπσλ+1(X) ◦D −D ◦ dπσλ+ 1
2
(X) (2.40)

which will only modify the coefficients of the affine cocycles.
As a concluding remark of these two sections, let us emphasize two points:

– contrary to the case of the Hill operators, there is a free parameter λ in the
left-and-right actions on the affine space of Schrödinger or Dirac operators;
– looking at the differences of indices between the left action and the right action,
one may consider somehow that Schrödinger operators are of order one, while
Dirac operators are of order 1

2 ! (recall the difference of indices was 2 = 3
2 − (−1

2 )
in the case of the Hill operators, which was the signature of operators of order 2
– see [5]).

So Schrödinger operators are somehow reminiscent of the operators ∂ + u
of order one on the line, which intertwine Fλ with F1+λ for any value of λ. The
case of the Dirac operators, on the other hand, has no counterpart whatsoever for
differential operators on the line.

2.5. About multi-diagonal differential operators and some Virasoro-solvable Lie
algebras

This paragraph may be skipped in a first approach. We introduce new wave equa-
tions and related realizations of sv and similar Lie algebras that will also appear
as a particular case of the general construction of Section 3.

The original remark that prompted the introduction of multi-diagonal dif-
ferential operators in our context (see below for a definition) was the following.
Consider the space R3 with coordinates r, t, ζ as in Definition 1.3. We introduce
the two-dimensional Dirac operator

D̃0 =
(
∂r −2∂ζ
∂t −∂r

)
, (2.41)

acting on spinors
(
φ1
φ2

)
∈ (C∞(R3))2 – the reader will have noticed that D̃0 can

be obtained from the Dirac-Lévy-Leblond operator D0 of Section 2.3 by taking a
formal Laplace transform with respect to the mass. The kernel of D̃0 is given by
the equations of motion obtained from the Lagrangian density(

φ̄2(∂rφ1 − 2∂ζφ2) − φ̄1(∂tφ1 − ∂rφ2)
)
dt dr dζ.

Let dπ̃σ1
2

be the Laplace transform with respect to M of the infinitesimal rep-
resentation of sv given in Definition 2.3. Then dπ̃σ1

2
(sch) preserves the space of

solutions of the equation D̃0

(
φ1
φ2

)
= 0, φ1, φ2 ∈ C∞(R3). Now, by computing
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D̃0

(
dπ̃σ1

2
(X)

(
φ1
φ2

))
for X ∈ sv and

(
φ1
φ2

)
in the kernel of D̃0, it clearly appears

(do it!) that if one adds the constraint ∂ζφ1 = 0, then D̃0

(
dπ̃σ1

2
(X)

(
φ1
φ2

))
= 0 for

every X ∈ sv, and, what is more, the transformed spinor
(
ψ1
ψ2

)
= dπ̃ 1

2
(X)

(
φ1
φ2

)
also satisfies the same constraint ∂ζψ1 = 0. One may realize this constraint
by adding to the Lagrangian density the Lagrange multiplier term (h∂ζ φ̄1 −
h̄∂ζφ1) dt dr dζ. The new equations of motion read then ∇

(−h/2
φ2
−φ1

)
= 0, with

∇ =

⎛⎝ 2∂ζ ∂r ∂t
2∂ζ ∂r

2∂ζ

⎞⎠ . (2.42)

This is our main example of a multi-diagonal differential operator. Quite
generally, we shall call multi-diagonal a function- or operator-valued matrix M =
(Mi,j)0≤i,j≤d−1 such that Mi,j = Mi+k,j+k for every admissible triple of indices
i, j, k. SoM is defined for instance by the d independent coefficientsM0,0, . . . ,M0,j ,
. . . ,M0,d−1, with M0,j located on the j-shifted diagonal.

An obvious generalization in d dimensions leads to the following definition.

Definition 2.4. Let ∇d be the d×d matrix differential operator of order one, acting

on d-uples of functions H =

(
h0

...
hd−1

)
on Rd with coordinates t = (t0, . . . , td−1),

given by

∇d =

⎛⎜⎜⎜⎜⎜⎜⎝

∂td−1 ∂td−2 · · · ∂t1 ∂t0

0
. . . ∂t1

...
. . .

...
∂td−2

0 · · · 0 ∂td−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.43)

So ∇d is upper-triangular, with coefficients ∇d
i,j = ∂ti−j+d−1 , i ≤ j. The

kernel of ∇d is defined by a system of equations linking h0, . . . , hd−1. The set of
differential operators of order one of the form

X = X1 + Λ = (
d−1∑
i=0

fi(t)∂ti) ⊗ Id + Λ, Λ = (λi,j) ∈ Matd×d(C∞(Rd)) (2.44)

preserving the equation ∇dH = 0 forms a Lie algebra, much too large for our
purpose.

Suppose now (this is a very restrictive condition) that Λ = diag(λ0, . . . , λd−1)
is diagonal. Since ∇d is an operator with constant coefficients, [X1,∇d] has no term
of zero order, whereas [Λ,∇d]i,j = λi∂ti−j+d−1−∂ti−j+d−1λj (i ≤ j) does have terms
of zero order in general. One possibility to solve this constraint, motivated by the
preceding examples (see for instance the representation dπ̃λ of (1.5)), but also by
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the theory of scaling in statistical physics (see commentary following Definition
1.3.), is to impose λi = λi(t0), i = 0, . . . , d− 2, and λd−1 = 0. Since [X,∇d] is of
first order, preserving Ker∇d is equivalent to a relation of the type [X,∇d] = A∇d,
with A = A(X) ∈ Matd×d(C∞(Rd)). Then the matrix operator [X1,∇d] is upper-
triangular, and multi-diagonal, so this must also hold for A∇d−[Λ,∇d]. By looking
successively at the coefficients of ∂td−1−l

on the l-shifted diagonals, l = 0, . . . , d−1,
one sees easily that A must also be upper-triangular and multi-diagonal, and that
one must have λi(t0) − λi+1(t0) = λ(t0) for a certain function λ independent of i,

so Λ =

⎛⎝ (d−1)λ

. . .
λ

0

⎞⎠ . Also, denoting by a0 = A0,0, . . . , ad−1 = A0,d−1 the

coefficients of the first line of the matrix A, one obtains:

∂tifj = 0 (i > j); (2.45)

a0 = ∂t0f0 + (d− 1)λ = ∂t1f1 + (d− 2)λ = · · · = ∂td−1fd−1; (2.46)

ai = ∂t0fi = ∂t1fi+1 = · · · = ∂td−i−1fd−1 (i = 1, . . . , d− 1). (2.47)

In particular, f0 depends only on t0.
From all these considerations follows quite naturally the following definition.

We let Λ0 ∈ Matd×d(R) be the diagonal matrix Λ0 =

(
d−1

. . .
0

)
.

Lemma 2.10. Let mddε (ε ∈ R) be the set of differential operators of order one of
the type

X =

(
f0(t0)∂t0 +

d−1∑
i=1

fi(t)∂ti

)
⊗ Id − εf ′0(t0) ⊗ Λ0 (2.48)

preserving Ker∇d.
Then mdε forms a Lie algebra.

Proof. Let X be the Lie algebra of vector fields X of the form

X = X1 +X0 =

(
f0(t0)∂t0 +

d−1∑
i=1

fi(t)∂ti

)
⊗ Id + Λ,

Λ = diag(λi)i=0,...,d−1 ∈ Matd×d(C∞(Rd))

preserving Ker∇d. Then the set {Y =
∑d−1
i=0 fi(t)∂ti | ∃λ ∈ Matd×d(C∞(Rd)), Y +

Λ ∈ X} of the differential parts of order one of the elements of X forms a Lie
algebra, say X1. Define

X ε
1 := {

d−1∑
i=0

fi(t)∂ti − εf ′0(t) ⊗ Λ0 |
d−1∑
i=0

fi(t)∂ti ∈ X1}.

Let Y = (
∑
fi(t)∂ti)⊗ Id− εf ′0(t)⊗Λ0, Z = (

∑
gi(t)∂ti)⊗ Id− εg′0(t)⊗Λ0 be two

elements of X ε
1 : then

[Y, Z] = ((f0g′0 − f ′0g0)(t0)∂t0 + · · · ) ⊗ Id − ε(f0g′0 − f ′0g0)
′(t0) ⊗ Λ0
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belongs to X ε
1 , so X ε

1 forms a Lie algebra. Finally, mddε is the Lie subalgebra of X ε
1

consisting of all differential operators preserving Ker∇d. �

It is quite possible to give a family of generators and relations for mddε . The
surprising fact, though, is the following: for d ≥ 4, one finds by solving the equa-
tions that f ′′0 is necessarily zero if ε �= 0 (see proof of Theorem 3.11). So in any
case, the only Lie algebra that deserves to be considered for d ≥ 4 is mdd0.

The algebras mddε (d = 2, 3), mdd0 (d ≥ 4) are semi-direct products of a Lie
subalgebra isomorphic to Vect(S1), with generators

L
(0)
f0

= (−f0(t0)∂t0 + · · · ) ⊗ Id − εf ′0(t0) ⊗ Λ0

and commutators [L(0)
f0
, L

(0)
g0 ] = L

(0)
f ′
0g0−f0g′0 , with a nilpotent Lie algebra consisting

of all generators with coefficient of ∂t0 vanishing. When d = 2, 3, one retrieves
realizations of the familiar Lie algebras Vect(S1) � F1+ε and svε.

Theorem 2.11 (structure of mddε).

1. (case d = 2). Put t = t0, r = t1: then md2
ε = 〈L(0)

f , L
(1)
g 〉f,g∈C∞(S1) with

L
(0)
f = (−f(t)∂t − (1 + ε)f ′(t)r∂r) ⊗ Id + εf ′(t) ⊗

(
1

0

)
, (2.49)

L(1)
g = −g(t)∂r. (2.50)

It is isomorphic to Vect(S1) � F1+ε.

2. (case d = 3). Put t = t0, r = t1, ζ = t2: then md3
ε = 〈L(0)

f , L
(1)
g ,

L
(2)
h 〉f,g,h∈C∞(S1) with

L
(0)
f =

(
−f(t)∂t − (1 + ε)f ′(t)r∂r −

[
(1 + 2ε)f ′(t)ζ +

1 + ε

2
f ′′(t)r2

]
∂ζ

)

⊗ Id + εf ′(t) ⊗
⎛⎝ 2

1
0

⎞⎠ , (2.51)

L(1)
g = −g(t)∂r − g′(t)r∂ζ , (2.52)

L
(2)
h = −h(t)∂ζ . (2.53)

The Lie algebra obtained by taking the modes

Ln = L
(0)
tn+1 , Ym = L

(1)
tm+1+ε , Mp = L

(2)
tp+1+2ε (2.54)

is isomorphic to sv1+2ε (see Definition 1.7). In particular, the differential
parts give three independent copies of the representation dπ̃ of sv when ε
= −1

2 .
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3. (case ε = 0, d ≥ 2) Then mddε � Vect(S1) ⊗ R[η]/ηd is generated by the

L(k)
g = −g(t0)∂tk −

d−1−k∑
i=1

g(i)(t0)ti−1
1

⎛⎝ 1
i!
t1∂ti+k

+
1

(i− 1)!

d−i−k∑
j=2

tj∂ti+j+k−1

⎞⎠ ,

g ∈ C∞(S1) (2.55)

k = 0, . . . , d − 1, with commutators [L(i)
g , L

(j)
h ] = L

(i+j)
g′h−gh′ if i + j ≤ d − 1,

0 else.

Proof. Let X = −
(
f0(t0)∂t0 +

∑d−1
i=1 fi(t)∂ti

)
⊗Id+εf ′0(t)⊗Λ0: a set of necessary

and sufficient conditions for X to be in mddε has been given before Lemma 3.10,
namely

∂tifj = 0 if i > j,

(1 + ε(d− 1))f ′0(t0) = ∂t1f1(t0, t1) + ε(d− 2)f ′0(t0)

= · · · = ∂td−1fd−1(t0, . . . , td−1)

and
∂t0fi = ∂t1fi+1 = · · · = ∂td−i−1fd−1 (i = 1, . . . , d− 1).

Solving successively these equations yields

fi(t0, . . . , ti) = (1 + εi)f ′0(t0) . ti + f
[1]
i (t0, . . . , ti−1), i ≥ 1; (2.56)

f
[1]
i (t0, . . . , ti−1) = ∂t0f

[1]
1 (t0) . ti−1 + (1 + ε)f ′′0 (t0)

∫ ti−1

0

t1dti−1

+ f
[2]
i (t0, . . . , ti−2). (2.57)

At the next step, the relation ∂t0f2 = ∂t1f3 yields the equation

(1 + 2ε)f ′′0 (t0) . t2 + (f [1]
1 )′′(t0) . t1 + 2(1 + ε)f ′′′0 (t0) . t1 + (f [2]

2 )′(t0)

= (1 + ε)f ′′0 (t0) . t2 + ∂t1f
[2]
3 (t0, t1)

which has no solution as soon as ε �= 0 and f ′′0 �= 0. So, as we mentioned without
proof before the theorem, the most interesting case is ε = 0 when d ≥ 4.

The previous computations completely solve the cases d = 2 and d = 3. So
let us suppose that d ≥ 4 and ε = 0.

Then, by solving the next equations, one sees by induction that f0, . . . , fd−1

may be expressed in terms of d arbitrary functions of t0, namely, f0 = f
[0]
0 , f

[1]
1 , f

[2]
2 ,

. . . , f
[d−1]
d−1 , and that generators satisfying f

[i]
i = 0 for every i �= k, k fixed, are

necessarily of the form

f
[k]
k (t0)∂tk +

d−1−k∑
j=1

gk+j(t0, . . . , tj)∂tk+j

for functions gk+j that may be expressed in terms of f [k]
k and its derivatives.
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One may then easily check that L(k)

−f [k]
k

is of this form and satisfies the con-

ditions for being in mddε , so we have proved that the L
(k)
f , k = 0, . . . , d − 1,

f ∈ C∞(S1), generate mddε .
All there remains to be done is to check for commutators. Since L(i)

f is ho-

mogeneous of degree −i for the Euler-type operator
∑d−1
k=0 ktk∂tk , one necessarily

has [L(i)
f , L

(j)
g ] = L

(i+j)
C(f,g) for a certain function C (depending on f and g) of the

time-coordinate t0. One gets immediately [L(0)
f , L

(0)
g ] = L

(0)
f ′g−fg′ . Next (supposing

l > 0), since

L(0)
g = −

l−1∑
i=0

E0
i (g)∂ti − (g′(t0)tl + F 0

l (t0, . . . , tl−1))∂tl + · · ·

where E0
i (g), i = 0, . . . , l − 1 do not depend on tl, and

L
(l)
h = −h(t0)∂tl + · · · ,

one gets [L(0)
g , L

(l)
h ] = (gh′−g′h)(t0)∂tl +· · · , so [L(0)

g , L
(l)
h ] = L

(l)
g′h−gh′ . Considering

now k, l > 0, then one has

L(k)
g = −

l−1∑
i=0

Eki (g)∂ti+k
− (h′(t0)tl + F kl (t0, . . . , tl−1)∂tl+k

where Eki (g), i = 0, . . . , l − 1, do not depend on tl, and a similar formula for L(l)
h ,

which give together the right formula for [L(k)
g , L

(l)
h ]. �

Let us come back to the original motivation, that is, finding new representa-
tions of sv arising in a geometric context. Denote by dπ(3,0) the realization of sv
given in Theorem 2.11.

Definition 2.5. Let dπ∇ be the infinitesimal representation of sv on the space H̃∇ �
(C∞(R2))3 with coordinates t, r, defined by

dρ̃(Lf ) =
(
−f(t)∂t − 1

2
f ′(t)r∂r

)
⊗ Id + f ′(t) ⊗

⎛⎝ −1
−1

2
0

⎞⎠ (2.58)

+
1
2
f ′′(t)r ⊗

⎛⎝ 0 1 0
0 1

0

⎞⎠+
1
4
f ′′′(t)r2 ⊗

⎛⎝ 0 0 1
0 0

0

⎞⎠ ; (2.59)

dρ̃(Yf ) = −f(t)∂r ⊗ Id + f ′(t)⊗
⎛⎝ 0 1 0

0 1
0

⎞⎠+ f ′′(t)r⊗
⎛⎝ 0 0 1

0 0
0

⎞⎠ ; (2.60)

dρ̃(Mf ) = f ′(t) ⊗
⎛⎝ 0 0 1

0 0
0

⎞⎠ . (2.61)
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Proposition 2.12. For every X ∈ sv, dπ∇(X) ◦ ∇ −∇ ◦ dπ(3,0)(X) = 0.

Proof. Let X ∈ sv; put dπ(3,0)(X) = −(f0(t)∂t + f1(t, r)∂r + f2(t, r, ζ)∂ζ) ⊗ Id −
f ′0(t) ⊗

(
1

1
2

0

)
.

The computations preceding Lemma 3.10 prove that [dπ(3,0)(X),∇d] =
A(X)∇d, A(X) being the upper-triangular, multi-diagonal matrix defined by

A(X)0,0 = ∂ζf2, A(X)0,1 = ∂rf2, A(X)0,2 = ∂tf2.

Hence one has

A(Lf ) =
r

2
f ′′(t)

⎛⎝ 0 1 0
0 1

0

⎞⎠+
r2

4
f ′′′(t)

⎛⎝ 0 0 1
0 0

0

⎞⎠ ,

A(Yg) = g′(t)

⎛⎝ 0 1 0
0 1

0

⎞⎠+ rg′′(t)

⎛⎝ 0 0 1
0 0

0

⎞⎠ ,

and

A(Mh) = f ′(t) ⊗
⎛⎝ 0 0 1

0 0
0

⎞⎠ .

Hence the result. �

Remark. Consider the affine space

Haff
∇ = {∇ +

⎛⎝ g0 g1 g2
g0 g1

g0

⎞⎠ | g0, g1, g2 ∈ C∞(S1 × R
2)}.

Then one may define an infinitesimal left-and-right action dσ of sv on Haff
∇ by

putting

dσ(X)(∇ + V ) = dπ∇(X) ◦ (∇ + V ) − (∇ + V ) ◦ dπ(3,0)(X),

but the action is simply linear this time, since dπ∇ ◦ ∇ = ∇ ◦ dπ(3,0)(X). So this
action is not very interesting and doesn’t give anything new.

3. Cartan’s prolongation and generalized modules of tensor
densities.

3.1. The Lie algebra sv as a Cartan prolongation

As in the case of vector fields on the circle, it is natural, starting from the rep-
resentation dπ̃ of sv given by Definition 1.3, to consider the subalgebra fsv ⊂ sv
made up of the vector fields with polynomial coefficients. Recall from Definition
1.4 that the outer derivation δ2 of sv is defined by

δ2(Ln) = n, δ2(Ym) = m− 1
2
, δ2(Mn) = n− 1 (n ∈ Z,m ∈ 1

2
+ Z). (3.1)
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and that δ2 is simply obtained from the Lie action of the Euler operator t∂t +
r∂r+ζ∂ζ in the representation dπ̃. The Lie subalgebra fsv is given more abstractly,
using δ2, as

fsv = ⊕+∞
k=−1svk (3.2)

where svk = {X ∈ sv | δ2(X) = kX} = 〈Lk, Yk+ 1
2
,Mk+1〉 is the eigenspace of δ2

corresponding to the eigenvalue k ∈ Z.
Note in particular that sv−1 = 〈L−1, Y− 1

2
,M0〉 is commutative, generated by

the infinitesimal translations ∂t, ∂r, ∂ζ in the vector field representation, and that
sv0 = 〈L0, Y 1

2
,M1〉 = 〈L0〉 � 〈Y 1

2
,M1〉 is solvable.

Theorem 3.1. The Lie algebra fsv is isomorphic to the Cartan prolongation of
sv−1 ⊕ sv0 where sv−1 � 〈L−1, Y− 1

2
,M0〉 and sv0 � 〈L0, Y 1

2
,M1〉.

Proof. Let svn (n = 1, 2, . . .) the n-th level vector space obtained from Cartan’s
construction, so that the Cartan prolongation of sv−1 ⊕ sv0 is equal to the Lie
algebra sv−1 ⊕ sv0 ⊕ ⊕n≥1svn. It will be enough, to establish the required iso-
morphism, to prove the following. Consider the representation dπ̃ of sv. Then the
space hn defined through induction on n by

h−1 = π(sv−1) = 〈∂t, ∂r, ∂ζ〉 (3.3)

h0 = π(sv0) = 〈t∂t +
1
2
r∂r, t∂r + r∂ζ , t∂ζ〉 (3.4)

hk+1 = {X ∈ Xk+1 | [X, h−1] ⊂ hk}, (k ≥ 0) (3.5)

(where Xk is the space of vector fields with polynomial coefficients of degree k) is
equal to π(svn) for any n ≥ 1.

So assume that X = f(t, r, ζ)∂t + g(t, r, ζ)∂r + h(t, r, ζ)∂ζ satisfies

[X, h−1] ⊂ π(svn) =

〈tn+1∂t +
1
2
(n+ 1)tnr∂r +

1
4
(n+ 1)ntn−1r2∂ζ , t

n+1∂r + (n+ 1)tnr∂ζ , tn+1∂ζ〉.
(3.6)

In the following lines, C1, C2, C3 are undetermined constants. Then (by com-
paring the coefficients of ∂t)

f(t, r, ζ) = C1t
n+2.

By inspection of the coefficients of ∂r, one gets then

∂tg(t, r, ζ) =
C1

2
(n+ 1)(n+ 2)tnr + C2(n+ 2)tn+1

so
g(t, r, ζ) =

C1

2
(n+ 2)tn+1r + C2t

n+2 +G(r, ζ)

with an unknown polynomial G(r, ζ). But

[X,Y− 1
2
] =

(
C1

2
(n+ 2)tn+1 + ∂rG(r, ζ)

)
∂r mod ∂ζ

so ∂rG(r, ζ) = 0.
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Finally, by comparing the coefficients of ∂ζ , one gets

[X,L−1] = (n+ 2)C1[tn+1∂t +
1
2
(n+ 1)tnr∂r] + C2(n+ 2)tn+1∂r + ∂th ∂ζ

so

∂th(t, r, ζ) =
C1

4
(n+ 2)(n+ 1)ntn−1r2 + C2(n+ 2)(n+ 1)tnr + C3(n+ 2)tn+1

whence

h(t, r, ζ) =
C1

4
(n+ 2)(n+ 1)tnr2 + C2(n+ 2)tn+1r + C3t

n+2 +H(r, ζ)

where H(r, ζ) is an unknown polynomial. Also

[X,Y− 1
2
] =

C1

2
(n+2)tn+1∂r+

C1

2
(n+2)(n+1)tnr∂ζ+C2(n+2)tn+1∂ζ+∂rH(r, ζ)∂ζ ,

so H = H(ζ) does not depend on r; finally

[X,M0] =
dG(ζ)
dζ

∂r +
dH(ζ)
dζ

∂ζ

so G = H = 0. �

Remark. By modifying slightly the definition of sv0, one gets related Lie algebras.
For instance, substituting Lε0 := −t∂t − (1 + ε)r∂r − (1 + 2ε)ζ∂ζ for L0 leads to
the ‘polynomial part’ of sv1+2ε (see Theorem 3.11 for an explicit realization of
sv1+2ε).

3.2. Coinduced representations of sv

In order to classify ‘reasonable’ representations of the Virasoro algebra, V.G.
Kac made the following conjecture: the Harish-Chandra representations, those for
which �0 acts semi-simply with finite-dimensional eigenspaces, are either higher-
(or lower-) weight modules, or tensor density modules. As proved in [22] and [23],
one has essentially two types of Harish-Chandra representations of the Virasoro
algebra:
– Verma modules which are induced to vir from a character of vir+ = 〈L0, L1, . . .〉,
zero on the subalgebra vir≥1 = 〈L1, . . .〉, and quotients of degenerate Verma mod-
ules (see Section 6 for a generalization in our case);
– tensor modules of formal densities which are coinduced to the subalgebra of
formal or polynomial vector fields Vect(S1)≥−1 = 〈L−1, L0, . . .〉 from a character
of Vect(S1)≥0 that is zero on the subalgebra Vect(S1)≥1. These modules extend
naturally to representations of Vect(S1).

We shall generalize in this paragraph this second type of representations to
the case of sv. Note that although we have two natural graduations on sv, the one
given by the structure of Cartan prolongation is most adapted here since sv−1 is
commutative (see [1]).

Let dρ be a representation of sv0 = 〈L0, Y 1
2
,M1〉 into a vector space Hρ.

Then dρ can be trivially extended to sv+ = ⊕i≥0svi by setting dρ(
∑
i>0 svi) = 0.
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Let fsv = ⊕i≥−1svi ⊂ sv be the subalgebra of ‘formal’ vector fields: in the repre-
sentation dπ, the image of fsv is the subset of vector fields that are polynomial in
the time coordinate.

Let us now define the representation of fsv coinduced from dρ.

Definition 3.1. The ρ-formal density module (H̃ρ, dρ̃) is the coinduced module

H̃ρ = HomU(sv+)(U(fsv),Hρ) (3.7)
= {φ : U(fsv) → Hρ linear | φ(U0V ) = dρ(U0).φ(V ),
U0 ∈ Usv+ , V ∈ U(fsv)} (3.8)

with the natural action of U(fsv) on the right

(dρ̃(U).φ)(V ) = φ(V U), U, V ∈ U(fsv). (3.9)

By Poincaré-Birkhoff-Witt’s theorem, this space can be identified with

Hom(U(sv+) \ U(fsv),Hρ) � Hom(Sym(sv−1),Hρ)

(linear applications from the symmetric algebra on sv−1 into Hρ), and this last
space is in turn isomorphic with the space Hρ ⊗ R[[t, r, ζ]] of Hρ-valued functions
of t, r, ζ, through the application

Hρ ⊗ R[[t, r, ζ]] −→ Hom(Sym(sv−1),Hρ) (3.10)
F (t, r, ζ) −→ φF : (U → ∂UF |t=0,r=0,ζ=0) (3.11)

where ∂U stands for the product derivative ∂Lj
−1Y

k

− 1
2
M l

0
= (−∂t)j(−∂r)k(−∂ζ)l

(note our choice of signs!).
We shall really be interested in the action of fsv on functions F (t, r, ζ) that

we shall denote by dσρ, or dσ for short.
The above morphisms allow one to compute the action of fsv on monomials

through the equality(
∂jt
j!

∂kr
k!

∂lζ
l!

)
|t=0,r=0,ζ=0(dσ(X).F ) =

(−1)j+k+l

j!k!l!
(dρ̃(X).φF )(Lj−1Y

k
− 1

2
M l

0)

(3.12)

=
(−1)j+k+l

j!k!l!
φF (Lj−1Y

k
− 1

2
M l

0X), X ∈ fsv.

(3.13)

In particular,

∂jt ∂
k
r ∂

l
ζ |t=0,r=0,ζ=0(dσ(L−1).F ) = −∂j+1

t ∂kr ∂
l
ζ |t=0,r=0,ζ=0F

so dσ(L−1).F = −∂tF ; similarly, dσ(Y− 1
2
).F = −∂rF and dσ(M0).F = −∂ζF .

So one may assume that X ∈ sv+: by Poincaré-Birkhoff-Witt’s theorem,
Lj−1Y

k
− 1

2
M l

0X can be rewritten as U + V with

U ∈ sv>0U(fsv)
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and
V = V1V2, V1 ∈ U(sv0), V2 ∈ U(sv−1).

Then φF (U) = 0 by definition of H̃ρ, and φF (V ) may easily be computed as
φF (V ) = dρ(V1) ⊗ ∂V2 |t=0,r=0,ζ=0F .

Theorem 3.2. Let f ∈ R[t], the coinduced representation dρ̃ is given by the action
of the following matrix differential operators on functions:

dρ̃(Lf ) =
(
−f(t)∂t − 1

2
f ′(t)r∂r − 1

4
f ′′(t)r2∂ζ

)
⊗ IdHρ

+ f ′(t)dρ(L0)

+
1
2
f ′′(t)rdρ(Y 1

2
) +

1
4
f ′′′(t)r2dρ(M1); (3.14)

dρ̃(Yf ) = (−f(t)∂r − f ′(t)r∂ζ) ⊗ IdHρ
+ f ′(t)dρ(Y 1

2
) + f ′′(t)r dρ(M1); (3.15)

dρ̃(Mf ) = −f(t)∂ζ ⊗ IdHρ
+ f ′(t) dρ(M1). (3.16)

Proof. One easily checks that these formulas define a representation of fsv. Since
(L−1, Y− 1

2
,M0, L0, L1, L2) generated fsv as a Lie algebra, it is sufficient to check

the above formulas for L0, L1, L2 (they are obviously correct for L−1, Y− 1
2
,M0).

Note first that M0 is central in fsv, so

∂lζ(dσ(X).F ) = dσ(X).(∂lζF ).

Hence it will be enough to compute the action on monomials of the form tjrl ⊗ v,
v ∈ Hρ.

We shall give a detailed proof since the computations in U(fsv) are rather
involved.

Let us first compute dσ(L0): one has

(−∂t)j(−∂r)k|t=0,r=0(dσ(L0).F )

= φF (Lj−1Y
k
− 1

2
L0)

= φF (Lj−1L0Y
k
− 1

2
− k

2
Lj−1Y

k
− 1

2
)

= φF (L0L
j
−1Y

k
− 1

2
− (j +

k

2
)Lj−1Y

k
− 1

2
)

=
[
dρ(L0)(−∂t)j(−∂r)k − (j +

k

2
)(−∂t)j(−∂r)k

]
F (0)

so

dσ(L0) = −t∂t − 1
2
r∂r + dρ(L0).

Next,

φ(Lj−1Y
k
− 1

2
L1) = φ(Lj−1L1Y

k
− 1

2
− kLj−1Y 1

2
Y k−1
− 1

2
+
k(k − 1)

2
Lj−1Y

k−2
− 1

2
M0) =
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= φ((−2jL0L
j−1
−1 + j(j − 1)Lj−1

−1 )Y k− 1
2
) − kφ(Y 1

2
Lj−1Y

k−1
− 1

2
)

+ jkφ(Lj−1
−1 Y

k
− 1

2
) +

k(k − 1)
2

φ(Lj−1Y
k−2
− 1

2
M0)

=
[
(−2j)(−∂r)k(−∂t)j−1dρ(L0) + j(j − 1)(−∂r)k(−∂t)j−1

− k(−∂t)j(−∂r)k−1dρ(Y 1
2
)

+ jk(−∂t)j−1(−∂r)k − k(k − 1)
2

∂ζ(−∂t)j(−∂r)k−2
]
F (0)

hence the result for dσ(L1).
Finally,

φ(Lj−1Y
k
− 1

2
L2)

= φ(Lj−1L2Y
k
− 1

2
− 3

2
kLj−1Y 3

2
Y k−1
− 1

2
+ 3

k(k − 1)
2

Lj−1M1Y
k−2
− 1

2
)

= φ((−3jL1L
j−1
−1 + 3j(j − 1)L0L

j−2
−1 − j(j − 1)(j − 2)Lj−3

−1 )Y k− 1
2
)

− 3
2
kφ(−2jY 1

2
Lj−1
−1 Y

k−1
− 1

2
+ j(j − 1)Lj−2

−1 Y
k
− 1

2
)

+
3
2
k(k − 1)φ(M1L

j
−1Y

k−2
− 1

2
− jM0L

j−1
−1 Y

k−2
− 1

2
)

=
[(

3j(j − 1)dρ(L0)(−∂t)j−2 − j(j − 1)(j − 2)(−∂t)j−2
)
(−∂r)k

− 3
2
k
(− 2jdρ(Y 1

2
)(−∂t)j−1(−∂r)k−1 + j(j − 1)(−∂t)j−2(−∂r)k

)
+

3
2
k(k − 1)

(
dρ(M1)(−∂t)j(−∂r)k−2 + j∂ζ(−∂t)j−1(−∂r)k−2

)]
F (0).

Hence

dσ(L2) = −t3∂t − 3
2
t2r∂r − 3

2
tr2∂ζ + 3t2dρ(L0) +

3
2
t2r dρ(Y 1

2
) +

3
2
r2 dρ(M1).

�

Let us see how all actions defined in Section 2 (except for the coadjoint
action!) derive from this construction.

Example 1. Take Hρλ
= R, dρλ(L0) = −λ, dρλ(Y 1

2
) = dρλ(M1) = 0 (λ ∈ R).

Then dρ̃λ = dπ̃λ (see Definition 1.3 for a definition of dπ̃λ).

Example 2. The linear part of the infinitesimal action on the affine space of Schrö-
dinger operators (see Proposition 2.4) is given by the restriction of dρ̃−1 to func-
tions of the type g0(t)r2 + g1(t)r + g2(t).

Example 3. Take Hρλ
= R

2, dρλ(L0) =
(

1/4
−1/4

)
−λId, dρλ(Y 1

2
) = − ( 0 0

1 0 ) ,

dρλ(M1) = 0. Then the infinitesimal representation dπσλ of Definition 2.3 (associ-
ated with the action on Dirac operators) is equal to dρ̃λ (up to a Laplace transform
in the mass).
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Example 4. (action on multi-diagonal matrix differential operators) Take Hρ = R3,

dρ(L0) =
(−1

− 1
2

0

)
, dρ(Y 1

2
) = dρ(M1) = 0 on the one hand;

Hσ = R
3, dρ(L0) =

⎛⎝ −1
−1

2
0

⎞⎠ , dρ(Y 1
2
) =

⎛⎝ 0 1 0
0 1

0

⎞⎠
and dρ(M1) =

(
0 0 1

0 0
0

)
on the other. Then dπ(3,0) = dρ̃ and dπ∇ = dσ̃ (see

Proposition 3.11 in Section 2.4).
The fact that the coadjoint action cannot be obtained by this construction

follows easily by comparing the formula for the action of the Y and M generators
of Theorem 2.2 and Theorem 3.2: the second derivative f ′′ does not appear in
ad∗(Yf ), while it does in dρ̃(Yf ) for any representation ρ such that dρ(M1) �= 0; if
dρ(M1) = 0, then, on the contrary, there’s no way to account for the first derivative
f ′ in ad∗(Mf ).

Remark. The problem of classifying all coinduced representations is hence reduced
to the problem of classifying the representations dρ of the Lie algebra 〈L0, Y 1

2
,M1〉.

This is a priori an untractable problem (due to the non-semi-simplicity of this
Lie algebra), even if one is satisfied with finite-dimensional representations. An
interesting class of examples (to which Examples 1 through 4 belong) is provided
by extending a (finite-dimensional, say) representation dρ of the (ax+ b)-type Lie
algebra 〈L0, Y 1

2
〉 to 〈L0, Y 1

2
,M1〉 by putting dρ(M1) = Cdρ(Y 1

2
)2, where C is a

constant. In particular, one may consider the spin s-representation dσ of sl(2,R),
restrict it to the Borel subalgebra considered as 〈L0, Y 1

2
〉, ‘twist’ it by putting

dσλ := dσ + λId and extend it to 〈L0, Y 1
2
,M1〉 as we just explained.

4. Cohomology of sv and tsv and applications to central extensions
and deformations

Cohomological computations for Lie algebras are mainly motivated by the search
for deformations and central extensions. We concentrate on tsv in the first three
paragraphs of this section, because the generators of tsv bear integer indices, which
is more natural for computations. The main theorem is Theorem 4.1 in Para-
graph 4.1, which classifies all deformations of tsv; Theorem 4.5 shows that all the
infinitesimal deformations obtained in Paragraph 4.1 give rise to genuine defor-
mations. One particularly interesting family of deformations is provided by the
Lie algebras tsvλ (λ ∈ R), which were introduced in Definition 1.5. We compute
their central extensions in Paragraph 4.2, and compute in Paragraph 4.3 their de-
formations in the particular case λ = 1, for which tsv1 is the tensor product of
Vect(S1) with a nilpotent associative and commutative algebra. Finally, in Para-
graph 4.4, we come back to the original Schrödinger-Virasoro algebra and compute
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its deformations, as well as the central extensions of the family of deformed Lie
algebras svλ.

4.1. Classifying deformations of tsv

We shall be interested in the classification of all formal deformations of tsv, fol-
lowing the now classical scheme of Nijenhuis and Richardson: deformation of a Lie
algebra G means that one has a formal family of Lie brackets on G, denoted [ , ]t,
inducing a Lie algebra structure on the extended Lie algebra G

⊗
k

k[[t]] = G[[t]].

As well known, one has to study the cohomology of G with coefficients in the
adjoint representation; degree-two cohomology H2(G,G) classifies the infinitesi-
mal deformations (the terms of order one in the expected formal deformations)
and H3(G,G) contains the potential obstructions to a further prolongation of the
deformations. So we shall naturally begin with the computation of H2(tsv, tsv)
(as usual, we shall consider only local cochains, equivalently given by differential
operators, or polynomial in the modes):

Theorem 4.1. One has dimH2(tsv, tsv) = 3. A set of generators is provided by
the cohomology classes of the cocycles c1, c2 and c3, defined as follows in terms of
modes (the missing components of the cocycles are meant to vanish):
c1(Ln, Ym) = −n

2Yn+m, c1(Ln,Mn) = −nMn+m

c2(Ln, Ym) = Yn+m c2(Ln,Mm) = 2Mn+m

c3(Ln, Lm) = (m− n)Mn+m.

Remarks.
1. The cocycle c1 gives rise to the family of Lie algebras tsvε described in

Definition 1.5.
2. The cocycle c3 can be described globally as c3 : Vect(S1)×Vect(S1) −→ F0

given by

c3(f∂, g∂) =
∣∣∣∣ f g
f ′ g′

∣∣∣∣ .
This cocycle appeared in [10] and has been used in a different context in [12].

Before entering the technicalities of the proof, we shall indicate precisely, for
the comfort of the reader, some cohomological results on G = Vect(S1) which will
be extensively used in the sequel.

Proposition 4.2. (see [10], or [12], Chap. IV for a more elementary approach)

(1) InvG(Fλ ⊗Fμ) = 0 unless μ = −1 − λ and Fμ = F∗
λ; then InvG(Fλ ⊗F∗

λ) is
one-dimensional, generated by the identity mapping.

(2) Hi(G,Fλ ⊗Fμ) ≡ 0 if λ �= 1 − μ and λ or μ are not integers.
(1) and (2) can be immediately deduced from [10], Theorem 2.3.5 pp. 136–
137.

(3) Let W1 be the Lie algebra of formal vector fields on the line, its cohomology
represents the algebraic part of the cohomology of G = Vect(S1) (see again
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[10], Theorem 2.4.12). Then H1(W1,Hom(Fλ,Fλ)) is one-dimensional, gen-
erated by the cocycle (f∂, adx−λ) −→ f ′adx−λ (cocycle Iλ in [10], p. 138).

(4) Invariant antisymmetric bilinear operators Fλ×Fμ −→ Fν between densities
have been determined by P. Grozman (see [11], p. 280).
They are of the following type:
(a) the Poisson bracket for ν = λ+ μ− 1, defined by

{fdx−λ, gdx−μ} = (λfg′ − μf ′g)dx−(λ+μ−1)

(b) the following three exceptional brackets:
F1/2 ×F1/2 → F−1 given by (f∂1/2, g∂1/2) → 1

2 (fg′′ − gf ′′)dx;
F0 ×F0 → F−3 given by (f, g) → (f ′′g′ − g′′f ′)dx3;
and an operator F2/3 × F2/3 → F− 5

3
called the Grozman bracket (see

[11], p. 274).

Proof of Theorem 4.1. We shall use standard techniques in Lie algebra cohomol-
ogy; the proof will be rather technical, but without specific difficulties. Let us fix
the notations: set tsv = G � h where G = Vect(S1) and h is the nilpotent part
of tsv.
One can consider the exact sequence

0 −→ h −→ G � h −→ G −→ 0 (4.1)

as a short exact sequence of G � h modules, thus inducing a long exact sequence
in cohomology:

· · · −→ H1(tsv,G) −→ H2(tsv, h) −→ H2(tsv, tsv)

−→ H2(tsv,G) −→ H3(tsv, h) −→ · · · (4.2)

So we shall consider H∗(tsv,G) and H∗(tsv, h) separately.

Lemma 4.3. H∗(tsv,G) = 0 for ∗ = 0, 1, 2.

Proof of Lemma 4.3. One uses the Hochschild-Serre spectral sequence associat-
ed with the exact sequence (4.1). Let us remark first that H∗(G, H∗(h,G)) =
H∗(G, H∗(h) ⊗ G) since h acts trivially on G. So one has to understand H∗(h) in
low dimensions; let us consider the exact sequence 0 −→ n −→ h −→ y −→ 0,
where n = [h, h]. As G-modules, these algebras are density modules, more precisely
n = F0 and y = F1/2. So H1(h) = y∗ = F−3/2 as a G-module. Let us recall that,
as a module on itself, G = F1. One gets: Ep,02 = Hp(G,G) = 0 as well known
(see [10]),

E1,1
2 = H1(G, H1(h) ⊗ G) = H1(G,F−3/2 ⊗F1).

The determination of cohomologies of Vect(S1) with coefficients in tensor products
of modules of densities has been done by Fuks (see [10], Chap. 2, Thm. 2.3.5, or
Proposition 4.2 (2) above), in this case everything vanishes and E1,1

2 = 0.
One has now to compute H2(h) in order to get E0,2

2 = InvG(H2(h)⊗G). We
shall use the decomposition of cochains on h induced by its splitting into vector
subspaces: h = n⊕ y. So C1(h) = n∗ ⊕ y∗ and C2(h) = Λ2n∗ ⊕Λ2y∗ ⊕ y∗ ∧ n∗. The
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coboundary ∂ is induced by the only non-vanishing part ∂ : n∗ −→ Λ2y∗ which
is dual to the bracket Λ2y −→ n. So the cohomological complex splits into three
subcomplexes and one deduces the following exact sequences:

0 −→ n∗ ∂−→ Λ2y∗ −→M1 −→ 0

0 −→M2 −→ Λ2n∗ ∂−→ Λ2y∗ ⊗ n∗

0 −→M3 −→ y∗ ∧ n∗ ∂−→ Λ3y∗

and H2(h) = M1⊕M2⊕M3. One can then easily deduce the invariants InvG(H2(h)

⊗G) =
3⊕
i=1

InvG(Mi ⊗G) from the cohomological exact sequences associated with

the above short exact sequences. One has:

0 −→ InvG(M2 ⊗ G) −→ InvG(Λ2n∗ ⊗ G) = 0

and
0 −→ InvG(M3 ⊗ G) −→ InvG(y∗ ∧ n∗ ⊗ G) = 0

from Proposition 4.2;

· · · −→ InvG(Λ2y∗ ⊗ G) −→ InvG(M1 ⊗ G) −→

H1(G, n∗ ⊗ G)
∂∗−→ H1(G,Λ2y∗ ⊗ G) −→ · · ·

From the same proposition, one gets InvG(Λ2y∗⊗G) = 0 and we shall see later
(see the last part of the proof) that ∂∗ is an isomorphism. So InvG(H2(h)⊗G) = 0
and E0,2

2 = 0. The same argument shows that E0,1
2 = 0, which ends the proof of

the lemma. �

From the long exact sequence (4.2) one has now: H∗(tsv, tsv) = H∗(tsv, h)
for ∗ = 0, 1, 2. We shall compute H∗(tsv, h) by using the Hochschild-Serre spectral
sequence once more; there are three terms to compute.

1. First E2,0
2 = H2(G, H0(h, h)), but H0(h, h) = Z(h) = n = F0 as G-module.

So E2,0
2 = H2(G,F0) which is one-dimensional, given by c3(f∂, g∂) =

∣∣∣ f g
f ′ g′

∣∣∣, or
in terms of modes c3(Ln, Lm) = (m − n)Mn+m. Hence we have found one of the
classes announced in the theorem.

2. One must now compute E1,1
2 = H1(G, H1(h, h)). The following lemma will be

useful for this purpose, and also for the last part of the proof.

Lemma 4.4 (identification of H1(h, h) as a G-module). The space H1(h, h) splits
into the direct sum of two G-modules H1(h, h) = H1 ⊕H2 such that

1. InvG H2 = 0, H1(G,H2) = 0;
2. InvG H1 is one-dimensional, generated by the ‘constant multiplication’ cocycle
l defined by

l(Yn) = Yn, l(Mn) = 2Mn. (4.3)
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3. H1(G,H1) is two-dimensional, generated by two cocycles c1, c2 defined by

c1(f∂, g∂1/2) = f ′g∂1/2, c1(f∂, g) = 2f ′g

and
c2(f∂, g∂1/2) = fg∂1/2, c2(f∂, g) = 2fg.

4. H2(G,H1) is one-dimensional, generated by the cocycle c12 defined by

c12(f∂, g∂, h∂1/2) =
∣∣∣∣ f g
f ′ g′

∣∣∣∣h∂1/2, c12(f∂, g∂, h) = 2
∣∣∣∣ f g
f ′ g′

∣∣∣∣h.
Proof of Lemma 4.4. We shall split the cochains according to the decomposition
h = y ⊕ n. Set C1(h, h) = C1 ⊕ C2, where:

C1 = (n∗ ⊗ n) ⊕ (y∗ ⊗ y) C2 = (n∗ ⊗ y) ⊕ (y∗ ⊗ n).

So one readily obtains the splitting H1(h, h) = H1 ⊕H2 where

0 −→ H1 −→ (n∗ ⊗ n) ⊕ (y∗ ⊗ y)
∂−→ Λ2y∗ ⊗ n

0 −→ y
∂−→ y∗ ⊗ n −→ H2 −→ 0

∂ being the coboundary on the space of cochains on h with coefficients into itself.

Its non vanishing pieces in degrees 0, 1 and 2 are the following ones: y
∂−→ y∗ ⊗ n,

n∗ ⊗ n
∂−→ Λ2y∗ ⊗ n, y∗ ⊗ y

∂−→ Λ2y∗ ⊗ n. We can now describe the second exact
sequence in terms of densities as follows:

0 −→ F1/2 −→ F−3/2 ⊗F0 −→ H2 −→ 0. (4.4)

From Proposition 4.2, one has InvG(F−3/2 ⊗ F0) = 0 as well as Hi(G,F1/2)
= 0, for i = 0, 1, 2, and H1(G,F−3/2 ⊗ F0) = 0. So the long exact sequence in
cohomology associated with (4.3) gives InvG(H2) = 0 and H1(G,H2) = 0.

For H1, one has to analyse the cocycles by direct computation. So let l ∈ C1

given by l(Yn) = an(k)Yn+k, l(Mn) = bn(k)Mn+k. The cocycle conditions are
given by:

∂l(Yn, Ym) = l((m− n)Mn+m) − Yn · l(Ym) + Ym · l(Yn) = 0

for all (n,m) ∈ Z2. So identifying the term in Mn+m+k, one obtains:

(m− n)bn+m(k) = (m− n+ k)am(k) − (n−m+ k)an(k)

so bn+m(k) = am(k) + an(k) + k
m−n (am(k) − an(k)) = f(n,m, k).

One can now determine the an(k), remarking that the function f(n,m, k) depends
only on k and (n+m). One then obtains that an(k) must be affine in n so:

an(k) = nλ(k) + μ(k)

bn(k) = nλ(k) + kλ(k) + 2μ(k).

So, as a vector space H1 is isomorphic to
⊕
k

C(λ(k))
⊕
k

C(μ(k)), two copies of

an infinite direct sum of a numerable family of one-dimensional vector spaces.
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Now we have to compute the action of G on H1; let Lp ∈ G, one has

(Lp · l)(Yn) = ((n− p

2
)an+p(k) − (n+ k − p

2
)an(k))Yn+p+k

=
(
n(p− k)λ(k) − (

p2

2
λ(k) + kμ(k))

)
Yn+p+k.

So if one sets (Lp · l)(Yn) = (n(Lp · λ)(k + p) + (Lp · μ)(k + p))Yn+p+k

one obtains:

(Lp · λ)(k + p) = (p− k)λ(k)

(Lp · μ)(k + p) = −p
2

2
λ(k) + kμ(k).

Finally, H1 appears as an extension of modules of densities of the following type:
0 −→ F0 −→ H1 −→ F1 −→ 0, in which F0 corresponds to

⊕
k

C(μ(k)) and F1

to
⊕
k

C(λ(k)).

There is a non-trivial extension cocycle γ in Ext1G(F1,F0) = H1(G,Hom(F1,
F0)), given by γ(f∂)(g∂) = f ′′g; this cocycle corresponds to the term in p2 in the
above formula. In any case one has a long exact sequence in cohomology

· · · −→ Hi(G,F0) −→ Hi(G,H1) −→ Hi(G,F1) −→ Hi+1(G,F0) −→ · · ·
As well known,H∗(G,F1) = H∗(G,G) is trivial, and finallyHi(G,F0) is isomorphic
to Hi(G,H1). In particular H0(G,H1) = H0(G,F0) is one-dimensional, given by
the constants; a scalar μ induces an invariant cocycle as l(Yn) = μYn, l(Mn) =
2μMn.

Moreover, H1(G,F0) has dimension 2: it is generated by the cocycles c1
and c2, defined by c1(f∂) = f ′ and c2(f∂) = f respectively. So one obtains two
generators of H1(G,H1) given by

c1(f∂, g∂1/2) = f ′g∂1/2, c1(f∂, g) = 2f ′g

and
c2(f∂, g∂1/2) = fg∂1/2, c2(f∂, g) = 2fg

respectively.
Finally H2(G,F0) is one-dimensional, with the cup-product c12 of c1 and c2

as generator (see [10], p. 177), so c12(f∂, g∂) =
∣∣∣∣ f g
f ′ g′

∣∣∣∣, and one deduces the

formula for the corresponding cocycle c12 in H2(G,H1):

c12(f∂, g∂, h∂1/2) =
∣∣∣∣ f g
f ′ g′

∣∣∣∣h∂1/2, c12(f∂, g∂, h) = 2
∣∣∣∣ f g
f ′ g′

∣∣∣∣h
This finishes the proof of Lemma 4.4. �
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So, from Lemma 4.4, we have computed E1,1
2 = H1(G, H1(h, h)); it is two-

dimensional, generated by c1 and c2, while earlier we had H2(G, H0(h, h)) = E2,0
2 ,

a one-dimensional vector space generated by c3. We have to check now that these
cohomology classes shall not disappear in the spectral sequence; the only poten-
tially non-vanishing differentials are E0,1

2 −→ E2,0
2 and E1,1

2 −→ E3,0
2 . One has

E3,0
2 = H3(G, h) = H3(G, n) = H3(G,F0) = 0 (see [10] p. 177); here we consider

only local cohomology), then E0,1
2 is one-dimensional determined by the constant

multiplication (see above) and direct verification shows that E0,1
2 −→ E2,0

2 van-
ishes. So we have just proved that the cocycles c1, c2 and c3 defined in the theorem
represent genuinely non-trivial cohomology classes in H2(tsv, tsv).

3. In order to finish the proof, we still have to prove that there does not exist any
other non-trivial class in the last piece of the Hochschild-Serre spectral sequence.
We shall thus prove that E0,2

2 = InvG H2(h, h) = 0 As in the proofs of the previ-
ous lemmas, we shall use decompositions of the cohomological complex of h with
coefficients into itself as sums of G-modules.

The space of adjoint cochains C2(h, h) will split into six subspaces accord-
ing to the vector space decomposition h = y ⊕ n. So we can as well split the
cohomological complex

C1(h, h)
∂−→ C2(h, h)

∂−→ C3(h, h)

into its components, and the coboundary operators will as well split into different
components, as we already explained. So one obtains the following families of exact
sequences of G-modules:

(n∗ ⊗ n) ⊕ (y∗ ⊗ y)
∂−→ Λ2y∗ ⊗ n −→ A1 −→ 0 (4.5)

0 −→ K −→ (Λ2y∗ ⊗ y) ⊕ (n∗ ∧ y∗ ⊗ y)
∂−→ Λ3y∗ ⊗ n

0 −→ n∗ ⊗ y
∂−→ K −→ A2 −→ 0 (4.6)

0 −→ A3 −→ n∗ ∧ y∗ ⊗ y
∂−→ (Λ3y∗ ⊗ y) ⊕ (n∗ ∧ Λ2y∗) ⊗ n

0 −→ A4 −→ Λ2n∗ ⊗ n
∂−→ (n∗ ∧ Λ2y∗) ⊗ n

0 −→ A5 −→ Λ2n∗ ⊗ y
∂−→ (n∗ ∧ Λ2y∗) ⊗ y ⊕ (Λ2n∗ ∧ y∗) ⊗ n

The restrictions of coboundary operators are still denoted by ∂, and the other
arrows are either inclusions of subspaces or projections onto quotients. So one has

H2(h, h) =
5⊕
i=1

Ai, and our result will follow from InvG Ai = 0, i = 1, . . . 5. For the

last three sequences, the result follows immediately from the cohomology long exact
sequence by using InvG(n∗∧y∗⊗y) = 0, InvG Λ2n∗⊗n = 0, InvG Λ2n∗⊗y = 0: there
results are deduced from those of Grozman, recalled in Proposition 4.2. (Note that
the obviously G-invariant maps n⊗n −→ n and n⊗y −→ y are not antisymmetric!)
So one has InvG Ai = 0 for i = 3, 4, 5.
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An analogous argument will work forK, since InvG Λ2y∗⊗y = 0 and InvG(n∗∧
y∗)⊗ y = 0 from the same results. So the long exact sequence associated with the
short sequence (4.5) above will give:

0 −→ InvG(K) −→ InvG(A2) −→ H1(G, n∗ ⊗ y).

One has H1(G, n∗⊗y) = H1(G,F−1⊗F1/2) = 0 (see Proposition 4.2). So InvG(A2)
= 0.

For A1, we shall require a much more subtle argument. First of all, the
sequence (4.4) can be split into two short exact sequences:

0 −→ H1 −→ (n∗ ⊗ n) ⊕ (y∗ ⊗ y) −→ B −→ 0

0 −→ B −→ Λ2y∗ ⊗ n −→ A1 −→ 0.

Let us consider the long exact sequence associated with the first one:

0 −→ InvG H1 −→ InvG(n∗ ⊗ n) ⊕ InvG(y∗ ⊗ y) −→ InvG B −→ · · ·
· · · ↪→ H1(G,H1) −→ H1(G, n∗ ⊗ n) ⊕H1(G, y∗ ⊗ y) −→ H1(G, B) −→ · · ·
· · · −→ H2(G,H1) −→ H2(G, n∗ ⊗ n) ⊕H2(G, y∗ ⊗ y) −→ H2(G, B) −→ · · ·

The case of Hi(G,H1), i = 0, 1, 2 has been treated in Lemma 4.4, and analo-
gous techniques can be used to study Hi(G, n∗⊗n) and Hi(G, y∗⊗y) for i = 0, 1, 2.
The cohomology classes come from the inclusion F0 ⊂ n∗ ⊗ n, y∗ ⊗ y or H1, and
from the well-known computation of H∗(G,F0) (Remark: using the results of Fuks
[10], Chap. 2, one should keep in mind the fact that he computes cohomologies
for W1, the formal part of G = Vect(S1). To get the cohomologies for Vect(S1)
one has to add the classes of differentiable order 0 (or “topological” classes), this
is the reason for the occurrence of c2 in Lemma 4.4).

So Hi(G,H1) = Hi(G, n∗ ⊗ n) = Hi(G, y∗ ⊗ y), i = 0, 1, 2, and the maps
on the modules are naturally defined through the injection H1 −→ (n∗ ⊗ n) ⊕
(y∗ ⊗ y): each generator of Hi(G,H1), i = 0, 1, 2, say e, will give (e,−e) in the
corresponding component of Hi(G, (n∗ ⊗ n) ⊕ (y∗ ⊗ y)). So InvG B and H2(G, B)
are one-dimensional and H1(G, B) is two-dimensional.

Now we can examine the long exact sequence associated with:

0 −→ B
∂−→ Λ2y∗ ⊗ n −→ A1 −→ 0,

which is:

0 −→ InvG B
∂∗
−→ InvG Λ2y∗ ⊗ n −→ InvG A1

−→ H1(G, B) −→ H1(G,Λ2y∗ ⊗ n) −→ · · ·
The generator of InvG B comes from the identity map n −→ n, and InvG Λ2y∗⊗n
is generated by the bracket y ∧ y −→ n, so ∂∗ is an isomorphism in this case. So
one has

0 −→ InvG A1 −→ H1(G, B)
∂∗

−→ H1(G,Λ2y∗ ⊗ n).
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The result will follow from the fact that this ∂∗ is also an isomorphism. The
two generators in H1(G, B) come from the corresponding ones in H1(G, n∗ ⊗ n)⊕
H1(G, y∗⊗y), modulo the classes coming from H1(G,H1); so these generators can
be described in terms of Yoneda extensions, since H1(G,F∗

0 ⊗F0) = Ext1G(F0,F0),
as well as H1(G,F∗

1/2 ⊗F1/2) = Ext1G(F1/2,F1/2).
Let us write this extension as 0 −→ F0 −→ E −→ F0 −→ 0; the action on E

can be given in terms of modes as follows:

e1n(fa, gb) = (afn+a + ngb+n, bgb+n)

or
e2n(fa, gb) = (afn+a + gb+n, bgb+n).

The images of these classes in H1(G,Λ2y∗ ⊗ n) are represented by the extensions
obtained through a pull-back

0 −→ F0 −→ E −→ F0 −→ 0
‖ ↑ ↑ [ , ]

0 −→ F0 −−− > E′ −−− > Λ2F1/2 −→ 0

where [ , ] denotes the mapping given by the Lie bracket Λ2F1/2 −→ F0. One
can easily check that these extensions are non-trivial, so finally ∂∗ is injective and
InvG(A1) = 0, which finishes the proof of E0,2

2 = InvG H2(h, h) = 0 and the proof
of Theorem 4.1. �

Theorem 4.1 implies that we have three independent infinitesimal deforma-
tions of tsv, defined by the cocycles c1, c2 and c3, so the most general infinitesimal
deformation of tsv is of the following form:

[ , ]λ,μ,ν = [ , ] + λc1 + μc2 + νc3.

In order to study further deformations of this bracket, one has to compute the
Richardson-Nijenhuis brackets of c1, c2 and c3 in H3(tsv, tsv). One can compute
directly using our explicit formulas and finds [ci, cj ] = 0 in H3(tsv, tsv) for i, j =
1, 2, 3; and even better, the bracket of the cocycles themselves vanish, not only
their cohomology classes. So one has the

Theorem 4.5. The bracket [ , ]λ,μ,ν = [ , ] + λc1 + μc2 + νc3 where [ , ] is the Lie
bracket on tsv and ci, i = 1, 2, 3 the cocycles given in Theorem 4.1, defines a three-
parameter family of Lie algebra brackets on tsv.
For the sake of completeness, we give below the full formulas in terms of modes:

[Ln, Lm]λ,μ,ν = (m− n)Ln+m + ν(m− n)Mn+m

[Ln, Ym]λ,μ,ν = (m− n

2
− λn

2
+ μ)Yn+m

[Ln,Mm]λ,μ,ν = (m− λn+ 2μ)Mn+m

[Yn, Ym] = (n−m)Mn+m

All other terms are vanishing.
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The term with cocycle c3 has already been considered in a slightly different context
in [12]. The term with c2 induces only a small change in the action on h: the
modules F1/2 and F0 are changed into F1/2,μ and F0,μ (see [10], p. 127), the
bracket on h being fixed. This is nothing but a reparametrization of the generators
in the module, and for integer values of μ, the Lie algebra given by [ , ]0,μ,0 is
isomorphic to the original one; one sees here a subtle phenomenon: the deformation
G −→ G0,μ,0 is a non-trivial one, derived from the non-trivial cocycle c2, but for
some exceptional values of μ (actually for all integer values), one gets a Lie algebra
which is isomorphic to the original one through a reparametrization. One may
represent the Lie algebras G0,μ,0, μ ∈ R as a path in the space of Lie algebra
structures.

We shall focus in the sequel on the term proportional to c1, and denote by tsvλ
the one-parameter family of Lie algebra structures on tsv given by [ , ]λ = [ , ]λ,0,0,
in coherence with Definition 1.7. Inspection of the above formulas shows that tsvλ
is a semi-direct product Vect(S1)�hλ where hλ is a deformation of h as a Vect(S1)-
module; one has hλ = F 1+λ

2
⊕ Fλ, and the bracket F 1+λ

2
× F 1+λ

2
−→ Fλ is the

usual one, induced by the Poisson bracket on the torus.
Now, as a by-product of the above computations, we shall determine explicitly

H1(tsv, tsv).

Theorem 4.6. H1(tsv, tsv) is three-dimensional, generated by the following cocy-
cles, given in terms of modes by:

c1(Ln) = Mn c2(Ln) = nMn

l(Yn) = Yn l(Mn) = 2Mn.

The cocycle l already appeared in Section 1, when we discussed the derivations of
tsv; with the notations of Definition 1.4 one has l = 2(δ2 − δ1).

Proof. From Lemma 4.3 above, one has H1(tsv,G) = 0, and so H1(tsv, tsv) =
H1(tsv, h). One is led to compute the H1 of a semi-direct product, as already
done in Paragraph 3.3. The space H1(tsv, h) is made from two parts H1(G, h) and
H1(h, h) satisfying the compatibility condition as in Theorem 3.8:

c([X,α]) − [X, c(α)] = −[α, c(X)]

for X ∈ G and α ∈ h.
The result is then easily deduced from the previous computations:H1(G, h) =

H1(G, n) is generated by f∂ −→ f and f∂ −→ f ′, which correspond in the mode
decomposition to the cocycles c1 and c2. As a corollary, one has [α, c(X)] = 0
for X ∈ G and α ∈ h. Hence the compatibility condition reduces to c([X,α]) =
[X, c(α)] and thus c ∈ InvG H1(h, h). It can now be deduced from Lemma 4.4
above, that the latter space is one-dimensional, generated by l.

We shall now determine the central charges of tsvλ; the computation will
shed light on some exceptional values of λ, corresponding to interesting particular
cases.
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4.2. Computation of H2(tsvλ,R)

We shall again make use of the exact sequence decomposition 0 −→ hλ −→
tsvλ

π−→ G −→ 0, and classify the cocycles with respect to their “type” along
this decomposition; trivial coefficients will make computations much easier than

in the above case. First of all, 0 −→ H2(G,R)
π∗

−→ H2(tsvλ,R) is an injection. So
the Virasoro class c ∈ H2(Vect(S1),R) always survives in H2(tsvλ,R).

For hλ, let us use once again the decomposition 0 −→ nλ −→ hλ −→ yλ −→ 0
where nλ = [hλ, hλ]. One has: H1(G, H1(hλ)) = H1(G, y∗λ) = H1(G,F∗

1+λ
2

) =

H1(G,F−( 3+λ
2 )).

The cohomologies of degree one of Vect(S1) with coefficients in densities are known
(see [10], Theorem 2.4.12): the space H1(G,F−( 3+λ

2 )) is trivial, except for the three
exceptional cases λ = −3,−1, 1:

H1(G,F0) is generated by the cocycles f∂ −→ f and f∂ −→ f ′;

H1(G,F−1) is generated by the cocycle f∂ −→ f ′′dx;

H1(G,F−2) is generated by the cocycle f∂ −→ f ′′′(dx)2, corresponding to
the “Souriau cocycle” associated to the central charge of the Virasoro algebra (see
[12], Chapter IV).

In terms of modes, the corresponding cocycles are given by:

c1(Ln, Ym) = δ0n+m, c2(Ln, Ym) = nδ0n+m for λ = −3;

c(Ln, Ym) = n2δ0n+m for λ = −1;

c(Ln, Ym) = n3δ0n+m for λ = 1.

The most delicate part is the investigation of the term E0,2
2 = InvG H2(hλ)

(this refers of course to the Hochschild-Serre spectral sequence associated to the
above decomposition). For H2(hλ) we shall use the same short exact sequences as
for h in the proof of Lemma 4.3:

0 −→ Ker ∂ −→ Λ2n∗
λ

∂−→ Λ2y∗λ ∧ n∗
λ

0 −→ Ker ∂ −→ y∗λ ∧ n∗
λ

∂−→ Λ3y∗λ
0 −→ n∗

λ −→ Λ2y∗λ −→ Coker ∂ −→ 0

(where nλ stands for nλ divided out by the space of constant functions). One
readily shows that for the first two sequences one has InvG Ker ∂ = 0. The third
one is more complicated; the cohomology exact sequence yields:

0 −→ InvG Coker ∂ −→ H1(G, n∗λ) −→ H1(G, λ2y∗λ) −→ · · ·
The same result as above (see [10], Theorem 2.4.12) shows that:

H1(G, n∗
λ) = H1(G,F(−1−λ)) = 0 unless λ = 1,−1, 0,
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and one then has to investigate case by case; set c(Yp, Yq) = apδ
0
p+q for the potential

cochains on yλ. For each n one has the relation:

(adLn
c)(Yp, Yq) − (q − p)γ(Ln)(Mp+q) = 0 (4.6)

for some 1-cocycle γ : G −→ n∗
λ, and for all (p, q) such that n + p + q = 0; if

γ(Ln)(Mk) = bnδ
0
n+m+k, one obtains in terms of modes, using ap = −a−p:

(p+ q)
(

1 + λ

2

)
(ap − aq) + qaq − paq − (q − p)b−(p+q) = 0.

Let us now check the different cases of non-vanishing terms in H1(G, n∗
λ).

For λ = 1 one has bn = n3, and one deduces ap = p3.
For λ = −1 there are two possible cases bn = n or bn = 1, the above equation

gives
qap − paq = (q − p)(α(p+ q) + β);

the only possible solution would be to set ap constant, but this is not consistent
with ap = −a−p. For λ = 0, one gets bn = n2 and the equation gives(

p+ q

2

)
(ap + aq) + qap − paq − (q − p)(p+ q)2 = 0

One easily checks that there are no solutions.
Finally, one gets a new cocycle generating an independent class inH2(tsv1,R),

given by the formulas:

c(Yn, Ym) = n3δn+m,

c(Ln,Mm) = n3δn+m

Let us summarize our results:

Theorem 4.7. For λ �= −3,−1, 1, H2(tsvλ,R) � R is generated by the Virasoro
cocycle.
For λ = −3,−1, H2(tsvλ,R) � R2 is generated by the Virasoro cocycle and an
independent cocycle of the form c(Ln, Ym) = δ0n+m for λ = −3 or c(Ln, Ym) =
n2δ0n+m for λ = −1.
For λ = 1, H2(tsv1,R) � R

3 is generated by the Virasoro cocycle and the two
independent cocycles c1 and c2 defined by (all other components vanishing)

c1(Ln, Ym) = n3δ0n+m;

c2(Ln,Mm) = c2(Yn, Ym) = n3δ0n+m.

Remark. The isomorphism H2(sv0,R) � R has already been proved in [14]. As we
shall see in Paragraph 4.4, generally speaking, local cocycles may be carried over
from tsv to sv or from sv to tsv without any difficulty.

Let us look more carefully at the λ = 1 case. One has that h1 = F1 ⊕ F1

with the obvious bracket F1 × F1 −→ F1; so, algebraically, h1 = Vect(S1) ⊗
εR[ε]/(ε3 = 0). One deduces immediately that tsv1 = Vect(S1) ⊗ R[ε]/(ε3 = 0);
so the cohomological result for tsv1 can be easily reinterpreted. Let fε∂ and gε∂
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be two elements in Vect(S1) ⊗ R[ε]/(ε3 = 0), and compute the Virasoro cocycle
c(fε∂, gε∂) =

∫
S1 f

′′′
ε gεdt as a truncated polynomial in ε; one has fε = f0 + εf1 +

ε2f2 and gε = g0 + εg1 + ε2g2 so finally:

c(fε∂, gε∂) =
∫
S1
f ′′′0 g0dt+ε

∫
S1

(f ′′′0 g1 +f ′′′1 g0)dt+ε
2

∫
S1

(f ′′′0 g2 +f ′′′1 g1 +f ′′′2 g0)dt.

In other terms: c(fε∂, gε∂) = c0(fε∂, gε∂)+εc1(fε∂, gε∂)+ε2c2(fε∂, gε∂). One can
easily identify the ci, i = 0, 1, 2 with the cocycles defined in the above theorem,
using a decomposition into modes. This situation can be described by a universal
central extension

0 −→ R
3 −→ t̂sv1 −→ Vect(S1) ⊗ R[ε]/(ε3 = 0) −→ 0

and the formulas of the cocycles show that t̂sv1 is isomorphic to Vir⊗R[ε]/(ε3 = 0).

Remarks.

1. Cohomologies of Lie algebra of type Vect(S1)
⊗

R

A, where A is an associative

and commutative algebra (the Lie bracket being as usual given by [f∂ ⊗ a,
g∂⊗b] = (fg′−gf ′)∂⊗ab), have been studied by C. Sah and collaborators (see

[29]). Their result is: H2

(
Vect(S1)

⊗
R

A

)
= A′ where A′ = HomR(A,R);

all cocycles are given by the Virasoro cocycle composed with the linear form
on A. The isomorphism H2(tsv1,R) � R

3 (see Theorem 4.7) could have been
deduced from this general theorem.

2. One can obtain various generalizations of our algebra h as nilpotent Lie al-
gebras with Vect(S1)-like brackets, such as

[Yn, Ym] = (m− n)Mn+m (4.7)

by using the same scheme. Let A be an Artinian ring quotient of some polyno-
mial ring R[t1, . . . , tn] and A0 ⊂ A its maximal ideal; then Vect(S1)

⊗
R

A0 is

a nilpotent Lie algebra whose successive brackets are of the same type (4.7).
One could speak of a “virasorization” of nilpotent Lie algebras. Explicit ex-
amples are provided in the Subsection 2.5 about multi-diagonal operators of
the present article.

3. It is interesting in itself to look at how the dimension of H2(tsvλ,R) varies
under deformations. For generic values of λ, this dimension is equal to one,
and it increases for some exceptional values of λ; one can consider this as an
example of so called “Fuks principle” in infinite dimension: deformations can
decrease the rank of cohomologies but never increase it.

4. Analogous Lie algebra structures, of the “Virasoro-tensorized” kind, have
been considered in a quite different context in algebraic topology by Tamanoi,
see [32].
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4.3. About deformations of tsv1

We must consider the local cochains C∗
loc(tsv1, tsv1). The Lie algebra tsv1 admits

a graduation mod 3 by the degree of polynomial in ε, the Lie bracket obviously
respects this graduation; this graduation induces on the space of local cochains a
graduation by weight, and C∗

loc(tsv1, tsv1) splits into direct sum of subcomplexes
of homogeneous weight denoted by C∗

loc(tsv1, tsv1)(p). Moreover, as classical in
computations for Virasoro algebra, one can use the adjoint action of the zero
mode L0 (corresponding geometrically to the Euler field z ∂

∂z ) to reduce cohomol-
ogy computations to the subcomplexes C∗

loc(tsv1, tsv1)(p)(0) of cochains which are
homogeneous of weight 0 with respect to adL0 (see, e.g., [12], Chapter IV).

We can use the graduation in ε and consider homogeneous cochains with
respect to that graduation. Here is what one gets, according to the weight:

• weight 1: one has cocycles of the form

c(Ln, Ym) = (m− n)Mn+m, c(Ln, Lm) = (m− n)Yn+m

but if b(Ln) = Yn, then c = ∂b.
• weight 0: all cocycles are coboundaries, using the well-known result H∗(Vect

(S1),Vect(S1)) = 0.
• weight −1: one has to consider cochains of the following from

c(Yn,Mm) = a(m− n)Mn+m

c(Yn, Ym) = b(m− n)Yn+m

c(Ln,Mm) = e(m− n)Yn+m

c(Ln, Ym) = d(m− n)Ln+m

and check that ∂c = 0. It readily gives e = d = 0.
If one sets c̃(Yn) = αLn and c̃(Mn) = βYn, then

∂c̃(Yn,Mm) = (α+ β)(m− n)Mn+m

∂c̃(Yn,Mm) = (2α− β)(m− n)Yn+m.

So all these cocycles are cohomologically trivial,
• weight −2: set

c(Yn,Mm) = α(m− n)Yn+m

c(Mn,Mm) = β(m− n)Mn+m

c(Ln,Mm) = γ(m− n)Ln+m.

Coboundary conditions give γ = α and β = γ + α, but if c(Mn) = Ln, then

∂c(Mn,Mm) = (m− n)Yn+m

∂c(Yn,Mm) = 2(m− n)Mn+m

∂c(Ln,Mm) = (m− n)Ln+m.
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• weight −3: we find for this case the only surviving cocycle.
One readily checks that C ∈ C∗

loc(tsv1, tsv1)(−3)(0) defined by

C(Yn,Mm) = (m− n)Ln+m

C(Mn,Mm) = (m− n)Yn+m

is a cocycle and cannot be a coboundary.
We can describe the cocycle C above more pleasantly by a global formula: let
fε = f0 + εf1 + ε2f2 and gε = g0 + εg1 + ε2g2, with fi, gi elements of Vect(S1).
The bracket [ , ] of tsv1 is then the following:

[fε, gε] =
2∑

k=0

∑
i+j=k

[fi, gi] or (fεg′ε − gεf
′
ε)|ε3=0,

and the deformed bracket [ , ] + μC will be [fε, gε]μ = (fεg′ε − gεf
′
ε)|ε3=μ. So we

have found that dim H2(tsv1, tsv1) = 1.
In order to construct deformations, we still have to check for the Nijenhuis-

Richardson bracket [C,C] in C3(tsv1, tsv1). The only possibly non-vanishing term
is:

[C,C](Mn,Mn,Mp) =
∑
(cycl)

C(C(Mn,Mm, ),Mp)

=
∑
(cycl)

(m− n)C(Yn+m,Mp)

=
∑
(cycl)

(pm− pn+ n2 −m2)Ln+m+p = 0.

So there does not exist any obstruction and we have obtained a genuine deforma-
tion. We summarize all these results in the following

Proposition 4.8. There exists a one-parameter deformation of the Lie algebra tsv1,
as tsv1,μ = Vect(S1) ⊗ R[ε]/(ε3=μ). This deformation in the only one possible, up
to isomorphism.

If one is interested in central charges, the above-mentioned theorem of C. Sah
et al., see [29], shows that dimH2(tsv1,μ,R) = R

3 and the universal central exten-
sion t̂sv1,μ is isomorphic to Vir ⊗ R[ε]/(ε3=μ). We did not do the computations,
but we conjecture that tsv1,μ is rigid, the ring R[ε]/(ε3=μ) being more generic
than R[ε]/(ε3=0). More generally, it could be interesting to study systematically
Lie algebras of type Vect(S1)⊗A where A is a commutative ring, their geometric
interpretation being “Virasoro current algebras”.

4.4. Coming back to the original Schrödinger-Virasoro algebra

The previous results concern the twisted Schrödinger-Virasoro algebra generated
by the modes (Ln, Ym,Mp) for (n,m, p) ∈ Z3, which make computations easier and
allows direct application of Fuks’ techniques. The “actual” Schrödinger-Virasoro
algebra is generated by the modes (Ln, Ym,Mp) for (n, p) ∈ Z

2 but m ∈ Z + 1
2 .
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Yet Theorem 4.1 and Theorem 4.5 on deformations of tsv are also valid for sv:
one has dim H2(sv, sv) = 3 with the same cocycles c1, c2, c3, since these do not
allow ‘parity-changing’ terms such as L×Y →M or Y ×Y → Y for instance (the
(L,M)-generators being considered as ‘even’ and the Y -generators as ‘odd’).

But the computation of H2(svλ,R) will yield very different results compared
to Theorem 4.7, since ‘parity’ is not conserved for all the cocycles we found, so we
shall start all over again. Let us use the adjoint action of L0 to simplify computa-
tions: all cohomologies are generated by cocycles c such that adL0 . c = 0, i.e., such
that c(Ak, Bl) = 0 for k+l �= 0, A and B being L, Y or M . So, for non-trivial cocy-
cles, one must have c(Yn, Lp) = 0, c(Yn,Mp) = 0 for all Yn, Lp,Mp; in H2(svλ,R),
terms of the type H1(G, H1(hλ)) will automatically vanish. The Virasoro class in
H2(G,R) will always survive, and one has to check what happens with the terms
of type InvG H2(hλ). As in the proof of Lemma 4.3, the only possibilities come
from the short exact sequence:

0 −→ n∗
λ −→ Λ2y∗λ −→ Coker ∂ −→ 0

which induces: 0 −→ InvG Coker ∂ −→ H1(G, n∗
λ) −→ H1(G,Λ2y∗λ) and one ob-

tains the same equation (4.6) as above:

(adLn
c)(Yp, Yq) + (q − p)γ(Ln)(Mp+q) = 0.

If c(Yp, Yq) = apδ
0
p+q, the equation gives:

−ap(p+
λ+ 3

2
n) + ap+n(p− λ+ 1

2
n) − (p− q)γ(Ln)(Mp+q) = 0.

One finds two exceptional cases with non-trivial solutions:
• for λ = 1, ap = p3 and c(Ln,Mm) = n3δ0n+m gives a two-cocycle, very much

analogous to the Vect(S1)⊗R[ε]/(ε3=0) case, except that one has no term in
c(Ln, Yp).

• for λ = −3, if γ ≡ 0, the above equation gives pap = (p + n)ap+n for every
p and n. So ap = 1

p is a solution, and one sees why this solution was not
available in the twisted case.
Let us summarize:

Proposition 4.9. The space H2(svλ,R) is one-dimensional, generated by the Vi-
rasoro cocycle, save for two exceptional values of λ, for which one has one more
independent cocycle, denoted by c1, with the following non-vanishing components:

• for λ = 1: c1(Yp, Yq) = p3δ0p+q and c1(Lp,Mq) = p3δ0p+q,

• for λ = −3 : c1(Yp, Yq) = δ0p+q

p .

Remark. The latter case is the most surprising one, since it contradicts the well-
established dogma asserting that only local classes are interesting. This principle
of locality has its roots in quantum field theory (see, e.g., [20] for basic principles of
axiomatic field theory); its mathematical status has its foundations in the famous
theorem of J. Peetre, asserting that local mappings are given by differential opera-
tors, so – in terms of modes – the coefficients are polynomial in n. Moreover, there
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is a general theorem in the theory of cohomology of Lie algebras of vector fields
(see [10]) which states that continuous cohomology is in general multiplicatively
generated by local cochains, called diagonal in [10]. Here our cocycle contains an
anti-derivative, so there could be applications in integrable systems, considered as
Hamiltonian systems, the symplectic manifold given by the dual of (usually cen-
trally extended) infinite dimensional Lie algebras (see for example [12], Chapters
VI and X).
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[8] C. Duval, G. Gibbons, P. Horváthy, Celestial mechanics, conformal structures, and
gravitational waves, Phys. Rev. D 43, no. 12 (1991).

[9] C. Duval, On Galilean isometries, Class. Quantum Grav. 10 (1993), 2217–2221.

[10] D.B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet
Mathematics, Consultants Bureau, New York (1986).

[11] P. Ja. Grozman, Classification of bilinear invariant operators on tensor fields, Funk-
tsional. Anal. i Prilozhen. 14 (1980), no. 2, 58–59.
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