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Abstract. We study the Yangians Y(a) associated with the simple Lie algebras
a of type B, C or D. The algebra Y(a) can be regarded as a quotient of the
extended Yangian X(a) whose defining relations are written in an R-matrix
form. In this paper we are concerned with the algebraic structure and repre-
sentations of the algebra X(a). We prove an analog of the Poincaré–Birkhoff–
Witt theorem for X(a) and show that the Yangian Y(a) can be realized as a
subalgebra of X(a). Furthermore, we give an independent proof of the classi-
fication theorem for the finite-dimensional irreducible representations of X(a)
which implies the corresponding theorem of Drinfeld for the Yangians Y(a).
We also give explicit constructions for all fundamental representation of the
Yangians.

1. Introduction

For any simple Lie algebra a over C the corresponding Yangian Y(a) is a canonical
deformation of the universal enveloping algebra U

(
a[x]

)
, a[x] = a ⊗ C[x] in the

class of Hopf algebras; see Drinfeld [10, 11, 12]. In accordance to Drinfeld, each
Yangian Y(a) has at least three different presentations; see also Chari and Press-
ley [7, Chapter 12]. In this paper we are concerned with the one commonly known
as the RTT -presentation and which preceded the other two historically. It goes
back to the work of the St.-Petersburg school on the inverse scattering method;
see, e.g., Takhtajan and Faddeev [24], Kulish and Sklyanin [15], Tarasov [25, 26],
Reshetikhin, Takhtajan and Faddeev [23]. In the case of A type, i.e., a = slN , the
RTT -presentation of the corresponding Yangian turns out to be particularly useful
in the applications of the R-matrix techniques to the classical Lie algebras; see,
e.g., the review paper [17] and references therein. Moreover, this presentation is
most convenient for the study of various subalgebras of the A type Yangian which
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play an important role in the applications to the quantum spin chain models; see,
e.g., Arnaudon et al. [2, 3, 4], Molev and Ragoucy [19].

In a recent paper by Arnaudon et al. [1], the RTT -presentation of the Yangian
associated with the B, C or D type Lie algebra a was studied. The Yangian Y(a)
was presented as a quotient of a quadratic algebra whose defining relations are
written in the form of an RTT -relation. Below we denote this algebra by X(a)
and call it the extended Yangian. The paper [1] contains an explicit construction
of a formal series z(u) whose coefficients belong to the center of X(a). As shown
in [1], the quotient of X(a) by the relations z(u) = 1 is isomorphic to Y(a). In
the orthogonal case a = oN (B and D types) this reproduces an earlier result of
Drinfeld [10].

Our aim in this paper is to describe the algebraic structure of the extended
Yangian X(a) for each orthogonal and symplectic Lie algebra a = oN and a = sp2n

and classify its finite-dimensional irreducible representations. First, we prove an
analog of the Poincaré–Birkhoff–Witt theorem for the algebra X(a). Then, follow-
ing the approach of Molev, Nazarov and Olshanski [18], we define the Yangian Y(a)
as a subalgebra of X(a). In [18], the A type Yangian Y(slN ) is defined as a sub-
algebra of the Yangian Y(glN ) for the general lineal Lie algebra glN so that the
algebra X(a) can be regarded as an analog of Y(glN ) for the B, C and D types.
Furthermore, we show that the coefficients of the series z(u) are algebraically inde-
pendent and generate the center of X(a). This implies that the finite-dimensional
irreducible representations of the algebras X(a) and Y(a) are essentially the same.
These representations of the Yangian Y(a) were classified by Drinfeld [12]; see also
Chari and Pressley [7, Chapter 12]. However, this classification is given in terms of
a different presentation (new realization) of Y(a). At present, no explicit isomor-
phism between the new realization of the orthogonal or symplectic Yangian Y(a)
and its RTT -presentation is known. (Such an isomorphism in the case of Y(slN )
was given by Drinfeld [12], its most recent detailed exposition can be found in [5].)
Therefore, the classification results of [12] do not imply an immediate description
of the finite-dimensional irreducible representations of the extended Yangian X(a).

We develop an independent approach to the representation theory for the
algebras X(a). We define Verma modules M(λ(u)) over X(a) in a standard way,
where λ(u) is a tuple of formal series which we call the highest weight. We show
that every finite-dimensional irreducible representation of X(a) is isomorphic to the
unique irreducible quotient L(λ(u)) of M(λ(u)). We classify the finite-dimensional
irreducible representations of X(a) by producing necessary and sufficient condi-
tions on the highest weight λ(u) for the module L(λ(u)) to be finite-dimensional;
see Theorem 5.16. Reformulating these conditions for representations of the sub-
algebra Y(a) of X(a) we thus obtain another proof of Drinfeld’s theorem [12] for
the case of the classical Lie algebras a = oN and sp2n.

As a first step, we consider the low-rank cases and construct explicit isomor-
phisms Y(sp2) � Y(sl2), Y(o3) � Y(sl2) and Y(o4) � Y(sl2) ⊗ Y(sl2). The former
is quite immediate while the remaining two require appropriate versions of the
fusion procedure for R-matrices. The representations are then described by using
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the known results for the Yangian Y(sl2) which are due to Tarasov [25, 26]. For
the sake of completeness, we reproduce a proof of those results which is a simpler
version of the one contained in [16]. Using the above isomorphisms, we also give
explicit formulas for the evaluation homomorphisms from X(a) to the universal
enveloping algebra U(a) for each a = sp2, o3 and o4.

In order to establish the necessary conditions for L(λ(u)) to be finite-
dimensional, we use an induction argument which allows us to get the conditions
for the rank n Lie algebra a from those of rank n − 1. The sufficient conditions
on λ(u) are established by producing finite-dimensional modules having λ(u) as a
highest weight. We do this first for the so-called fundamental modules and then
employ the Hopf algebra structure on X(a). In particular, this proves that every
finite-dimensional irreducible representations of X(a) is isomorphic to a subquo-
tient of a tensor product of the corresponding fundamental modules. We also give
an explicit construction of all fundamental modules of X(a) basically following the
approach of Chari and Pressley [6] but avoiding the use of their results on the
singularities of the R-matrices. For the applications of the fundamental Yangian
modules to the affine Toda field theories see Chari and Pressley [8].

The financial support of the Australian Research Council and the Laboratoire
d’Annecy-le-Vieux de Physique Théorique is acknowledged.

2. Definitions and preliminaries

We let a denote the simple complex Lie algebra of type Bn, Cn, or Dn. That is,

a = o2n+1, sp2n, or o2n, (2.1)

respectively. Whenever possible, we consider the three cases (2.1) simultaneously,
unless otherwise stated. The Lie algebra a can be regarded as a subalgebra of the
general linear Lie algebra glN , where N = 2n + 1 or N = 2n, respectively. It
will be convenient to enumerate the rows and columns of N ×N matrices by the
indices −n, . . . ,−1, 1, . . . , n, if N = 2n, and by the indices −n, . . . ,−1, 0, 1, . . . , n,
if N = 2n+ 1. For −n � i, j � n set

Fij = Eij − θij E−j,−i (2.2)

where the Eij are the elements of the standard basis of glN and

θij =

{
1 in the orthogonal case,
sgn i · sgn j in the symplectic case.

(2.3)

The elements Fij span the Lie algebra a and satisfy the relations

Fij + θij F−j,−i = 0 (2.4)

for any −n � i, j � n, and

[Fij , Fkl] = δkj Fil − δil Fkj − δk,−i θij F−j,l + δl,−j θij Fk,−i. (2.5)
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For any n-tuple of complex numbers μ = (μ1, . . . , μn) we shall denote by
V (μ) the irreducible representation of the Lie algebra a with the highest weight μ.
That is, V (μ) is generated by a nonzero vector ξ such that

Fij ξ = 0 for −n � i < j � n, and
Fii ξ = μi ξ for 1 � i � n.

The representation V (μ) is finite-dimensional if and only if

μi − μi+1 ∈ Z+ for i = 1, . . . , n− 1

and

−μ1 − μ2 ∈ Z+ if a = o2n,

−μ1 ∈ Z+ if a = sp2n,

−2μ1 ∈ Z+ if a = o2n+1.

Consider the endomorphism algebra End C
N and let eij ∈ End C

N be the
standard matrix units (we use lower case letters to distinguish the elements of
End C

N from the basis elements of glN ; the latter will also be regarded as gen-
erators of the universal enveloping algebra U(glN )). We denote by F the N × N
matrix whose ij-th entry is Fij . We shall also regard F as the element

F =
n∑

i,j=−n

eij ⊗ Fij ∈ End C
N ⊗ U(a). (2.6)

We shall use the transposition t : End C
N → End C

N which is a linear map
defined on the basis elements by the rule

(eij)t = θij e−j,−i, (2.7)

and the standard transposition defined by

(eij)′ = eji. (2.8)

The permutation operator P is an element of End CN ⊗ End CN given by

P =
n∑

i,j=−n

eij ⊗ eji. (2.9)

We let Q denote the transposed operator Q = P t1 = P t2 with respect to the first
or second copy of End C

N ,

Q =
n∑

i,j=−n

θij eij ⊗ e−i,−j . (2.10)

Whenever the double sign ± or ∓ occurs, the upper sign corresponds to the or-
thogonal case while the lower sign corresponds to the symplectic case. Note that
the operators P and Q satisfy the relations

P 2 = 1, PQ = QP = ±Q, Q2 = N Q. (2.11)
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Set
κ = N/2 ∓ 1. (2.12)

The R-matrix R(u) is a rational function in a complex parameter u with values in
End C

N ⊗ End C
N defined by

R(u) = 1 − P

u
+

Q

u− κ
. (2.13)

It is well known that R(u) satisfies the Yang–Baxter equation

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (2.14)

see [14], [27]. Here both sides take values in End C
N ⊗End C

N ⊗End C
N and the

subscripts indicate the copies of End CN so that R12(u) = R(u) ⊗ 1 etc.
Following the general approach of [11] and [23], we define the extended Yan-

gian X(a) as an associative algebra with generators t(r)ij , where −n � i, j � n and
r = 1, 2, . . . (the zero value of i and j is skipped if N = 2n), satisfying certain
quadratic relations. In order to write them down, introduce the formal series

tij(u) =
∞∑

r=0

t
(r)
ij u−r ∈ X(a)[[u−1]], t

(0)
ij = δij , (2.15)

and set

T (u) =
n∑

i,j=−n

eij ⊗ tij(u) ∈ End C
N ⊗ X(a)[[u−1]]. (2.16)

Consider the algebra End CN ⊗ End CN ⊗ X(a)[[u−1]] and introduce its elements
T1(u) and T2(u) by

T1(u) =
n∑

i,j=−n

eij ⊗ 1 ⊗ tij(u), T2(u) =
n∑

i,j=−n

1 ⊗ eij ⊗ tij(u). (2.17)

The defining relations for the algebra X(a) have the form of an RTT -relation:

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v). (2.18)

Equivalently, in terms of the series (2.15) they can be written as

[tij(u), tkl(v)] =
1

u− v

(
tkj(u) til(v) − tkj(v) til(u)

)
− 1
u− v − κ

(
δk,−i

n∑
p=−n

θip tpj(u) t−p,l(v) − δl,−j

n∑
p=−n

θjp tk,−p(v) tip(u)
)
.

(2.19)

Remark 2.1. The above definition of X(a) can be extended to the cases a = o1

and o2. However, both algebras X(o1) and X(o2) are commutative. In addition,
in X(o2) we have t−1,1(u) = t1,−1(u) = 0. In what follows, we only deal with the
orthogonal Lie algebras oN for N � 3. �
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Consider an arbitrary formal series f(u) of the form

f(u) = 1 + f1u
−1 + f2u

−2 + · · · ∈ C[[u−1]]. (2.20)

Also, let a ∈ C be a constant and let B be a matrix with entries in C such that
BBt = 1. It is easily derived from the defining relations for the algebra X(a) that
each of the mappings

μf : T (u) �→ f(u)T (u), (2.21)

τa : T (u) �→ T (u− a), (2.22)

T (u) �→ B T (u)Bt

defines an automorphism of X(a). Furthermore, each of the mappings

T (u) �→ T (−u),
T (u) �→ T t(u),

T (u) �→ T−1(u),

defines an anti-automorphism of X(a); cf. [18, Section 1]. This is easily verified
with the use of the following property of the R-matrix implied by (2.11):

R(u)R(−u) = 1 − 1
u2
, (2.23)

and the fact that R(u) is stable under the composition of the transpositions in the
first and the second copies of End CN .

The extended Yangian X(a) is a Hopf algebra with the coproduct

Δ: tij(u) �→
n∑

a=−n

tia(u) ⊗ taj(u), (2.24)

the antipode
S: T (u) �→ T−1(u),

and the counit
ε : T (u) �→ 1,

cf. [23], [18, Section 1].
Multiplying both sides of (2.18) by u− v−κ, taking u = v+κ and replacing

v by u we get
QT1(u+ κ)T2(u) = T2(u)T1(u+ κ)Q. (2.25)

Since Q/N is a projection operator in C
N ⊗ C

N with a one-dimensional image,
the expression on each side of (2.25) must be equal to Q times a series z(u) with
coefficients in X(a). Since QT1(u) = QT t

2(u) and T1(u)Q = T t
2(u)Q, we have

T t(u+ κ)T (u) = T (u)T t(u+ κ) = z(u) 1, (2.26)

where
z(u) = 1 + z1u

−1 + z2u
−2 + · · · , zi ∈ X(a). (2.27)
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Taking the kl-th entries in (2.26) we get the formulas
n∑

i=−n

θki t−i,−k(u+ κ) til(u) =
n∑

i=−n

θil tki(u) t−l,−i(u+ κ) = δkl z(u). (2.28)

It was shown in [1] that all the coefficients zi are central in X(a), and z(u) has the
property1

Δ: z(u) �→ z(u) ⊗ z(u). (2.29)
By the Hopf algebra axioms, this implies that the image of z(u) under the anti-
pode S is found by

S: z(u) �→ z(u)−1. (2.30)
By (2.26), we have

S: T (u) �→ z(u)−1 T t(u+ κ).
Hence, since the transposition is involutive, we conclude that the square of the
antipode is the automorphism of X(a) given by

S2 : T (u) �→ z(u)
z(u+ κ)

T (u+ 2κ); (2.31)

cf. [18, Section 1].
We define the Yangian Y(a) associated with the Lie algebra a as the subal-

gebra of X(a) which consists of the elements stable under all the automorphisms
of the form (2.21). It will follow from [1] and the results below that this definition
is consistent with the one given by Drinfeld [10]; cf. [18, Section 1].

3. Poincaré–Birkhoff–Witt theorem and the center of the extended
Yangian

Let us denote by ZX(a) the subalgebra of X(a) generated by all the coefficients zi

of the series z(u); see (2.27).

Theorem 3.1. We have the tensor product decomposition

X(a) = ZX(a) ⊗ Y(a). (3.1)

Proof. We follow the argument of [18, Section 2.16]. There exists a unique series
y(u) of the form

y(u) = 1 + y1u
−1 + y2u

−2 + · · · , yi ∈ ZX(a)

such that y(u)y(u+κ) = z(u). In order to see this, it suffices to write this relation
in terms of the coefficients,

zk = 2yk +Ak(y1, . . . , yk−1), k � 1, (3.2)

where Ak is a quadratic polynomial in k − 1 variables. By (2.26), the image of
the series z(u) under the automorphism (2.21) is f(u) f(u + κ) z(u). Hence, the

1Note that the R-matrix considered in [1] coincides with our R(−u).
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automorphism (2.21) takes y(u) to f(u) y(u). This implies that the series τij(u)
defined by

τij(u) = y(u)−1 tij(u), i, j = −n, . . . , n, (3.3)
are stable under all automorphisms (2.21). Write

τij(u) = δij + τ
(1)
ij u−1 + τ

(2)
ij u−2 + · · · .

So, the coefficients τ (r)
ij of τij(u) belong to the subalgebra Y(a). Now the decom-

position X(a) = ZX(a) · Y(a) follows from the relation tij(u) = y(u) τij(u).
It remains to demonstrate that the elements zi are algebraically independent

over Y(a). Due to (3.2), it suffices to do this for the elements yi. Suppose on the
contrary, that for some positive integer n there exists a nonzero polynomial B in
n variables with the coefficients in Y(a) such that

B(y1, . . . , yn) = 0. (3.4)

Take the minimal n with this property. The coefficients of B are stable under
any automorphism (2.21). Hence, applying the automorphism (2.21) with f(u) =
1 + au−n and a ∈ C to the equality (3.4) we get

B(y1, . . . , yn + a) = 0

for any a ∈ C. This means that the polynomial B does not depend on its n-th
variable, which contradicts the choice of n. �

Corollary 3.2. The Yangian Y(a) is isomorphic to the quotient of X(a) by the ideal
generated by the elements z1, z2, . . . , i.e.,

Y(a) ∼= X(a)/(z(u) = 1).

Equivalently, Y(a) is generated by the elements τ (r)
ij , where −n � i, j � n and

r = 1, 2, . . . subject only to the relations

[τij(u), τkl(v)] =
1

u− v

(
τkj(u) τil(v) − τkj(v) τil(u)

)
− 1
u− v − κ

(
δk,−i

n∑
p=−n

θip τpj(u) τ−p,l(v) − δl,−j

n∑
p=−n

θjp τk,−p(v) τip(u)
)

(3.5)
and

n∑
i=−n

θki τ−i,−k(u+ κ) τil(u) = δkl. (3.6)

Proof. Let I be the ideal of X(a) introduced in the statement of the corollary. Then
Theorem 3.1 implies that X(a) = I ⊕ Y(a) proving the first statement.

Now, the coefficients τ (r)
ij of the series τij(u) with i, j = −n, . . . , n generate

the subalgebra Y(a). Indeed, it follows from the proof of Theorem 3.1 that any
element x ∈ X(a) can be uniquely written as a polynomial B in y1, y2, . . . such
that the coefficients of B are elements of the subalgebra of X(a) generated by
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the elements τ (r)
ij . On the other hand, if x belongs to the subalgebra Y(a) then

B cannot depend on the elements yi because x is stable under all automorphisms
(2.21). Hence, x belongs to the subalgebra of X(a) generated by the τ (r)

ij .
Finally, recall that the coefficients yi of the series y(u) are central in X(a).

Hence, we derive from (3.3) that the relation (2.19) will hold if the series tij(u) are
respectively replaced by τij(u) which gives (3.5). Furthermore, (3.6) follows from
(2.28). Conversely, (3.5) and (3.6) are defining relations for Y(a) because they are
respectively equivalent to (2.19) and the relation z(u) = 1. �

Proposition 3.3. The subalgebra Y(a) of X(a) is a Hopf algebra whose coproduct,
antipode and counit are obtained by restricting those from X(a).

Proof. The relation (2.29) implies that

Δ: y(u) �→ y(u) ⊗ y(u). (3.7)

Therefore the image of Y(a) under the coproduct on X(a) is contained in Y(a) ⊗
Y(a). By (2.30), the image of y(u) under the antipode S is y(u)−1. Hence,

S: y(u)−1 T (u) �→ y(u)T−1(u).

Any automorphism (2.21) leaves the product y(u)T−1(u) invariant and so the
subalgebra Y(a) of X(a) is stable under S. �

Introduce an ascending filtration on the extended Yangian X(a) by setting

deg t(r)kl = r − 1 (3.8)

for any k, l ∈ {−n, . . . , n}. Denote by t̄ (r)kl and z̄r the images of the elements t(r)kl

and zr, respectively, in the (r− 1)-th component of the associated graded algebra
grX(a). Then (2.28) gives the relations

t̄
(r)
kl + θkl t̄

(r)
−l,−k = δkl z̄r. (3.9)

Furthermore, (3.3) implies that the degree of each element τ (r)
kl does not exceed

r − 1 and its image τ̄ (r)
kl in the (r − 1)-th component of grX(a) is given by

τ̄
(r)

kl =
1
2
(
t̄
(r)
kl − θkl t̄

(r)
−l,−k

)
. (3.10)

The ascending filtration on the Yangian Y(a) is induced by the one on X(a). We
denote by grY(a) the associated graded algebra.

Proposition 3.4. The mapping

Fij x
r−1 �→ τ̄

(r)
ij (3.11)

defines an algebra homomorphism ψ : U
(
a[x]

)
→ gr Y(a).
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Proof. By (3.10),
τ̄

(r)
kl + θkl τ̄

(r)
−l,−k = 0

for any −n � k, l � n and r � 1. Furthermore, using the expansion
1

u− v
= u−1 + u−2 v + · · · ,

take the coefficients at u−rv−s on both sides of the relation (3.5). Keeping the
highest degree terms, we come to

[τ̄ (r)
ij , τ̄

(s)
kl ] = δkj τ̄

(r+s−1)
il − δil τ̄

(r+s−1)
kj − δk,−i θij τ̄

(r+s−1)
−j,l + δl,−j θij τ̄

(r+s−1)
k,−i .

It remains to compare these relations with (2.4) and (2.5). �

Since the graded algebra grY(a) is generated by the elements τ̄ (r)
ij , the ho-

momorphism ψ defined in Proposition 3.4 is obviously surjective. Our aim now
is to show that ψ is an algebra isomorphism (see Theorem 3.6 below). We shall
follow the approach of Nazarov’s paper [21, Section 2], where a similar result was
established for the Yangian of the queer Lie superalgebra.

Let ρ be the vector representation of the Lie algebra a on the vector space
C

N . So,
ρ : Fij �→ eij − θij e−j,−i.

For any c ∈ C consider the corresponding evaluation representation ρc of the
polynomial current Lie algebra a [x] given by

ρc : Fij x
s �→ csρ(Fij), s � 0.

For any c1, . . . , cl ∈ C consider the tensor product of the evaluation repre-
sentations of a [x],

ρc1,..., cl
= ρc1 ⊗ · · · ⊗ ρcl

.

Lemma 3.5. Let the parameters c1, . . . , cl and integer l � 0 vary. Then the inter-
section in U(a [x]) of the kernels of all representations ρc1,..., cl

is trivial.

Proof. Choose a basis Y1, . . . , YM of a, where M = dim a, and set yi = ρ(Yi). Let
A be a nonzero element of U(a[x]). Choose a total ordering on the set of basis
elements Yix

s of a[x] and write A as a linear combination of ordered monomials in
the basis elements. Let m be the maximal length of monomials which occur in A.
For each monomial

(Ya1x
s1) · · · (Yam

xsm) ∈ U(a[x]) (3.12)
occurring in A consider the corresponding symmetrized elements∑

q∈Sm

(Yaq(1)x
sq(1)) ⊗ · · · ⊗ (Yaq(m)x

sq(m)) ∈ (a[x] )⊗m. (3.13)

Regarding U(a[x]) as the quotient of the tensor algebra of a[x] we derive that the
elements (3.13) are linearly independent. Identifying the vector spaces

(a[x] )⊗m = a⊗m[x1, . . . , xm],
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we can regard the sum (3.13) as a polynomial function in m independent variables
x1, . . . , xm with values in the vector space a⊗m,∑

q∈Sm

x
sq(1)
1 · · ·xsq(m)

m Y aq(1) ⊗ · · · ⊗ Y aq(m) . (3.14)

Note that

ρc1,...,cl
: Yax

s �→
l∑

k=1

csk y
[k]
a , y[k]

a = 1⊗ (k−1) ⊗ ya ⊗ 1⊗ (l−k).

Hence, the image of the monomial (3.12) under the representation ρc1,..., cm
is given

by
m∑

k1,...,km=1

cs1
k1

· · · csm

km
y[k1]

a1
· · · y[km]

am
∈ End(CN )⊗m. (3.15)

Let us complete the set of matrices y1, . . . , yM to a basis y1, . . . , yN2 of End C
N

in such a way that the identity matrix 1 ∈ End CN occurs as a basis vector yi for
some i ∈ {M + 1, . . . , N2}. Denote by Vm the subspace in (End CN )⊗m spanned
by the basis elements y i1 ⊗ · · · ⊗ y im

where at least one of the tensor factors
is 1. Observe that the image under the representation ρc1,..., cm

of any monomial
of length < m occurring in A is contained in Vm. Furthermore, modulo elements
belonging to Vm, the sum (3.15) can be written as∑

q∈Sm

c
sq(1)
1 · · · csq(m)

m y aq(1) ⊗ · · · ⊗ y aq(m) . (3.16)

This sum is the value of (3.14) under the specialization xi = ci and replace-
ment of Yi with yi = ρ(Yi) for all i = 1, . . . ,m. However, since ρ is faithful and
the elements (3.13) are linearly independent, there exist values of the parame-
ters c1, . . . , cm such that the corresponding sums (3.16) are linearly independent
modulo the subspace Vm which completes the proof. �

We are now in a position to prove the following.

Theorem 3.6. The mapping ψ : U
(
a[x]

)
→ grY(a) defined in (3.11) is an algebra

isomorphism.

Proof. Due to Proposition 3.4, we only need to show that the kernel of ψ is trivial.
Let C be a nonzero element of U

(
a[x]

)
. We shall show that ψ(C) 
= 0. The universal

enveloping algebra U
(
a[x]

)
has a grading defined on the generators by declaring

the degree of Fijx
s to be equal to s. Then ψ is obviously a homomorphism of

graded algebras. Hence, we may assume that C is homogeneous of degree, say, d.
Write

C =
∑

C r1,..., rm

i1j1,..., imjm
(Fi1j1x

r1−1) · · · (Fimjm
xrm−1), (3.17)

summed over the indices ia, ja, ra such that r1 + · · · + rm = d+m.
Consider the element C ′ ∈ Y(a) given by the formula

C ′ =
∑

C r1,..., rm

i1j1,..., imjm
τ

(r1)
i1j1

· · · τ (rm)
imjm

,
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where the summation is taken over the same set of indices as in (3.17) with the
same coefficients. Then the image of C ′ in the d-th component of the graded
algebra grY(a) coincides with ψ(C). So, it suffices to show that degC ′ = d.

Applying the standard transposition (2.8) to the third copy of End CN in the
Yang–Baxter equation (2.14) and using (2.23) we come to the relation

R12(u− v)R ′
13(−u)R ′

23(−v) = R ′
23(−v)R ′

13(−u)R12(u− v), (3.18)

where

R ′(u) = 1 − P ′

u
+

Q ′

u− κ

with the transposition applied to the first (or second) copy of End CN . Hence, by
the defining relations (2.18) of the algebra X(a) we conclude that the mapping
T (u) �→ R ′(−u) defines a representation of X(a) in the space C

N . Taking its com-
position with the automorphism (2.22) we obtain for any c ∈ C the representation
σc : T (u) �→ R ′(−u + c). Equivalently, in terms of the generating series (2.15) we
have

σc : tij(u) �→ δij + eij (u− c)−1 − θij e−j,−i (u+ κ− c)−1. (3.19)
Since the transpositions (2.7) and (2.8) commute, using (2.26) and the relations

(Q ′)2 = 1, P ′Q ′ = Q ′P ′ = ±P ′, (P ′)2 = N P ′,

we derive that the image of z(u) under σc is given by

σc : z(u) �→ 1 − 1
(u− c+ κ)2

.

There exists a unique series fc(u) ∈ 1 + u−1C[[u−1]] such that

fc(u) fc(u+ κ) =
(u− c+ κ)2

(u− c+ κ)2 − 1
.

Then σc : y(u)−1 �→ fc(u) so that due to (3.19), for the image of the series τij(u)
under σc we have

σc : τij(u) �→ fc(u)
(
δij + eij (u− c)−1 − θij e−j,−i (u+ κ− c)−1

)
. (3.20)

Observe that the coefficient of the series fc(u) at u−k is a polynomial in c of degree
� k − 1. Therefore, taking the coefficient at u−r in (3.20) we find that the image
of τ (r)

ij under σc is a polynomial in c of degree � r−1 with coefficients in End C
N .

Moreover, the coefficient of this polynomial at cr−1 coincides with ρ(Fij).
Using Proposition 3.3, we can construct a representation of Y(a) in the space

(CN )⊗ l by
σc1,..., cl

= σc1 ⊗ · · · ⊗ σcl
, ci ∈ C.

The image of the element C ′ under σc1,..., cl
is a polynomial in c1, . . . , cl of degree

� d. Moreover, the homogeneous component of degree d of this polynomial coin-
cides with D = ρc1,..., cl

(C). By Lemma 3.5, there exist values of the parameters
c1, . . . , cl such that D 
= 0. This implies that the element C ′ has degree d and so
ψ(C) 
= 0. �
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The following is an analog of the Poincaré–Birkhoff–Witt theorem for the
algebra Y(a). It is immediate from Theorem 3.6.

Corollary 3.7. Given any total ordering on the set of generators τ (r)
ij with

i+ j > 0, r � 1, in the orthogonal case,

and
i+ j � 0, r � 1, in the symplectic case,

the ordered monomials in the generators form a basis of Y(a). �

Remark 3.8. The algebra Y(a) admits another filtration defined by setting the
degree of the generator τ (r)

ij to be equal to r. It follows from Corollary 3.2 that the

associated graded algebra g̃rY(a) is commutative. Let τ̃ (r)
ij denote the image of τ (r)

ij

in the r-th component of g̃r Y(a). By Corollary 3.7, the graded algebra g̃r Y(a) is
isomorphic to the algebra of polynomials in the variables τ̃ (r)

ij , where the indices
i, j, r are subject to the same conditions as in Corollary 3.7. �

Recall that ZX(a) is the subalgebra of X(a) generated by the coefficients zi

of the series z(u).

Corollary 3.9.

(i) The center of the algebra Y(a) is trivial.
(ii) The center of the algebra X(a) coincides with ZX(a).
(iii) The coefficients z1, z2, . . . of the series z(u) are algebraically independent

over C, so that the subalgebra ZX(a) of X(a) is isomorphic to the algebra of
polynomials in countably many variables.

Proof. It is well known that the center of the universal enveloping algebra U
(
a[x]

)
is trivial; see, e.g., [18, Proposition 2.12]. So (i) and (ii) follow from Theorem 3.6. It
is implied by the proof of Theorem 3.6 that the elements y1, y2, . . . of the series y(u)
are algebraically independent over C ⊂ Y(a). Hence so are the elements zi, i � 1.

�

We shall also need the following version of the Poincaré–Birkhoff–Witt the-
orem for the algebra X(a).

Corollary 3.10. Given any total ordering on the set of elements t(r)ij and zr with

i+ j > 0, r � 1, in the orthogonal case,

and
i+ j � 0, r � 1, in the symplectic case,

the ordered monomials in these elements form a basis of X(a).

Proof. By Theorems 3.1, 3.6 and Corollary 3.9(iii), the graded algebra grX(a) is
isomorphic to the tensor product of the universal enveloping algebra U(a[x]) and
the algebra of polynomials C[ζ1, ζ2, . . . ] in indeterminates ζr. An isomorphism is
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given by

t̄
(r)
ij �→ Fij x

r−1 +
1
2
δij ζr,

so that ζr is the image of z̄r; see (3.9). This implies the statement. �
Proposition 3.11. The assignment

Fij �→ τ
(1)
ij (3.21)

defines an embedding U(a) ↪→ Y(a), while the assignment

Fij �→ 1
2

(
t
(1)
ij − θij t

(1)
−j,−i

)
(3.22)

defines an embedding U(a) ↪→ X(a).

Proof. The defining relations (3.5) and (3.6) of Y(a) imply that the map (3.21) is
a homomorphism. Its injectivity follows from Corollary 3.7. Furthermore, by (3.3)
we have τ (1)

ij = t
(1)
ij − δij y1. It remains to observe that 2y1 = z1 = t

(1)
i i + t

(1)
−i,−i for

any i and t(1)ij = −θij t
(1)
−j,−i for i 
= j by (2.28). �

4. Isomorphisms for low rank Yangians

Recall that the Yangian Y(glN ) for the general linear Lie algebra glN is defined as
a unital associative algebra with countably many generators T (1)

ij , T
(2)
ij , . . . where

1 � i, j � N , and the defining relations

[T (r+1)
ij , T

(s)
kl ] − [T (r)

ij , T
(s+1)
kl ] = T

(r)
kj T

(s)
il − T

(s)
kj T

(r)
il , (4.1)

where r, s � 0 and T (0)
ij = δij . Equivalently, these relations can be written as

[T (r)
ij , T

(s)
kl ] =

min(r,s)∑
a=1

(
T

(a−1)
kj T

(r+s−a)
il − T

(r+s−a)
kj T

(a−1)
il

)
. (4.2)

Introducing the generating series,

Tij(u) = δij + T
(1)
ij u−1 + T

(2)
ij u−2 + · · · ∈ Y(glN )[[u−1]],

we can also write (4.1) in the form

(u− v) [Tij(u), Tkl(v)] = Tkj(u)Til(v) − Tkj(v)Til(u). (4.3)

Equivalently, using the notation of Section 2 and introducing the matrices

R◦(u) = 1 − P u−1 (4.4)

and

T ◦(u) =
N∑

i,j=1

eij ⊗ Tij(u) ∈ End C
N ⊗ Y(glN )[[u−1]], (4.5)

we can present the defining relations in the form of an RTT -relation

R◦(u− v)T ◦
1 (u)T ◦

2 (v) = T ◦
2 (v)T ◦

1 (u)R◦(u− v); (4.6)
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cf. (2.18). We use the superscript “◦” here to distinguish the objects related to
Y(glN ) from those related to the algebra X(a).

The Yangian Y(glN ) is a Hopf algebra with the coproduct

Δ: Tij(u) �→
N∑

k=1

Tik(u) ⊗ Tkj(u). (4.7)

An ascending filtration on Y(glN ) can be defined by setting

deg T (r)
ij = r − 1. (4.8)

Let T
(r)

ij denote the image of the generator T (r)
ij in the (r − 1)-th component of

the associated graded algebra gr Y(glN ). We have an algebra isomorphism

U(glN [x]) → grY(glN ), Eij x
r−1 �→ T

(r)

ij . (4.9)

The assignment
ev : Tij(u) �→ δij + Eij u

−1 (4.10)
defines a surjective homomorphism Y(glN ) → U(glN ). Moreover, the assignment
Eij �→ T

(1)
ij defines an embedding U(glN ) ↪→ Y(glN ).

For any series g(u) ∈ 1 + u−1
C[[u−1]] consider the automorphism of Y(glN )

defined by
Tij(u) �→ g(u)Tij(u). (4.11)

The Yangian for slN is the subalgebra Y(slN ) of Y(glN ) which consists of the
elements stable under all automorphisms (4.11).

The algebra Y(glN ) is isomorphic to the tensor product of its subalgebras

Y(glN ) = ZY(glN ) ⊗ Y(slN ), (4.12)

where ZY(glN ) denotes the center of the algebra Y(glN ). The subalgebra ZY(glN )
is generated by the coefficients of the series D(u) called the quantum determinant.
In the case N = 2 it takes the form

D(u) = T11(u)T22(u− 1) − T21(u)T12(u− 1).

Define the series d(u) with coefficients in ZY(gl2) by the relation d(u) d(u− 1) =
D(u). Then all the coefficients of the series Tij(u) = d(u)−1 Tij(u) belong to the
subalgebra Y(sl2). The series Tij(u) satisfy the relations

(u− v) [Tij(u), Tkl(v)] = Tkj(u) Til(v) − Tkj(v) Til(u) (4.13)

and
T11(u) T22(u− 1) − T21(u) T12(u− 1) = 1 (4.14)

which are defining relations for the algebra Y(sl2). In other words, the Yangian
Y(sl2) is isomorphic to the quotient of Y(gl2) by the ideal generated by all the
coefficients of D(u).

For more details on the algebraic structure of the Yangians Y(glN ) and Y(slN )
see, e.g., [18], [5].
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4.1. Extended Yangian X(sp2)

Observe that if N = 2 then in the symplectic case the operators P and Q satisfy
P +Q = 1; see (2.9) and (2.10). Therefore, for the corresponding R-matrix (2.13)
we have

R(u) =
u− 1
u− 2

(
1 − 2P

u

)
=
u− 1
u− 2

·R◦(u/2).

This implies the following isomorphism where we adopt the convention of Section 2
for numbering the rows and columns of 2 × 2 matrices by the indices {−1, 1}.

Proposition 4.1. The mapping

tij(u) �→ Tij(u/2), i, j ∈ {−1, 1} (4.15)

defines an isomorphism φ : X(sp2) → Y(gl2).

Proof. This is immediate from the defining relations (2.18) and (4.6). �

Corollary 4.2. The restriction of the isomorphism (4.15) to the subalgebra Y(sp2)
of X(sp2) induces an isomorphism Y(sp2) → Y(sl2).

Proof. Recall that the subalgebra Y(sp2) consists of the elements stable under all
automorphisms of X(sp2) of the form (2.21). However, given a series f(u) in u−1

with complex coefficients, the mapping (4.15) takes f(u) tij(u) to f(u)Tij(u/2).
So, we have the relation φ◦μf = μg ◦φ, and hence μf ◦φ−1 = φ−1 ◦μg, where g(u)
is the series in u−1 defined by g(u) = f(2u). Thus, the image of Y(sp2) under the
isomorphism φ coincides with the subalgebra Y(sl2) of Y(gl2), yielding the desired
isomorphism. �

Corollary 4.3. The mapping

ev : T (u) �→ 1 + F u−1 (4.16)

defines a surjective homomorphism X(sp2) → U(sp2).

Proof. The composition of the evaluation homomorphism (4.10) and the natural
projection glN → slN yields a homomorphism Y(glN ) → U(slN ). For N = 2 it
takes the form

T−1,−1(u) �→ 1 +
(
E−1,−1 −E1,1

)
(2u)−1, T−1,1(u) �→ E−1,1u

−1,

T1,1(u) �→ 1 +
(
E1,1 −E−1,−1

)
(2u)−1, T1,−1(u) �→ E1,−1u

−1.

Applying the isomorphism of Proposition 4.1 and using the generators Fij of sp2∼= sl2 we get a homomorphism X(sp2) → U(sp2) given by

ev : tij(u) �→ δij + Fij u
−1, i, j ∈ {−1, 1}.

Obviously, it is surjective. �
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4.2. Extended Yangian X(o3)
We shall now use a more standard notation for the generators of the Yangian
Y(gl2), where the indices i, j in the defining relations (4.1) and (4.3) run over the
set {1, 2}. Consider the vector space C

2 with its canonical basis e1, e2 and denote
by V the three-dimensional subspace of C

2 ⊗ C
2 spanned by the vectors

v−1 = e1 ⊗ e1, v0 =
1√
2

(
e1 ⊗ e2 + e2 ⊗ e1

)
, v1 = −e2 ⊗ e2.

We identify V with C3 regarding v−1, v0, v1 as its canonical basis. In particular,
the operators PV and QV in V ⊗ V will be given by the respective formulas (2.9)
and (2.10) so that, for instance, PV (v0 ⊗ v1) = v1 ⊗ v0. Similarly, we regard the
generator matrix T (u) = (tij(u)) as an element of EndV ⊗X(o3)[[u−1]]. Note that
the operator (1 + P )/2 is a projection of (C2)⊗2 to the subspace V . Due to (4.6),
we have

1 + P

2
· T ◦

1 (2u)T ◦
2 (2u+ 1) = T ◦

2 (2u+ 1)T ◦
1 (2u) · 1 + P

2
,

because R◦(−1) = 1 + P . Therefore, we may regard each side of this relation as
an element of EndV ⊗ Y(gl2)[[u−1]].

Proposition 4.4. The mapping

T (u) �→ 1 + P

2
· T ◦

1 (2u)T ◦
2 (2u+ 1) (4.17)

defines an isomorphism φ : X(o3) → Y(gl2). More explicitly, the images of the
generators under the isomorphism are given by the formulas

t−1,−1(u) �→ T11(2u)T11(2u+ 1)

t−1,0(u) �→
1√
2

(
T11(2u)T12(2u+ 1) + T12(2u)T11(2u+ 1)

)
t−1,1(u) �→ −T12(2u)T12(2u+ 1)

t0,−1(u) �→
1√
2

(
T11(2u)T21(2u+ 1) + T21(2u)T11(2u+ 1)

)
t0,0(u) �→ T11(2u)T22(2u+ 1) + T21(2u)T12(2u+ 1)

t0,1(u) �→ − 1√
2

(
T12(2u)T22(2u+ 1) + T22(2u)T12(2u+ 1)

)
t1,−1(u) �→ −T21(2u)T21(2u+ 1)

t1,0(u) �→ − 1√
2

(
T21(2u)T22(2u+ 1) + T22(2u)T21(2u+ 1)

)
t1,1(u) �→ T22(2u)T22(2u+ 1).

Proof. We start by showing that the mapping defines an algebra homomorphism.
We use a version of the well-known fusion procedure for R-matrices; see, e.g., [2]
and references therein.
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Consider the tensor product space (C2)⊗4. As in (2.14), we use subscripts of
the R-matrix (4.4) or the permutation operator P ∈ End(C2)⊗2 to indicate the
copies of C

2 where the operator acts. In the following we consider V ⊗ V as a
natural subspace of (C2)⊗2 ⊗ (C2)⊗2. Obviously, the operator

1 + P12

2
· 1 + P34

2
=

1
4
·R◦

12(−1)R◦
34(−1)

is a projection of (C2)⊗2 ⊗ (C2)⊗2 to the subspace V ⊗ V . Let us set

RV (u) =
1 + P12

2
· 1 + P34

2
·R◦

14(2u− 1)R◦
13(2u)R

◦
24(2u)R

◦
23(2u+ 1). (4.18)

Since the R-matrix R◦(u) satisfies the Yang–Baxter equation (2.14), we have the
following equivalent expression for RV (u),

RV (u) = R◦
23(2u+ 1)R◦

13(2u)R
◦
24(2u)R

◦
14(2u− 1) · 1 + P12

2
· 1 + P34

2
. (4.19)

Clearly, the subspace V ⊗ V is stable under the operator RV (u).

Lemma 4.5. We have the equality of operators in V ⊗ V ,

RV (u) =
2u− 1
2u+ 1

·
(
1 − PV

u
+

QV

u− 1/2

)
. (4.20)

Proof. Using the formulas of the kind

(1 + P12)P14 P24 = (1 + P12)P14

and
(1 + P12) (1 + P34)P14 P23 = (1 + P12) (1 + P34)P13 P24,

it is easy to get a simplified expression for the operator RV (u),

RV (u) =
1 + P12

2
· 1 + P34

2
·
(
1 − P14 + P24 + P13 + P23

2u+ 1
+

P13 P24

u (2u+ 1)

)
.

The restriction of RV (u) to the subspace V ⊗ V is given by

1 − P14 + P24 + P13 + P23

2u+ 1
+

P13 P24

u (2u+ 1)
(4.21)

so that the proof of the lemma is completed by the application of (4.21) to all
basis vectors vi ⊗ vj of V ⊗ V . For instance, we have

RV (u)(v−1 ⊗ v−1)

=
(
1 − P14 + P24 + P13 + P23

2u+ 1
+

P13 P24

u (2u+ 1)

)
(e1 ⊗ e1 ⊗ e1 ⊗ e1)

=
(u− 1)(2u− 1)
u (2u+ 1)

· e1 ⊗ e1 ⊗ e1 ⊗ e1.

Clearly, the application of the operator on the right-hand side of (4.20) to the
vector v−1 ⊗ v−1 gives the same result. The remaining cases are verified by the
same calculation. �
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By the lemma, the element RV (u) coincides with the R-matrix (2.13) for
a = o3, up to a scalar factor. So, in order to verify that the mapping (4.17) defines
a homomorphism X(o3) → Y(gl2) we need to show that the relation

RV (u− v)T1′(u)T2′(v) = T2′(v)T1′(u)RV (u− v) (4.22)

remains valid when T (u) is replaced by its image. Here we use primed indices
to indicate the copies of the space V in the tensor product V ⊗ V . We reserve
unprimed indices for the copies of C2 in the tensor product (C2)⊗4. The left-hand
side of (4.22) reads

1 + P12

2
· 1 + P34

2
·R◦

14(2u− 2v − 1)R◦
13(2u− 2v)R◦

24(2u− 2v)R◦
23(2u− 2v + 1)

× 1 + P12

2
· T ◦

1 (2u)T ◦
2 (2u+ 1) · 1 + P34

2
· T ◦

3 (2v)T ◦
4 (2v + 1).

Writing the product of R-matrices in the equivalent form (4.19), we simplify this
expression to

1 + P12

2
· 1 + P34

2
·R◦

14(2u− 2v − 1)R◦
13(2u− 2v)R◦

24(2u− 2v)R◦
23(2u− 2v + 1)

× T ◦
1 (2u)T ◦

2 (2u+ 1)T ◦
3 (2v)T ◦

4 (2v + 1).

Now apply the RTT -relation (4.6) repeatedly to bring this expression to the form

1 + P12

2
· 1 + P34

2
· T ◦

3 (2v)T ◦
4 (2v + 1)T ◦

1 (2u)T ◦
2 (2u+ 1)

×R◦
14(2u− 2v − 1)R◦

13(2u− 2v)R◦
24(2u− 2v)R◦

23(2u− 2v + 1).

Finally, since R◦
12(−1)/2 is a projection, we derive from (4.6) that

1 + P12

2
· T ◦

1 (2u)T ◦
2 (2u+ 1) =

1 + P12

2
· T ◦

1 (2u)T ◦
2 (2u+ 1) · 1 + P12

2
.

Using the same property of R◦
34(−1)/2 we obtain that the resulting expression

coincides with the right-hand side of (4.22), where T (u) is replaced with its image
in accordance with (4.17).

The explicit images of the generators of X(o3) are found by taking the matrix
elements in (4.17). Indeed, the application of T (u) to the basis vector v−1 of V
gives

T (u)(v−1) = t−1,−1(u) v−1 + t0,−1(u) v0 + t1,−1(u) v1,

while
1 + P12

2
· T ◦

1 (2u)T ◦
2 (2u+ 1)(v−1) =

1 + P12

2
· T ◦

1 (2u)T ◦
2 (2u+ 1)(e1 ⊗ e1)

=
1
2

2∑
a,b=1

Ta1(2u)Tb1(2u+ 1) (ea ⊗ eb + eb ⊗ ea) = T11(2u)T11(2u+ 1) v−1

+
1√
2

(
T11(2u)T21(2u+ 1) + T21(2u)T11(2u+ 1)

)
v0 − T21(2u)T21(2u+ 1) v1.
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This agrees with the formulas for the images of the series ta,−1(u) for a = −1, 0, 1
given in the statement. The remaining formulas are verified in the same way. Note
also that the image of the series t0,0(u) can be equivalently written as

T12(2u)T21(2u+ 1) + T22(2u)T11(2u+ 1)

due to the defining relation in the Yangian Y(gl2).
In order to complete the proof of the proposition we now verify that the

homomorphism X(o3) → Y(gl2) given by (4.17) is bijective. Taking the coefficient
at u−r in t−1,−1(u) we find that for any r � 1

t
(r)
−1,−1 �→ 2−r+1 T

(r)
11 +Ar−1(T

(1)
11 , . . . , T

(r−1)
11 ),

where Ar−1 stands for a quadratic polynomial in the generators T (1)
11 , . . . , T

(r−1)
11 .

The obvious induction on r shows that each generator T (r)
11 with r � 1 belongs to

the image of the homomorphism. Similarly, taking the image of t(r)1,1 we find that

each generator T (r)
22 with r � 1 also belongs to the image. Then taking the images

of t(r)−1,0 and t(r)0,−1 we derive the same property of the generators T (r)
12 and T (r)

21 with
r � 1. This proves that the homomorphism is surjective.

Finally, observe that the homomorphism preserves the respective filtrations
on X(o3) and Y(gl2). Hence, we have a homomorphism of the associated graded
algebras grX(o3) → grY(gl2). It suffices to show that this homomorphism is injec-
tive. Identifying grY(gl2) with the universal enveloping algebra U(gl2[x]) via the
isomorphism (4.9), we get

t̄
(r)
0,1 �→ − 1√

2
E12 (x/2)r−1, t̄

(r)
1,0 �→ − 1√

2
E21 (x/2)r−1, t̄

(r)
1,1 �→ E22 (x/2)r−1

and
z̄r �→ (E11 +E22) (x/2)r−1.

Therefore, the injectivity of the homomorphism follows from Corollary 3.10. �
Corollary 4.6. The restriction of the isomorphism φ : X(o3) → Y(gl2) to the sub-
algebra Y(o3) induces an isomorphism Y(o3) → Y(sl2).
Proof. Recall that the subalgebra Y(o3) consists of the elements stable under all
automorphisms of X(o3) of the form (2.21). For any series f(u) of the form (2.20)
there exists a unique series

g(u) = 1 + g1u
−1 + g2u

−2 + · · · ∈ C[[u−1]]

such that f(u) = g(2u) g(2u+1). By Proposition 4.4, we have the relation φ◦μf =
μg ◦φ, and hence μf ◦φ−1 = φ−1 ◦μg. This implies that the image of Y(o3) under
the isomorphism φ coincides with the subalgebra Y(sl2) of Y(gl2) thus yielding
the desired isomorphism. �

Let us denote by c the Casimir element for the Lie algebra o3,

c =
1
2
(
F 2

11 − F11

)
+ F10F01.

In the following we use notation (2.6).



Vol. 7 (2006) On Representations of Yangians 1289

Corollary 4.7. The mapping

ev : T (u) �→ 1 +
F

u
+

F 2 − c 1
u (2u− 1)

(4.23)

defines a surjective homomorphism X(o3) → U(o3).

Proof. Writing the homomorphism Y(gl2) → U(sl2) used in the proof of Corol-
lary 4.3 in the current notation we get

T11(u) �→ 1 +
(
E11 −E22

)
(2u)−1, T12(u) �→ E12u

−1,

T22(u) �→ 1 +
(
E22 −E11

)
(2u)−1, T21(u) �→ E21u

−1.

Composing this with the isomorphism sl2 → o3 given by

E11 −E22 �→ 2F−1,−1, E12 �→
√

2F−1,0, E21 �→
√

2F0,−1,

we get another homomorphism Y(gl2) → U(o3) such that

T11(u) �→ 1 + F−1,−1 u
−1, T12(u) �→

√
2F−1,0 u

−1,

T22(u) �→ 1 + F1,1 u
−1, T21(u) �→

√
2F0,−1 u

−1.

Finally, compose the isomorphism of Proposition 4.4 with the shift automorphism
tij(u) �→ tij(u−1/2) of X(o3) and use the above formulas to get a homomorphism
X(o3) → U(o3). It remains to verify that the resulting formulas for the images of
tij(u) agree with (4.23). This can be done by an easy straightforward calculation.
For instance, for the image of t0,0(u) we calculate

t0,0(u) �→ T11(2u− 1)T22(2u) + T21(2u− 1)T12(2u)

�→
(
1 +

F−1,−1

2u− 1

)(
1 +

F1,1

2u

)
+ 2 · F0,−1

2u− 1
· F−1,0

2u
.

(4.24)

On the other hand, formula (4.23) gives

t0,0(u) �→ 1 +
2F0,−1F−1,0 + 2F0,1F1,0 − F 2

11 + F11 − 2F10F01

2u (2u− 1)

= 1 +
2F0,−1F−1,0 − F 2

11 − F11

2u (2u− 1)
.

Clearly, this agrees with (4.24). All the remaining cases are verified by a similar and
even shorter calculation. Obviously, the homomorphism (4.23) is surjective. �
4.3. Extended Yangian X(o4)
We shall need the tensor product algebra Y(gl2) ⊗ Y(gl2). In order to distinguish
the two copies of the algebra Y(gl2), we denote the corresponding generator series
respectively by Tij(u) and T ′

ij(u) for the first and second copies, where i, j ∈ {1, 2}.
We also identify Tij(u) ⊗ 1 with Tij(u) and 1 ⊗ T ′

ij(u) with T ′
ij(u). As before,

we combine the series Tij(u) and T ′
ij(u) into the matrices T ◦(u) and T ◦ ′(u),

respectively.
The algebra Y(gl2)⊗Y(gl2) is naturally equipped with an ascending filtration,

where the degrees of the elements on each copy of Y(gl2) are defined by (4.8).
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Consider the vector space C2 with its canonical basis e1, e2 and set V =
C

2 ⊗ C
2. We identify V with C

4 regarding the vectors

v−2 = e1 ⊗ e1, v−1 = e1 ⊗ e2, v1 = e2 ⊗ e1, v2 = −e2 ⊗ e2

as the canonical basis of V . Then T ◦
1 (u)T ◦ ′

2 (u) may be regarded as an element of
EndV ⊗

(
Y(gl2)⊗Y(gl2)

)
[[u−1]]. The operators PV and QV in V ⊗V are given by

the respective formulas (2.9) and (2.10). We shall regard the matrix T (u) = (tij(u))
as an element of EndV ⊗ X(o4)[[u−1]].

Proposition 4.8. The mapping

T (u) �→ T ◦
1 (u)T ◦ ′

2 (u), (4.25)

defines an embedding ψ : X(o4) ↪→ Y(gl2) ⊗ Y(gl2). More explicitly, the images of
the generators under the embedding are given by the formulas

t−2,−2(u) �→ T11(u)T ′
11(u), t−2,−1(u) �→ T11(u)T ′

12(u),

t−2,1(u) �→ T12(u)T ′
11(u), t−2,2(u) �→ −T12(u)T ′

12(u),

t−1,−2(u) �→ T11(u)T ′
21(u), t−1,−1(u) �→ T11(u)T ′

22(u),

t−1,1(u) �→ T12(u)T ′
21(u), t−1,2(u) �→ −T12(u)T ′

22(u),

t1,−2(u) �→ T21(u)T ′
11(u), t1,−1(u) �→ T21(u)T ′

12(u),

t1,1(u) �→ T22(u)T ′
11(u), t1,2(u) �→ −T22(u)T ′

12(u),

t2,−2(u) �→ −T21(u)T ′
21(u), t2,−1(u) �→ −T21(u)T ′

22(u),

t2,1(u) �→ −T22(u)T ′
21(u), t2,2(u) �→ T22(u)T ′

22(u).

Proof. We start by showing that the mapping defines an algebra homomorphism.
Identifying V ⊗ V with the tensor product space (C2)⊗4, we set

RV (u) = R◦
13(u)R

◦
24(u). (4.26)

Lemma 4.9. We have the equality of operators in V ⊗ V ,

RV (u) =
u− 1
u

·
(
1 − PV

u
+

QV

u− 1

)
. (4.27)

Proof. We have

RV (u) =
(
1 − P13

u

)(
1 − P24

u

)
=
u− 1
u

(
1 − P13P24

u
+

(1 − P13)(1 − P24)
u− 1

)
.

It remains to note that PV = P13P24 and QV = (1−P13)(1−P24). This is verified
by the application of the operators to all basis vectors vi⊗vj of V ⊗V . For instance,
by the definition of QV ,

QV (v−2 ⊗ v2) = v−2 ⊗ v2 + v−1 ⊗ v1 + v1 ⊗ v−1 + v2 ⊗ v−2,

while
(1 − P13)(1 − P24)(v−2 ⊗ v2) = (1 − P13)(1 − P24)(−e1 ⊗ e1 ⊗ e2 ⊗ e2)
= −e1 ⊗ e1 ⊗ e2 ⊗ e2 + e1 ⊗ e2 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ⊗ e2 − e2 ⊗ e2 ⊗ e1 ⊗ e1,
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which clearly coincides with QV (v−2 ⊗ v2). The remaining relations are verified in
the same way. �

By the lemma, the element RV (u) coincides with the R-matrix (2.13) for
a = o4, up to a scalar factor. So, in order to verify that the mapping (4.25) defines
a homomorphism X(o4) → Y(gl2) ⊗ Y(gl2) we need to show that the relation

RV (u− v)T1′(u)T2′(v) = T2′(v)T1′(u)RV (u− v) (4.28)

remains valid when T (u) is replaced by its image. The primed indices are used here
to indicate the copies of the space V in the tensor product V ⊗ V . The left-hand
side of (4.28) reads

R◦
13(u− v)R◦

24(u− v)T ◦
1 (u)T ◦ ′

2 (u)T ◦
3 (v)T ◦ ′

4 (v).

Applying the RTT -relation (4.6) twice, we bring this expression to the form

T ◦
3 (v)T ◦ ′

4 (v)T ◦
1 (u)T ◦ ′

2 (u)R◦
13(u− v)R◦

24(u− v)

which coincides with the right-hand side of (4.28), where T (u) is replaced with its
image in accordance with (4.25).

The explicit images of the generators of X(o4) are found by taking the matrix
elements in (4.25). Indeed, the application of T (u) to the basis vector v−2 of V
gives

T (u)(v−2) = t−2,−2(u) v−2 + t−1,−2(u) v−1 + t1,−2(u) v1 + t2,−2(u) v2,

while

T ◦
1 (u)T ◦ ′

2 (u)(v−2) = T ◦
1 (u)T ◦ ′

2 (u)(e1 ⊗ e1) =
2∑

a,b=1

Ta1(u)T ′
b1(u) (ea ⊗ eb)

= T11(u)T ′
11(u) v−2 + T11(u)T ′

21(u) v−1 + T21(u)T ′
11(u) v1 − T21(u)T ′

21(u) v2.

This agrees with the formulas for the images of the series ta,−2(u) for a =
−2,−1, 1, 2 given in the statement. The remaining formulas are verified in the
same way.

In order to demonstrate that the homomorphism ψ is injective, observe that
it preserves the respective filtrations on X(o4) and Y(gl2)⊗Y(gl2). Hence, we have
a homomorphism of the associated graded algebras

grX(o4) → gr
(
Y(gl2) ⊗ Y(gl2)

)
.

Identifying the graded algebra grY(gl2) with U(gl2[x]) via the isomorphism (4.9),
we get a homomorphism

grX(o4) → U(gl2[x]) ⊗ U(gl2[y])

so that

t̄
(r)
−1,2 �→ −E12 x

r−1, t̄
(r)
1,2 �→ −E12 y

r−1, t̄
(r)
1,1 �→ E22 x

r−1 +E11 y
r−1,

t̄
(r)
2,−1 �→ −E21 x

r−1, t̄
(r)
2,1 �→ −E21 y

r−1, t̄
(r)
2,2 �→ E22 x

r−1 +E22 y
r−1,
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and
z̄r �→ (E11 + E22)xr−1 + (E11 +E22) yr−1.

Therefore, the injectivity of ψ follows from Corollary 3.10. �
Due to the presentation of the Yangian Y(sl2) provided by (4.13) and (4.14)

we have a natural projection Y(gl2) → Y(sl2) defined by the mapping Tij(u) �→
Tij(u). Applying this projection to the first or second copy of Y(gl2) in the tensor
product algebra Y(gl2) ⊗ Y(gl2) and taking its composition with the embedding
ψ we get homomorphisms

χ(1) : X(o4) → Y(sl2) ⊗ Y(gl2), χ(2) : X(o4) → Y(gl2) ⊗ Y(sl2).

Corollary 4.10. The homomorphisms χ(1) and χ(2) are bijective.

Proof. We only consider χ(1), the proof for χ(2) is similar. By the formulas of
Proposition 4.8 we have

χ(1) : t−2,−2(u) t1,1(u− 1) − t1,−2(u) t−2,1(u− 1) �→(
T11(u) T22(u− 1) − T21(u) T12(u− 1)

)
T ′

11(u)T
′

11(u− 1) = T ′
11(u)T

′
11(u− 1).

Therefore, all the coefficients of the series T ′
11(u) belong to the image of χ(1).

Hence, so do the coefficients of Tij(u) with i, j ∈ {1, 2}. This implies that χ(1) is
surjective. To verify the injectivity of χ(1) we use the same argument as in the
proof of Proposition 4.8. Namely, χ(1) induces a homomorphism of the associated
graded algebras

grX(o4) → U(sl2[x]) ⊗ U(gl2[y])
and the argument is completed by the application of Corollary 3.10. �
Corollary 4.11. The restriction of each isomorphism χ(1) and χ(2) to the subalgebra
Y(o4) induces an isomorphism Y(o4) → Y(sl2) ⊗ Y(sl2).

Proof. Again, we only consider the isomorphism χ(1). The subalgebra Y(o4) con-
sists of the elements stable under all automorphisms of X(o4) of the form (2.21).
For any formal series f(u) of the form (2.20) consider the automorphism μ̃f of the
algebra Y(sl2) ⊗ Y(gl2) defined by

μ̃f : Tij(u) �→ Tij(u), T ′
ij(u) �→ f(u)T ′

ij(u).

By the definition of χ(1), we have the relation χ(1)◦μf = μ̃f ◦χ(1). This implies that
if y ∈ Y(o4) then χ(1)(y) is stable under the automorphisms μ̃f for all series f(u).
Hence, the image of the subalgebra Y(o4) of X(o4) under the isomorphism χ(1)

coincides with the subalgebra Y(sl2)⊗Y(sl2) of Y(sl2)⊗Y(gl2) thus providing the
desired isomorphism. �

Let us denote by c the following Casimir element for the Lie algebra o4,

c =
1
2
(
F 2

11 + F 2
22

)
− F22 + F21F12 + F2,−1F−1,2.

In the following we use notation (2.6).
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Corollary 4.12. The mapping

ev : T (u) �→ 1 +
F

u
+
F 2 − F − c 1

2u2
(4.29)

defines a surjective homomorphism X(o4) → U(o4).

Proof. Consider the isomorphism sl2 ⊕ sl2 → o4 given by

E11 −E22 �→ −F11 − F22, E12 �→ F−2,1, E21 �→ F1,−2,

and
E ′

11 −E ′
22 �→ F11 − F22, E ′

12 �→ F−2,−1, E ′
21 �→ F−1,−2,

where the primes indicate the basis elements of the second copy of sl2. Applying
the homomorphism Y(gl2) → U(sl2) used in the proof of Corollary 4.7, we get a
homomorphism Y(gl2) ⊗ Y(gl2) → U(o4) such that

T11(u) �→ 1 − F11 + F22

2
u−1, T12(u) �→ F−2,1 u

−1,

T22(u) �→ 1 +
F11 + F22

2
u−1, T21(u) �→ F1,−2 u

−1

and

T ′
11(u) �→ 1 +

F11 − F22

2
u−1, T ′

12(u) �→ F−2,−1 u
−1,

T ′
22(u) �→ 1 − F11 − F22

2
u−1, T ′

21(u) �→ F−1,−2 u
−1.

Using the isomorphism of Proposition 4.8 we get a homomorphism X(o4) → U(o4).
It remains to verify that the resulting formulas for the images of tij(u) agree with
(4.29). This can be done by an easy straightforward calculation. For instance, for
the image of t−2,−2(u) we calculate

t−2,−2(u) �→ T11(u)T ′
11(u) �→

(
1 − F11 + F22

2
u−1

)(
1 +

F11 − F22

2
u−1

)
= 1 + F−2,−2 u

−1 +
F 2
−2,−2 − F 2

−1,−1

4
u−2.

(4.30)

On the other hand, formula (4.29) gives

t−2,−2(u) �→ 1 + F−2,−2 u
−1 +

F 2
−2,−2 + F−2,−1F−1,−2 + F−2,1F1,−2 − F−2,−2 − c

2u2

which agrees with (4.30). All the remaining cases are verified by a similar calcula-
tion. Obviously, the homomorphism (4.29) is surjective. �

Remark 4.13. The respective compositions of the evaluation homomorphisms pro-
vided by Corollaries 4.3, 4.7 and 4.12 with the shift automorphism τa given by
(2.22) yields the homomorphisms eva = ev ◦ τa with the evaluation parameter a.

�
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5. Representations of the extended Yangians

Here we introduce the highest weight representations for the extended Yangians
X(a), where as before, a = o2n+1, sp2n or o2n. We show by a standard argument
that finite-dimensional irreducible representations of X(a) are highest weight rep-
resentations. Then we give necessary and sufficient conditions for the irreducible
highest weight representations to be finite-dimensional. In particular, we obtain
an alternative proof of Drinfeld’s classification theorem for the finite-dimensional
irreducible representations of the Yangians Y(a).

5.1. Highest weight representations

A representation V of the algebra X(a) is called a highest weight representation if
there exists a nonzero vector ξ ∈ V such that V is generated by ξ,

tij(u) ξ = 0 for −n � i < j � n, and

tii(u) ξ = λi(u) ξ for −n � i � n,
(5.1)

for some formal series

λi(u) = 1 + λ
(1)
i u−1 + λ

(2)
i u−2 + · · · , λ

(r)
i ∈ C, (5.2)

where the value i = 0 only occurs in the case a = o2n+1. The vector ξ is called the
highest vector of V and the tuple λ(u) = (λ−n(u), . . . , λn(u)) of the formal series
is the highest weight of V .

Let us identify the elements Fij ∈ a with their images in X(a) under the
embedding (3.22). The defining relations (2.19) imply

[t(1)ij , tkl(u)] = δkj til(u) − δil tkj(u) − δk,−i θij t−j,l(u) + δl,−j θij tk,−i(u).

Also, due to (2.28) we have

t
(1)
ij + θij t

(1)
−j,−i = δij z1.

Therefore, Fij = t
(1)
ij − δij z1/2. Since z1 is central in X(a), this gives

[Fij , tkl(u)] = δkj til(u) − δil tkj(u) − δk,−i θij t−j,l(u) + δl,−j θij tk,−i(u). (5.3)

Take the linear span of the elements F11, . . . , Fnn as the Cartan subalgebra
h of a and consider the standard triangular decomposition of a. Then the nonzero
elements Fij with i < j are the positive root vectors. The corresponding positive
roots are

−εi − εj , εi − εj with 1 � i < j � n

for a = o2n,

−2 εi with 1 � i � n and − εi − εj , εi − εj with 1 � i < j � n

for a = sp2n, and

−εi with 1 � i � n and − εi − εj , εi − εj with 1 � i < j � n

for a = o2n+1, where εi denotes the element of h∗ defined by εi(Fjj) = δij . The
standard partial ordering on the set of weights of any a-module is now defined
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as follows. If α and β are two weights, then α precedes β if β − α is a Z+-linear
combination of the positive roots.

Theorem 5.1. Every finite-dimensional irreducible representation V of the algebra
X(a) is a highest weight representation. Moreover, V contains a unique, up to a
constant factor, highest vector.

Proof. Introduce the subspace V 0 of V by

V 0 = {η ∈ V | tij(u) η = 0, −n � i < j � n}. (5.4)

We show first that V 0 is nonzero. Consider the set of weights of V , where V is
regarded as the a-module defined via the embedding (3.22). This set is finite and
hence contains a maximal weight ν with respect to the partial ordering on the set
of weights of V . The corresponding weight vector η belongs to V 0. Indeed, if i < j
then by (5.3) the weight of tij(u) η has the form ν + α for a positive root α. By
the maximality of ν, we have tij(u) η = 0.

Next, we show that all the operators tkk(u) preserve the subspace V 0. Con-
sider first the case a = o2n+1. In the following argument we write ≡ for an equality
of operators in V 0. Due to (5.3), it suffices to show that for any i and k we have

ti,i+1(u) tkk(v) ≡ 0. (5.5)

Suppose first that i < k. Then (5.5) is immediate from (2.19) except for the cases
i = −k and i = −k − 1. In the former case, we have k > 0 and so (2.19) gives

t−k,−k+1(u) tkk(v) ≡ − 1
u− v − κ

n∑
p=k

t−p,−k+1(u) tpk(v), (5.6)

while for each p � k,

t−p,−k+1(u) tpk(v) ≡ − 1
u− v − κ

n∑
q=k

t−q,−k+1(u) tqk(v).

Hence, t−p,−k+1(u) tpk(v) ≡ t−k,−k+1(u) tkk(v). So, (5.6) implies(
1 +

n− k + 1
u− v − κ

)
t−k,−k+1(u) tkk(v) ≡ 0

and thus, t−k,−k+1(u) tkk(v) ≡ 0 verifying (5.5).
Similarly, in the case i = −k − 1 we have k � 0 and so

t−k−1,−k(u) tkk(v) ≡ 1
u− v − κ

n∑
p=k+1

tkp(v) t−k−1,−p(u). (5.7)

For each p � k + 1 we have

tkp(v) t−k−1,−p(u) ≡ −[t−k−1,−p(u), tkp(v)]

≡ − 1
u− v − κ

n∑
q=k+1

tkq(v) t−k−1,−q(u).
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Therefore, tkp(v) t−k−1,−p(u) ≡ −t−k−1,−k(u) tkk(v). So, (5.7) gives(
1 +

n− k

u− v − κ

)
t−k−1,−k(u) tkk(v) ≡ 0

implying (5.5) in the case under consideration.
Suppose now that i � k. We can write

ti,i+1(u) tkk(v) ≡ −[tkk(v), ti,i+1(u)].

Now (5.5) is immediate from (2.19) except for the cases i = −k and i = −k − 1.
In the former case, we have k � 0 and so (2.19) gives

t−k,−k+1(u) tkk(v) ≡ 1
v − u− κ

n∑
p=−k+1

t−p,k(v) tp,−k+1(u), (5.8)

while for each p � −k + 1,

t−p,k(v) tp,−k+1(u) ≡ − 1
v − u− κ

n∑
q=−k+1

t−q,k(v) tq,−k+1(u).

Hence, t−p,k(v) tp,−k+1(u) ≡ −t−k,−k+1(u) tkk(v). So, (5.8) implies(
1 +

n+ k

v − u− κ

)
t−k,−k+1(u) tkk(v) ≡ 0

verifying (5.5).
Finally, let i = −k − 1. Then k < 0 and

t−k−1,−k(u) tkk(v) ≡ −[tkk(v), t−k−1,−k(u)]

≡ − 1
v − u− κ

n∑
p=−k

t−k−1,p(u) tk,−p(v). (5.9)

For each p � −k we have

t−k−1,p(u) tk,−p(v) ≡ −[tk,−p(v), t−k−1,p(u)]

≡ − 1
v − u− κ

n∑
q=−k

t−k−1,q(u) tk,−q(v).

Therefore, t−k−1,p(u) tk,−p(v) ≡ t−k−1,−k(u) tkk(v). So, (5.9) gives(
1 +

n+ k + 1
v − u− κ

)
t−k−1,−k(u) tkk(v) ≡ 0

completing the proof of (5.5).
For the Lie algebras a = sp2n and o2n the argument is essentially the same

as in the previous case. If a = sp2n, then due to (5.3), it suffices to show that (5.5)
holds for i ∈ {−n, . . . ,−2, 1, . . . , n− 1} and all k, together with the relation

t−1,1(u) tkk(v) ≡ 0. (5.10)
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This relation is immediate from (2.19) for k > 1 and k < −1; for the latter we
apply (2.19) to the commutator [tkk(v), t−1,1(u)]. If k = 1 or k = −1 then the
claim is verified by a calculation similar to the cases (5.6) and (5.8), respectively.

If a = o2n, then it is sufficient to verify (5.5) for i ∈ {−n, . . . ,−2, 1, . . . , n−1}
and all k, together with the relations (5.10) and t−1,2(u) tkk(v) ≡ 0. The calculation
is again a repetition of the one for a = o2n+1.

Now we verify that all the operators t(r)i i on the space V 0 with i ∈ {−n, . . . , n}
and r � 1 comprise a commutative family. First of all, by (2.19) we have
[tii(u), tii(v)] = 0 for any i 
= 0. Furthermore, for any i < j such that i+ j 
= 0 we
have

(u− v) [tii(u), tjj(v)] = tji(u) tij(v) − tji(v) tij(u)
and so, [tii(u), tjj(v)] ≡ 0 as operators on V 0. Next, for any 0 � i � j set

Aij = t−j,−i(u) tji(v) − tij(v) t−i,−j(u),

where the value i = 0 only occurs in the case a = o2n+1. By (2.19), we get

A00 ≡ 1
u− v

A00 −
1

u− v − κ

n∑
j=0

A0j , (5.11)

and for any i > 0

Aii ≡ − 1
u− v − κ

n∑
j=i

Aij , (5.12)

as operators on V 0, while for 0 � i < j we have

Aij ≡ − 1
u− v − κ

n∑
k=i

Aik − 1
u− v − κ

n∑
l=j

Ajl.

This implies
Aij ≡ Aii −Ajj

for 0 < i < j, and

A0j =
u− v − 1
u− v

A00 −Ajj

for j > 0. Hence, (5.12) gives(
1 +

n− i+ 1
u− v − κ

)
Aii −

1
u− v − κ

n∑
j=i+1

Ajj ≡ 0,

thus proving that Aii = [t−i,−i(u), tii(v)] ≡ 0 for all i > 0 by an obvious induction.
Moreover, in the case a = o2n+1, we derive from (5.11) that A00 = [t00(u), t00(v)]
≡ 0.

Since the operators t(r)i i on V 0 are pairwise commuting, they have a simulta-
neous eigenvector ξ ∈ V 0. Then ξ satisfies the conditions (5.1). Moreover, since V
is irreducible, the submodule X(a) ξ must coincide with V so that V is a highest
weight module over X(a). In particular, ξ is an a-weight vector with a certain
weight ν.
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Finally, since the central elements zr act on V as scalar operators, Corol-
lary 3.10 implies that the vector space V is spanned by the elements

t
(r1)
j1i1

. . . t
(rm)
jmim

ξ, m � 0,

with ja > ia and ra � 1. Hence, by (5.3) the a-weight space Vν is one-dimensional
and spanned by the vector ξ. Moreover, if ρ is a weight of V and ρ 
= ν then
ρ strictly precedes ν. This proves that the highest vector ξ of V is determined
uniquely, up to a constant factor. �

Given any tuple λ(u) = (λ−n(u), . . . , λn(u)) of formal series of the form
(5.2), we define the Verma module M(λ(u)) as the quotient of X(a) by the left
ideal generated by all the coefficients of the series tij(u) with −n � i < j � n,
and tii(u) − λi(u) for i = −n, . . . , n. As we shall see below, the Verma module
M(λ(u)) can be trivial for some λ(u). In the non-trivial case, the Verma module
M(λ(u)) is a highest weight representation of X(a) with the highest weight λ(u)
and the highest vector 1λ which is the canonical image of the element 1 ∈ X(a).
Moreover, any highest weight representation of X(a) with the highest weight λ(u)
is isomorphic to a quotient of M(λ(u)). Regarding M(λ(u)) as an a-module, we
obtain the weight space decomposition

M(λ(u)) =
⊕

ν

M(λ(u))ν ,

summed over all a-weights ν = (ν1, . . . , νn) of M(λ(u)), where

M(λ(u))ν = {η ∈M(λ(u)) | Fii η = νi η, i = 1, . . . , n}.
By (5.3), the set of weights of M(λ(u)) coincides with that of the a-Verma module
with the highest weight λ(1) = (λ(1)

1 , . . . , λ
(1)
n ). This set consists of all weights of

the form λ(1) − ω , where ω is a Z+-linear combination of the positive roots.
One easily shows that any submodule K of a non-trivial Verma module

M(λ(u)) admits the weight space decomposition

K =
⊕

ν

Kν , Kν = K ∩M(λ(u))ν .

This implies that the sum of all proper submodules is the unique maximal proper
submodule of M(λ(u)). The irreducible highest weight representation L(λ(u)) of
X(a) with the highest weight λ(u) is defined as the quotient of the Verma module
M(λ(u)) by the unique maximal proper submodule.

Proposition 5.2. Let V be a highest weight representation of X(a) with the high-
est weight λ(u) = (λ−n(u), . . . , λn(u)) with some series (5.2). Then the coeffi-
cients of the series z(u) act on V as scalar operators determined by z(u)|V =
λ−n(u+ κ)λn(u).

Proof. Let ξ be the highest vector of V . Then V = X(a) ξ so that z(u) acts on V
as a scalar function determined by its action on ξ. However, taking k = l = n in
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(2.28) we get

z(u) =
n∑

i=−n

θni t−i,−n(u+ κ) tin(u). (5.13)

Therefore, z(u) ξ = λ−n(u+ κ)λn(u) ξ. �
5.2. Representations of low rank Yangians

Using the results on representations of the Yangian Y(gl2) (Tarasov [25, 26]; see
also [7, Chapter 12], [16]), and the isomorphisms constructed in Section 4, we
describe here the finite-dimensional irreducible representations of the extended
Yangians X(o3), X(sp2) and X(o4). For the sake of completeness, we also reproduce
a simplified version of Tarasov’s classification theorem for the representations of
Y(gl2); cf. [16].

We shall use the notation for the generators of Y(gl2) introduced in Section 4.
A representation L of the Yangian Y(gl2) is called a highest weight representation
if there exists a nonzero vector ζ ∈ L such that L is generated by ζ and the
following relations hold

T12(u) ζ = 0 and (5.14)

Tii(u) ζ = μi(u) ζ for i = 1, 2. (5.15)

for some formal series

μi(u) = 1 + μ
(1)
i u−1 + μ

(2)
i u−2 + · · · , μ

(r)
i ∈ C. (5.16)

The vector ζ is called the highest vector of L, and the pair μ(u) =
(
μ1(u), μ2(u)

)
is the highest weight of L. A standard argument, similar to the one used in
Section 5.1 (see, e.g., [16]), shows that every finite-dimensional irreducible rep-
resentation of Y(gl2) is a highest weight representation. Given any pair of series
μ(u) =

(
μ1(u), μ2(u)

)
, the corresponding Verma module M(μ(u)) for Y(gl2) is the

quotient of Y(gl2) by the left ideal generated by all the coefficients of the series
T12(u) and Tii(u) − μi(u) for i = 1, 2. When the components of μ(u) satisfy the
condition μ1(u)μ2(u − 1) = 1 then M(μ(u)) may also be regarded as a module
over the Yangian Y(sl2).

The Y(gl2)-moduleM(μ(u)) has a unique irreducible quotient L(μ(u)). Thus,
any finite-dimensional irreducible representation of Y(gl2) is isomorphic to L(μ(u))
for a pair μ(u) =

(
μ1(u), μ2(u)

)
. It remains to describe the highest weights μ(u)

which correspond to finite-dimensional modules L(μ(u)). This is given by the fol-
lowing theorem due to Tarasov [25, 26] in Drinfeld’s version [12].

Theorem 5.3. The irreducible highest weight representation L(μ(u)) of Y(gl2) is
finite-dimensional if and only if there exists a monic polynomial P (u) in u such
that

μ1(u)
μ2(u)

=
P (u+ 1)
P (u)

. (5.17)

In this case, P (u) is unique.

Proof. We shall need the following lemma.
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Lemma 5.4. If dimL(μ(u)) <∞ then there exists a formal series

f(u) = 1 + f1u
−1 + f2u

−2 + · · · , fr ∈ C,

such that f(u)μ1(u) and f(u)μ2(u) are polynomials in u−1.

Proof. By twisting the action of Y(gl2) on L(μ(u)) by the automorphism (4.11)
with g(u) = μ2(u)−1, we obtain a module over Y(gl2) which is isomorphic to the
irreducible highest weight representation L(ν(u), 1) with ν(u) = μ1(u)/μ2(u). So,
we may assume without loss of generality that the highest weight of L(μ(u)) has
the form μ(u) = (ν(u), 1). Let ζ denote the highest vector of the Verma module
M(ν(u), 1). Since dimL(ν(u), 1) < ∞, the vectors T (i)

21 ζ ∈ M(ν(u), 1) with i � 1
are linearly dependent modulo the maximal proper submodule K of M(ν(u), 1).
Hence, M(ν(u), 1) contains a nonzero vector ξ ∈ K of the form

ξ =
m∑

i=1

ci T
(i)
21 ζ, ci ∈ C.

Here m is a positive integer and we may assume that cm 
= 0. Then we have
T

(r)
12 ξ = 0 for all r � 1 because otherwise the highest vector ζ would belong to K.

Write
ν(u) = 1 + ν(1)u−1 + ν(2)u−2 + · · · , ν(i) ∈ C.

By the defining relations (4.2), in M(ν(u), 1) we have

T
(r)
12 T

(i)
21 ζ =

min(r,i)∑
a=1

(
T

(a−1)
22 T

(r+i−a)
11 − T

(r+i−a)
22 T

(a−1)
11

)
ζ = ν(r+i−1) ζ.

Hence, for all r � 1 we have the relations
m∑

i=1

ci ν
(r+i−1) = 0.

They imply

ν(u)(c1 + c2u+ · · · + cmu
m−1) = (b1 + b2u+ · · · + bmu

m−1)

for some coefficients bi ∈ C with bm = cm. Thus, taking now

f(u) = c−1
m

m∑
i=1

ci u
−m+i

we conclude that both f(u)ν(u) and f(u)1 are polynomials in u−1. �

Thus, taking the composition of the representation of Y(gl2) on L(μ(u))
with an appropriate automorphism of the form (4.11), we can get another highest
weight representation of Y(gl2) where both components of the highest weight are
polynomials in u−1.
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For any α, β ∈ C consider the irreducible highest weight representation
L(α, β) of the Lie algebra gl2 and equip it with a Y(gl2)-module structure via
the evaluation homomorphism (4.10). Let ζ denote the highest vector of L(α, β).
Then

E11 ζ = α ζ, E22 ζ = β ζ, E12 ζ = 0.

Moreover, if α − β ∈ Z+ then the vectors (E21)rζ with r = 0, 1, . . . , α − β form
a basis of L(α, β) so that dimL(α, β) = α − β + 1. If α − β /∈ Z+ then a basis
of L(α, β) is formed by the vectors (E21)rζ, where r runs over all nonnegative
integers.

Now let μ1(u) and μ2(u) be polynomials in u−1 of degree not more than k.
Write the decompositions

μ1(u) = (1 + α1u
−1) . . . (1 + αku

−1),

μ2(u) = (1 + β1u
−1) . . . (1 + βku

−1),
(5.18)

where the constants αi and βi are complex numbers (some of them are zero if the
degree of the corresponding polynomial is strictly less than k).

For any Y(gl2)-modules L1 and L2, their tensor product L1 ⊗L2 is equipped
with a Y(gl2)-module structure defined by the coproduct (4.7).

Lemma 5.5. Re-number the parameters αi and βi if necessary, so that for every
index i = 1, . . . , k − 1 the following condition holds: if the multiset {αp − βq | i �
p, q � k} contains nonnegative integers, then αi − βi is minimal amongst them.
Then the representation L(μ1(u), μ2(u)) of Y(gl2) is isomorphic to the tensor
product module

L(α1, β1) ⊗ L(α2, β2) ⊗ · · · ⊗ L(αk, βk). (5.19)

Proof. Let us denote the module (5.19) by L and let ζi be the highest vector
of L(αi, βi) for i = 1, . . . , k. Using the definition of the coproduct on Y(gl2) we
derive that the cyclic span Y(gl2)ζ of the vector ζ = ζ1 ⊗ · · · ⊗ ζk is a highest
weight module with the highest weight (μ1(u), μ2(u)). Therefore, the proposition
will follow if we prove that the module L is irreducible.

We claim that any vector ξ ∈ L satisfying T12(u)ξ = 0 is proportional to ζ.
We shall prove this claim by induction on k. This is obvious for k = 1 so suppose
that k � 2. Write any such vector ξ, which is assumed to be nonzero, in the form

ξ =
p∑

r=0

(E21)rζ1 ⊗ ξr where ξr ∈ L(α2, β2) ⊗ · · · ⊗ L(αk, βk)

and p is some non-negative integer. Moreover, if α1 − β1 ∈ Z+ then we may and
will assume that p � α1 − β1. We also assume that ξp 
= 0. Applying T12(u) to ξ,
with the use of (4.7) we get

p∑
r=0

(
T11(u)(E21)rζ1 ⊗ T12(u)ξr + T12(u)(E21)rζ1 ⊗ T22(u)ξr

)
= 0. (5.20)
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Using the definition of the Yangian action on L(α1, β1) and commutation relations
in gl2, we obtain

T11(u)(E21)rζ1 = (1 +E11u
−1)(E21)rζ1 = (1 + (α1 − r)u−1)(E21)rζ1,

and

T12(u)(E21)rζ1 = u−1E12 (E21)rζ1 = u−1 r(α1 − β1 − r + 1)(E21)r−1ζ1.

Hence, taking the coefficient at (E21)pζ1 in (5.20) gives

(1 + (α1 − p)u−1)T12(u)ξp = 0,

implying the relation T12(u)ξp = 0. By the induction hypothesis, applied to the
Y(gl2)-module L(α2, β2) ⊗ · · · ⊗ L(αk, βk), the vector ξp must be proportional to
ζ2 ⊗ · · · ⊗ ζk . Therefore, using (4.7) we get

T22(u)ξp = (1 + β2u
−1) . . . (1 + βku

−1)ξp. (5.21)

In order to complete the proof of the claim it now suffices to show that p must
be equal to zero. Suppose by way of contradiction that p � 1. Then taking the
coefficient at (E21)p−1ζ1 in (5.20) we derive

(1 + (α1 − p+ 1)u−1)T12(u)ξp−1 + u−1 p(α1 − β1 − p+ 1)T22(u)ξp = 0.

Hence, multiplying by uk and taking into account (5.21) we get

(u+ α1 − p+ 1)uk−1T12(u)ξp−1 + p(α1 − β1 − p+ 1)(u+ β2) . . . (u+ βk)ξp = 0.

Now observe that the vector uk−1T12(u)ξp−1 depends on u polynomially. This
follows by an easy induction with the use of (4.7). So, taking the value u =
−α1 + p− 1 we obtain the relation

p(α1 − β1 − p+ 1)(α1 − β2 − p+ 1) . . . (α1 − βk − p+ 1) = 0.

But this is impossible due to the conditions on the parameters αi and βi. Thus, p
must be zero and the claim follows.

Suppose now that M is a nonzero submodule of L. Then M must contain a
nonzero vector ξ such that T12(u)ξ = 0. Indeed, this follows from the fact that the
set of gl2-weights of L has an upper boundary. The above argument thus shows
that M contains the vector ζ. It remains to prove that the cyclic span K = Y(gl2)ζ
coincides with L.

Denote by κ the anti-automorphism of the algebra Y(gl2), defined by

κ : tij(u) �→ t3−i,3−j(−u). (5.22)

Consider the vector space L∗ dual to L. That is, L∗ is spanned by all linear maps
σ : L → C satisfying the condition that the linear span of the vectors η ∈ L such
that σ(η) 
= 0, is finite-dimensional. Equip L∗ with a Y(gl2)-module structure by
setting

(y σ)(η) = σ(κ(y) η) for y ∈ Y(gl2) and σ ∈ L∗, η ∈ L.
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It is easy to see that the dual module L(α, β)∗ to the evaluation module L(α, β)
is isomorphic to L(−β,−α). Moreover, the Y(gl2)-module L∗ is isomorphic to the
tensor product module

L(−β1,−α1) ⊗ · · · ⊗ L(−βk,−αk).

This is deduced from the fact that the anti-automorphism κ commutes with the
coproduct Δ, where κ is extended to Y(gl2) ⊗ Y(gl2) by κ(x⊗ y) = κ(x) ⊗ κ(y)
for x, y ∈ Y(gl2). Furthermore, the highest vector ζ∗i of the module L(−βi,−αi) ∼=
L(αi, βi)∗ can be identified with the element of L(αi, βi)∗ such that ζ∗i (ζi) = 1 and
ζ∗i (ηi) = 0 for all weight vectors ηi ∈ L(αi, βi) whose weights are different from
(αi, βi).

Suppose now that the submoduleK of L is proper and consider its annihilator

AnnK = {ξ∗ ∈ L∗ | ξ∗(η) = 0 for all η ∈ K}.

Then AnnK is a nonzero submodule of L∗, which does not contain the vector
ζ∗1 ⊗ · · · ⊗ ζ∗k . However, this contradicts the claim verified in the first part of the
proof, because the condition on the parameters αi and βi remain satisfied after we
replace each αi by −βi and each βi by −αi. �

By this lemma, all differences αi − βi must be nonnegative integers because
the representation L(λ1(u), λ2(u)) is finite-dimensional. Then the polynomial

P (u) =
k∏

i=1

(u+ βi)(u+ βi + 1) . . . (u+ αi − 1) (5.23)

obviously satisfies (5.17).
Conversely, suppose (5.17) holds for a polynomial P (u) = (u+γ1) . . . (u+γp).

Set
ν1(u) = (1 + (γ1 + 1)u−1) . . . (1 + (γp + 1)u−1),

ν2(u) = (1 + γ1u
−1) . . . (1 + γpu

−1),

and consider the tensor product module

L = L(γ1 + 1, γ1) ⊗ L(γ2 + 1, γ2) ⊗ · · · ⊗ L(γp + 1, γp)

of Y(gl2). Obviously, this module is finite-dimensional. The cyclic Y(gl2)-span of
the tensor product of the highest vectors of L(γi +1, γi) is a highest weight module
with the highest weight (ν1(u), ν2(u)). Since this submodule is finite-dimensional,
then so is its irreducible quotient L(ν1(u), ν2(u)). Since

ν1(u)
ν2(u)

=
μ1(u)
μ2(u)

,

there exists an automorphism of Y(gl2) of the form (4.11) such that its composition
with the representation L(ν1(u), ν2(u)) is isomorphic to L(μ1(u), μ2(u)). Thus, the
latter is also finite-dimensional.
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Finally, suppose that Q(u) is another monic polynomial in u and
P (u+ 1)
P (u)

=
Q(u+ 1)
Q(u)

.

This means that the ratio P (u)/Q(u) is periodic in u which is only possible for
P (u) = Q(u). �

The polynomial P (u) is called the Drinfeld polynomial of the representation
L(μ(u)).

We now apply Theorem 5.3 to the low rank extended Yangians.

Corollary 5.6. The Verma module M(λ(u)) over X(sp2) is non-trivial for any
highest weight λ(u) = (λ−1(u), λ1(u)). Moreover, the X(sp2)-module L(λ(u)) is
finite-dimensional if and only if there exists a monic polynomial P (u) in u such
that

λ−1(u)
λ1(u)

=
P (u+ 2)
P (u)

. (5.24)

In this case, P (u) is unique.

Proof. This is immediate from Proposition 4.1 and Theorem 5.3. �
The evaluation homomorphism provided by Corollary 4.3 allows one to re-

gard any irreducible sp2-module V (μ) as an X(sp2)-module. The corresponding
evaluation module is immediately identified with an irreducible highest weight
module.

Proposition 5.7. The evaluation module V (μ) over X(sp2) is isomorphic to L(λ(u))
with

λ−1(u) = 1 − μ1 u
−1 and λ1(u) = 1 + μ1 u

−1. �
Corollary 5.8. The Verma module M(λ(u)) over X(o3) is non-trivial if and only
if the highest weight λ(u) =

(
λ−1(u), λ0(u), λ1(u)

)
satisfies the condition

λ−1(u− 1/2)λ1(u) = λ0(u− 1/2)λ0(u). (5.25)

Moreover, if this condition holds then the X(o3)-module L(λ(u)) is finite-dimen-
sional if and only if there exists a monic polynomial P (u) in u such that

λ0(u)
λ1(u)

=
P (u+ 1/2)

P (u)
. (5.26)

In this case, P (u) is unique.

Proof. Let the Verma module M(λ(u)) be non-trivial. By Proposition 4.4, we may
regard M(λ(u)) as a Y(gl2)-module. In particular, we have

T11(2u)T11(2u+ 1) 1λ = λ−1(u) 1λ,

where 1λ is the highest vector of M(λ(u)). This implies that 1λ is an eigenvector
for T11(u), that is, T11(u) 1λ = μ1(u) 1λ for a certain series μ1(u). Moreover, this
series satisfies

μ1(2u)μ1(2u+ 1) = λ−1(u). (5.27)
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Similarly, T22(u) 1λ = μ2(u) 1λ for a series μ2(u) satisfying

μ2(2u)μ2(2u+ 1) = λ1(u). (5.28)

Furthermore, by the defining relations (4.3) we have

T12(2u)T22(2u+ 1) + T22(2u)T12(2u+ 1) = 2T12(2u+ 1)T22(2u).

Since t0,1(u) 1λ = 0 we derive that T12(u) 1λ = 0. Hence, using the action of t0,0(u)
on 1λ we also get

μ1(2u)μ2(2u+ 1) = λ0(u). (5.29)

This gives the condition (5.25).
Conversely, if the condition (5.25) holds for a highest weight λ(u) then there

exist series μ1(u) and μ2(u) satisfying (5.27), (5.28) and (5.29). Consider the Verma
moduleM(μ1(u), μ2(u)) over Y(gl2). Using the formulas of Proposition 4.4, we find
that the highest vector 1μ ∈M(μ1(u), μ2(u)) satisfies the conditions (5.1) for the
action of X(o3).

The argument of the first part of the proof shows that, regarded as a Y(gl2)-
module, the module L(λ(u)) is isomorphic to L(μ1(u), μ2(u)) with μ1(u) and μ2(u)
satisfying (5.27), (5.28) and (5.29). So writing the relation of Theorem 5.3 in terms
of the series λi(u), we get the desired condition. �

The evaluation homomorphism provided by Corollary 4.7 allows one to regard
any irreducible o3-module V (μ) as an X(o3)-module.

Proposition 5.9. The evaluation module V (μ) over X(o3) is isomorphic to L(λ(u))
with

λ−1(u) =
(2u− μ1)(2u− μ1 − 1)

2u (2u− 1)
,

λ0(u) =
(2u+ μ1)(2u− μ1 − 1)

2u (2u− 1)
,

λ1(u) =
(2u+ μ1)(2u+ μ1 − 1)

2u (2u− 1)
.

Proof. This is immediate from Corollary 4.7, as the Casimir element c acts on
V (μ) as multiplication by the scalar (μ2

1 − μ1)/2. �

Corollary 5.10. The Verma module M(λ(u)) over X(o4) is non-trivial if and only
if the highest weight λ(u) =

(
λ−2(u), λ−1(u), λ1(u), λ2(u)

)
satisfies the condition

λ−2(u)λ2(u) = λ−1(u)λ1(u). (5.30)

Moreover, if this condition holds then the X(o4)-module L(λ(u)) is finite-dimen-
sional if and only if there exist monic polynomials P (u) and Q(u) in u such that

λ−1(u)
λ2(u)

=
P (u+ 1)
P (u)

and
λ1(u)
λ2(u)

=
Q(u+ 1)
Q(u)

. (5.31)

In this case, P (u) and Q(u) are determined uniquely.
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Proof. Suppose that the Verma module M(λ(u)) over X(o4) is non-trivial. Using
the isomorphism χ(1) provided by Corollary 4.10, we shall regard M(λ(u)) as a
module over the algebra Y(sl2)⊗Y(gl2). As was seen in the proof of Corollary 4.10,

χ(1) : t−2,−2(u) t1,1(u− 1) − t1,−2(u) t−2,1(u− 1) �→ T ′
11(u)T

′
11(u− 1).

This implies that 1λ is an eigenvector for T ′
11(u), that is, T ′

11(u) 1λ = μ′
1(u) 1λ for

a certain series μ′
1(u). Similarly, T ′

22(u) 1λ = μ′
2(u) 1λ for a series μ′

2(u). Then, by
the formulas of Proposition 4.8, we also have

T11(u) 1λ = μ1(u) 1λ and T22(u) 1λ = μ2(u) 1λ

for some series μ1(u) and μ2(u). Moreover, we have the relations

λ−2(u) = μ1(u)μ′
1(u), λ−1(u) = μ1(u)μ′

2(u),

λ1(u) = μ2(u)μ′
1(u), λ2(u) = μ2(u)μ′

2(u),
(5.32)

which imply (5.30). Conversely, if (5.30) holds for some series λi(u), then there ex-
ist series μi(u) and μ′

i(u) satisfying (5.32) together with the condition μ1(u)μ2(u−
1) = 1. Consider the Y(sl2) ⊗ Y(gl2)-module M(μ1(u), μ2(u)) ⊗M(μ′

1(u), μ
′
2(u)).

The vector 1μ ⊗ 1μ′ satisfies the conditions (5.1) for the action of the series tij(u)
thus proving that the X(o4)-module M(λ(u)) is non-trivial.

Finally, the argument of the first part of the proof shows that, regarded as
a Y(sl2) ⊗ Y(gl2)-module, the module L(λ(u)) is isomorphic to L(μ1(u), μ2(u)) ⊗
L(μ′

1(u), μ
′
2(u)) with the μi(u) and μ′

i(u) satisfying (5.32). By Theorem 5.3, the
module L(μ1(u), μ2(u))⊗L(μ′

1(u), μ
′
2(u)) is finite-dimensional if and only if there

exist monic polynomials P (u) and Q(u) in u such that

μ1(u)
μ2(u)

=
P (u+ 1)
P (u)

and
μ′

1(u)
μ′

2(u)
=
Q(u+ 1)
Q(u)

.

Writing these formulas in terms of the λi(u) we get the desired conditions. �

The evaluation homomorphism provided by Corollary 4.12 allows one to re-
gard any irreducible o4-module V (μ) as an X(o4)-module.

Proposition 5.11. The evaluation module V (μ) over X(o4) is isomorphic to L(λ(u))
with

λ−2(u) =
(2u− μ1 − μ2)(2u+ μ1 − μ2)

4u2
,

λ−1(u) =
(2u− μ1 − μ2)(2u− μ1 + μ2)

4u2
,

λ1(u) =
(2u+ μ1 − μ2)(2u+ μ1 + μ2)

4u2
,

λ2(u) =
(2u− μ1 + μ2)(2u+ μ1 + μ2)

4u2
.

Proof. This follows from Corollary 4.12, as the Casimir element c acts on V (μ) as
multiplication by the scalar (μ2

1 + μ2
2)/2 − μ2. �
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Remark 5.12. More general evaluation modules V (μ)a with a ∈ C over X(a) for a =
sp2, o3 and o4 can be obtained by using the respective evaluation homomorphisms
eva : X(a) → U(a) instead of ev; see Remark 4.13. Then V (μ)a will be isomorphic
to the irreducible highest weight module L(λ(u)), where the components λi(u) are
found from the formulas of Propositions 5.7, 5.9 or 5.11 by replacing u with u−a.

5.3. Classification theorems

Our goal here is to prove classification theorems for the finite-dimensional ir-
reducible representations of the extended Yangians X(a) for a = o2n+1, sp2n,
and o2n. The corresponding theorem for the Yangian Y(slN ) implies that every
finite-dimensional irreducible representation of Y(slN ) is isomorphic to a subquo-
tient of the tensor product of the fundamental representations [12], [7, Chapter 12].
We shall use the following version of the well-known construction of the funda-
mental representations of Y(slN ). They are obtained by restriction from the corre-
sponding representation of Y(glN ) which is obtained by a simple particular case of
the fusion procedure; see, e.g., [9], [20]. The vector space CN carries an irreducible
representation of Y(glN ) with the action of the generators given by

Tij(u) �→ δij + eij u
−1, i, j ∈ {1, . . . , N},

where the eij denote the standard matrix units. So,

Tij(u) ek = δij ek + δjk ei u
−1,

where e1, . . . , eN denote the canonical basis of C
N . Since for any b ∈ C the mapping

Tij(u) �→ Tij(u−b) defines an automorphism of Y(glN ), using the coproduct (4.7),
we can equip the tensor product (CN )⊗m with the action of Y(glN ) by the rule

Tij(u) (ei1 ⊗ · · · ⊗ eim
) =

N∑
a1,...,am−1=1

Tia1(u) ei1 ⊗ Ta1a2(u+ 1) ei2 ⊗ · · · ⊗ Tam−1j(u+m− 1) eim
. (5.33)

For any 1 � m < N set

ξm =
∑

σ∈Sm

sgnσ · eσ(1) ⊗ · · · ⊗ eσ(m) ∈ (CN )⊗m.

Then ξm has the properties

Tij(u) ξm = 0 for all 1 � i < j � N (5.34)

and

Ti i(u) ξm =

⎧⎨⎩
u+m

u+m− 1
ξm if 1 � i � m,

ξm if m+ 1 � i � N.

Thus, the vector ξm generates a highest weight module over Y(glN ) whose irre-
ducible quotient is isomorphic to a fundamental module; see [7, Chapter 12], [16].



1308 D. Arnaudon, A. Molev and E. Ragoucy Ann. Henri Poincaré

Consider the extended Yangian X(a′) for the subalgebra a′ of a of rank n−1.
That is,

a′ = o2n−1, sp2n−2, o2n−2 respectively for a = o2n+1, sp2n, o2n.

Note that X(a′) is not a natural subalgebra of X(a). Let V be an X(a)-module.
Set

V + = {η ∈ V | tk,n(u) η = 0 for k < n and

t−n,k(u) η = 0 for k > −n}.

Lemma 5.13. The subspace V + is stable under all operators tij(u) with the con-
dition −n + 1 � i, j � n − 1. Moreover, these operators form a representation of
the algebra X(a′) on V +, where each operator tij(u) is the image of the generator
series of X(a′) with the same name.

Proof. For any η ∈ V + we have the following relations modulo elements of V +

which are implied by (2.19): if k < n and −n+ 1 � i, j � n− 1 then

tkn(v) tij(u) η ≡ −[tij(u), tkn(v)] η ≡
δk,−i

u− v − κ
θi,−nt−n,j(u) tnn(v) η.

However, applying again (2.19), we find that

t−n,j(u) tnn(v) η ≡ − 1
u− v − κ

t−n,j(u) tnn(v) η.

Therefore, t−n,j(u) tnn(v) η ≡ 0 implying tkn(v) tij(u) η ≡ 0. A similar calculation
shows that for any k > −n and −n+1 � i, j � n−1 we also have t−n,k(v) tij(u) η
≡ 0 proving the first part of the lemma.

In order to prove the second part, suppose that the indices i, j, k, l satisfy the
condition −n+ 1 � i, j, k, l � n− 1. Then by (2.19) for any η ∈ V + we have

[tij(u), tkl(v)] η =
1

u− v

(
tkj(u) til(v) − tkj(v) til(u)

)
η

− 1
u− v − κ

(
δk,−i

n∑
p=−n

θip tpj(u) t−p,l(v) − δl,−j

n∑
p=−n

θjp tk,−p(v) tip(u)
)
η.

Writing the right-hand side modulo V +, we get

1
u− v

(
tkj(u) til(v) − tkj(v) til(u)

)
η

− 1
u− v − κ

(
δk,−i

n−1∑
p=−n+1

θip tpj(u) t−p,l(v) − δl,−j

n−1∑
p=−n+1

θjp tk,−p(v) tip(u)
)
η

− 1
u− v − κ

(
δk,−i θi,−n t−n,j(u) tn,l(v) − δl,−j θj,−n tk,n(v) ti,−n(u)

)
η.
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Applying again (2.19), we obtain

t−n,j(u) tn,l(v) η ≡ − 1
u− v − κ

n−1∑
p=−n+1

θ−n,p tpj(u) t−p,l(v) η

− 1
u− v − κ

(
t−n,j(u) tn,l(v) − δl,−j θj,−n tn,n(v) t−n,−n(u)

)
η.

Hence,

t−n,j(u) tn,l(v) η ≡ − 1
u− v − κ+ 1

n−1∑
p=−n+1

θ−n,p tpj(u) t−p,l(v) η

+
1

u− v − κ+ 1
δl,−j θj,−n tn,n(v) t−n,−n(u) η.

Similarly, tk,n(v) ti,−n(u) η ≡ −[ti,−n(u), tk,n(v)] η and

[ti,−n(u), tk,n(v)] η ≡ − 1
u− v − κ

δk,−i θi,−n t−n,−n(u) tnn(v) η

+
1

u− v − κ

( n−1∑
p=−n+1

θ−n,p tk,−p(v) tip(u) + tk,n(v) ti,−n(u)
)
η

which gives

tk,n(v) ti,−n(u) η ≡ 1
u− v − κ+ 1

δk,−i θi,−n t−n,−n(u) tnn(v) η

− 1
u− v − κ+ 1

n−1∑
p=−n+1

θ−n,p tk,−p(v) tip(u) η.

Combining these expressions, we come to the following relation

[tij(u), tkl(v)] η ≡ 1
u− v

(
tkj(u) til(v) − tkj(v) til(u)

)
η

− 1
u− v − κ+ 1

(
δk,−i

n−1∑
p=−n+1

θip tpj(u) t−p,l(v) − δl,−j

n−1∑
p=−n+1

θjp tk,−p(v) tip(u)
)
η

+
1

(u− v − κ)(u− v − κ+ 1)
δk,−i δl,−j θij [t−n,−n(u), tnn(v)] η.

Finally, by (2.19),

[t−n,−n(u), tnn(v)] η ≡ − 1
u− v − κ

[t−n,−n(u), tnn(v)] η,

so that [t−n,−n(u), tnn(v)] η ≡ 0. This yields the desired relations between the
operators tij(u) on V + since κ−1 = κ′ coincides with the value of the parameter κ
for the Lie algebra a′. �
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Proposition 5.14. The Verma module M(λ(u)) over X(a) is non-trivial if and only
if the components of the highest weight λ(u) satisfy the conditions

λ−n+i−1(u+ κ− i)
λ−n+i(u+ κ− i)

=
λn−i(u)
λn−i+1(u)

(5.35)

for i = 1, . . . , n− 1 if a = o2n or sp2n, and for i = 1, . . . , n if a = o2n+1.

Proof. Suppose first that M(λ(u)) is non-trivial. We use induction on n taking
Corollaries 5.6, 5.8 and 5.10 as the induction base. Let us apply t−n,−n+1(u)
tn,n−1(v) to the highest vector 1λ of M(λ(u)). By (2.19) we have

t−n,−n+1(u) tn,n−1(v) 1λ =

− 1
u− v − κ

(
t−n,−n+1(u) tn,n−1(v) + λ−n+1(u)λn−1(v) − λ−n(u)λn(v)

)
1λ,

which implies

(u− v−κ+ 1) t−n,−n+1(u) tn,n−1(v) 1λ = λ−n(u)λn(v) 1λ −λ−n+1(u)λn−1(v) 1λ.

Putting u = v + κ − 1 and replacing v by u we obtain (5.35) for i = 1. Fur-
thermore, by Lemma 5.13, the subspace M(λ(u))+ of M(λ(u)) is a module over
X(a′). The highest vector 1λ belongs to M(λ(u))+ and generates a highest weight
X(a′)-module with the highest weight (λ−n+1(u), . . . , λn−1(u)). So, the remaining
conditions hold by the induction hypothesis.

Conversely, suppose that λ(u) satisfies the conditions. Consider the left ideal I
of the algebra X(a) generated by the coefficients of the series tij(u) with i < j
where i + j > 0 or i + j � 0 for the orthogonal or symplectic case, respectively;
and by the coefficients of the series tii(u) − λi(u) for i = 1, . . . , n and z(u) −
λ−n(u + κ)λn(u). By Corollary 3.10, the quotient M̃(λ(u)) = X(a)/I is non-
trivial. Let 1λ be the image of 1 ∈ X(a) in the quotient. It suffices to verify that
the vector 1λ satisfies all the conditions (5.1). Now we use Corollary 3.10 again.
Let us choose the total ordering on the elements t(r)ij and zr with the conditions on

the indices as in the statement of the corollary, in such a way that any element t(r)ij

with i > j precedes any element t(s)kk while the latter precedes any element of
the form t

(r)
ij with i < j. We shall regard X(a) as the adjoint a-module with the

action defined on the generators by (5.3). For any pair k < l and any r � 1 write
the element t(r)kl as a linear combination of the ordered monomials. The a-weight
of each of the monomials coincides with the a-weight of t(r)kl . Then the relation
t
(r)
kl 1λ = 0 follows because the vector 1λ is annihilated by any monomial occurring

in the combination. The same argument shows that 1λ is an eigenvector for the
action of any element t(s)kk . Thus, the X(a)-module M̃(λ(u)) is a Verma module
M(λ̃(u)). It remains to verify that its highest weight λ̃(u) coincides with λ(u).
This holds for the components of λ̃(u) with positive subscripts by the definition
of M̃(λ(u)). Furthermore, since z(u) 1λ = λ−n(u+κ)λn(u) 1λ, (5.13) implies that
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t−n,−n(u) 1λ = λ−n(u) 1λ. So, λ̃−n(u) = λ−n(u). By the first part of the proof,
since the Verma module M(λ̃(u)) is non-trivial, the conditions (5.35) must hold
for the components of λ̃(u). This shows that λ̃(u) = λ(u), and thus M(λ(u)) is
non-trivial. �

Corollary 5.15. The irreducible highest weight module L(λ(u)) over X(a) exists if
and only if the conditions (5.35) hold.

Proof. If L(λ(u)) exists then the conditions (5.35) are derived by repeating the
argument of the first part of the proof of Proposition 5.14. Conversely, if the
conditions hold then the Verma moduleM(λ(u)) is non-trivial by Proposition 5.14.
Therefore, the irreducible quotient L(λ(u)) of M(λ(u)) exists. �

We are now in a position to prove the classification theorem for finite-dimen-
sional irreducible representations of the extended Yangian X(a).

Theorem 5.16. Every finite-dimensional irreducible X(a)-module is isomorphic to
L(λ(u)) where λ(u) satisfies the conditions (5.35) and there exist monic polyno-
mials P1(u), . . . , Pn(u) in u such that

λi−1(u)
λi(u)

=
Pi(u+ 1)
Pi(u)

, for i = 2, . . . , n (5.36)

and also
λ0(u)
λ1(u)

=
P1(u+ 1/2)

P1(u)
, if a = o2n+1,

λ−1(u)
λ1(u)

=
P1(u+ 2)
P1(u)

, if a = sp2n,

λ−1(u)
λ2(u)

=
P1(u+ 1)
P1(u)

, if a = o2n.

Conversely, if (5.35) and the above conditions on the highest weight λ(u) are
satisfied then L(λ(u)) exists and has finite dimension.

The polynomials P1(u), . . . , Pn(u) are called the Drinfeld polynomials corre-
sponding to the finite-dimensional representation L(λ(u)).

Proof. Due to Theorem 5.1, every finite-dimensional irreducible X(a)-module is
isomorphic to L(λ(u)) for some highest weight λ(u). Then λ(u) must satisfy (5.35)
by Corollary 5.15 since L(λ(u)) exists. Now we argue by induction on n taking
Corollaries 5.6, 5.8 and 5.10 as the induction base. Observe that if n � 2 then by
(2.19), the mapping

Tij(u) �→ ti+n−2,j+n−2(u), i, j ∈ {1, 2}
defines a homomorphism Y(gl2) → X(a). So, L(λ(u)) can be regarded as a Y(gl2)-
module. The highest vector 1λ ∈ L(λ(u)) then satisfies

T11(u) 1λ = λn−1(u) 1λ, T22(u) 1λ = λn(u) 1λ, T12(u) 1λ = 0.
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Since the cyclic span Y(gl2) 1λ is finite-dimensional, we derive from Theorem 5.3
that there exists a monic polynomial Pn(u) such that (5.36) holds for i = n.
Furthermore, by Lemma 5.13, the subspace L(λ(u))+ is a module over X(a′). The
highest vector 1λ belongs to L(λ(u))+ and generates a highest weight X(a′)-module
with the highest weight (λ−n+1(u), . . . , λn−1(u)). Since the cyclic span X(a′) 1λ is
finite-dimensional, the remaining conditions on the λi(u) hold by the induction
hypothesis.

Suppose now that the highest weight λ(u) satisfies the given conditions. Then
L(λ(u)) exists by Corollary 5.15. We need to show that dimL(λ(u)) <∞. Observe
that the n-tuple of Drinfeld polynomials corresponding to an X(a)-module L(λ(u))
determines the highest weight λ(u) up to a simultaneous multiplication of all
components λi(u) by a series f(u) ∈ 1 + u−1

C[[u−1]]. On the other hand, the
composition of the action of X(a) on L(λ(u)) with the automorphism (2.21) yields
a representation of X(a) isomorphic to L(λ′(u)), where the components of λ′(u)
are given by λ′i(u) = f(u)λi(u). Therefore, it suffices to prove that a particular
module L(λ(u)) corresponding to an arbitrary n-tuple of Drinfeld polynomials is
finite-dimensional.

We shall use the coproduct (2.24) to equip the tensor product of two X(a)-
modules with an X(a)-module structure.

Lemma 5.17. Let L(λ(u)) and L(μ(u)) be two irreducible highest weight modules
over X(a) with

λ(u) = (λ−n(u), . . . , λn(u)) and μ(u) = (μ−n(u), . . . , μn(u)).

Then the tensor product 1λ ⊗ 1μ of the highest vectors of L(λ(u)) and L(μ(u))
generates a highest weight submodule V over X(a) in L(λ(u)) ⊗ L(μ(u)) with the
highest weight

(λ−n(u)μ−n(u), . . . , λn(u)μn(u)). (5.37)
Moreover, if the modules L(λ(u)) and L(μ(u)) are finite-dimensional with the cor-
responding n-tuples of Drinfeld polynomials (P1(u), . . . , Pn(u)) and (Q1(u), . . . ,
Qn(u)), respectively, then the n-tuple of Drinfeld polynomials corresponding to the
irreducible quotient of V is (P1(u)Q1(u), . . . , Pn(u)Qn(u)).

Proof. It follows easily from (2.24) that the vector ξ = 1λ ⊗ 1μ satisfies (5.1) with
the highest weight (5.37). The second statement now follows from the relations
defining the Drinfeld polynomials. �

By the lemma, we only need to show that if an irreducible highest weight
module L(λ(u)) corresponds to an n-tuple of Drinfeld polynomials of the form
Pj(u) = 1 for all j 
= i and Pi(u) = u− b for certain i ∈ {1, . . . , n} and b ∈ C, then
dimL(λ(u)) <∞. Furthermore, the composition of the action of X(a) on L(λ(u))
with an automorphism of the form (2.22) yields a representation of X(a) whose n-
tuple of Drinfeld polynomials is Pj(u) = 1 for all j 
= i and Pi(u) = u−a−b. Thus,
it suffices to prove the claim for all values of the index i and a certain particular
value of b ∈ C.
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Consider the representation of X(a) on CN defined in (3.19) with c = 0 so
that

tij(u) �→ δij + eij u
−1 − θij e−j,−i (u+ κ)−1.

Equip the tensor product (CN )⊗m with an X(a)-action by

tij(u) (ei1 ⊗ · · · ⊗ eim
) =

n∑
a1,...,am−1=−n

tia1(u) ei1 ⊗ ta1a2(u+ 1) ei2 ⊗ · · · ⊗ tam−1j(u+m− 1) eim
, (5.38)

where we use the coproduct (2.24) on X(a) and the automorphism (2.22). For any
1 � m � n set

ξm =
∑

σ∈Sm

sgnσ · e−n−1+σ(1) ⊗ · · · ⊗ e−n−1+σ(m) ∈ (CN )⊗m.

We claim that ξm satisfies

tij(u) ξm = 0 for all −n � i < j � n (5.39)

and

tii(u) ξm =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+m

u+m− 1
ξm if −n � i � −n+m− 1,

ξm if −n+m � i � n−m,

u+ κ− 1
u+ κ

ξm if n−m+ 1 � i � n.

(5.40)

Denote by P (m) the operator in (CN )⊗m which acts on the basis vectors by

P (m) (ei1 ⊗ · · · ⊗ eim
) = eim

⊗ · · · ⊗ ei1 .

We have P (m)(ξm) = α ξm, where α = 1 or −1. The definition (5.38) implies the
following relation for the action of X(a) on (CN )⊗m,

θij t−j,−i(u) = P (m) tij(−u− κ−m+ 1)P (m). (5.41)

Due to (5.3), in order to verify (5.39) in the case a = o2n+1, it therefore suffices
to consider the values j = i + 1 with −n � i � −1. Since the expression for
the vector ξm only involves the tensor products ei1 ⊗ · · · ⊗ eim

with negative
subscripts ik, we may assume that the summation indices a1, . . . , am−1 in (5.38)
are all negative. Indeed, tia1(u) ei1 = 0 unless a1 < 0 implying ta1a2(u+ 1) ei2 = 0
unless a2 < 0 etc. However, in this case the formula (5.38) takes the same form
as its Y(glN )-counterpart (5.33) if we take into account the convention on the
basis vector indices. Therefore, the relations ti,i+1(u) ξm = 0 and, hence (5.39),
are implied by the corresponding property (5.34) of the vector ξm in the case of
Y(glN ). Moreover, this argument also proves (5.40) for the non-positive values of i.
The application of (5.41) completes the proof of (5.40).

The same argument applies to the cases a = sp2n and a = o2n which also
shows that t−1,1(u) ξm = 0 together with t−1,2(u) ξm = 0 for a = o2n.
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Thus, in the case a = sp2n for any m ∈ {1, . . . , n−1} the vector ξm generates
a highest weight submodule of (CN )⊗m whose n-tuple of Drinfeld polynomials is
Pj(u) = 1 for all j 
= m and Pm(u) = u+κ−1, while ξn generates a highest weight
submodule of (CN )⊗n whose n-tuple of Drinfeld polynomials is P1(u) = u+ n− 1
and Pj(u) = 1 for j 
= 1. This completes the proof of the theorem in the symplectic
case, as the irreducible highest weight modules over X(a) with such n-tuples of
Drinfeld polynomials are finite-dimensional.

Similarly, the proof is also complete in the case a = o2n and the values
m ∈ {1, . . . , n−2}, as well as in the case a = o2n+1 for the valuesm ∈ {1, . . . , n−1}.
In order to complete the proof in the remaining cases, we shall use the spinor repre-
sentations of the orthogonal Lie algebras. The spinor representation V (−1/2, . . . ,
−1/2) of the Lie algebra o2n+1 can be realized in the 2n-dimensional space Λn of
polynomials in n anti-commuting variables ξ1, . . . , ξn,

Λn = span of {ξi1 . . . ξik
| 1 � i1 < · · · < ik � n, 0 � k � n}.

The generators of o2n+1 act on this space as the operators

Fij = ξi ∂j −
1
2
δij , F−j,i = ∂i ∂j , Fj,−i = ξi ξj ,

F0,i =
1√
2
∂i, Fi,0 =

1√
2
ξi,

(5.42)

where i, j ∈ {1, . . . , n} and ∂i is the left derivative over ξi. The restriction of Λn

to the subalgebra o2n ⊂ o2n+1 (spanned by the elements Fij with i, j 
= 0) splits
into the direct sum of two irreducible submodules, Λn = Λ+

n ⊕ Λ−
n , where Λ+

n

(respectively, Λ−
n ) is the subspace of Λn spanned by the even (respectively, odd)

monomials in the generators ξi. We have the isomorphisms

Λ+
n
∼= V (−1/2, . . . ,−1/2) and Λ−

n
∼= V (1/2,−1/2, . . . ,−1/2). (5.43)

The highest weight vectors of the o2n-modules Λ+
n and Λ−

n are, respectively, the
vectors 1 and ξ1.

Lemma 5.18. Each spinor representation of oN can be extended to a representation
of the algebra X(oN ) by the rule

tij(u) �→ δij + Fij u
−1, i, j ∈ {−n, . . . , n}.

Proof. The claim follows by a direct verification that the images of tij(u) satisfy
the defining relations (2.19) with the use of the following identity of operators in
each spinor representation:

(F 2)ij =
(κ

2
+

1
4

)
δij + κFij , (5.44)

where F is defined in (2.6). Indeed, in the particular case i = j = n, the identity
is verified by a straightforward calculation. The general case then follows by com-
muting both sides of this particular identity with appropriate generators Fij . �
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The lemma implies that the spinor representation V (−1/2, . . . ,−1/2) of oN

becomes an irreducible highest weight representation of X(oN ) with the highest
weight λ(u), where

λi(u) = 1 +
1
2
u−1 for i � −1, λi(u) = 1 − 1

2
u−1 for i � 1

and λ0(u) = 1 (the latter only occurs for N = 2n + 1). The corresponding n-
tuple of Drinfeld polynomials is (u − 1/2, 1, . . . , 1) in both cases N = 2n and
N = 2n + 1. Finally, the spinor representation V (1/2,−1/2, . . . ,−1/2) of o2n

becomes an irreducible highest weight representation of X(o2n) with the highest
weight λ(u), where

λi(u) = 1 +
1
2
u−1 for i � −2 and i = 1,

λi(u) = 1 − 1
2
u−1 for i � 2 and i = −1.

The corresponding n-tuple of Drinfeld polynomials is (1, u− 1/2, 1, . . . , 1). �
Theorem 5.16 allows us to get another proof of Drinfeld’s classifications the-

orem for the Yangian modules [12]; cf. [7, Chapter 12].

Corollary 5.19. Any finite-dimensional irreducible representation of the Yangian
Y(a) is isomorphic to the restriction of an X(a)-module L(λ(u)) to the subalgebra
Y(a), where the components of λ(u) satisfy the conditions of Theorem 5.16. In
particular, such representations of Y(a) are parameterized by the tuples (P1(u), . . . ,
Pn(u)) of monic polynomials in u.

Proof. By Theorem 3.1, any finite-dimensional irreducible representation V of Y(a)
can be extended to a representation of X(a) where the elements of the center ZX(a)
act as scalar operators. By Theorem 5.16, the X(a)-module V is isomorphic to
L(λ(u)) for an appropriate highest weight λ(u). This allows one to attach a tuple
of polynomials (P1(u), . . . , Pn(u)) to the Y(a)-module V .

Conversely, given any n-tuple of polynomials (P1(u), . . . , Pn(u)), there exists
a highest weight λ(u) such that the conditions of Theorem 3.1 hold. Moreover, the
components of λ(u) are uniquely determined up to simultaneous multiplication by
a formal series in u−1. This implies that the corresponding X(a)-module L(λ(u))
is determined up to twisting by an appropriate automorphism (2.21). However,
the subalgebra Y(a) consists of the elements stable under all such automorphisms.
This yields the desired parametrization of the representations of Y(a). �

The finite-dimensional irreducible representations L(λ(u)) corresponding to
the n-tuples of Drinfeld polynomials of the form (1, . . . , u−a, 1, . . . , 1), where a ∈ C

and u−a is on the i-th position, are called the fundamental representations of X(a)
or Y(a). The following corollary was established in the proof of Theorem 5.16.

Corollary 5.20. Every finite-dimensional irreducible representation of Y(a) is iso-
morphic to a subquotient of a tensor product of the fundamental representations.

�
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5.4. Fundamental representations

In this section we give a more explicit description of the fundamental represen-
tations of the algebras X(a) and Y(a). We shall follow the general approach of
the paper by Chari and Pressley [6]. However, contrary to [6], we avoid using the
theorem describing the singularities of R-matrices.

We start with the orthogonal case a = oN . The fundamental representations
with the n-tuples of Drinfeld polynomials (u−1/2, 1, . . . , 1) and (1, u−1/2, 1, . . . , 1)
(the latter for N = 2n only), were constructed in the proof of Theorem 5.16.

Now let N = 2n + 1. The tensor square of the spinor representation Λn of
o2n+1 has the following decomposition into irreducibles:

Λn ⊗ Λn
∼=

n⊕
p=0

V (μ(p)), (5.45)

where μ(p) = (0, . . . , 0,−1, . . . ,−1) with p zeros. Note that V (μ(p)) is a fundamen-
tal representation of o2n+1 for any 1 � p � n−1. It corresponds to the fundamental
weight ωn−p in a more standard notation. The highest weight vector vp of V (μ(p))
is given in an explicit form by

vp =
∑

(−1)j1+···+jl ξi1 · · · ξik
⊗ ξj1 · · · ξjl

, (5.46)

summed over all partitions of the set {1, . . . , p} into the disjoint union of two
subsets {i1, . . . , ik} and {j1, . . . , jl} so that p = k + l with k, l � 0 while i1 < · · ·
< ik and j1 < · · · < jl.

By Lemma 5.18, we may regard Λn as an X(o2n+1)-module. Furthermore,
using the coproduct (2.24) and the automorphism (2.22), we can equip Λn ⊗ Λn

with an X(o2n+1)-action by

tij(u)(η ⊗ ζ) =
n∑

k=−n

(
δik + Fik (u− a)−1

)
η ⊗

(
δkj + Fkj u

−1
)
ζ, (5.47)

where η, ζ ∈ Λn and a ∈ C is a fixed constant.

Proposition 5.21. If a = p− 1/2 then the vector vp ∈ Λn ⊗ Λn has the properties

tij(u) vp = 0 for −n � i < j � n (5.48)

and

tii(u) vp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u− p)(u+ 1/2)
u (u− p+ 1/2)

vp for 0 � i � p,

(u− p)(u− 1/2)
u (u− p+ 1/2)

vp for p+ 1 � i � n.

(5.49)

Proof. By the definition (5.47), we have

t
(1)
ij (η ⊗ ζ) = Fij η ⊗ ζ + η ⊗ Fij ζ
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and

t
(r)
ij (η ⊗ ζ) = ar−2

n∑
k=−n

Fik η ⊗ Fkjζ + ar−1 Fij η ⊗ ζ (5.50)

for r � 2. In particular,

t
(r+1)
ij (η ⊗ ζ) = a t

(r)
ij (η ⊗ ζ) (5.51)

for any r � 2. Since vp is the highest weight vector in the o2n+1-module V (μ(p)),
we have the relations t(1)ij vp = 0 for −n � i < j � n and

t
(1)
ii vp =

{
0 for 0 � i � p,

−vp for p+ 1 � i � n.

Now, (5.3) implies that

[Fi−1,i, t
(2)
i,i ] = t

(2)
i−1,i, i = 1, . . . , n.

Furthermore, taking the (i − 1, i) entry in (2.26) and comparing the coefficients
at u−2 we get

t
(2)
i−1,i −

n∑
k=−n

t
(1)
i−1,k t

(1)
k,i + t

(2)
−i,−i+1 − κ t

(1)
−i,−i+1 = 0.

Hence, (5.48) will follow if we prove that vp is an eigenvector for all the opera-
tors t(2)ii with i = 1, . . . , n. By (5.50), we have the following equality of operators
in Λn ⊗ Λn,

t
(2)
ii =

n∑
k=−n

(Fik ⊗ 1)(Fki ⊗ 1 + 1 ⊗ Fki) − (F 2)ii ⊗ 1 + aFii ⊗ 1.

Note that each element Fki ∈ o2n+1 acts on Λn ⊗ Λn as the operator

Δ(Fki) = Fki ⊗ 1 + 1 ⊗ Fki.

Due to (5.44), in the spinor representation Λn we have (F 2)ii = n/2+(n−1/2)Fii.
Moreover, we have Δ(Fki) vp = 0 for k < i and for 1 � i < k � p. The latter follows
from the fact that each vector Δ(Fk,k−1) vp with k ∈ {2, . . . , p} is annihilated by
all operators Δ(Fj,j+1) and hence must be zero, as the o2n+1-module V (μ(p)) is
irreducible. Recalling that a = p− 1/2 we thus get for any i ∈ {1, . . . , p},

t
(2)
ii vp =

n∑
k=p+1

(Fik ⊗ 1) Δ(Fki) vp + (p− n) (Fii ⊗ 1) vp − n/2 vp.

Using the expression (5.46) for vp and the formulas (5.42) it is now easy to derive
the relation t(2)ii vp = −p/2 · vp. If i ∈ {p+ 1, . . . , n} then

t
(2)
ii vp =

n∑
k=i

(Fik ⊗ 1) Δ(Fki) vp + (p− n) (Fii ⊗ 1) vp − n/2 vp.
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Using again (5.46) and (5.42), we find that Δ(Fki) vp = 0 for k > i which gives
t
(2)
ii vp = (−p/2 + 1/2) vp. Thus, (5.48) is proved. For any i > 0 the relation (5.49)

is now implied by (5.51) with j = i. Finally, we have t(2)00 vp = −p/2 · vp which is
verified by a similar calculation. This implies (5.49) for i = 0. �

Due to Proposition 5.21, the cyclic span Wp = X(o2n+1) vp of the highest
vector vp ∈ Λn ⊗ Λn is a highest weight module over X(o2n+1). By the following
theorem, Wp is irreducible. This module is finite-dimensional, and if 1 � p � n−1
then the corresponding n-tuple of Drinfeld polynomials is (1, . . . , u−1/2, 1, . . . , 1)
with u − 1/2 on the (p + 1)-th position; see Theorem 5.16. So, this yields a con-
struction of the fundamental representations of X(o2n+1) alternative to the one
used in the proof of Theorem 5.16. The following is a version of a result of Chari
and Pressley [6, Theorem 6.2] and earlier results of Ogievetsky, Reshetikhin and
Wiegmann [22]. We assume that 1 � p � n− 1 and a = p− 1/2.

Theorem 5.22. The X(o2n+1)-module Wp is irreducible. Its restriction to the uni-
versal enveloping algebra U(o2n+1) is given by

Wp|U(o2n+1)
∼=

[(n−p)/2]⊕
i=0

V (μ(p+2i)).

Proof. By Corollary 3.10 and Proposition 5.21 the vector space Wp is spanned by
the elements

t
(r1)
j1i1

. . . t
(rm)
jmim

vp, m � 0,

with ja > ia and ra � 1. By (5.3), the o2n+1-weights of Wp have the form μ(p)−ω,
where ω is a Z+-linear combination of the positive roots; see their description in
the beginning of Section 5.1. However, any Z+-linear combination of the positive
roots has the form k1 ε1 + · · · + kn εn, where the ki are integers and the sum
k1 + · · ·+ kn is a non-positive integer. Since μ(p) − μ(l) = εl+1 + · · ·+ εp for l < p,
we conclude that, as an o2n+1-module,

Wp ⊆
n⊕

s=p

V (μ(s)). (5.52)

We shall now demonstrate that none of the irreducible o2n+1-modules of the form
V (μ(s)) with s = p+1, p+3, . . . can occur in the irreducible decomposition of Wp.
We need the following lemma which holds for any value of the parameter a.

Lemma 5.23. For any s ∈ {2, . . . , n} in the X(o2n+1)-module Λn ⊗ Λn we have

t
(2)
−s+1,s vs = (a− s+ 1/2) vs−2.

Proof. By (5.50), we have

t
(2)
−s+1,s =

n∑
k=−n

(F−s+1,k ⊗ 1) Δ(Fks) − (F 2)−s+1,s ⊗ 1 + aF−s+1,s ⊗ 1.
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Furthermore, (5.44) implies (F 2)−s+1,s = (n − 1/2)F−s+1,s. Moreover, in the
o2n+1-submodule V (μ(s)) of Λn ⊗ Λn we have Δ(Fks) vs = 0 for k � s. Hence,
applying (5.42) we obtain

t
(2)
−s+1,s vs =

n∑
k=s+1

(∂k ∂s⊗1)(ξk ∂s⊗1+1⊗ξk ∂s) vs +(a−n+1/2) (∂s ∂s−1⊗1) vs.

Finally, using the formula (5.46) for vs we come to

t
(2)
−s+1,s vs = (a− s+ 1/2) (∂s ∂s−1 ⊗ 1) vs = (a− s+ 1/2) vs−2. �

Now, if the irreducible module V (μ(s)) with s = p+2i−1 for some i � 1 occurs
in the irreducible decomposition of Wp then Wp would also contain V (μ(p−1)) by
Lemma 5.23. But this contradicts (5.52). Thus, as an o2n+1-module,

Wp ⊆
[(n−p)/2]⊕

i=0

V (μ(p+2i)). (5.53)

We now need the following counterpart of Lemma 5.23.

Lemma 5.24. Let s ∈ {2, . . . , n}. If a 
= −s+ 1/2 then the projection of the vector
t
(2)
s,−s+1 vs−2 ∈ Λn ⊗Λn onto the component V (μ(s)) in the decomposition (5.45) is

nonzero.

Proof. Let us introduce a bilinear form on the vector space Λn by

〈ξi1 · · · ξik
, ξj1 · · · ξjl

〉 = δIJ ,

where I = {i1, . . . , ik} and J = {j1, . . . , jl} are subsets of {1, . . . , n} such that
i1 < · · · < ik and j1 < · · · < jl, with δIJ = 1 if I = J , and 0 otherwise. The form
possesses the covariance property with respect to the action of o2n+1,

〈Fij η, ζ〉 = 〈η, Fji ζ〉, η, ζ ∈ Λn.

Extend the form 〈 , 〉 to a bilinear form on the tensor product space Λn ⊗ Λn by

〈η1 ⊗ η2, ζ1 ⊗ ζ2〉 = 〈η1, ζ2〉〈η2, ζ1〉.
One easily verifies that this form inherits the covariance property. In particular,
the irreducible components V (μ(s)) in the decomposition (5.45) are pairwise or-
thogonal. So the lemma will follow if we prove that 〈t(2)s,−s+1 vs−2, vs〉 
= 0. However,
a direct calculation with the use of (5.50) shows that for any η, ζ ∈ Λn ⊗ Λn we
have

〈t(2)ij η, ζ〉 = 〈η,
(
t
(2)
ji + a (1 ⊗ Fji − Fji ⊗ 1)

)
ζ〉.

Hence, using Lemma 5.23 and the formulas (5.42) we find that

〈t(2)s,−s+1 vs−2, vs〉 = 〈vs−2,
(
t
(2)
−s+1,s + a (1 ⊗ F−s+1,s − F−s+1,s ⊗ 1)

)
vs〉

= (−a− s+ 1/2) 〈vs−2, vs−2〉 
= 0,

completing the proof of the lemma. �
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If a = p − 1/2 then the condition of Lemma 5.24 is satisfied for any s ∈
{2, . . . , n}. Thus, Lemmas 5.23 and 5.24 imply that the X(o2n+1)-module Wp is
irreducible and its o2n+1-irreducible decomposition coincides with the right-hand
side of (5.53). �

Consider now the case a = o2n. As we mentioned in the previous section,
the restriction of the o2n+1-module Λn to the subalgebra o2n splits into the direct
sum of two irreducible submodules, Λn = Λ+

n ⊕Λ−
n , and we have the isomorphisms

(5.43). We have the following tensor product decompositions of the o2n-modules:

Λ+
n ⊗ Λ+

n
∼=

[n/2]⊕
r=0

V (μ(2r)), (5.54)

Λ+
n ⊗ Λ−

n
∼=

[(n−1)/2]⊕
r=0

V (μ(2r+1)), (5.55)

where μ(p) = (0, . . . , 0,−1, . . . ,−1) with p zeros. Note that V (μ(p)) is a funda-
mental representation of o2n for any 2 � p � n − 1. The highest weight vector
vp of V (μ(p)) in the decompositions (5.54) and (5.55) is given by (5.46) with the
following additional restrictions: both k and l are even for (5.54) with p = 2r,
while k is even and l is odd for (5.55) with p = 2r + 1.

By Lemma 5.18, we may regard Λ+
n and Λ−

n as X(o2n)-modules. As in the
previous case, we equip the tensor products Λ+

n ⊗Λ+
n and Λ+

n ⊗Λ−
n with an X(o2n)-

action by

tij(u)(η ⊗ ζ) =
n∑

k=−n

(
δik + Fik (u− a)−1

)
η ⊗

(
δkj + Fkj u

−1
)
ζ, (5.56)

where a ∈ C is a fixed constant. In the following proposition we consider the cases
of even and odd p simultaneously. If p = 2r then vp ∈ Λ+

n ⊗ Λ+
n and if p = 2r + 1

then vp ∈ Λ+
n ⊗ Λ−

n .

Proposition 5.25. If a = p− 1 then the vector vp has the properties

tij(u) vp = 0 for −n � i < j � n (5.57)

and

tii(u) vp =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u− p+ 1/2)(u+ 1/2)

u (u− p+ 1)
vp for −1 � i � p,

(u− p+ 1/2)(u− 1/2)
u (u− p+ 1)

vp for p+ 1 � i � n.

(5.58)

Proof. The proof is essentially the same as for Proposition 5.21 with the use of
the relation (5.44). The calculation of the eigenvalues of the operators t(2)ii on vp
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gives

t
(2)
ii vp =

{
(1/4 − p/2) vp for −1 � i � p,

(3/4 − p/2) vp for p+ 1 � i � n.

These imply the desired properties. �

The cyclic span Wp = X(o2n) vp of the vector vp is a highest weight module
over X(o2n). By the following theorem, Wp is irreducible. This module is finite-
dimensional, and if 2 � p � n − 1 then the corresponding n-tuple of Drinfeld
polynomials is (1, . . . , u−1/2, 1, . . . , 1) with u−1/2 on the (p+1)-th position; see
Theorem 5.16. So, Wp is a fundamental module over X(o2n). The following is the
o2n-counterpart of Theorem 5.22. We assume that 2 � p � n− 1 and a = p− 1.

Theorem 5.26. The X(o2n)-moduleWp is irreducible. Its restriction to the universal
enveloping algebra U(o2n) is given by

Wp|U(o2n)
∼=

[(n−p)/2]⊕
i=0

V (μ(p+2i)).

Proof. Considering the o2n-weights of Wp and using Corollary 3.10, we conclude
that, as an o2n-module,

Wp ⊆
[(n−p)/2]⊕

i=0

V (μ(p+2i)). (5.59)

The equality in (5.59) and irreducibility of the X(o2n)-module Wp is implied by
the following two lemmas which are verified in the same way as their o2n+1-
counterparts.

Lemma 5.27. For any s ∈ {2, . . . , n} in the X(o2n)-module Λ+
n ⊗ Λ+

n or Λ+
n ⊗ Λ−

n

for even or odd s, respectively, we have

t
(2)
−s+1,s vs = (a− s+ 1) vs−2. �

Lemma 5.28. Let s ∈ {2, . . . , n}. If a 
= −s + 1 then the projection of the vector
t
(2)
s,−s+1 vs−2 onto the component V (μ(s)) in the decomposition (5.54) or (5.55),

respectively, is nonzero. �

In particular, if a = p − 1 then the condition of Lemma 5.28 is satisfied for
any s ∈ {2, . . . , n}. This completes the proof of the theorem. �

We conclude by showing that each fundamental representation of the Lie
algebra sp2n can be extended to the algebra X(sp2n) providing a fundamental
representation of the latter. Due to Theorem 3.1, it suffices to prove the cor-
responding statement for the Yangian Y(sp2n). We follow the argument of [6]
adopting it to the presentation of Y(sp2n) provided by Corollary 3.2. For any
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indices k, l ∈ {−n, . . . , n} introduce the elements Jkl ∈ Y(sp2n) by

Jkl = τ
(2)
kl − 1

2

n∑
i=−n

τ
(1)
ki τ

(1)
il .

We shall identify the universal enveloping algebra U(sp2n) with a subalgebra of
Y(sp2n) via the embedding (3.21). Denote by J the subspace of Y(sp2n) spanned
by all elements Jkl.

Lemma 5.29. The subspace J is stable under the adjoint action of the Lie algebra
sp2n. Moreover, the sp2n-module J is isomorphic to the adjoint representation.

Proof. We easily derive from (5.3) that

[Fij , Jkl] = δkj Jil − δil Jkj − δk,−i θij J−j,l + δl,−j θij Jk,−i.

This proves the first claim. For the proof of the second, take the coefficient at u−2

in the relation (3.6). This gives

τ
(2)
kl + θkl τ

(2)
−l,−k + κ τ

(1)
kl −

n∑
i=−n

τ
(1)
ki τ

(1)
il = 0, (5.60)

where we have used the relation τ (1)
kl +θkl τ

(1)
−l,−k = 0. Replacing k and l respectively

by −l and −k in (5.60), then multiplying it by θkl and adding the result to (5.60)
yields Jkl + θkl J−l,−k = 0. The argument is completed by observing that dimJ =
dim sp2n by Corollary 3.7. �

The following lemma is straightforward from the defining relations of Y(sp2n)
given in Corollary 3.2.

Lemma 5.30. The algebra Y(sp2n) is generated by the elements Fkl and Jkl with
k, l ∈ {−n, . . . , n}. �

The fundamental representations of sp2n are the modules V (μ(p)) where the
highest weights have the form μ(p) = (0, . . . , 0,−1, . . . ,−1) with p zeros, for the
values p = 0, 1, . . . , n − 1. In a more common notation, V (μ(p)) corresponds to
the fundamental weight ωn−p. Denote by Wp(a) the fundamental representation of
Y(sp2n) corresponding to the n-tuple of Drinfeld polynomials (1, . . . , u−a, 1, . . . , 1)
with a ∈ C and u − a on the (p + 1)-th position. By Theorem 5.16, the Y(sp2n)-
module Wp(a) is isomorphic to the restriction of the X(sp2n)-module L(λ(u)) to
the subalgebra Y(sp2n), where the components of λ(u) are given by

λi(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u− a− p

u− a− p− 1
if −n � i � −p− 1,

1 if −p � i � p,

u− a

u− a+ 1
if p+ 1 � i � n

for p = 1, . . . , n− 1, and
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λi(u) =

⎧⎪⎪⎨⎪⎪⎩
u− a+ 1
u− a

if −n � i � −1,

u− a+ 1
u− a+ 2

if 1 � i � n

for p = 0. So, Wp(a) may also be regarded as an X(sp2n)-module. Recall that the
universal enveloping algebra U(sp2n) is embedded into X(sp2n) via (3.22).

The following is essentially a reformulation of a particular case of [6, Theo-
rem 6.1].

Theorem 5.31. The restriction of Wp(a) to U(sp2n) is isomorphic to the funda-
mental module V (μ(p)). Moreover, the action of Y(sp2n) on V (μ(p)) is determined
by the assignment Jkl �→ b Fkl with b = −(n− p+ 1)/2 + a.

Proof. By Theorem 5.1, the X(sp2n)-module Wp(a) contains a unique, up to a con-
stant factor, highest vector ξ. By the Poincaré–Birkhoff–Witt theorem for X(sp2n)
and the relations (5.3), ξ is a unique weight vector of the weight μ(p) in the sp2n-
module Wp(a). Furthermore, the irreducible decomposition of this module takes
the form

Wp(a) = V (μ(p)) ⊕
⊕

ν

c(ν)V (ν), (5.61)

summed over the weights ν strictly preceding μ(p) with respect to the standard
partial ordering on the set of sp2n-weights, where the c(ν) are some multiplicities.
Consider the sp2n-module homomorphism

ψ : J ⊗ V (μ(p)) →Wp(a) (5.62)
defined by

ψ : Jkl ⊗ v �→ Jkl v, v ∈ V (μ(p)).
By Lemma 5.29, the sp2n-module J is isomorphic to V (ρ) with ρ = (0, . . . , 0,−2).
It is well known that the irreducible decomposition of V (ρ) ⊗ V (μ(p)) contains
V (μ(p)) with multiplicity one, and does not contain any modules V (ν) with ν
strictly preceding μ(p); see, e.g., [13]. Therefore, the homomorphism ψ must be
multiplication by a scalar on the component V (μ(p)) and zero on the other ir-
reducible constituencies of V (ρ) ⊗ V (μ(p)). Then by Lemma 5.30, the subspace
V (μ(p)) of Wp(a) is stable under the action of Y(sp2n) and thus Wp(a) = V (μ(p))
sinceWp is an irreducible Y(sp2n)-module. This proves the first part of the theorem
and shows that the action of the elements Jkl on V (μ(p)) is given by Jkl �→ b Fkl for
some b ∈ C. By Lemma 5.30, this determines the action of Y(sp2n) on V (μ(p)). Fi-
nally, the exact value of b is found by calculating the eigenvalue of the operator Jnn

on the highest vector ξ of L(λ(u)) ∼= Wp(a). This eigenvalue remains unchanged
if we multiply all components of λ(u) by the formal series f(u) ∈ 1 + C[[u−1]]u−1

defined from the relation

f(u) f(u+ κ)λ−n(u+ κ)λn(u) = 1.

In the case 1 � p � n− 1 we obtain

f(u) = 1 + (n− p)u−2 + · · · .
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By Proposition 5.2, we have z(u) = 1 in the X(sp2n)-module L
(
f(u)λ(u)

)
so that

the eigenvalue of τnn(u) on the highest vector of L
(
f(u)λ(u)

)
is f(u)λn(u). This

allows one to find the eigenvalue of τ (2)
nn which turns out to be (n− p)/2 − a+ 1.

Since the eigenvalue of τ (1)
nn = Fnn on the highest vector is −1, the eigenvalue of

Jnn is (n− p+ 1)/2− a proving the claim for the case under consideration. In the
case p = 0 the value of b is found by the same calculation. �
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