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The AC Stark Effect, Time-Dependent
Born—Oppenheimer Approximation, and
Franck—Condon Factors

George A. Hagedorn*, Vidian Rousse and Steven W. Jilcott, Jr.

Abstract. We study the quantum mechanics of a simple molecular system that
is subject to a laser pulse. We model the laser pulse by a classical oscillatory
electric field, and we employ the Born—Oppenheimer approximation for the
molecule. We compute transition amplitudes to leading order in the laser
strength. These amplitudes contain Franck—Condon factors that we compute
explicitly to leading order in the Born—-Oppenheimer parameter.

We also correct an erroneous calculation in the mathematical literature
on the AC Stark effect for molecular systems.

1. Introduction

In many experimental situations, laser pulses are used to stimulate electronic tran-
sitions in molecules. After such a transition, a molecule is typically in a superpo-
sition of many vibrational states for the nuclei. The main goal of this paper is to
study these transitions in a simple molecular model, and to calculate the particular
superposition of vibrational states.

In the physics literature, problems of this type have a long history, with in-
tuition and formulas that date back to the early days of quantum mechanics. The
results rely on two approximations. The first is the Born-Oppenheimer approxi-
mation, which separates the nuclear and electronic motions. In this approximation,
the electronic bound state energy levels depend on the nuclear positions, and these
electronic energy levels play the role of effective potentials for the nuclei. This ap-
proximation depends on the smallness of the parameter e, which is the fourth root
of the electron mass divided by the mean nuclear mass. The second approximation
involves the idea that electronic transitions occur on a time scale that is very short
compared with that of the nuclear motion. Often, the term “vertical transition” is
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vertical
transition EA(x )

as

FIGURE 1. Graphical interpretation of a vertical transition

used. This terminology comes from plotting the nuclear positions on a horizontal
axis and electron energy levels on the vertical axis, as in Figure 1. If the nuclei
do not move during a transition, then a change of electronic state corresponds
just to a vertical change on the plot. Quantitatively, this idea corresponds to the
nuclear wave packet not changing during the time that the electrons are making
the transition.

Although the molecule may start in a single bound state before the electronic
transition, it typically is not in a single bound state after the transition because
the nuclei find themselves subject to a different effective potential. However, if the
nuclei are in a well of the new electron energy level, the final nuclear state can
be expanded as a superposition of bound states of the new well. The expansion
coefficients are called the Franck—Condon factors [1, 2, 3].

We prove that this intuition is correct to first order in the laser field
strength p, and we present a formula for the Franck-Condon factors to lead-
ing order in €. For technical reasons, we do this for a situation where the nuclei
have only one degree of freedom. This model is specifically relevant to diatomic
molecules where the single degree of freedom is the distance between the nuclei.

In addition, we correct some calculations in [11, 12]. Those articles study the
time-dependent Born—-Oppenheimer approximation in the presence of a laser pulse.
They develop expansions jointly in € and p for the full molecular wave function.
The error we correct stems from the inadvertent commuting of two operators that
do not commute (in the middle of a long calculation). The error is largely hidden
in the complicated notation that the problem appears to require.



Vol. 7 (2006) Franck—Condon Factors 1067

The paper is organized as follows: In Section 2, we make a precise statement
of the problem and introduce the notation we require. In Section 3, we study
electronic transitions to leading order in ¢ and first order in u. We prove that
the intuition described above is correct, and we present the expression for the
Franck—Condon factors the leading order in €. Our main result is summarized in
Theorem 3.1. In Section 4, we indicate how to correct the calculational error in
[11, 12].

2. Precise formulation of the problem

Our goal is to study approximate solutions to the molecular Schrodinger equation

ov et 0
. 20% € O7%
(X4 = 5 5 +h(2) U+ puX f(t,e) T (2.1)

for small € and small . Here ¥ is a function of the nuclear configuration x, and
takes its values in a Hilbert space He that we call the electronic Hilbert space.
The operator h(x) is called the electronic Hamiltonian. It is self-adjoint on H¢ and
depends smoothly on z in a strong resolvent sense. Discrete eigenvalues of h(x)
that depend smoothly on x are called electron energy levels.

We assume h(z) has two non-degenerate eigenvalues E 4(x) and Eg(z) that
are each isolated from the rest of the spectrum and from one another. We de-
note the corresponding normalized electron eigenvectors by ® 4(z) and ®g(x). We
choose the phases of these eigenvectors so that they each satisfy (®(x), ®'(z) ),
= 0. If they can be chosen to be real vectors in some L? space, this phase condition
is automatically satisfied.

We assume E 4 has local minimum at = a4 with E’j(a4) > 0. We further
assume that x = a4 lies inside a well of Eg. We require either that a4 be a local
minimum of Eg with E}(a4) > 0 or that both Ej(a4) # 0 and that within that
well, any local maxima of Ejg lie strictly below Eg(a ). So that we are considering

bound states instead of resonances, we assume E(a4) and Eg(ay4) lie strictly
below liminf inf o(h(z)).

|z|— 00
For most of our arguments, the specific form of f is not essential. However,
to model realistic laser pulses, we can take f(¢,¢€) to have the form

flte) =€ 9 fo (t/e¥ ) cos (wit/e?), (2.2)

with 0 < ¢ < 2. A reasonable choice of fj is a non-negative smooth function of
compact support that specifies an envelope for the pulse.

For simplicity, we assume that X is a bounded operator on the electron
Hilbert space. The more general situation where X may be unbounded and may
also act on the nuclei can be handled as in [11, 12]. Because of the large masses
of the nuclei as ¢ — 0, and because the laser field oscillates very rapidly on the
time scale of the nuclei, inclusion of the action of X on the nuclei has no effect to
leading order in e.
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2.1. Born—Oppenheimer preliminaries

In this section we collect several known results that we need. These concern semi-
classical wave packets and both the time-dependent and time-independent Born—
Oppenheimer approximations. More detailed discussions of these results can be
found in the references we have cited.

2.1.1. Semiclassical wave packets. The time-dependent Born—Oppenheimer ap-
proximation makes use of certain semiclassical wave packets for the nuclei. In
one dimension, these may be written as

¢m<AaB,€27a’7777:I;) (23)
=9 ™m/2 (m!)*l/2 (Z/A)m/2 H,, (h*1/2|A|71(aj — a)) $o(A, B, €, a,n,x),

where m = 0,1,2,.... Here H,, stands for the m' Hermite polynomial with
leading term 2™2™, and

2
Go(A, B, 2, a,m,z) = /4112 47172 oy (_B(;UA;) iy 77(:562 a)> .

We always assume A and B are chosen to satisfy Re(B A) = 1. Each of these
states ¢,, is concentrated near the classical position a and its (scaled) Fourier
transform is concentrated near the classical momentum 7. The uncertainty in
position is ey/m + 1/2|A| and its uncertainty in momentum is ey/m + 1/2|B)|.
For fixed a, n, A, and B, these functions form an orthonormal basis of L?(R),
indexed by m. Numerous properties of these semiclassical wave packets and their
higher dimensional analogs are discussed in [9)].

2.1.2. Lowlying vibrational states. We take our initial conditions for (2.1) to be
the m'" vibrational state associated with the electronic level E 4. From known
results of the time-independent Born—-Oppenheimer approximation [6], this state
equals

¢m(AA,BA,627aA,O,I) ¢A<$)+O(€), (2.4)

where Aq = 1/wy and By = wy with wa = \/E(a4).
The energy of this state is Eam = Ea(aa) + €2(m+1/2)ws + O(e?).

2.1.3. The leading order time-dependent Born—-Oppenheimer approximation. Ex-
cept in Section 4, we only require the leading order time-dependent Born—Oppen-
heimer approximation [5, 7, 8]. For any given isolated non-degenerate electron level
E¢(x) with normalized eigenfunction ®¢(z) with (D¢ (z), Dp(x) ), = 0, equation
(2.1) with g = 0 has solutions of the form

eiS(t)/e2 bm(A(t), B(t), 62, a(t),n(t),x) ®c(z) + O(e), (2.5)



Vol. 7 (2006) Franck—Condon Factors 1069

where
a(t) =n(t), (2.6)
i(t) = —E¢(a(t)), (2.7)
A(t) =i B(t), (2.8)
B(t) =i El(a(t)) A(t), and (2.9)
50 = " _ Be(an) (2.10)

We use the symbol Upo (¢, s) to indicate the lowest order Born—Oppenheimer prop-
agation, which agrees with the exact propagator up to an O(e) error when applied
to any semiclassical wave packet in x times a discrete eigenstate of h(x).

2.1.4. Molecular bound states near a fixed energy. Although our initial state is
the m'" vibrational state of the well for E 4, the component of the wave function
that has made an electronic transition is generically in a superposition of highly
excited vibrational states for the well Ez. The energy of these excited states is near
Ep(a4), but the vibrational levels have energy spacing O(€?), so a relevant vibra-
tional level is the n'" one, where n = O(e~2). These states are rigorously studied as
quasimodes in [13, 14]. Moreover quasimodes for different n’s are approximately
orthogonal [14]. The n'* quasimode is ¥,  (z) ®5(z) + O(€), where 1, . can be
written as an integral over a classical trajectory for the potential Ep to leading
order in €. To avoid confusion with the time ¢ in our problem, we parameterize the
orbit by the time variable r. More precisely,

6]

_ . —1/4 —1/2
Une(@) =7 Te 27(E)

(2.11)

T(E)/2 ir(E—i—i)/ﬁz . 2
o [ ) G012 gy ar), B, € alr)(r), )+ O,
—7(E)/2

Here the orbit’s energy F is chosen to satisfy the Bohr—-Sommerfeld condition that

I(E)

the classical action I(E) of the orbit of energy E must have 5o
e
negative integer. We note that I(E)/(2) is the area of the region of phase space

equal to a non-

I
surrounded by the orbit. We denote the period of the orbit by 7(E) = a—E(E)
2
The energy of the quasimode is Eg,, = FE + TEE) + O(e3). We choose a(0) = ay,
T

no = 0, A(0) = A4, B(0) = B4, S(0) =0, and 6 = Ep(ag)Aa, where ag is the
point near a4 where Eg(ag) = E. The a(r), n(r) and S(r) satisfy (2.6), (2.7), and
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(2.10) with C = B, and r in place of ¢t. The A(r) and B(r) satisfy
Afr) = i B(r) + 2a(E) n(r) (Bx(a(r) A(r) + in(r) B(r)),
B(r) =i Eg(a(r)) A(r) + 2i a(E) Eg(a(r)) (Ep(a(r)) A(r) + in(r)B(r)).
)

T (E
27(E)’

The quantity «(F) in these equations is a(F) =
See [10, 13, 14] for detailed discussions.

3. Electronic transitions and Franck—Condon factors

Our main result is summarized by the following theorem.

Theorem 3.1. Let U(x,t,¢) denote the solution to the Schrédinger equation (2.1)
with initial condition

\I’(.’I}, th 6) = ¢m(AAa B.A7 627 aq, Oa l‘) (I)A(ZL'),
where to < inf supp f(-, €). Assume f has the form (2.2).
Then for t > sup supp f(-, €), the decomposition of ¥(x,t,€) in the family of
quasimodes Py, (x)Pp(z) is
(Yn.e(x) Pp(z), U(2,t€)) =
peito(Bam)/e Ge(n,m) FC.(n,m) e it/ O(p®) + O(pe)

where the Franck—Condon factor is
FCE(’Il, m) = < wn,e(l')a ¢m(AA7 B.A, 627 aa, 07 .TC) >

In the generic case where Eg(a) # 0,

FC.(n,m) =

2

al/49—(m=1)/2 1/2 . By (EB,” — Eg(aq) — #ﬁ((m)))
Vm!IT(Es(an)) [Eglas)As " |Es(aa)le

2

2
B (EB ~ Eplaa) — -7 )
n 7(Es(aa))
- 1+ 0(e? 3.1
< exp AT (1+o(@), (31

where p > 0.
In the non-generic case where Eg(aa) =0, we assume Ej(aa) > 0.



Vol. 7 (2006) Franck—Condon Factors 1071

In this case, if n —m is odd, then FC¢(n,m) =0, and if n —m is even, then

m4n+41
2

m+n— 1 -
min(n,m) n—j . min _
—1)"z nl)(m!) 4’ 1\ 2 . .
X Z (=) (' (m}) <l/ - —) w(m — j)w(n — j),
: g! v
7=0
mfj: even
n—j even
w 1 if p=0,
A
where v = —= and w(p) = 2 .
wp if p=2,4,6,....
p((5 -1
Here, wg = \/E}(aa).

Finally, we have

Ge(n,m) = —i \/;XBA(GA) [fo (E.A,m — Epu(e) +w)

€9

(2220,

€4

where Xpa(aa) = (Pglaa), X Palan))n,-

Remarks.

1. In physically realistic situations, the Xpg4(z) is calculated from an electric
dipole moment of the molecule.

2. If fy is very smooth and ¢ > 0, then the quantity (3.3) will only be large where
the change in energy in the transition is +w. This corresponds intuitively to the
absorption or emission of one photon. On the time scale that we are using, the
laser frequency is w/€?, and the effective Planck constant is €2, so intuitively, a
laser photon has energy w.

3. We shall see that F'C¢(n,m) is significantly large only when Ep , — Eg(a4) =
O(e). Since level spacings in the Ep well are O(e?), the number of levels that get
significantly excited is O(e™1).

4. Intuitively, for small €, each approximate nuclear bound state v,  or ¢, is
concentrated in an O(e) neighborhood of a classical path in phase space. For the
Franck—Condon factor to be significantly large, the two classical paths must have
some places in phase space where they are within an O(e) distance of one another.
For ¢,,, the path is an ellipse with major axes on the order of \/m ¢, so the place
where the paths are close to one another must be near a4, and near a turning
point of the path for ¢, . if Ez(a4) # 0.

5. When m > 0, |FC.(n,m)| can fluctuate and have zeros in n near the values
where G¢(n, m) is large. Also, our formula (3.1) predicts that |F'Cc(n,m)| has two
largest peaks with a energy separation of order v/me.
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6. If ag = a4, where ap is a local minimum of Eg with Ej(ag) > 0, the formulas
for FCc(n,m) are just simplifications of the result of Proposition 7 of [10] that
result from choosing the A and B to be real. This yields formula (3.2).

7. If ag = aq and E’j(as) = Ej(aa), then formula (3.2) has only one non-zero
term, and F'C(n,m) = §p, .-

8. The theorem is true for more general compactly supported f € L! with

t
, d
Ge(n,m) = —i Xpal(a.) / (P Pam)/ < f(s,0) 7.

to €

To prove Theorem 3.1, we mix the Picard iteration process and Born—Oppen-
heimer approximate propagator in the following Duhamel formula

Wi, t,6) = Ult t0) W(a to,€) i /t Ult,s) X f(s,¢) U(x,s5,¢) ds

to

where U(t, s) stands for the exact propagator of (2.1) when p = 0. To obtain
solution up to k-th order in € and to [-th order in u, one substitutes the Born—
Oppenheimer propagator Ugg(t, s) with error O(e#*1) for the exact propagator
U(t,s) and makes [ iterations. Here we will only need £ =0 and [ = 1.

The leading term has order €° x°. It equals

e SAM/€ 4 (AL(t), Ba(t), %, a4,0,2) Ba().

We note that Su(t) = —(t — to)Eam, Aa(t) = e@alt=t) /4y, and By(t) =
w4 e@alt=to) 5o that Ba(t)/Aa(t) = w is constant.

The order €® 4! term equals

t
,ie% Uso(t,s) X f(s,€) Uso(s, to) Yo(to) ds

to
t

=—i e% f(s,6)Upol(t, s) e Sa(s)/e Gm(Aa(s), Ba(s), €, aq,0,z)
to

X X ®4(x)ds
t

— b / F(5,6) Usol(t, ) €54 6 (A 4(s), Ba(s), % 04,0, 2)
to

X [Pa(x) (Pa(r), X Pa(2) )1 + Pi(2) (Ps(2), X Pa(2) )1
+ P () X D 4(x)] ds.

Here P, (x) denotes the projection in the electronic Hilbert space onto the subspace
orthogonal to ® 4(x) and ®p(x).

We now define Xaa(zx) = (Pa(z), X Pa(z))n
X Qa(2) )ro-

and Xpa(z) = (Pp(z),

el
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Then our last expression can be written as

t
i B f(s,€) Uolt, s) €54/ ¢ (A 4(s), Ba(s), €2, aq,0, 1) (3.4)

X [[}(AA(.T) <I>A(;v) + XB.A(-T) <I>B(:1c) + PJ_(CL‘)X@A(CL')] ds

t
=i L f(s,0)Upolt, s) €54/ 4 (Au(s), Bals), €, aa,0,2)  (3.5)

X [X;A<QA) Pa(z) + Xpalaa) Pp(x) + PL(z) X ®a(x) 4+ O(e) ] ds.

We concentrate on the components of this expression that are in the ® 4(x) and
®p(x) directions in the electronic Hilbert space. To leading order in ¢, they are

— 6% Xaa(an) et 54O/ g (A1), Ba(t), €, aa,0,z) Da(z) (3.6)
t
X f(s,e)ds
to

t
—iE%XBA(aA) ®p(x) / fls,€) eS8t/ o (Ap(t,s), Byl(t, ),
to
6276L3(t,8),n3(t,8),$)d8.

In this expression, ag(t,s), ng(t, s), etc. are determined by using the dynamics
associated with level E 4 for times between ¢y and s, and then the dynamics as-
sociated with the Ep level for times between s and t. Intuitively, the vertical
transition takes place at time s.

Remarks.

1. This last step is where the errors occur in [11, 12]. Although it is buried in
the notation, [11] and [12] have X 44(z) and Xp4(z) outside the integrals instead
of X qa(an) and Xpa(as). These papers inadvertently commute the Upo(t, s)
past the multiplication operators X g4 (x) and Xg.4(z). Without correction, these
errors yield an incorrect factor for the transition amplitude in the second line of
(3.6) in generic situations, i.e., when ng(t) is not identically zero and Xpa(z) is
not constant.

2. We have been somewhat careless about the error term near the end of for-
mula (3.5). For f(t,€) = €9 fo (t/€277) cos(wt/e?), the rapid oscillations of the
integrands yield O(u) results in (3.5), despite the presence of the factor of e~2.
By including more Taylor series terms in going from (3.4) to (3.5), one can show
that our neglecting the error term in (3.5) produces corrections to (3.6) that are
O(pe). In several expressions below, we are similarly imprecise to avoid uninter-
esting technicalities.

3. If f(t,s) = €1 fo (t/e¥77) cos(wt/e?), with fo smooth and w # 0, the first
term in (3.6) is very small as € goes to zero when ¢ > sup supp fo, since the
Fourier transform of fy decays rapidly.
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Next, we expand the second term of (3.6) in terms of the nuclear vibrational
states of the upper electronic level. We approximate the expansion coefficients by
taking the inner product of (3.6) with the leading order quasimodes v, (z) ®5(z).

The electronic part of the inner product is trivial, so we just obtain a nuclear
variable inner product:

(Un,e(x) @p(x), (Formula (3.6)) )an variables
=i 5 Xoa(ea) F(5:€) ($ncla), €20/

X ¢m(Ap(t,s), Bs(t, 5), €%, an(t, s),15(t, 5), ) ) ds + O(u e)
= i ;3 Xaalan) / F(5.€) (Yn,e(), 7 (MmO

x e SAEE 6 (Au(s), Ba(s), €2, a4,0,2)) ds + O(ue)

where Hp(e) = 7% 38722 + E(z) has approximate eigenvector 1, . associated
with Eg .
Hence, using the explicit formulas A4(s) = Age!“ =0 By(s) =

B e'¥(=%) and the definition (2.3),
<wn,e($) ‘1)3(1‘), (Formlﬂa (36) ) >all variables
=—1 12 XB,A(G.A) eii(titO)EB'”/ez < ¢n,e(x)7 ¢m(A.A(t0)’ BA(tO)a 627 ay,0, SL’) >

t
% f(S, 6) ei(s—to)(Egyn(e)—EA(aA))/GQ e—i(s—to)(m+1/2)wA g + O(/J' 6).
to

Thus,

W’n,e(i’?) (I)B(m)v (Formula (36) ) >all variables
= —ipXpalaa) e OB /C FC (n,m)

t
. d
> / f(57€) el(sito)(EB,n7E.A,7n)/62 :j + O(u 6), (37)
to

where FC.(n,m) = (1 (), ¢m(As, Ba,€?,a4,0,2)).

Because of our explicit form of f, we can say more about our last expres-
sion for the transition amplitude. We assume fy is a smooth function of com-
pact support, and we look at our final expression for ¢ty < inf supp f(-, €) and
t > sup supp f( -, €). Asymptotically for small ¢, we obtain

—i/m/2uXpa(an) e BB/ gitoBam /€ FCc(n,m)

y {ﬁ) (EA,m —FEpn +w> 7 (EA,m —Epn, w)] ' (3.8)

€4 ed

This proves formula (3.3) of Theorem 3.1.
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We now give the leading order expression in € for F'C,(n,m). In this discus-
sion, estimates are not uniform in m, so we assume it is fixed.

Using (2.11) to represent ¢, ((x), we write FCc¢(n,m) as

T(E)/2 . e
a1z [0 / SOATELEE )/ (1 ¢)dr + O(e)
27_ T(E 9 )
where

g(r, 6) = < ¢O(A(T)7 B<T)’ 627 a(r), U(T)a £C), ¢m(AAa BAv 627 a4, 0, (E) >

The following lemma implies that g(r, €) is large only when (a(r) — a4) and
n(r) are O(€?).

Lemma 3.1. Suppose the pair (A(r), B(r)) is restricted to a compact set on which
Re (B(r) A(r)) =1 is satisfied. Then

lg(r,€)] < C1 exp (

where C1 > 0 and Cy > 0.

Proof. This is essentially contained in Propositions 4 and 7 of [10]. ]

It follows from this lemma that if |Eg, — Eg(a)| > €, then FC.(n,m)
is bounded by exp(—c¢/eP) for some ¢ > 0 and p > 0. So, we choose Eg, near
Eg(ay) in order for FC.(n,m) to be significantly large. This choice restricts ag
to a small compact neighborhood of a4. It follows that for all orbits we choose,
A(r) and B(r) will lie in compact sets as in Lemma 3.1. So, the only significant
contribution to the integral comes from values of r that satisfy |r| < e!~%, where
0 > 0 is arbitrarily small.

For such values of r, we have

a(r) = ag — Eg(ag) r*/2 + O(€*%), (3.9)
n(r) = —Ey(ag) r + O(e2~%), (3.10)
A(r) :AA+Z‘TBA+O(62725), (3.11)
B(r) =By +ir [Eg(ao) +2a(E) (Eg(ao))?| Axa +0(27%%),  (3.12)

S(r) = —r Eg(ag) + O(e3739), (3.13)

We now use the formulas from Propositions 4 and 7 of [10] to write
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2—(m—1)/2
o) = —=—

i ( Bir(a(r) — 4) ~ { AT nir) )
VB0 Ax — A) Ba) (B(r) Aa + AT) Ba)

B Au+AEBa) (B Ax-Am B)"

X exp

2(B(r)Aq+ A(r) By) €2 (B(r) A+ A(r) By) €

( A(r) Aan(r)? + B(r) Ba(a(r) — aa)® iA(r)Bm(r)(a(r)—aA))

Lemma 3.2. For |r| < €'7°, and |ag — a| < €', with 6 < 1/(m + 1), we have

<B(T)AA — A(r) Ba >m/2
B(r)Aa+ A(r)Ba

n ( L Bl — ) i A nlr) )
V (B(r) Aa — A(r) Ba) (B(r) Aa+ A(r) Ba)

= (1 (BOYalr) ~ax) —iAG) ) )" + 0 ().

m
Proof. We write the Hermite polynomial in the lemma as H,,(z) = Z ¢; 27, The

Jj=0
7 = m term is

2" -1 —a i - m
(B(r) Aq + A(r) By)™ (6 (B(r)(a(r) —aa) — i A( )ﬂ(t)))

= (1 BOI(a(r) — ax) =i AE) () )" +0 (0.

This yields the expression displayed explicitly on the right-hand side in the lemma.
Another error term comes from the remaining terms in the polynomial.

For j < m, we use the asymptotics (3.9)—(3.12) and the fact that both A4
and B4 are real. After some calculation, we see that the sum of these terms equals

m—1

Z 2775 (14 0(r)) ¢ (K + O(r?)) "% ( Balag = a4) +0(r) )j ,

- €
7=0

where K =i (Bi - {Eg(ao) + 2a(E)(Eg(ao))2}A?4).

We now simply estimate each term in this sum when |r| < !9 and |ag—a 4| <
€'~ For small €, the largest term has j = m—2, since ¢,,,_; = 0. This term equals
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Ba(ao —aa) +O(r) )m_2

27l e S (Kr+0(r?) (
€
_ 27m+1 Com2 0(6176) 0(67(m72)6)'

This implies the lemma. O

With this lemma, By A4 = 1, and (3.9)—(3.12), some tedious, but straightforward
calculations show that for small § and |r| < el =9

)

g(rye) = (% (Bua(ao —aa)+i44 Eg(ao)r)m n O(e”)) (3.14)

B% (a0 —aa)? A% (Ep(ag))?r® i AxBaEg(ag) (ag —aa)r
©exp T 4 €2 B 4 €2 B 2 €2 ’

where p > 0 (and can be chosen arbitrarily close to 1 if § is small enough).

We can now evaluate the leading asymptotics for F'C,(n, m). We first restrict
the 7 integration region to |r| < €'=9_ then substitute the above asymptotics for g.
Then we extend the integration to all r, again making an exponentially small
error. We can then evaluate the integral explicitly ([4] page 382, formula 3.462.4)
to obtain

FC.(n,m) =

/4 g—(m=1)/2 [1/2 B _ B2 PR
/ Hm< A (ag aA)) exp<_ % (ao : aa) )
Vm!7(E)|Eg(ao)| Aa € 2e

+ O(e/?*P). (3.15)

To get the error estimate, here, we actually include some of the error term from
(3.14) to get easy bounds. We then observe that including these terms yields
corrections that are themselves O(e'/2*P). These corrections are small because of
oscillations in the integral, and we have dropped them in (3.15).

Expression (3.15) is only significant if ag — a4 = O(e). This condition is
equivalent to Ep,, — Eg(as) = O(€). Since level spacings in the Ep well are O(€?),
the number of levels that get significantly excited is O(e™1).

Furthermore, since Eg,, = E(ao) + :(—332) + O(e?) and Eg(ag) — Eg(as) =

Eg(aa)(ao — aa) + O((ao — aa)?),

al/49—(m=1)/2 /2 u By (Eg,n—EB(aA)—f(—%)
Vm!T(E) [Eglao)| Ax " |Eg(aq)le

FC.(n,m) =

2
B (Esn — Eslaa) - 25;)
X exp . (E) +O(€1/2+p)7
2E;(aq)?e€?

for some p > 0.
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Remarks.
1. The Franck-Condon factors are small unless £ = Eg(ag) =~ Ep, ~ Eg(an).
Since various quantities depend continuously on the energy, we have

FC.(n,m) =
gl/49—(m=1)/2 1/2 . By (EB,” — Eg(aq) — #ﬁ(;)))
VmlT(Eg(aa)) [Eglad)] Aa " |Eg(aa)le

2 7'{'62 2
B2 (EB — Ep(aa) — m)
2 Ej(aq)? €

X exp + 0(61/2+p),

when Ep, — Eg(as) = O(e).

2. The Franck—Condon factors arise from expanding a normalized wave packet
in an orthonormal basis. So, if we sum their absolute squares over n, we must
get 1. In our case, the quasimodes form an approximately orthogonal family and,
from our formulas, we can compute what happens to the sum of the |FC.(n,m)|?
over n. The Bohr-Sommerfeld conditions require I(Egn11) — I[(Egn) =~ 2me2.

1 27re?
Thus, g_E AE =~ 27e%, and hence, AE ~ T?;)

. Therefore,

S FC.(n,m)|? ~ LE /|F06(n(€),m)|2d8

’ _T(E) nl/29-(m=1) ¢
Y ) m!7(E) |Egz(aa)| Aa
2 2 2
« /Hm <BA(5 — EB(CL_A)) ) exp (_B_A(S — EB(G.A)) > d&

[Ep(aa)l e |Els(a.a)]?€?

9—m —1/2
N / Hy(2)2e " dz

m
=1

4. Expansions to all orders in ¢ and p

Since our main results do not depend on this section, we do not provide many
details that can be found elsewhere. We restrict attention to the situation where
the electron Hamiltonian has finitely many levels that never cross one another. A
more general situation is discussed in [11, 12], but identifying and correcting the
error is the same.

The basic idea for correcting the results (Theorems 3.2 and 3.3) of [12] is to
redefine and take superpositions of the functions W; ., . k..)n(€ 51, .., 8m,t) that
appear in these theorems. Their definitions are described near the end of Section
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3.2 of [12], but they are not written out explicitly. However, the dependence of these
functions on the multi-index j for the semiclassical wave packets is suppressed in
[11, 12]. When the correction is made, we cannot omit this dependence because
there is some mixing of different values of j.

Throughout this discussion, the value of n > 0 is fixed. We do all calculations
modulo €"! errors and perform a perturbation expansion in powers of .

We begin this discussion with some preliminary results. There are explicit
constructions of asymptotic expansions for solutions to (2.1) when p = 0 that
can be found in [5, 7, 8]. For any electronic level ¢ and any multi-index j, the
constructions in [5, 7, 8] yield a unique approximate solution ., ; ;j(z,t, s) to (2.1)
with g = 0, subject to the condition that

< (I)l(x)v wn,i,j (Jf, S, 8) >Hel = eiSi(S)/ez ¢j(Ai(S)7 Bl(s)a €2a ai(s)v 771‘(3)7 3?)

The dynamics of A;(t), Bi(t), a;(t), ni(t) and S;(t) are determined by the it
electronic level.
The function 1y, ; j(x,t, s) is a time-dependent finite sum of the form

n+2

Yng = €| () by (@) + D0 Y fongr (w.8) (@) b ()

For each ¢, we approximate each f,  j/(x,t) by its Taylor series in (z — a(t)) of
order max{n—p, 0}. This adds an O(e"*1) error. When this Taylor series multiplies
¢, the product can be written as a finite linear combination of more ¢;/, with
|7/ — 7] < 3 min{p, n} + max{n — p, 0}. Since p < n + 2, this implies that up to
an O(e"™1) error vy, ; j(x,t,s) is a finite linear combination of @ (z) ¢ (z) with
i = <3n+4.

Thus, modulo an O(e" ™) error, 1, ; ; is a time-dependent finite sum of the
form

n+2
Yy = €5/ +Z¢Z%m k(@) 5:(x) | + 0 ).
(4.1)

In addition to this result, our arguments require that we be able to write any
®,;(z) ¢j(z) as a finite linear combination of the t,, ;» j» up to an O(e"*!) error.
To see that this can be done, we iteratively make use of expression (4.1). First, we
rewrite (4.1) as

e IS i = B HZMJ (z) ¢y ()

n+2

+Z?Z%m k(@) 6y () + O(™ ),
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Then we use (4.1) again to rewrite the order € terms as linear combinations of
Yn k5o Plus higher order corrections. Thus, we see that

—z € —i €2
S i g = Diw +eZcm S o g ()

n+2

+Ze]’2cm (@) 6 () + O(e"),

where the sums on the right-hand side are finite. We now repeat this procedure
to replace the @y (z)¢; (z) in the order € terms by t, k- plus higher order
corrections.
By repeating this process, we obtain
n+2

eI i = )+ Zep Zc“? () e~ (@) + O(emHD),
p=

where the sums are finite.
It follows immediately that

n+2

—iS; /€2 1) et €2
() ;(2) = | e i Zeché”m S Y ()
b=

+ O(e"th), (4.2)
where the sums are finite.

With these preliminary facts established, we now turn to the main point of
this section.

We fix the order n of the expansion in e and the choice of the " initial
electronic level. We also fix a value of the multi-index j that labels an initial
semiclassical nuclear wave packet at time tg.

Order 0 in . To zeroth order in x and n*® order in ¢, we have the approximate
solution

Wi (e,1) = Wnij (z,t,t0).
This is exactly as in [11, 12], although our notation is slightly different.

First Order in 1. To calculate the higher order corrections in p, we use the Dyson

expansion of [11, 12]. Recall that we let U](3no) (t,s1) denote the Born-Oppenheimer
propagator with error O(¢"*1). Then the first order term in y is

t
72’6&2 / f(sl’e) Ugg(t’sl)XU](Sg(shtO) 7/}n,i,j(x,t0,t0) dsy
to

S f(sl, ) U (t,51) X nis(w, 51, t0) ds.  (4.3)

€2



Vol. 7 (2006) Franck—Condon Factors 1081

We use (4.1) to rewrite ¢, ; j(x, s1,%0) as a finite linear combination

Z i jr (81, €) @ir () pyr () + O(e™ ).
i, !

The operator X applied to this yields another finite linear combination
Z Birr v 2 (51, €) @i () Xy s () e () + O(e" ),
i//’ i,, jl
where X;» (x) = (®;r, X @ ). We make another O(e"*!) error by replacing

Xy () by its nt™ order Taylor series.

>y (D™ Xi i) (als1)) (& — a(s1))™

m!

Im|<n

When this multiplies the ¢,/ (x) we again obtain a finite linear combination

Z ’)/i//’j//(sl, 6) (I)i//(I) gf)j// (.CE) + O(EnJrl).

V)
N}

We apply (4.2) to write this as
X i g (z,51,%0) = Z Giron (€,51) Vnir (2, 81,81) + O(E7L+1)7

i1, J1
where the linear combination is finite.
We use this result in (4.3) and then do the Born—Oppenheimer propagation
to obtain
poff (n)
. n
i3 f(s1,6) Upg (¢, 51) X ¥nij(z, 51, 10) dsy
to
u [t
=) —ig / F(51,€) Giv gy (€51 iy gy (21, 51) dsy + O(™HD). (4.4)
i1, J1 € to
In order to get the proper error estimate here, we again use the assumed form of

f(s1,€) to overcome the factor of 6% as in Section 3.1.

Intuitively, the terms that have a given value of i; have made a jump at
time s from level 4 to level iy, after which, they propagate according to the Born—
Oppenheimer dynamics associated with level ;. The sum over j; results from the
nuclear wave packet changing somewhat when the jump occurs. Thus, the precise
“vertical transition” intuition is only accurate to leading order in e.

We can go to higher orders in u by treating the higher order Dyson expansion
terms in [11, 12] by the same technique. Where the operator X occurs in the formal
expressions, we use (4.1) to rewrite everything as a finite linear combination of
O,/ () ¢jr(x). We then use Taylor series to expand X;» ;/(x). Then we use (4.2) to
reexpress the result in terms of new basis vectors vy, i, j, -



1082 G.A. Hagedorn et al. Ann. Henri Poincaré

The order p™ term makes m transitions between electronic levels at times
S1,82,...,5m as expected. However, the O(e™)-accurate wave function is an enor-
mous sum of terms.

Remark. When n = 0, these expressions are much simpler. In particular, expres-
sion (4.4) reduces to

t
. o 2
> i 6% ®;, (2) / F(51,6) Xiy i(ai(s1)) €52 G0/C (2 1, 51) dsy + O(e).
i1 to
Here the semiclassical wave packet ¢;(x,t,s1) and the S;, ;(t,s1) propagate ac-
cording to the dynamics of level ¢ from time ¢y to time s; and the dynamics of
level 41 from time s; to time ¢. This differs from [11, 12] for n = 0 only in the
presence of the factor X;, ;(a;(s1)) in the integrand.
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