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Abstract. We study Hilbert space aspects of the Klein-Gordon equation in
two-dimensional spacetime. We associate to its restriction to a spacelike wedge
a scattering from the past light cone to the future light cone, which is then
shown to be (essentially) the Hankel transform of order zero. We apply this
to give a novel proof, solely based on the causality of this spatio-temporal
wave propagation, of the theorem of de Branges and V. Rovnyak concerning
Hankel pairs with a support property. We recover their isometric expansion
as an application of Riemann’s general method for solving Cauchy-Goursat
problems of hyperbolic type.

1. Introduction

We work in two-dimensional spacetime with metric c2dt2−dx2. We shall use units
such that c = 1. Points are denoted P = (t, x). And the d’Alembertian operator �
is ∂2

∂t2 − ∂2

∂x2 . We consider the Klein-Gordon equation (with m = 1, � = 1; actually
we shall only study the classical wave field, no quantization is involved in this
paper):

�φ+ φ = 0 . (1)

We have an energy density:1

E = |φ|2 +
∣∣∣∣∂φ∂x

∣∣∣∣2 +
∣∣∣∣∂φ∂t

∣∣∣∣2 (2)

which gives a conserved quantity:

E =
1
2π

∫ +∞

−∞
E(φ)(t, x) dx , (3)

1As this paper is principally of a mathematical nature, we do not worry about an overall 1
2

factor.
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in the sense that if the Cauchy data at time t = 0 has E < ∞ then E is finite
(and constant. . . ) at all times (past and future). We shall mainly work with such
finite energy solutions. Although we failed in locating a reference for the following
basic observation, we can not imagine it to be novel:

Theorem 1. If φ is a finite energy solution to the Klein-Gordon equation then:

lim
t→+∞

∫
|x|>t

E(φ)(t, x) dx = 0 .

Obviously this would be completely wrong for the zero mass equation. We
shall give a (simple) self-contained proof, because it is the starting point of all
that we do here. Let us nevertheless state that the result follows immediately from
Hörmander’s fine pointwise estimates ([8, 9]; see also the paper of S. Klainerman
[11] and the older papers of S. Nelson [14, 15]). I shall not reproduce the strong
pointwise results of Hörmander, as they require notations and preliminaries. Let
me simply mention that Hörmander’s Theorem 2.1 from [8] can be applied to the
positive and negative frequency parts of a solution with Cauchy data which is
gaussian times polynomial. So Theorem 1 holds for them, and it holds then in
general, by an approximation argument.

The energy conservation follows from:

∂

∂t
E +

∂

∂x
P = 0 with P = −∂φ

∂x

∂φ

∂t
− ∂φ

∂x

∂φ

∂t
. (4)

If we apply Gauss’ theorem to the triangle with vertices O = (0, 0), A = (t, t),
B = (t,−t), we obtain (t > 0):∫

|x|≤t
E(φ)(t, x)dx =

∫ 0

−t
(|φ(|x|, x)|2 +

∣∣∣∣ ddxφ(|x|, x)
∣∣∣∣2) dx

+
∫ t

0

(|φ(x, x)|2 +
∣∣∣∣ ddxφ(x, x)

∣∣∣∣2) dx .
This proves that

∫
|x|>t E(φ)(t, x) dx decreases as t → +∞. It shows also that

Theorem 1 is equivalent to:

E =
1
2π

∫ 0

−∞
(|φ(|x|, x)|2 +

∣∣∣∣ ddxφ(|x|, x)
∣∣∣∣2) dx

+
1
2π

∫ ∞

0

(|φ(x, x)|2 +
∣∣∣∣ ddxφ(x, x)

∣∣∣∣2) dx . (5)

Otherwise stated, there is a unitary representation of φ on the future light
cone. Here is now the basic idea: as solutions to hyperbolic equations propagate
causally, equation (5) gives a unitary representation from the Hilbert space of
Cauchy data at time t = 0 with support in x ≥ 0 to the Hilbert space of functions
p(v) = φ(v, v) on [0,+∞[ with squared norm 1

2π

∫∞
0

(|p(v)|2 + |p′(v)|2) dv. Instead
of Cauchy data vanishing for x < 0, it will be useful to use Cauchy data invariant
under (t, x) → (−t,−x). Then p will be considered as an even, and p′ as an odd,
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function, and 1
2π

∫∞
0

(|p(v)|2 + |p′(v)|2) dv will be 1
2E(φ), for φ(t, x) = φ(−t,−x).

We can also consider the past values g(u) = φ(−u, u), t = −u, x = u, 0 ≤ u <∞.
So there is a unitary map from such g’s to the p’s:

Theorem 2. Let g(u), u > 0, and p(v), v > 0 be such that
∫∞
0

|g(u)|2 + |g′(u)|2du
< ∞,

∫∞
0

|p(v)|2 + |p′(v)|2dv < ∞. The necessary and sufficient condition for
A(r) =

√
r g( r

2

2 ) and B(s) = −√
s p′( s

2

2 ) to be Hankel transforms of order zero
of one another (A(r) =

∫∞
0

√
rsJ0(rs)B(s) ds) is for g and p to be the values on

the past and future boundaries of the Rindler wedge 0 < |t| < x of a finite energy
solution φ(t, x) of the Klein-Gordon equation (g(u) = φ(−u, u), p(v) = φ(v, v)).
For any a > 0 the vanishing on 0 < x < 2a of the Cauchy data for φ(t, x) at t = 0
is the necessary and sufficient condition for the simultaneous vanishing of g(u) for
0 < u < a and of p(v) for 0 < v < a.

The statements relative to the support properties are corollaries to the rel-
ativistic causality of the propagation of solutions to the Klein-Gordon equation.
Regarding the function B, if k(v) = −p′(v) vanishes identically on (0, a), then
p(v) is constant there, and this constant has to be 0 if g(u) is also identically
zero on (0, a): indeed the finite energy solution φ is continuous on spacetime (this
follows from the well-known explicit formulas (32)). We employed temporarily
A(r) =

√
r g( r

2

2 ) and B(s) = −√
s p′( s

2

2 ) in the statement of Theorem 2 in order
to express the matter with the zero order Hankel transform. It proves more natural
to stay with g(u) and k(v) = −p′(v). They are connected by the integral formula:
g(u) =

∫∞
0
J0(2

√
uv)k(v) dv, so this motivates the definition of the H transform:

H(f)(x) =
∫ ∞

0

J0(2
√
xy)f(y) dy . (6)

The H transform is a unitary operator on L2(0,+∞; dx) which is self-reciprocal. As
is well known

√
xe−

1
2x

2
is an invariant function for the Hankel transform of order

zero, so, for the H transform we have e−x as invariant function in L2(0,∞; dx). The
H operator is “scale-reversing”: by this we mean that H(f(λy))(x) = λ−1H(f)
(λ−1x), or, equivalently, that the operator H · I is scale invariant, where I is
the unitary operator f(x) �→ 1

xf( 1
x ). As we explain later, H is the unique scale-

reversing operator on L2(0,∞; dx) having among its self-reciprocal functions the
function e−x. Let us restate Theorem 2 as it applies to H:

Theorem 3. Let φ(t, x) be a finite energy solution of the Klein-Gordon equation.
Let g(u) = φ(−u, u) for u > 0 and p(v) = φ(v, v) for v > 0 be the values taken
by φ on the past, respectively future, boundaries of the Rindler wedge 0 < |t| < x.
Then k(v) = −p′(v) is the H transform of g(u): k(v) =

∫∞
0
J0(2

√
uv)g(u) du. For

any a > 0 the vanishing for 0 < x < 2a, t = 0, of the Cauchy data for φ(t, x) is
the necessary and sufficient condition for the simultaneous vanishing of g(u) for
0 < u < a and p(v) for 0 < v < a.
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In this manner a link has been established between the relativistic causality
and a mathematical theorem of de Branges [3], and V. Rovnyak [16] (see fur-
ther [17]). They proved an explicit isometric representation of L2(0,+∞; dx) onto
L2(0,+∞; dy)⊕L2(0,+∞; dy), h �→ (f, g), such that the zero order Hankel trans-
form on L2(0,+∞; dx) is conjugated to the simple map (f, g) → (g, f), and such
that the pair (f(y), g(y)) vanishes identically on (0, a) if and only h(x) and its
Hankel transform of order zero both identically vanish on (0, a). Their formulas
((5) and (7) of [3] should be corrected to read as (3) and (2) of [16]) are:

f(y) =
∫ ∞

y

h(x)J0(y
√
x2 − y2)

√
xy dx , (7a)

g(y) = h(y) −
∫ ∞

y

h(x)y
J1(y

√
x2 − y2)√

x2 − y2

√
xy dx , (7b)

h(x) = g(x) +
∫ x

0

f(y)J0(y
√
x2 − y2)

√
xy dy −

∫ x

0

g(y)
J1(y

√
x2 − y2)√

x2 − y2

√
xy y dy ,

(7c)∫ ∞

0

|h(x)|2 dx =
∫ ∞

0

(|f(y)|2 + |g(y)|2) dy . (7d)

We shall give an independent, self-contained proof, that these formulas are
mutually compatible and have the stated relation to the Hankel transform of order
zero. The main underlying idea has been to realize the Hankel transform of order
zero as a scattering related to a causal propagation of waves. The support condition
initially considered by de Branges and Rovnyak has turned out to be related
to relativistic causality, and the looked-after scattering has been realized as the
transition from the past to the future boundary of the Rindler wedge 0 < |t| < x.
Also, in the technique of proof we apply, in a perhaps unusual manner, the classical
Riemann method ([10, IV §1], [6, VI §5]) from the theory of hyperbolic equations.
Let us reformulate here the isometric expansion of de Branges-Rovnyak into a
version which applies to the H transform. For this we write, for x > 0,

h(x) =
√
x k(

x2

2
), f(x) =

√
xF (x2), g(x) =

√
xG(x2) .

Then the equations above become:

F (x) =
∫ ∞

x/2

J0(
√
x(2v − x))k(v) dv , (8a)

G(x) = k(
x

2
) −

∫ ∞

x/2

x
J1(
√
x(2v − x))√
x(2v − x)

k(v) dv , (8b)
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k(v) = G(2v) +
1
2

∫ 2v

0

J0(
√
x(2v − x))F (x) dx

− 1
2

∫ 2v

0

x
J1(
√
x(2v − x))√
x(2v − x)

G(x) dx , (8c)

∫ ∞

0

2|k(v)|2 dv =
∫ ∞

0

(|F (x)|2 + |G(x)|2) dx . (8d)

The de Branges Rovnyak theorem is thus the equivalence between equations (8a),
(8b) and (8c), the validity of (8d), the fact that the pair (F,G) is identically zero
on (0, 2a) if and only if both k and H(k) vanish identically on (0, a), and finally
the fact that permuting F and G is equivalent to k ↔ H(k).

It proves convenient to work with the first order “Dirac” system:
∂ψ

∂t
− ∂ψ

∂x
= +φ , (9a)

∂φ

∂t
+
∂φ

∂x
= −ψ . (9b)

Let us write
[
ψ(0,x)
φ(0,x)

]
=
[
G(x)
F (x)

]
. We shall use K(ψ, φ) = 1

2π

∫ +∞
−∞ (|F (x)|2 +

|G(x)|2) dx as the Hilbert space (squared) norm. We shall require ∂φ
∂x and ∂ψ

∂x to
be in L2 at t = 0 (then φ and ψ are continuous on space-time). Our previous E(φ)
is not invariant under Lorentz boosts: it is only the first component of a Lorentz
vector (E(φ), P (φ)) (see equation (17) for the expression of P ). And it turns out
that in fact K(ψ, φ) = E(φ) − P (φ) = E(ψ) + P (ψ). The point is that in order
to define an action of the Lorentz group on the solutions of the Dirac system it is
necessary to rescale in opposite ways ψ and φ. When done symmetrically, K then
becomes an invariant under the Lorentz boosts. This relativistic covariance of the
spinorial quantity

[
ψ
φ

]
is important for the proof of the next theorem:

Theorem 4. Let F and G be two functions with
∫∞
0

|F |2+|F ′|2+|G|2+|G′|2dx <∞.

Let
[
ψ
φ

]
be the unique solution in the Rindler wedge x > |t| > 0 of the first order

system:
∂ψ

∂t
− ∂ψ

∂x
= +φ , (10a)

∂φ

∂t
+
∂φ

∂x
= −ψ (10b)

with Cauchy data φ(0, x) = F (x), ψ(0, x) = G(x). The boundary values:

g(u) = φ(−u, u) (u > 0), and k(v) = ψ(v, v) (v > 0),

verify
∫∞
0

|g(u)|2+|g′(u)|2du <∞,
∫∞
0

|k(v)|2+|k′(v)|2dv <∞ and are a H trans-
form pair. For any a > 0 the identical vanishing of F (x) and G(x) for 0 < x < 2a
is equivalent to the identical vanishing of g(u) for 0 < u < a and of k(v) for
0 < v < a. All H pairs with

∫∞
0

|g|2 + |g′|2du < ∞,
∫∞
0

|k|2 + |k′|2dv < ∞ are
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obtained in this way. The functions F (x), G(x), g(u) and k(v) are related by the
following formulas:

F (x) =
∫ ∞

x/2

J0(
√
x(2v − x))k(v) dv = g(

x

2
) −

∫ ∞

x/2

x
J1(
√
x(2u− x))√
x(2u− x)

g(u) du ,

(10c)

G(x) = k(
x

2
) −

∫ ∞

x/2

x
J1(
√
x(2v − x))√
x(2v − x)

k(v) dv =
∫ ∞

x/2

J0(
√
x(2u− x))g(u) du ,

(10d)

g(u) = F (2u) +
1
2

∫ 2u

0

J0(
√
x(2u− x))G(x) dx

− 1
2

∫ 2u

0

x
J1(
√
x(2u− x))√
x(2u− x)

F (x) dx , (10e)

k(v) = G(2v) +
1
2

∫ 2v

0

J0(
√
x(2v − x))F (x) dx

− 1
2

∫ 2v

0

x
J1(
√
x(2v − x))√
x(2v − x)

G(x) dx , (10f)

∫ ∞

0

2|k(v)|2 dv =
∫ ∞

0

(|F (x)|2 + |G(x)|2) dx =
∫ ∞

0

2|g(u)|2 du , (10g)

k(v) =
∫ ∞

0

J0(2
√
uv)g(u) du g(u) =

∫ ∞

0

J0(2
√
uv)k(v) dv . (10h)

The integrals converge as improper Riemann integrals.

The Lorentz boost parameter can serve as “time” as K is conserved under it.
In this manner going-over from φ on the past light cone to ψ on the future light
cone becomes a scattering. We shall explain its formulation in the Lax-Phillips
[12] terminology.

In conclusion we can say that this paper identifies the unique scale reversing
operator H on L2(0,+∞; dx) such that e−x is self-reciprocal as the scattering from
the past (positive x)-light-cone to the future (positive x)-light-cone for finite energy
solutions of the Dirac-Klein-Gordon equation in two-dimensional space-time. Some
further observations and remarks will be found in the concluding section of the
paper. The operator H, which is involved in some functional equations of number
theory, is studied further by the author in [5].

2. Plane waves

Throughout this paper we shall use the following light cone coordinates, which are
positive on the right wedge:
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v =
x+ t

2
u =

x− t

2
(11a)

x = u+ v t = −u+ v t2 − x2 = 4(−u)v � = − ∂2

∂u∂v
. (11b)

We write sometimes φ(t, x) = φ[u, v].
Let us begin the proof of Theorem 1. We can build a solution to the Klein-

Gordon equation by superposition of plane waves:

φ(t, x) =
∫ +∞

−∞
e+i(λu−

1
λ v)α(λ) dλ =

∫ +∞

−∞
e−i(ωt−μx)α(λ) dλ (12a)

with ω =
1
2
(λ+

1
λ

), μ =
1
2
(λ− 1

λ
) . (12b)

The full range −∞ < λ < +∞ allows to keep track simultaneously of the “positive
frequency” (λ > 0, ω ≥ 1), and “negative frequency” (λ < 0, ω ≤ −1) parts.

At first we only take α to be a smooth, compactly supported function of λ,
vanishing identically in a neighborhood of λ = 0. Then the corresponding φ is a
smooth, finite energy solution of the Klein Gordon equation. Let us compute this
energy. At t = 0 we have

φ(0, x) =
∫ +∞

−∞
e+iμxα(λ) dλ

∂φ

∂t
(0, x) = −i

∫ +∞

−∞
e+iμx

1
2
(λ+

1
λ

)α(λ) dλ .

So we will apply Plancherel’s theorem, after the change of variable λ → μ. We
must be careful that if λ is sent to μ, then λ′ = − 1

λ , is too. Let λ1 > 0 and λ2 < 0
be the ones being sent to μ. Let us also define:

a(μ) =
α(λ1)

1
2 (1 + 1

λ2
1
)
, b(μ) =

α(λ2)
1
2 (1 + 1

λ2
2
)
.

Then:

φ(0, x) =
∫ +∞

−∞
e+iμx(a(μ) + b(μ))dμ ,

∂φ

∂t
(0, x) = −i

∫ +∞

−∞
e+iμx

1
2
(λ1 +

1
λ1

)(a(μ) − b(μ))dμ ,

1
2π

∫ +∞

−∞
(|φ|2 + | ∂

∂x
φ|2)dx =

∫ +∞

−∞
|a(μ) + b(μ)|2(1 + μ2) dμ ,

1
2π

∫ +∞

−∞
| ∂
∂t
φ|2dx =

∫ +∞

−∞
|a(μ) − b(μ)|2

(
1
2
(λ1 +

1
λ1

)
)2

dμ .

Observing that 1 + μ2 =
(

1
2 (λ1 + 1

λ1
)
)2

=
(

1
2 (λ2 + 1

λ2
)
)2

, this gives

E(φ) = 2
∫ +∞

−∞
(|a(μ)|2 + |b(μ)|2)λ2

1

(
1
2
(1 +

1
λ2

1

)
)2

dμ
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= 2
∫ ∞

0

|a(μ)|2λ2
1

(
1
2
(1 +

1
λ2

1

)
)3

dλ1 + 2
∫ 0

−∞
|b(μ)|2λ2

2

(
1
2
(1 +

1
λ2

2

)
)3

dλ2

= 2
∫ ∞

0

|α(λ)|2 1
2
(1 + λ2) dλ+ 2

∫ 0

−∞
|α(λ)|2 1

2
(1 + λ2) dλ

E(φ) =
∫ +∞

−∞
|α(λ)|2(1 + λ2) dλ . (13)

Let us now compute the energy on the future light cone. We write g(u) =
φ(−u, u), p(v) = φ(+v, v). We have:

g(u) =
∫ +∞

−∞
e+iλuα(λ) dλ . (14)

Let α = α+ + α− be the decomposition of α as the sum of α+, belonging to the
Hardy space of the upper half-plane 
(λ) > 0 and of α−, belonging to the Hardy
space of the lower half-plane. We have:

1
2π

∫ 0

−∞
|g(u)|2 du =

∫ +∞

−∞
|α+(λ)|2 dλ . (15a)

We must be careful regarding 1
2π

∫ 0

−∞ |g′(u)|2 du. We have g′(u)1u<0(u)−g(0)δ(u)

=
∫ +∞
−∞ e+iλuiλα+(λ) dλ as a distribution identity so

1
2π

∫ 0

−∞
|g′(u)|2 du =

∫ +∞

−∞

∣∣∣∣λα+(λ) +
g(0)
2πi

∣∣∣∣2 dλ .
On the other hand (tα(t))+(λ) = 1

2πi

∫∞
−∞

tα(t) dt
t−λ = λα+(λ) + g(0)

2πi so the formula
is:

1
2π

∫ 0

−∞
|g′(u)|2 du =

∫ +∞

−∞
|(tα)+(λ)|2 dλ . (15b)

Similarly, as p(v) =
∫ +∞
−∞ e+iλvα(− 1

λ ) 1
λ2 dλ, and defining β(λ) = α(− 1

λ ) 1
λ2 we

obtain:

1
2π

∫ ∞

0

(|p(v)|2 + |p′(v)|2)dv =
∫ +∞

−∞
(|β−(λ)|2 + |(tβ)−(λ)|2) dλ .

Now, from tβ(t) = 1
tα(−1

t ) it is seen that (tβ)−(λ) = 1
λα−(−1

λ ), so
∫ +∞
−∞ |(tβ)−(λ)|2

dλ =
∫ +∞
−∞ |α−(λ)|2 dλ. And, as tα(t) = 1

tβ(−1
t ) one has in a similar manner∫ +∞

−∞ |(tα)+(λ)|2 dλ =
∫ +∞
−∞ |β+(λ)|2 dλ. Combining, we get

1
2π

∫ 0

−∞
(|g(u)|2 + |g′(u)|2) du+

1
2π

∫ ∞

0

(|p(v)|2 + |p′(v)|2)dv

=
∫ +∞

−∞
(|α+(λ)|2 + |β+(λ)|2 + |β−(λ)|2 + |α−(λ)|2) dλ
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and as the two Hardy spaces are mutually perpendicular in L2(−∞,+∞; dλ) we
finally obtain: ∫ +∞

−∞
|α(λ)|2(1 + λ2) dλ

as the energy on the future light cone.
So, with this, the theorem that E(φ) is entirely on the future light cone is

proven for the φ’s corresponding to α’s which are smooth and compactly supported
away from λ = 0. Obviously the Cauchy data for such φ’s is a dense subspace of
the full initial data Hilbert space. As energy is conserved as t→ ∞, the fact that
limt→∞

∫
|x|>t E(φ)dx = 0 holds for all finite energy φ’s then follows by approxi-

mation. Furthermore we see that a finite energy solution is uniquely written as a
wave packet:

φ(t, x) =
∫ +∞

−∞
e+i(λu−

1
λ v)α(λ) dλ E(φ) =

∫ +∞

−∞
(1 + λ2)|α(λ)|2 dλ <∞ . (16)

At this stage Theorem 1 is established.
When studying the Klein-Gordon equation in the right wedge x > 0, |t| < x,

we can arbitrarily extend the Cauchy data to x < 0. Setting it to 0 on x < 0,
however, will be compatible with the finite energy condition only if φ(0, 0+) = 0.
If this is the case then this choice makes g(u) vanish for u < 0 and p(v) vanish for
v < 0, which is a Hardy space constraint on α, in fact it means that α belongs to
the Hardy space of the lower half-plane. Another manner to extend the Cauchy
data to x < 0 is to make it invariant under the PT operation (t, x) → (−t,−x).
This has the advantage, if

∫∞
0

|φ(0, x)|2 + | ∂∂xφ(0, x)|2 dx <∞, to produce Cauchy
data of finite energy on the full line −∞ < x < ∞. The condition on α is to be
even. We shall often use this convention when studying the Klein-Gordon equation
in the right wedge.

3. Energy and momentum

The momentum density P = −∂φ
∂x

∂φ
∂t − ∂φ

∂x
∂φ
∂t also satisfies a conservation law:

∂

∂t
P +

∂

∂x

(
−|φ|2 +

∣∣∣∣∂φ∂x
∣∣∣∣2 +

∣∣∣∣∂φ∂t
∣∣∣∣2
)

= 0 .

So

P = − 1
2π

∫ +∞

−∞

(
∂φ

∂x

∂φ

∂t
+
∂φ

∂x

∂φ

∂t

)
dx (17)
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is also a conserved quantity. We have:

E − P =
1
2π

∫ +∞

−∞

(
|φ|2 +

∣∣∣∣∂φ∂x +
∂φ

∂t

∣∣∣∣2
)
dx , (18a)

E + P =
1
2π

∫ +∞

−∞

(
|φ|2 +

∣∣∣∣∂φ∂x − ∂φ

∂t

∣∣∣∣2
)
dx . (18b)

Applying Gauss’ theorem to P we obtain for t > 0:∫
|x|≤t

P(φ)(t, x)dx =
∫ 0

−t
(−|φ(−x, x)|2 +

∣∣∣∣ ddxφ(−x, x)
∣∣∣∣2) dx

+
∫ t

0

(|φ(x, x)|2 −
∣∣∣∣ ddxφ(x, x)

∣∣∣∣2) dx .
The integral of |P| for |x| > t tends to zero for t→ +∞ as it is bounded above by
the one for E . So:

P =
1
2π

∫ 0

−∞
(−|g(u)|2 + |g′(u)|2) du+

1
2π

∫ ∞

0

(|p(v)|2 − |p′(v)|2) dv (19)

with, again, g(u) = φ(−u, u), p(v) = φ(+v, v). Hence:

E − P =
1
π

∫ 0

−∞
|g(u)|2 du+

1
π

∫ ∞

0

|p′(v)|2 dv , (20a)

E + P =
1
π

∫ 0

−∞
|g′(u)|2 du+

1
π

∫ ∞

0

|p(v)|2 dv . (20b)

From (15a) and the similar formulas relative to p we can express all four integrals
in terms of α(λ). Doing so we find after elementary steps:

E − P = 2
∫ +∞

−∞
|α(λ)|2 dλ E + P = 2

∫ +∞

−∞
λ2 |α(λ)|2 dλ . (21)

So:

P =
∫ +∞

−∞
(λ2 − 1)|α(λ)|2 dλ . (22)

This confirms that a λ with |λ| ≥ 1 gives a “right-moving” component of the wave
packet (its phase is constant for ωt− μx = C, ω = 1

2 (λ+ 1
λ ), μ = 1

2 (λ− 1
λ )). The

values of λ with |λ| ≤ 1 give “left-moving” wave components. As a check, we can
observe that it is impossible to have a purely right-moving packet with vanishing
Cauchy data for t = 0, x < 0, because as we saw above, for such Cauchy data α has
to belong to the Hardy space of the lower half-plane and can thus (by a theorem of
Wiener) not vanish identically on (−1, 1). A purely right-moving packet starting
entirely on x > 0 would have a hard time hitting the light cone, and this would
imperil Theorem 1. Such wave-packets exist for the zero-mass equation, one way
of reading Theorem 1 is to say that they don’t exist for non-vanishing real mass.
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Let us consider the effect of a Lorentz boost on E and P . We take Λ = eξ

(ξ ∈ R) and replace φ by:

φΛ(t, x) = φ(cosh(ξ)t+ sinh(ξ)x, sinh(ξ)t+ cosh(ξ)x) , (23a)

φΛ[u, v] = φ[
1
Λ
u,Λv] , (23b)

gΛ(u) = φΛ[u, 0] = g(
1
Λ
u) pΛ(v) = p(Λv) , (23c)

α(λ) �→ αΛ(λ) = Λα(Λλ) , (23d)

EΛ − PΛ = Λ · (E − P ) EΛ + PΛ =
1
Λ

(E + P ) , (23e)

EΛ = cosh(ξ)E − sinh(ξ)P , (23f)

PΛ = − sinh(ξ)E + cosh(ξ)P . (23g)

So the conserved quantities E and P are not Lorentz invariant but the Ein-
stein rest mass squared E2 − P 2 is.

4. Scale reversing operators

We begin the proof of Theorem 2. Let us consider the manner in which the func-
tion g(u) for u > 0 is related to the function p(v) > 0. We know that they are in
unitary correspondence for the norms

∫
u>0

|g|2 + |g′|2 du and
∫
v>0

|p|2 + |p′|2 dv,
and the formulas (20a) for E − P and E + P suggest that one should pair g
with p′ and g′ with p. In fact if we take into consideration the wave which has
values φ(t, x) = e−|x| for space-like points, we are rather led to pair g with −p′ and
g′ with −p (the values of φ at time-like points are more involved and we don’t need
to know about them here; suffice it to say that certainly e−x solves Klein-Gordon,
so it gives the unique solution in the right wedge with φ(0, x) = e−x, ∂φ∂t (0, x) = 0).

Let us denote by H the operator which acts as g �→ −p′, on even g’s. Under
a Lorentz boost: g �→ gΛ(u) = g( 1

Λu), −p′ �→ −Λp′(Λv) and also the assignment
g �→ −p′ is unitary for the L2 norm:

g(u) =
∫ +∞

−∞
eiuλα(λ) dλ p(v) =

∫ +∞

−∞
eiλvα(− 1

λ
)

1
λ2

dλ

−p′(v) = −i
∫ +∞

−∞
eiλvα(− 1

λ
)
1
λ
dλ .

Going from g to α is unitary, from α to −iα(− 1
λ ) 1

λ also, and back to −p′ also, in
the various L2 norms. So the assignment from g to −p′ is unitary.

Identifying the L2 space on u > 0 with the L2 space on v > 0, through v = u,
H is a unitary operator on L2(0,+∞; du). Furthermore it is “scale reversing”:
we say that an operator K (bounded, more generally, closed) is scale reversing
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if its composition KI with I : g(u) �→ g(1/u)
u commutes with the unitary group of

scale changes g �→ √
Λg(Λu). The Mellin transform g �→ ĝ(s) =

∫∞
0
g(u)u−s du, for

s = 1
2 +iτ , τ ∈ R, is the additive Fourier transform of et/2g(et) ∈ L2(−∞,+∞; dt).

The operator KI commutes with multiplicative translations hence is diagonalized
by the Mellin transform: we have a certain (bounded for K bounded) measurable
function χ on the critical line �(s) = 1

2 such that for any g(u) ∈ L2(0,∞; du), and
almost everywhere on the critical line:

(Kg)∧(s) = (KI(Ig))∧(s) = χ(s)(Ig)∧(s) = χ(s)ĝ(1 − s) .

Let us imagine for a minute that we know a g which is invariant under K and
which, furthermore has ĝ(s) almost everywhere non vanishing (by a theorem of
Wiener, this means exactly that the linear span of its orbit under the unitary
group of scale changes is dense in L2). Then we know χ(s) hence, we know K. So
K is uniquely determined by the knowledge of one such invariant function.

In the case of our operator H which goes from the data of g(u), u > 0, to the
data of k(v) = −p′(v), v > 0, where g and p are the boundary values of a finite
energy solution of the Klein-Gordon equation in the right wedge, we know that
it is indeed unitary, scale reversing, and has e−u as a self-reciprocal function (so,
here, χ(s) = Γ(1−s)

Γ(s) ).
On the other hand the Hankel transform of order zero is unitary, scale revers-

ing, and has
√
ue−u

2/2 as self-reciprocal invariant function. So we find that the
assignment of −√

v k′( v
2

2 ) to
√
u g(u

2

2 ) is exactly the Hankel transform of order
zero. This may also be proven directly by the method we will employ in section 7.

5. Causality and support conditions

The Theorem 2 is almost entirely proven: if the Cauchy data vanishes identically
for 0 < x < 2a, then by unicity and causal propagation, g(u) = φ(−u, u) vanishes
identically for 0 < u < a and p(v) = φ(+v, v) vanishes identically for 0 < v < a.
Conversely, if A and B from Theorem 2 vanish identically for 0 < r, s <

√
2a, then

g(u) and −p′(v) vanish identically for 0 < u < a and 0 < v < a. We explained
in the introduction that p itself also vanishes identically for 0 < v < a. Then
φ[u, v] =

∫∫
0≤r≤u
0≤s≤v

φ[r, s] drds for 0 ≤ u ≤ a, 0 ≤ v ≤ a, hence φ vanishes identically

in this range, and the Cauchy data for φ at t = 0, 0 < x < 2a, vanishes identically.
The proof of Theorem 2 (hence also in its equivalent form 3) is complete.

We would like also to relax the finite energy condition on φ. Let us imagine
that our g, say even, is only supposed L2. It has an L2 Fourier transform α such that
g(u) =

∫ +∞
−∞ e+iuλα(λ) dλ. Let us approximate α by an L2 converging sequence

of αn’s, corresponding to finite energy Klein-Gordon solutions φn. We have by
(18a) and (21):
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1
2π

∫ +∞

−∞

(
|φn − φm|2 +

∣∣∣∣∂(φn − φm)
∂x

+
∂(φn − φm)

∂t

∣∣∣∣2
)
dx

= 2
∫ +∞

−∞
|αn − αm|2 dλ .

So the φn converge for t = 0 in the L2 sense, and also the ∂φn

∂x + ∂φn

∂t . We can then
consider, as is known to exist, the distribution solution φ with this Cauchy data.

Let us suppose that we start from an even g which, together with its H trans-
form, vanish in (0, a). First we show that we can find, with 0 < bn < 1, bn → 1, a
sequence of gn’s, such that g′n is in L2, and gn → g in L2, with the gn’s satisfying
the support condition for (0, bna). We obtain such gn by multiplicative convolution
of g with a test function supported in (bn, 1

bn
). At the level of Mellin transforms,

this multiplies by a Schwartz function. As u d
du corresponds to multiplication by −s

certainly the u d
du of our gn’s are in L2. But then d

dugn itself is in L2 as we know
that it vanishes in (0, bna). And its H transform also vanishes there.

So the corresponding φn’s will have for t = 0 vanishing Cauchy data in
intervals only arbitrarily slightly smaller than (0, 2a). The L2 functions φ(0, x) and
(∂φ∂x + ∂φ

∂t )(0, x) will thus vanish identically, in (0, 2a). Conversely if we have two
L2 functions L and M vanishing in (0, 2a) we can approximate then by Schwartz
functions Ln and Mn vanishing in (0, bn2a) (0 < bn < 1, bn → 1), solve the
Cauchy problem with data φ = Ln and ∂φ

∂x + ∂φ
∂t = Mn at t = 0, consider the

corresponding gn’s which vanish identically for 0 < u < bna and get an L2 limit g
vanishing identically in (0, a). The H transform of g will be the limit in L2 of the
H transforms of the gn, so it will also vanish in (0, a).

In conclusion the space-time representation of Hankel pairs with support
condition as given in Theorem 2 extends to the general case of L2 Hankel pairs if
one allows Klein-Gordon solutions of possibly infinite energy but such that φ(0, x)
and ∂φ

∂x (0, x) + ∂φ
∂t (0, x) are in L2.

6. The Dirac system and its associated scattering

We return to finite energy solutions which are associated to functions α verifying

the condition
∫ +∞
−∞ (1 + λ2)|α(λ)|2 dλ < ∞. Let us consider in fact a pair

[
ψ
φ

]
of

such finite energy solutions satisfying the first order system:

∂ψ

∂t
− ∂ψ

∂x
= +φ

∂ψ

∂u
= −φ , (24a)

∂φ

∂t
+
∂φ

∂x
= −ψ ∂φ

∂v
= −ψ . (24b)

If α corresponds to φ and β corresponds to ψ, then there is the relation:
α(λ) = −iλβ(λ) so we must have

∫ +∞
−∞

1
λ2 |α(λ)|2 dλ < ∞. To enact a Lorentz
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boost we could imagine replacing φ and ψ by

φ(cosh(ξ)t+ sinh(ξ)x, sinh(ξ)t+ cosh(ξ)x) = φ[e−ξu, eξv]

ψ(cosh(ξ)t+ sinh(ξ)x, sinh(ξ)t+ cosh(ξ)x) = ψ[e−ξu, eξv]

but this does not give a solution of the Dirac type system (24). To obtain a solution
we must rescale φ, or ψ, or both. We choose:2

φξ[u, v] = e−ξ/2 φ[e−ξu, eξv] ψξ[u, v] = eξ/2 ψ[e−ξu, eξv] . (25)

In other words, if we want to consider our φ as a component of such a sys-
tem we must cease treating it as a scalar. It is a (spinorial) quantity which
transforms as indicated under a Lorentz boost. We note further that with this
modification both E(φ) − P (φ) and E(ψ) + P (ψ) are Lorentz invariant. In fact

they are identical: E(φ) − P (φ) = 1
2π

∫ +∞
−∞ |φ|2 +

∣∣∣∂φ∂x + ∂φ
∂t

∣∣∣2 dx, E(ψ) + P (ψ) =

1
2π

∫ +∞
−∞ |ψ|2 +

∣∣∣∂ψ∂x − ∂ψ
∂t

∣∣∣2 dx, hence:

E(φ) − P (φ) = E(ψ) + P (ψ) =
1
2π

∫ +∞

−∞

(|φ(0, x)|2 + |ψ(0, x)|2) dx . (26)

We again focus on what happens in the right wedge. Thus, we can as well take
φ to be PT invariant. But then as ψ = −∂φ

∂v , ψ must acquire a sign under the PT
transformation: ψ(−x,−t) = −ψ(x, t). So the function g(u) = φ(−u, u) = φ[u, 0]
is even but the function k(v) = ψ(v, v) = ψ[0, v] is odd. In fact k(v) = −p′(v) with
our former notation. So we know that the PT invariant φ is uniquely determined
by g(u) for u > 0 which gives under the H transform the function k(v) for v > 0
which must be considered odd and correspond to the PT anti-invariant ψ. We
note that if k(0+) = 0 then this ψ is not of finite energy. Using only that φ is finite
energy, we have from equation (20a):

E(φ) − P (φ) =
1
π

∫ 0

−∞
|g(u)|2 du+

1
π

∫ ∞

0

|k(v)|2 dv ,

1
2π

∫ +∞

−∞

(|φ(0, x)|2 + |ψ(0, x)|2) dx = E(φ) − P (φ) =
1
π

∫ ∞

0

|g(u)|2 du

+
1
π

∫ ∞

0

|k(v)|2 dv ,

∫ ∞

0

(|φ(0, x)|2 + |ψ(0, x)|2) dx = 2
∫ ∞

0

|g(u)|2 du , (27a)∫ ∞

0

(|φ(0, x)|2 + |ψ(0, x)|2) dx = 2
∫ ∞

0

|k(v)|2 dv . (27b)

2This conflicts with our previous notation φΛ[u, v] = φ[ 1
Λ

u, Λv]; no confusion should arise.
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We now begin the proof of Theorem 4. To prove that
∫∞
0

|F (x)|2 + |G(x)|2 dx
= 2

∫∞
0

|g(u)|2 du = 2
∫∞
0

|k(v)|2 dv, we extend F to be even andG to be odd. Then
φ is PT even of finite energy, and ψ is PT odd and equations (27a) and (27b) apply.
Note that if G(0+) = 0 then ψ is not of finite energy but only the fact that φ is
of finite energy was used for (27a) and (27b). That k = H(g) and

∫∞
0

|g(u)|2 +
|g′(u)|2du <∞ hold are among our previous results. If we choose G to be even and
F to be odd, then it is ψ which is of finite energy and so

∫∞
0

|k(v)|2+|k′(v)|2dv <∞
holds true. We can also prove

∫∞
0

|g|2 + |g′|2du <∞,
∫∞
0

|k|2 + |k′|2dv <∞ after

extending F and G such that
∫∞
−∞ |F |2 + |F ′|2 + |G|2 + |G′|2dx <∞ so that both φ

and ψ are then of finite energy. The boundary values g(u), u > 0, and k(v), v > 0 do
not depend on choices. Furthermore the vanishing of F and G on (0, 2a) at t = 0 is
equivalent by our previous arguments to the vanishing of g and k on (0, a). To show
that all H pairs with

∫∞
0

|g|2 + |g′|2du < ∞,
∫∞
0

|k|2 + |k′|2dv < ∞ are obtained,
let k1 be the odd function with k1(v) = k(v) − k(0+)e−v for v > 0 and let g1 be
the even function with g1(u) = g(u) − k(0+)e−u for u ≥ 0. Then k1 = H(g1) and∫∞
−∞ |g1|2 + |g′1|2du <∞ and

∫∞
−∞ |k1|2 + |k′1|2dv <∞. They thus correspond to φ1

and ψ1 both of finite energy. We define for x > 0: F (x) = φ1(0, x)+ k(0+)e−x and
G(x) = ψ1(0, x)+k(0+)e−x, it then holds that

∫∞
0

|F |2+|F ′|2+|G|2+|G′|2dx <∞
and

[
ψ
φ

]
=
[
ψ1+k(0

+)e−x

φ1+k(0
+)e−x

]
is the unique solution in the Rindler wedge of the Dirac

system with Cauchy data [GF ] on x > 0, t = 0, and it has g(u) and k(v) as
boundary values. To complete the proof of Theorem 4 there only remains to show
the formulas relating F , G, g, and k and this will be done in the next section.

On the Hilbert space L2(0,∞; dx)⊕L2(0,∞; dx) of the pairs (F,G), we can
define a unitary group U(ξ), −∞ < ξ <∞, as follows: we define its action at first
for (F,G) with F ′, G′ ∈ L2. Let

[
ψ
φ

]
be the solution of first order system (24) such

that φ(0, x) = F (x), ψ(0, x) = G(x). Then we take:

U(ξ)(F,G) = (φ−ξ|t=0 , ψ−ξ|t=0) (28)

where (25) has been used. As ξ increases from −∞ to +∞ this has the effect of
transporting φ and ψ forward along the Lorentz boosts trajectories. We can also
implement U(ξ) as a unitary group acting on the L2 space of the g(u) = φ(−u, u)
functions, or on the space of the k(v) = ψ(v, v) functions. We then have, taking
into account (25) (and −ξ):

gξ(u) = e
ξ
2 g(eξu) kξ(v) = e−

ξ
2 k(e−ξv) . (29)

Following the terminology of Lax-Phillips [12] (the change of variable u →
log(u) would reduce to the additive language of [12]) we shall say that (F,G) �→
I(g) provides an incoming (multiplicative) translation representation (U(ξ) moves
the graph of ey/2I(g)(ey) = e−y/2g(e−y) to the right by an amount of additive
time ξ) and (F,G) �→ k is an outgoing translation representation. We use (Ig)(u) =
1
ug(

1
u ) as it is translated by U(ξ) in the same direction as k. The assignment
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Ig → k will be called the “scattering matrix” S (it is canonical only up to a
translation in “time”, which means here only up to a scale change in u). With
our previous notation it is S = HI. Let us give a “spectral” representation of S.
For this we represent g as a superposition of (multiplicative) harmonics, g(u) =
1
2π

∫
�(s)= 1

2
ĝ(s)us−1 |ds|, with ĝ(s) =

∫∞
0
g(u)u−s du, s = 1

2 + iτ . Then the unitary

operator S will be represented as multiplication by a unit modulus function χ(s).
Multiplication by χ(s) must send the Mellin transform Γ(s) of I(e−u) to the Mellin
transform Γ(1 − s) of e−u, in other words:

χ(s) =
Γ(1 − s)

Γ(s)
. (30)

We thus see that the first order system in the wedge of two dimensional space-time
provides an interpretation of this function (for �(s) = 1

2 ) as a scattering matrix.
To obtain the Hankel transform of order zero, and not its succédané H, one writes
s = 1

4 + w
2 , where again �(w) = 1

2 . In fact, with our normalizations, the scattering
matrix corresponding to the transform g(t) �→ f(u) =

∫∞
0

√
utJ0(ut)g(t) dt is the

function 2
1
2−w Γ( 3

4−w
2 )

Γ( 1
4+ w

2 )
on the critical line �(w) = 1

2 .

7. Application of Riemann’s method

The completion of the proof of Theorem 4 will now be provided. I need to briefly
review Riemann’s method ([10, IV §1], [6, VI §5]), although it is such a classical
thing, as I will use it in a special manner later. In the case of the (self-adjoint) Klein-
Gordon equation ∂2φ

∂u∂v = +φ, t2 − x2 = 4(−u)v, Riemann’s method combines:

1. whenever φ and ψ are two solutions, the differential form ω = φ∂ψ∂u du+ψ ∂φ∂v dv
is closed,

2. it is advantageous to use either for φ or for ψ the special solution (Riemann’s
function) R(P,Q) which reduces to the constant value 1 on each of character-
istics issued from a given point P . Here R(P,Q) = R(P−Q, 0) = R(Q−P, 0),
R((t, x), 0) = J0(

√
t2 − x2) = J0(2

√−uv).
Usually one uses Riemann’s method to solve for φ when its Cauchy data is

given on a curve transversal to the characteristics. But one can also use it when the
data is on the characteristics (Goursat problem). Also, one usually symmetrizes
the formulas obtained in combining the information from using φ∂R∂u du+R ∂φ

∂v dv

with the information from using R ∂φ
∂u du + φ∂R∂v dv. For our goal it will be better

not to symmetrize in this manner. Let us recall as a warming-up how one can use
Riemann’s method to find φ(t, x) for t > 0 when φ and ∂φ

∂t are known for t = 0.
Let P = (t, x), A = (0, x− t), B = (0, x+ t), and R(Q) = R(P −Q).

φ(P )−φ(A) =
∫
A→P

∂φ

∂v
dv =

∫
A→P

R
∂φ

∂v
dv+φ

∂R

∂u
du =

∫
A→B

+
∫
B→P

=
∫
A→B

.
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Hence:

φ(P ) = φ(A) +
∫
A→B

(R
∂φ

∂v
+ φ

∂R

∂u
)
dx

2
.

Using R ∂φ
∂u du+ φ∂R∂v dv we get in the same manner:

φ(P ) = φ(B) −
∫
A→B

(R
∂φ

∂u
+ φ

∂R

∂v
)
dx

2
. (31)

After averaging:

φ(P ) =
φ(A) + φ(B)

2
+

1
2

∫
A→B

(R
∂φ

∂t
− φ

∂R

∂t
)dx .

This gives the classical formula (t > 0):

φ(t, x) =
φ(0, x− t) + φ(0, x+ t)

2
− 1

2

∫ x+t

x−t
t
J1(
√
t2 − (x− x′)2)√
t2 − (x− x′)2

φ(0, x′)dx′

+
1
2

∫ x+t

x−t
J0(
√
t2 − (x− x′)2)

∂φ

∂t
(0, x′)dx′ .

(32)

I have not tried to use it to establish Theorem 1. Anyway, when φ, ∂φ
∂x , ∂φ

∂t all
belong to L2 at t = 0, this formula shows that φ(P ) is continuous in P for t > 0.
Replacing t = 0 with t = −T , we find that φ is continuous on spacetime.

Let us now consider the problem, with the notations of Theorem 4, of de-
termining k(v) = ψ(v, v) for v > 0 when F (x) = φ(0, x) = −∂ψ

∂u (0, x) and
G(x) = ψ(0, x) = −∂φ

∂v (0, x) are known for x > 0. We use P = (v0, v0), A = (0, 0),
B = (0, 2v0). We then have:

R(t, x) = J0(
√

(v0 − t)2 − (v0 − x)2) = J0(2
√
u(v0 − v)) ,

R(0, x) = J0(
√
x(2v0 − x)) ,

∂R

∂v
=
J1(2

√
u(v0 − v))

2
√
u(v0 − v)

2u
∂R

∂v
(0, x) =

J1(
√
x(2v0 − x))√
x(2v0 − x)

x .

Hence, using (31) (for ψ):

ψ(v, v) = G(2v) +
1
2

∫ 2v

0

(J0(
√
x(2v0 − x))F (x) − x

J1(
√
x(2v0 − x))√
x(2v0 − x)

G(x)) dx .

(33)

We then consider the converse problem of expressing G(x) = ψ(0, x) in terms
of k(v) = ψ(v, v). We choose x0 > 0, and consider the rectangle with vertices
P = ( 1

2x0,
1
2x0), Q = (0, x0), Q′ = (X,X + x0), P ′ = (X + 1

2x0, X + 1
2x0) for

X � 0. We take Riemann’s function S to be 1 on the edges P → Q and Q→ Q′.
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We then write:

ψ(Q) − ψ(P ) =
∫
P→Q

∂ψ

∂u
du =

∫
P→Q

(S
∂ψ

∂u
du+ ψ

∂S

∂v
dv)

=
∫
P→P ′

+
∫
P ′→Q′

+
∫
Q′→Q

=
∫
P→P ′

ψ
∂S

∂v
dv +

∫
P ′→Q′

S
∂ψ

∂u
du ,

G(x0) = ψ(
x0

2
,
x0

2
) +

∫
P→P ′

ψ
∂S

∂v
dv −

∫
P ′→Q′

Sφdu . (34)

Now, |S| ≤ 1 on the segment leading from P ′ to Q′, so we can bound the last inte-
gral, using Cauchy-Schwarz, then the energy integral, and finally the Theorem 1.
So this term goes to 0. On the light cone half line from P to ∞ we have:

S(v, v) = J0(
√
x0(2v − x0))

∂S

∂v
= −J1(

√
x0(2v − x0))√
x0(2v − x0)

x0 ,

G(x0) = ψ(
x0

2
,
x0

2
) −

∫ ∞

x0/2

J1(
√
x0(2v − x0))√
x0(2v − x0)

x0ψ(v, v) dv . (35)

Our last task is to obtain the formula for F (x0). We use the same rectangle
and same function S.

φ(Q) − φ(Q′) =
∫
Q′→Q

∂φ

∂v
dv =

∫
Q′→Q

S
∂φ

∂v
dv + φ

∂S

∂u
du

=
∫
Q′→P ′

φ
∂S

∂u
du+

∫
P ′→P

S
∂φ

∂v
dv + 0 .

On the segment Q′ → P ′ we integrate by parts to get:∫
Q′→P ′

φ
∂S

∂u
du = φ(P ′)S(P ′) − φ(Q′) −

∫
Q′→P ′

∂φ

∂u
S du .

Again we can bound S by 1 and apply Cauchy-Schwarz to
∫
Q′→P ′

∂φ
∂uS du. Then we

observe that
∫
Q′→P ′ |∂φ∂u |2|du| is bounded above by the energy integral, which itself

is bounded above by the energy integral on the horizontal line having P ′ as its left
end. By Theorem 1 this goes to 0. And regarding φ(P ′) one has limv→+∞ φ(v, v)
= 0 as φ(v, v) and its derivative belong to L2(0,+∞; dv). We cancel the φ(Q′)’s
on both sides of our equations and obtain:

φ(Q) = −
∫
P→(∞,∞)

S
∂φ

∂v
dv = +

∫
P→(∞,∞)

Sψdv .

Hence

F (x0) =
∫ ∞

x0/2

J0(
√
x0(2v − x0))ψ(v, v) dv . (36)
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In conclusion: the functions F (x) = φ(0, x), G(x) = ψ(0, x), and k(v) = ψ(v, v) of
Theorem 4 are related by the following formulas:

F (x) =
∫ ∞

x/2

J0(
√
x(2v − x))k(v) dv , (37a)

G(x) = k(
x

2
) −

∫ ∞

x/2

x
J1(
√
x(2v − x))√
x(2v − x)

k(v) dv , (37b)

k(v) = G(2v) +
1
2

∫ 2v

0

J0(
√
x(2v − x))F (x) dx

− 1
2

∫ 2v

0

x
J1(
√
x(2v − x))√
x(2v − x)

G(x) dx . (37c)

Exchanging F and G is like applying a time reversal so it corresponds exactly to
exchanging k(v) = ψ(v, v) with g(u) = φ(−u, u). So the proof of Theorem 4 is
complete.

8. Conformal coordinates and concluding remarks

The Rindler coordinates (ξ, η) in the right wedge are defined by the equations
x = η cosh ξ, t = η sinh ξ. Let us use the conformal coordinate system:

ξ =
1
2

log
x+ t

x− t
ζ =

1
2

log(x2 − t2) − log 2 = log
η

2
where −∞ < ξ < +∞, −∞ < ζ < +∞. The variable ξ plays the rôle of time
for our scattering. The reason for − log 2 in ζ is the following: at t = 0 this gives
eζ = 1

2x = u = v. The differential equations we shall write are related to the
understanding of the vanishing condition for an H pair on an interval (0, a). And
a = 1

2 (2a) hence the − log 2 (to have equations identical with those in [5]). The
Klein-Gordon equation becomes:

∂2φ

∂ξ2
− ∂2φ

∂ζ2
+ 4e2ζφ = 0 . (38)

If we now look for “eigenfunctions”, oscillating harmonically in time, φ = e−iγξ

Φ(ζ), γ ∈ R, we obtain a Schrödinger eigenvalue equation:

−Φ′′(ζ) + 4e2ζΦ(ζ) = γ2Φ(ζ) . (39)

This Schrödinger operator has a potential function which can be conceived of
as acting as a repulsive exponential barrier for the de Broglie wave function of a
quantum mechanical particle coming from −∞ and being ultimately bounced back
to −∞. The solutions of (39) are the modified Bessel functions ([18]) of imaginary
argument iγ in the variable 2eζ . For each γ ∈ C the unique (up to a constant
factor) solution of (39) which is square integrable at +∞ is Kiγ(2eζ).

From Theorem 4 it is more convenient to express the H transform as a scat-
tering for the two-component, “Dirac”, differential system. The spinorial nature
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of
[
ψ
φ

]
leads under the change of coordinates (t, x) �→ (ξ, ζ) to e

ζ
2 e−

ξ
2φ rather

than φ, and to e
ζ
2 e+

ξ
2ψ rather than ψ. In order to get quantities which, in the past

at ξ → −∞, look like φ and, in the future at ξ → +∞, look like ψ we consider the
linear combinations:

A =
1
2
e

ζ
2 (+e−

ξ
2φ+ e

ξ
2ψ) , (40a)

B =
i

2
e

ζ
2 (−e− ξ

2φ+ e
ξ
2ψ) . (40b)

Their differential system is:

+i
∂A
∂ξ

= +
(
∂

∂ζ
− 2eζ

)
B , (41a)

+i
∂B
∂ξ

= −
(
∂

∂ζ
+ 2eζ

)
A . (41b)

Or, if we look for solutions oscillating in time as e−iγξ:(
∂

∂ζ
− 2eζ

)
B = γA , (42a)(

− ∂

∂ζ
− 2eζ

)
A = γB (42b)

and this gives Schrödinger equations:

−∂
2A
∂ζ2

+ (4e2ζ − 2eζ)A = γ2A , (43a)

−∂
2B
∂ζ2

+ (4e2ζ + 2eζ)B = γ2B . (43b)

So we have two exponential barriers, and two associated “scattering functions”
giving the induced phase shifts. From our previous discussion of the scattering in
the Lax-Phillips formalism we can expect from equation (30) that a formalism of
Jost functions will confirm these functions to be

S(γ) =
Γ( 1

2 − iγ)
Γ( 1

2 + iγ)
(γ ∈ R) , (44)

for the equation associated with A and −S(γ) for the equation associated with B.
And indeed the solution

[Aγ

Bγ

]
of the system (42) which is square-integrable at +∞

is given by the formula[Aγ(ζ)
Bγ(ζ)

]
=

[
e

ζ
2
(
Ks(2eζ) +K1−s(2eζ)

)
i e

ζ
2
(
Ks(2eζ) −K1−s(2eζ)

)] (s =
1
2

+ iγ) . (45)
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Let jγ(ζ) be the solution of (43a) which satisfies the Jost condition jγ(ζ) ∼ e−iγζ

as ζ → −∞. Then the exact relation holds (a detailed treatment is given in [5]):

Aγ(ζ) =
1
2

(Γ(s)jγ(ζ) + Γ(1 − s)j−γ(ζ)) (s =
1
2

+ iγ) . (46)

We interpret this as saying that the A-wave comes from −∞ and is bounced back
with a phase-shift which at frequency γ equals arg Γ( 1

2−iγ)
Γ( 1

2+iγ)
= argS(γ). For the

B equation one obtains −S(γ) as the phase shift function.
We have associated in [4] Schrödinger equations to the cosine and sine kernels

whose potential functions also have exponential vanishing at −∞ and exponen-
tial increase at +∞, and whose associated scattering functions are the functions
arising in the functional equations of the Riemann and Dirichlet L-functions. The
equations (13a), (13b) of [4] are analogous to (40a), (40b) above, and (14a), (14b)
of [4] are analogous to (42a) and (42b) above. The analogy is no accident. The
reasoning of [4] leading to the consideration of Fredholm determinants when trying
to understand self- and skew-reciprocal functions under a scale reversing opera-
tor on L2(0,+∞; dx) is quite general. The (very simple) potential functions in
the equations (43a) and (43b) can be written in terms of Fredholm determinants
associated with the H transform. The detailed treatment is given in [5].

The function S(γ) arises in number theoretical functional equations (for the
Dedekind zeta functions of imaginary quadratic fields). We don’t know if its in-
terpretation obtained here in terms of the Klein-Gordon equation may lead us to
legitimately hope for number theoretical applications. An interesting physical con-
text where S(γ) has appeared is the method of angular quantization in integrable
quantum field theory [13, App. B]. And, of course the group of Lorentz boosts and
the Rindler wedge are connected by the Bisognano-Wichman theorem [1, 2, 7].

The potentials associated in [4]to the cosine and sine kernels are, contrarily to
the simple-minded potentials obtained here, mainly known through their expres-
sions as Fredholm determinants, and these are intimately related to the Fredholm
determinant of the Dirichlet kernel, which has been found to be so important in
random matrix theory. It is thus legitimately considered an important problem to
try to acquire for the cosine and sine kernels the kind of understanding which has
been achieved here for the H transform. Will it prove possible to achieve this on
(a subset, with suitable conformal coordinates) of (possibly higher dimensional)
Minkowski space?

We feel that some kind of non-linearity should be at work. A tantalizing
thought presents itself: perhaps the kind of understanding of the Fourier transform
which is hoped for will arise from the study of the causal propagation and scattering
of (quantum mechanical?) waves on a certain curved Einsteinian spacetime.
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