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Abstract. The aim of this paper is to prove a positive energy-momentum the-
orem under the (well known in general relativity) dominant energy condition,
for AdS-asymptotically hyperbolic manifolds. These manifolds are by defi-
nition endowed with a Riemannian metric and a symmetric 2-tensor which
respectively tend to the metric and second fundamental form of a standard
hyperbolic slice in Anti-de Sitter space-time. There exists a positive mass
theorem for asymptotically hyperbolic spin Riemannian manifolds (with zero
extrinsic curvature), and we present an extension of this result for the non
zero extrinsic curvature case.

1. The energy-momentum

1.1. Introduction

This paper proves a positive energy-momentum theorem under the (well known in
general relativity) dominant energy condition, for AdS-asymptotically hyperbolic
manifolds. An AdS-asymptotically hyperbolic manifold is by definition a manifold
(M, g, k) such that at infinity, the Riemannian metric g and the symmetric 2-ten-
sor k tend respectively to the metric and second fundamental form of a standard
hyperbolic slice of Anti-de Sitter (AdS).

Chruściel and Nagy [19] recently defined the notion of energy-momentum of
an asymptotically hyperbolic manifold, which generalizes the analogous notion in
the asymptotically flat case. Besides Chruściel and Herzlich [15] recently proved a
positive mass theorem for asymptotically hyperbolic spin Riemannian manifolds
(with zero extrinsic curvature).

The aim of the present paper is to extend this result to the non-zero extrinsic
curvature case.

1.2. Some definitions and notations

In the whole paper, we consider a spacelike hypersurface M in a (locally defined)
Lorentzian manifold N . Using geodesic coordinates along M , we shall write a
neighbourhood of M in N as a subset of ]−ε, ε[ ×M , endowed with the metric
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γ = −dt2 + gt. The Riemannian n-manifold M has induced metric g0 = g and
second fundamental form k := (−1

2
d
dtgt)|t=0. We assume that (M, g, k) is AdS-

asymptotically hyperbolic that is to say, the metric g and the second fundamental
form k are asymptotic at infinity to the metric and the second fundamental form
of a standard hyperbolic slice in AdS. More precisely we adopt the following

Definition 1.1. (M, g, k) is said to be AdS-asymptotically hyperbolic if there exists
some compact K, a positive number R and a homeomorphism called a chart at
infinity M �K −→ R

n
�B(0, R) such that in this chart we have{

e := g − b = O(e−τr), ∂e = O(e−τr), ∂2e = O(e−τr),
k = O(e−τr), ∂k = O(e−τr),

for τ > n/2 and where ∂ is taken with respect to the hyperbolic metric b = dr2 +
sinh2 rgSn−1 with gSn−1 the standard metric of S

n−1.

The model case is merely the standard embedding of the hyperbolic space (Hn, b, 0)
in AdS space time, which will be denoted by (Rn+1, β = −dt2 + bt).

The motivation for the definition of the energy-momentum comes from the
study of the constraints map which by definition is

Φ: M× Γ(S2T ∗M) −→ C∞(M) × Γ(T ∗M)

(h, p) �−→
(

Scalh +(trh p)2 − |p|2h
2 (δhp+ dtrh p)

)
,

where M is the set of Riemannian metrics on the manifold M . Let us denote
by (ḣ, ṗ) an infinitesimal deformation of (h, p). Now if we take a couple (f, α) ∈
C∞(M) × Γ(T ∗M) then we compute〈

(f, α), (Φ(h+ ḣ, p+ ṗ) − Φ(h, p))
〉

= δ(f(δḣ+ dtr ḣ) + i∇f ḣ− (tr ḣ)df + 2iαṗ− 2(tr ṗ)α)

+ δ(<p, ḣ>α+<h, ḣ>iαp− 2iiαpḣ)

+
〈

dΦ∗
(h,p)(f, α), (ḣ, ṗ)

〉
+Q(f, α, h, p, ḣ, ṗ),

where < , > is the metric extended to all tensors, δ is the h-divergence operator,
dΦ∗

(h,p) is the formal adjoint of the linearized constraints map at the point (h, p),

traces are taken with respect to h and Q(f, α, h, p, ḣ, ṗ) is a remainder which is
linear with respect to (f, α) and at least quadratic with respect to (ḣ, ṗ). Now
considering the constraints map along the hyperbolic space embedded in AdS,
that is to say (h, p) = (b, 0) and (ḣ, ṗ) = (g − b = e, k) one finds

〈(f, α), (Φ(g, k) − Φ(b, 0))〉 = δ(f(δe+ dtr e) + i∇fe− (tr e)df + 2iαk − 2(tr k)α)

+
〈

dΦ∗
(b,0)(f, α), (e, k)

〉
+Q(f, α, b, k, e).

As a consequence if we assume that (M, g, k) is AdS-asymptotically hyperbolic
and if the function 〈(f, α), (Φ(g, k) − Φ(b, 0))〉 is integrable on M with respect to
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the measure dVolb, then the energy-momentum H can be defined as a linear form
on Ker dΦ∗

(b,0)

H : (f, α) �−→ lim
r→∞

∫
Sr(b)

−f(δbe+ dtrb e) − i∇bfe+ (trb e)df − 2iα�k + 2(trb k)α.

The integrand in the formula of H is in index notation

f(ei
j,i − ei

i,j) − f ,ieij + (ei
i)f,j − 2αikij + 2(ki

i)αj ,

where “,” stands for the b-derivatives and where hi = bijhj for any tensor h. This
integrand is the same as the one of Chruściel and Nagy [19] since each Killing
vector fields on AdS is decomposable into the sum of some normal and tangential
components (with respect to a standard hyperbolic slice) which are in our case
given by the couple (f, α) (see also [22]). More precisely, one can show, using
Moncrief argument [26], that Ker dΦ∗

(b,0)
∼= Kill(AdS) where Kill(AdS) denotes the

Lie algebra of Killing vector fields on AdS, since it satisfies the Einstein equations
with a (negative) cosmological constant. The isometry group of AdS is O(n, 2), and
thereby Kill(AdS) ∼= so(n, 2) ∼= Nb ⊕ so(n, 1) ∼= Nb ⊕ Kill(Hn), where we have set
Nb = {f ∈ C∞(M) | Hess f = fb}. It is well known [19], [15] that the application

Rn,1 −→ Nb

yk �−→ xk := yk|Hn ,

(where (yk)n
k=0 are the standard coordinates) is an isometry, and the mass part

of the energy-momentum is a linear form on Nb which is causal and positively
oriented as soon as Scalg ≥ −n(n − 1) = Scalb. Remark that the sharpest in-
tegrability conditions in order to make H well defined and invariant under as-
ymptotic isometries have been found by Chruściel and Nagy still in [19]. How-
ever for the sake of simplicity one can use instead of the integrability condition
〈(f, α), (Φ(g, k) − Φ(b, 0))〉 ∈ L1(M, dVolb), the less general but more convenient
condition |Φ(g, k) − Φ(b, 0)| er ∈ L1(M, dVolb).

Remark 1.2. In the asymptotically flat situation, the energy-momentum is also a
linear form on R

n,1 ⊕ so(n, 1) where the first component corresponds to transla-
tional isometries (if a normal vector to the hypersurface is given, the normal com-
ponent in the Rn,1 part is nothing but the mass) and the second one to rotations.
This interpretation gave rise to the respective terminology of linear and angular
momentum. In the AdS-asymptotically hyperbolic situation, one cannot identify
some linear momentum in the decomposition so(n, 2) ∼= R

n,1 ⊕ so(n, 1), since the
first component Rn,1 in so(n, 2) is not of translational nature. This whole first com-
ponent of the energy is then called the mass functional and it only remains some
angular momentum. Moreover physicists often call the limit of integrals H(f, α)
global charges and so the positive energy-momentum theorem could be consequently
renamed global inequalities theorem. Some supplementary details on the physical
interpretation of our result can be found in the forthcoming note by Chruściel and
the author [17].
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1.3. Statement of the theorems and comments

As we have seen, given a chart at infinity, H can be considered as a vector of
R

n,1 ⊕ so(n, 1) and will be denoted by M ⊕Ξ. The vector M is the mass part [15]
of H, and Ξ is the angular momentum. We will prove the existence of a Hermitian
quadratic application

Q : Cd
K �� Rn,1 ⊕ so(n, 1) H �� R ,

which is nonetheless quite difficult to explicit in general.
We will also treat the case where the slice M has a compact inner bound-

ary ∂M whose induced metric and second fundamental form are respectively de-
noted by ğ and k̆. To this end, we have to define the vector field 	k := (− tr k̆ +
(n− 1))e0 + k(ν) along the boundary ∂M . We can now state the first main result
of this paper.

Theorem 1.3 (Positive energy-momentum). Let (Mn, g, k) be an AdS-asymptoti-
cally hyperbolic spin Riemannian manifold satisfying the decay conditions stated
in Section 1.2 and the following conditions

(i) 〈(f, α), (Φ(g, k) − Φ(b, 0))〉 ∈ L1(M, dVolb) for every (f, α) ∈ Nb⊕Kill(M, b),
(ii) the relative version of the dominant energy condition (cf. Section 2.2) holds,

that is to say (Φ(g, k)− Φ(b, 0)) is a positively oriented causal (n+ 1)-vector
along M ,

(iii) in the case where M has a compact boundary ∂M , we assume moreover that
	k is causal and positively oriented along ∂M .

Then there exists a (hardly explicitable) map R
n,1 ⊕ so(n, 1) −→ Herm(Cd) which

sends, under the assumptions (i)–(iii), the energy-momentum on a non-negative
Hermitian quadratic form Q.

Moreover, in dimension n = 3, we can be more specific giving the explicit
formula of Q in terms of the components M ∈ M ⊂ M(2,C) (cf. Section 2.4 for
the definition of M) and Ξ ∈ sl(2,C) of the energy-momentum H. More precisely,

Q = 2

(
M̂ Ξ
Ξ∗ M

)
,

where M̂ is the transposed comatrix of M .

In dimension n = 3, classical algebra results give the non-negativity of each prin-
cipal minors of Q which provide a set of inequalities on the coefficients of H that
are explicitly written in the appendix (cf. Section 5.1).

This result is new (even though many formal arguments where given by
Gibbons, Hull and Warner in [20]) and based on the recent global charge defini-
tion of Chruściel and Nagy for AdS-asymptotically hyperbolic manifolds, which
comes from the Hamiltonian description of General Relativity. Our approach is
purely Riemannian, the Lorentzian connection and manifold introduced are auxil-
iary since everything is restricted to the Riemannian slice M (oppositely to [20]).
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In the other hand, the positive mass theorem for Minkowski-asymptotically hy-
perbolic initial data sets of Chruściel, Jezierski and �Lȩski [16] is also different
from ours, since their Riemannian hypersurface is supposed to be asymptotic at
infinity to a standard hyperbolic slice of Minkowski space-time (in that case the
extrinsic curvature does not tend to 0). Then considering the translational Killing
vector fields of Minkowski, they defined a hyperbolic 4-momentum (usually called
Trautman-Bondi mass) and proved that it is timelike and future directed under
the dominant energy condition (and some other technical assumptions).

Remark finally that our result extends the positive mass theorem of Chruściel
and Herzlich [15] in dimension n, since if one supposes that k = 0 then we recover
their result: the mass functional M has to be time-like future directed.

As regards the rigidity part we have the

Theorem 1.4 (Rigidity). Under the assumptions of the positive energy-momentum
theorem, Q = 0 implies that (M, g, k) is isometrically embeddable in AdSn,1.

This result is optimal in the sense that one could not reasonably hope better than
being able to embbed isometrically our triple (M, g, k) in AdS.

Some additional but partial results will be proved (also for the Trautman-
Bondi 4-momentum) in order to weaken the defining condition of rigidity (cf.
Section 4).

1.4. Organisation of the paper

In Section 2, we give the necessary geometric background by recalling some basic
facts on spinors and defining the Killing connection used in the remainder of the
paper. We also prove the Bochner-Lichnerowicz-Weitzenbök-Witten formula with
respect to our Killing connection and deduce an integration formula.

In Section 3, we prove the positive energy-momentum theorem: we remark
that the boundary contribution of the integrated Bochner-Lichnerowicz-Weitzen-
bök-Witten formula can be identified to the global charges H(f, α), for some choices
of (f, α). This can be done using the same ideas as in [15] but in a Lorentzian
situation, and extends the quite technical computations of [15] in a non-trivial
way, since the algebraic structures are different (spinors, Hermitian scalar product,
gauge etc...) and since new terms (involving the extrinsic curvature) appeared and
had to be identified. We then make the analysis of the Dirac operator (we also
treat the case where M has a compact boundary) which gives the non-negativity of
the global charges H(f, α) when the couple (f, α) comes from an imaginary Killing
spinor of AdSn,1. Then we restrict to dimension n = 3, and completely study the
imaginary Killing spinors of AdS3,1 in order to interpret the non-negativity of the
global charges as the non-negativity of the Hermitian matrix Q on C4.

Section 4 is devoted to the proof of the rigidity results.
The last section is an appendix which gives the non-negativity of Q in di-

mension n = 3 seen through its coefficients, and proves some rigidity results for
the Trautman-Bondi mass [16].
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2. Geometric background

All the definitions and conventions of this section will be stated for any n ≥ 3,
where n is the dimension of the AdS-asymptotically hyperbolic slice (M, g, k),
except if the dimension is explicitly mentioned to be 3. Recall that β denotes the
AdS background metric.

2.1. Connections and curvatures

Let ∇,∇ denote respectively the Levi-Civita connections of γ and g. Let us take
a spinor field ψ ∈ Γ(Σ) (where Σ := ΣN|M ) and a vector field X ∈ Γ(TM), then{

∇Xψ = ∇Xψ − 1
2k(X) · e0 · ψ

〈k(X), Y 〉γ = 〈∇XY, e0〉γ .

In these formulae · denotes the Clifford action with respect to the metric γ, and
e0 = ∂t. We will use different notations when we have to make the difference
between the Clifford action with respect to the metric γ or β.

Definition 2.1. The Killing equation on a spinor field τ ∈ Γ(Σ) is

D̂Xτ := DXτ +
i

2
X ·β τ = 0 ∀X ∈ Γ(TM),

where D denotes the Levi-Civita connection of AdS along M . Such a D̂-parallel
spinor field is called a β-imaginary Killing spinor and we denote τ ∈ IKS (Σ). In
the same way, a ∇̂-parallel spinor field (where ∇̂X := ∇X + i

2X·γ) is called a
γ-imaginary Killing spinor.

Notice that the equation D̂τ = 0 is neither the Killing equation in AdS nor in Hn,
but the Killing equation in AdS along Hn (in particular the imaginary Killing
spinors considered here are not the one of [3], [15]).

Now if R, R̂ are the respective curvatures of ∇ and ∇̂, we have the relation

R̂X,Y = RX,Y − 1
4

(X · Y − Y ·X)· ,

where we use the convention of [24] for the curvature.

2.2. Bochner-Lichnerowicz-Weitzenbök-Witten formula and the dominant
energy condition

From now on (ek)n
k=0 is an orthonormal basis at the point with respect to the

metric γ. We define the Dirac-Witten operators

Dψ =
n∑

k=1

ek · ∇ek
ψ, D̂ψ =

n∑
k=1

ek · ∇̂ek
ψ,

where n is the dimension of the spacelike slice.
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Lemma 2.2 (Bochner-Lichnerowicz-Weitzenbök-Witten formula).

D̂∗D̂ = ∇̂∗∇̂ + R̂,

where R̂ := 1
4 (Scalγ + n(n− 1) + 4 Ricγ(e0, e0) + 2e0 · Ricγ(e0)).

Proof. The Dirac-Witten operator D is clearly formally self adjoint, and we have
the classical Bochner-Lichnerowicz-Weitzenbök formula (cf. [23], [28] for instance)
D∗D = D2 = ∇∗∇ + R, where R := 1

4 (Scalγ + 4 Ricγ(e0, e0) + 2e0 · Ricγ(e0)). We
also know that D̂ = D − in

2 and so we get

D̂∗D̂ = ∇∗∇ + R +
n2

4
,

but finally remarking that ∇̂∗∇̂ = ∇∗∇ + n
4 , we obtain our formula. �

We derive an integration formula from the Bochner-Lichnerowicz-Weitzen-
bök-Witten identity considering the 1-form θ on M defined by θ(X) =

〈
∇̂Xψ +

X · D̂ψ, ψ
〉

γ
, where ψ is a spinor field. Straightforward computations lead to the

following g-divergence formula

div θ =
〈
D̂ψ, D̂ψ

〉
γ
−

〈
R̂ψ, ψ

〉
γ
−

〈
∇̂ψ, ∇̂ψ

〉
γ
.

Let Sr the g-geodesic sphere of radius r and centered in a point of M . The radius r
is supposed to be as large as necessary. We denote by Mr the interior domain of Sr

and νr the (pointing outside) unit normal. Integrating our divergence formula over
Mr and using Stokes theorem, we get∫

Mr

∣∣∣D̂ψ∣∣∣2
γ

=
∫

Mr

(∣∣∣∇̂ψ∣∣∣2
γ

+
〈
R̂ψ, ψ

〉
γ

)
−

∫
Sr

〈
∇̂νr

ψ + νr · D̂ψ, ψ
〉

γ
dVolSr

.

Let us now consider the Einstein tensor G = Ricγ −1
2 Scalγ γ with respect to the

metric γ. The dominant energy condition [33] says that the speed of energy flow
of matter is always less than the speed of light. More precisely, for every positively
oriented time-like vector field v, the energy-momentum current of density of matter
−G(v, .)� must be time-like or null, with the same orientation as v. The assumption
we make in order to prove the positive energy-momentum theorem is a relative
version of the dominant energy condition: −

(
G− n(n−1)

2 γ
)

(e0) is a positively
oriented time-like or null vector along M . Some easy computations give

Scalγ = 2(G(e0, e0) − Ricγ(e0, e0))

e0 · Ricγ(e0) = e0 ·G|TM (e0) − Ricγ(e0, e0),
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where G|TM (e0) =
∑3

k=1G(e0, ek)ek. Thereby

R̂ =
1
4
(
2G(e0, e0) + (n(n− 1)) + 2e0 ·G|TM (e0)

) ·
=

1
2

((
G(e0, e0) +

n(n− 1)
2

)
e0 −G|TM (e0)

)
· e0 ·

=
1
2

((
G(e0, e0) − n(n− 1)

2
γ(e0, e0)

)
e0 −G|TM (e0)

)
· e0 ·

= −1
2

(
G− n(n− 1)

2
γ

)
(e0) · e0 · .

Our assumption gives the non negativity of the spinorial endomorphism R̂ that is
to say

〈
R̂ψ, ψ

〉
≥ 0 for every spinor field ψ.

Remark 2.3. We can express the dominant energy condition in terms of the con-
straints as in Section 1.3 since

−
(
G− n(n− 1)

2
γ

)
(e0) =

1
2

(Φ(g, k) − Φ(b, 0)) .

2.3. Spinorial gauge

In the same way as Andersson and Dahl [3], but in a Lorentzian situation, we
compare spinors in Σ (along M) with respect to the two different metrics β and γ.
This can be done according to [13] as soon as the tubular neighbourhood of M
in N is small enough. Consequently we suppose that both metrics are written in
Gaussian coordinates β = −dt2 + gt, γ = −dt2 + bt on ]−ε,+ε[ ×M for ε small
enough. We define the spinorial gauge A ∈ Γ(End(T)) with the relations{

γ(AX,AY ) = β(X,Y )
γ(AX,Y ) = γ(X,AY ) ,

where T is TN restricted to M . The first relation says that A sends β-orthonormal
frames on γ-orthonormal frames whereas the second one means that the endomor-
phism A is symmetric. We notice that these relations are only satisfied along
M = {t = 0} and can also be written in the following way⎧⎨⎩

Ae0 = e0
g(AX,AY ) = b(X,Y )
g(AX,Y ) = g(X,AY ) .

Consequently A is an application PSO0(n,1)(β)|M → PSO0(n,1)(γ)|M , which can be
covered by an application still denoted by A : PSpin0(n,1)(β)|M → PSpin0(n,1)(γ)|M .
This application carries β-spinors on γ-spinors so that we have the compatibility
relation about the Clifford actions of β and γ

A(X ·β σ) = (AX) ·γ (Aσ),

for every X ∈ Γ(T), σ ∈ Γ(Σ) and where ·β , ·γ denotes the Clifford actions respec-
tively of β and γ. Remark that our gauge is more sophisticated that the one of [3]
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since it deals with the trace of Lorentzian structures (metrics, spinors, Hermitian
scalar product etc...) along the spacelike slice M .

We define a new connection ∇̃X = A(DA−1X) along M . It is easy to check
that ∇̃ is g-metric and has torsion T̃ (X,Y ) = −((DXA)A−1Y − (DY A)A−1X).
We extract some formulae for later use

2g
(
∇̃XY −∇XY, Z

)
= g

(
T̃ (X,Y ), Z

)
− g

(
T̃ (X,Z), Y

)
− g

(
T̃ (Y, Z), X

)
.

Now we intend to compare the connections ∇ and ∇̃ on Σ. (σs)s denotes the
spinorial frame corresponding to the orthonormal frame (ek)n

k=0, and ω, ω̃ are the
connection 1-forms respectively of ∇ and ∇̃

ωij = g(∇ei, ej)
ω̃ij = g(∇̃ei, ej) ,

and if we take a general spinor ϕ = ϕsσs, their derivatives are given by

∇ϕ = dϕs ⊗ σs +
1
2

∑
i<j

ωij ⊗ ei ·γ ej ·γ ϕ

∇̃ϕ = dϕs ⊗ σs +
1
2

∑
i<j

ω̃ij ⊗ ei ·γ ej ·γ ϕ ,

and as a consequence

(∇− ∇̃)ϕ =
1
4

n∑
i,j=0

(ωij − ω̃ij) ⊗ ei ·γ ej ·γ ϕ .

2.4. Tangent and spinor bundles

In this paper, the model spaces AdSn,1 and Hn are considered as symmetric spaces:

H
n = Spin0(n, 1)/ Spin(n) � � �� AdSn,1 = Spin0(n, 2)/ Spin0(n, 1) ,

so that every section of the spinor bundle Σ of AdS restricted to Hn, can be seen
as a function Spin0(n, 1) −→ C

d which is Spin(n)-equivariant (with d depending
upon n). We can be more explicit when we take n = 3 (this fact is due to the
exceptional isomorphisms of Lie groups below)

H
3 = SL(2,C)/ SU(2) � � �� AdS3,1 = Spin0(3, 2)/ Spin0(3, 1) ,

with SU(2) ∼= Spin(3) and SL(2,C) ∼= Spin0(3, 1).
The spinor bundle of AdS is ΣAdS = Spin0(3, 2) ×ρ̃ C4, where Spin0(3, 2) is

the bundle of the Spin0(3, 1)-frames in AdS, and ρ̃ is the standard representation
of SL(2,C) on C4 ∼= C2 ⊕ C2

′
. In other words

ρ̃ : SL(2,C) −→ M4(C)

g̃ �−→
(
g̃ 0
0 (g̃∗)−1

)
,
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where A∗ =t A,A ∈ M2(C). When we restrict this bundle to the hypersurface H3

we have Σ = SL(2,C) ×ρ̃| SU(2) C
4.

Proposition 2.4. Σ and H3 ×C4 are isomorphic thanks to the following trivialisa-
tion:

T : Σ −→ H3 × C4

{ẽ, w} �−→ ([ẽ], ρ̃(ẽ)w) ,

where {ẽ, w} denotes the class of (ẽ, w) ∈ SL(2,C) × C4 in Σ, and [ẽ] denotes the
class of ẽ ∈ SL(2,C) in H

3 = SL(2,C)/ SU(2).

The construction of TAdS, the tangent bundle of AdS, is quite similar to the con-
struction of the spinor bundle. Still noticing that the principal bundle of SO0(3, 1)-
frames in AdS is isomorphic to SO0(3, 2), we write TAdS = SO0(3, 2)×ρ R4, where
ρ is the standard representation of SO0(3, 1) on R4. By restriction to the hyper-
surface H

3, we obtain T = SO0(3, 1) ×ρ| SO(3) R
4, where SO(3) is by definition the

isotropy group of f0 if (fk)3k=0 denotes the canonical basis of R4.

Proposition 2.5. T and H
3 × R

4 are isomorphic thanks to the following trivialisa-
tion:

T : T −→ H3 × R4

{e, u} �−→ ([e], ρ(e)u) ,

where {e, u} denotes the class of (e, u) ∈ SO0(3, 1) × R4 in T, and [e] denotes the
class of e ∈ SO0(3, 1) in H

3 = SO0(3, 1)/ SO(3).

We are going to define the Clifford action on Σ, in the same way as in [28]. To
this end, we denote by (R4, q) the Minkowski space-time of signature (3,1), where
q = −dy2

0 + dy2
1 + dy2

2 + dy2
3 . This space is isometric to a subspace of M2(C) via

Λ: (R4, q) −→ M := ({A ∈ M2(C) | A∗ = A} ,−det)

y = (yi)
3
i=0 �−→

(
y0 + y1 y2 + iy3
y2 − iy3 y0 − y1

)
.

We have thus the following real vector space isomorphisms:

M2(C) ∼= u(2) ⊕ M

sl2(C) ∼= su(2) ⊕ (M ∩ sl2(C))
∼= su(2) ⊕ G ,

and G ∼= R3. In order to make the value of the sectional curvature of H3 equal
to −1, when we consider H3 = SL(2,C)/ SU(2) as a symmetric space, we have to
consider R

4 endowed with 4q and not q, and consequently the embedding of the
Clifford algebra C�3,1 in M4(C) becomes

Θ: X ∈ M �−→
(

0 2X
2X̂ 0

)
,

where X̂ means the transposed comatrix of X.
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It will be convenient to see T as SL(2,C) ×μ M, where μ is the universal
covering of SO0(3, 1) by SL(2,C), which is given by:

μ : SL(2,C) −→ SO0(3, 1)
g̃ �−→ (g̃ : X ∈ M �→ g̃Xg̃∗) .

We can now define the Clifford action. Let us take e ∈ SO0(3, 1) and ẽ ∈ SL(2,C)
such that e = μ(ẽ). A vector X = X[e] tangent at the point [e] = [ẽ] ∈ H

3, is a
class {e, u} ∈ T. A spinor σ = σ[ẽ] at the same point is likewise a class {ẽ, w} ∈ Σ.
The result of the Clifford action of X on σ is the spinor (X ·σ)[ẽ] = {e, u}·{ẽ, w} =
{ẽ,Θ(u)w}. We define a sesquilinear inner product (not definite positive) (·, ·) on
C4 ∼= C2 ⊕ C2

′
as in [28] (ξ, η) := 〈ξ1, η2〉C2 + 〈ξ2, η1〉C2 , where ξ =

(
ξ1
ξ2

)
, η =

(
η1
η2

)
∈ C

4 and where 〈·, ·〉
C2 is the standard Hermitian product on C

2. This induces a
sesquilinear product on Σ by ({ẽ, ξ}, {ẽ, η}) := (ξ, η). In the same way we define a
scalar product on Σ setting

〈{ẽ, ξ}, {ẽ, η}〉 :=
(

1
2f0 · {ẽ, ξ}, {ẽ, η}

)
= ({ẽ, 1

2Θ(f0)ξ}, {ẽ, η})
= 〈ξ, η〉

C4 ,

where 〈·, ·〉
C4 denotes the standard Hermitian product on C

4.
Since SL(2,C) is the 2-sheeted covering of SO0(3, 1), there exists a natural

(left) action of SL(2,C) on Σ which is derived from the natural (left) action of
SO0(3, 1) on T: the action of the group of the isometries of AdS preserving the
slice H

3 that is g̃∗{ẽ, w} = {g̃ẽ, w}, with g̃ ∈ SL(2,C) and σ[ẽ] = {ẽ, w} a spinor at
[ẽ]. To have the action on a section σ ∈ Γ(Σ) we set as usual (g̃∗σ)[ẽ] = g̃∗σ(g̃−1ẽ).

3. Positive energy-momentum theorem

In this section, the dimension will be n ≥ 3 expect if n is explicitly mentioned to
be 3.

Moreover f will denote a smooth cutoff function which is 0 on M except on
a small neighbourhood of the infinity boundary of M where f ≡ 1, and H(a),
H−(a) are Hilbert spaces of spinor fields defined in the subsections below. We will
prove the

Proposition 3.1. For every β-imaginary Killing spinor σ ∈ IKS (Σ) there exists a
unique γ-spinor field ξ0 ∈ H(a) (resp. ∈ H−(a) if M has a boundary) such that

ξ = fAσ + ξ0 ∈ Ker D̂ (resp. ∈ Ker D̂ ∩H−(a)) and H(Vσ, ασ) ≥ 0,

where Vσ = 〈σ, σ〉 and ασ(X) = 〈X · e0 · σ, σ〉.
In Section 3.3, it will proved that the couple (Vσ, ασ) belongs to Nb ⊕ Kill(Hn) so
that H(Vσ, ασ) is actually well defined.

The computations we will make in Section 3.1 prove that if we integrate the
Bochner-Lichnerowicz-Weitzenbök-Witten formula with an asymptotically imagi-
nary Killing spinor fAσ, then the boundary integrals tend to some global charge
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H(Vσ, ασ), when r goes to infinity. In fact it is still true if we perturb fAσ with a
smooth compactly supported spinor field ξ0 (that is to say if we consider fAσ+ξ0
instead of fAσ). Actually we will show in Section 3.2 that we can find a pertur-
bation ξ0 in a relevant Hilbert space such that ξ0 has no contribution at infinity,
and fAσ + ξ0 belongs to the kernel of D̂.

This will naturally imply the non-negativity of H(Vσ, ασ) when σ is a β-imag-
inary Killing spinor. This is the reason why we focus on the study of the Killing
equation in Section 3.3 so as to interpret the non-negativity of the H(Vσ, ασ).

3.1. Energy-momentum and imaginary Killing spinors

The aim of this section is to show the

Proposition 3.2. Let ξ = fAσ + ξ0, where σ ∈ IKS (Σ) and ξ0 is a compactly
supported spinor field. Then we have

H(Vσ, ασ) = 4 lim
r→+∞

∫
Sr

〈
∇̂Aνr

ξ + Aνr · D̂ξ, ξ
〉

γ

= 4
∫

M

(∣∣∣∇̂ξ∣∣∣2
γ

+
〈
R̂ξ, ξ

〉
γ

)
− 4

∫
M

∣∣∣D̂ξ∣∣∣2
γ
.

Remark that the only important data is the exact β-imaginary Killing spinor σ
involved in the definition of the couple (Vσ, ασ).

Proof. Remember that∫
Mr

∣∣∣D̂ψ∣∣∣2
γ

=
∫

Mr

(∣∣∣∇̂ψ∣∣∣2
γ

+
〈
R̂ψ, ψ

〉
γ

)
−
∫

Sr

〈
∇̂Aνr

ψ + Aνr ·γ D̂ψ, ψ
〉

γ
dVolSr

,

where νr denotes the b-normal of Sr, e0 = ∂t and we set e1 = Aνr for the remainder
of the proof.

We have to work on the expression
〈
∇̂Aνr

ψ + Aνr ·γ D̂ψ, ψ
〉

γ
in order to

identify the integrand used to compute the energy-momentum for some couple
(f, α). We start with noticing that e1 ·γ e1 ·γ ∇̂e1 = −∇̂e1 = −∇̂Aνr

so that

∇̂Aνr
ψ + Aνr ·γ D̂ψ = Aνr ·γ

⎛⎝ n∑
j=2

ej ·γ ∇̂ej

⎞⎠ψ.

From now on we work on〈
Aνr ·γ

⎛⎝ n∑
j=2

ej ·γ ∇̂ej

⎞⎠ ·γ Aσ,Aσ
〉

γ

.

Let us take σ a β-imaginary Killing spinor, that is to say a spinor field solution,
by definition, of D̂Xσ = DXσ + i

2X ·β σ = 0, for every vector field X ∈ Γ(TM).
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Consider f a smooth cutoff function which is 0 on M except on a compact neigh-
bourhood of the infinity boundary of M where f ≡ 1. Then we have

∇̂X(fAσ) = df(X)Aσ + f∇̂X(Aσ)
= df(X)Aσ + f(∇X − ∇̃X)(Aσ)

+ f
(
∇̃X + i

2 ·γ −1
2k(X) ·γ e0·γ

)
(Aσ),

but since ∇̃X(Aσ) = ADXσ = − i
2A(X ·β σ) = − i

2 (AX) ·γ (Aσ), we obtain

∇̂X(fAσ) = df(X)Aσ+f(∇X−∇̃X)(Aσ)− 1
2
f (k(X) ·γ e0 + i(A− Id)X)·γ (Aσ),

that we restrict to the neighbourhood where f ≡ 1

∇̂X(Aσ) = (∇X − ∇̃X)(Aσ) − 1
2

(k(X) ·γ e0 + i(A− Id)X) ·γ (Aσ).

As a consequence our boundary term becomes for r great enough
n∑

j=2

〈
Aνr ·γ ej ·γ

(
(∇ej

− ∇̃ej
) − 1

2
(k(ej) ·γ e0 + i(A− Id)ej)·γ

)
(Aσ),Aσ

〉
γ

.

We will estimate this boundary term in several steps. From the decay assumptions
stated in Section 1.2, the gauge is supposed to be of the form A = Id +B+O(|B|2),
where B has the same decay to 0 as e = g − b. In the following (εj = A−1ej)n

j=0

is a β-orthonormal frame.

We begin with the easiest term
n∑

j=2

〈Aνr ·γ ej ·γ k(ej) ·γ e0 ·γ (Aσ),Aσ〉γ

=
n∑

j=2

〈Aνr ·γ Aεj ·γ k(Aεj) ·γ Aε0 ·γ (Aσ),Aσ〉γ

=
n∑

j=2

〈
νr ·β εj ·β A−1 ◦ k ◦ A(εj) ·β ε0 ·β σ, σ

〉
β
.

But we note that A−1 ◦ k ◦A = k−B ◦ k+ k ◦B +O(|B|2). Now B has the same
decay as k so B ◦ k+ k ◦B = O(|B|2), terms that we can neglect since the energy-
momentum is computed by a limit procedure of integrals over large spheres. We
conclude that A−1 ◦ k ◦ A ≈ k, where for convenience the relation � ≈ � means
that | � − � | is at least a O(e−2τr) when r goes to infinity. Moreover

νr ·β
n∑

j=2

εj ·β k(εj) = ε1 ·β
⎛⎝ n∑

j=1

εj ·β k(εj) − ε1 ·β k(ε1)

⎞⎠
= k(νr) − (trb k)νr,
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which implies
n∑

j=2

〈Aνr ·γ ej ·γ k(ej) ·γ e0 ·γ (Aσ),Aσ〉γ ≈ 〈k(νr) − (trb k)νr ·β ε0 ·β σ, σ〉β

= (iασ
k − (trb k)ασ) (νr),

where ασ(X) = 〈X ·β ε0 ·β σ, σ〉β .

The second term we study is

i
n∑

j=2

〈Aνr ·γ ej ·γ (A− Id)(ej) ·γ (Aσ),Aσ〉γ

= i

n∑
j=2

〈Aνr ·γ Aεj ·γ (A− Id)(Aεj) ·γ (Aσ),Aσ〉γ

= i
n∑

j=2

〈
νr ·β εj ·β A−1 ◦ (A− Id) ◦ A(εj) ·β σ, σ

〉
β

≈ i

n∑
j=2

〈νr ·β εj ·β B(εj) ·β σ, σ〉β ,

but thanks to the same property as above

νr ·β
n∑

j=2

εj ·β B(εj) = B(νr) − (trbB)νr,

which induces

i
n∑

j=2

〈Aνr ·γ ej ·γ (A− Id)(ej) ·γ (Aσ),Aσ〉γ ≈ i 〈B(νr) − (trbB)νr ·β σ, σ〉β

= (i∇Vσ
B − (trbB)dVσ) (νr),

where dVσ(X) = i 〈X ·β σ, σ〉β .

The last term we have to study is certainly the most difficult (summation conven-
tion k ∈ {2, 3, . . . , n}, l ∈ {1, 2, . . . , n}, m ∈ {1, 2, . . . , n})〈
Aνr ·γ ek ·γ (∇ek

− ∇̃ek
)(Aσ),Aσ

〉
γ

=
1
4
〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ

=
1
4
〈(ωlm − ω̃lm) ◦ A(εk)νr ·β εk ·β εl ·β εm ·β σ, σ〉β

=
1
4
S
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S =
n∑

k,l,m=2

〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ

+ 2
n∑

k,l=2

〈(ω1l − ω̃1l)(ek)Aνr ·γ ek ·γ e1 ·γ el ·γ (Aσ),Aσ〉γ

= S1 + 2S2.

We will give estimates of each Sk, keeping in mind that they are real and that every
term that is at least O(|B|2) can be neglected when r → +∞ for the computations
of the global charge integrals.

Estimate of S1

S1 =
n∑

k,l,m=2

〈(ωlm − ω̃lm)(ek)Aνr ·γ ek ·γ el ·γ em ·γ (Aσ),Aσ〉γ .

We can keep only the subscripts l �= m because of the skew-symmetry of (ω − ω̃).
Besides if we suppose that k = l, we have terms like 〈Aνr ·γ em ·γ (Aσ),Aσ〉γ
which belong to iR. So we can sum over k, l,m distinct subscripts without any loss
of generality. On the other hand

(ωlm − ω̃lm)(ek) =
1
2

(
−g(T̃ (ek, el), em) + g(T̃ (ek, em), el) + g(T̃ (el, em), ek)

)
where the two last terms of the right-hand side member are symmetric with respect
to (l, k), so they vanish when we sum over k and l distinct. Consequently

(ωlm − ω̃lm)(ek)εk ·β εl ·β εm
=

1
2
b
(A−1(Dek

A)εl −A−1(Del
A)εk, εm

)
εk ·β εl ·β εm

= b
(A−1(Dek

A)εl, εm
)
εk ·β εl ·β εm,

but

b(A−1(Dek
A)εl, εm) = b(A−1(Dek

(Aεl) −ADek
εl), εm)

≈ b(Dεk
(Bεl) −B(Dεk

εl), εm)

= b((Dεk
B)εl, εm),

expression which is symmetric with respect to (l,m), since DB is a symmetric
endomorphism. Consequently∑

k,l,m distinct

(ωlm − ω̃lm)(ek)εk ·β εl ·β εm ≈ 0,

when r → +∞.
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Estimate of S2

S2 =
n∑

k,l=2

〈(ω1l − ω̃1l)(ek)Aνr ·γ ek ·γ e1 ·γ el ·γ (Aσ),Aσ〉γ

= −
n∑

k=2

〈(ω1k − ω̃1k)(ek)σ, σ〉β

+
∑
k �=l

〈(ω1l − ω̃1l)(ek)ek ·γ el ·γ (Aσ),Aσ〉γ ,

but the second sum is in iR, so it remains

�e(S2) = −
(

n∑
k=1

(ω1k − ω̃1k)(ek)

)
Vσ.

We only have to compute

−
n∑

k=1

(ω1k − ω̃1k)(ek) =
n∑

k=1

g((De1A)A−1ek, ek − (Dek
A)A−1e1, ek)

= S′
2 − S′′

2 .

We focus on

S′′
2 =

n∑
k=1

g((Dek
A)A−1e1, ek)

=
n∑

k=1

b(A−1(Dek
A)ε1, εk)

=
n∑

k=1

b(A−1Dek
(Aε1) −Dek

ε1, εk)

≈
n∑

k=1

b((Dek
B)ε1, εk)

≈
n∑

k=1

b(ε1, (Dεk
B)εk)

= −divbB(νr).

As regards the first term S′
2, we decompose the gauge endomorphism A as follows:

Aεi =
∑n

k=0 Ak
i εk. We remind that Aε0 = ε0, A(TM) ⊂ TM and so we have

Ak
0 = A0

k = 0, k ≥ 1.
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S′
2 =

n∑
k=1

g((De1A)A−1ek, ek)

=
n∑

k=1

b((A−1De1A)εk, εk)

=
n∑

k=1

b(A−1De1(Aεk) −De1εk, εk)

≈
n∑

k,l=1

(e1 · Al
k) {b(εl, εk) − b(Bεl, εk)} −

n∑
k=1

b(De1εk, εk)

+
n∑

k,l=1

Al
k

{
b(De1εl, εk) − b(BDe1εl, εk)

}
≈ (ε1 · trbB) −

n∑
k=1

b(De1εk, εk)

+
n∑

k,l=1

(δk
l +Bl

k)
{
b(De1εl, εk) − b(BDe1εl, εk)

}
≈ (ε1 · trbB) −

n∑
k=1

{
b(BDe1εk, εk) − b(De1εk, Bεk)

}
= d(trbB)(νr),

that entails
�e(S2) ≈ Vσ(d(trbB) + divbB)(νr).

We can conclude, taking B = −1
2e, that the real part of our boundary integrand

is nothing but
1
4

(
−Vσ(δbe+ d trb e) − i∇bVσ

e+ (trb e)dVσ − 2iα�
σ
k + 2(trb k)ασ

)
(νr),

what achieves the proof. �

3.2. Analysis of D̂

This section is devoted to the study of the analytical properties of D̂. The first
paragraph deals with the case where M has no boundary whereas the second one
deals with the case where M has a compact and connected boundary denoted as
usual by ∂M .

3.2.1. The boundaryless case.

Proposition 3.3. For every σ ∈ IKS (Σ), there exists a unique ξ0 ∈H(a) such that
ξ = fAσ+ξ0 ∈ Ker D̂ and

H(Vσ, ασ) = lim
r→+∞

∫
Sr

〈
∇̂Aνr

ξ + Aνr · D̂ξ, ξ
〉

γ
= 4

∫
M

(∣∣∣∇̂ξ∣∣∣2
γ

+
〈
R̂ξ, ξ

〉
γ

)
≥ 0.
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Proof. We study in a usual way the analytical properties of D̂. Let us consider
C∞

0 (Σ) = C∞
0 the space of smooth and compactly supported spinors. We define a

sesquilinear form on C∞
0 by

a(ϕ, ψ) =
∫

M

〈
D̂ϕ, D̂ψ

〉
γ

dμg,

where dμg denotes the standard volume form of the metric g. The form a is clearly
bounded and non-negative on C∞

0 . We define the usual Sobolev space

H1(Σ) =
{
ψ ∈ Σ

∣∣∣ ∫
M

|ψ|2γ + |∇ψ|2γ <∞
}
.

Definition 3.4. We set H(a) := C∞
0

a
.

Remark 3.5 (Weighted Poincaré inequality).

∃ω ∈ L1
loc(M, dVolg) essM inf ω > 0 ∀u ∈ C1

0

∫
M

ω|u|2 dVolg ≤
∫

M

|∇̂u|2 dVolg .

The symmetric part of the connection ∇̂ is given by ΓX = 1
2 {k(X) · e0 − iX} ·,

and so satisfies the conditions (cf. [7]) in order to have the existence of a weighted
Poincaré inequality that is to say Γ ∈ Ln

loc(M) and lim supx→0 |xΓx| < n−1
2 .

Such a weighted Poincaré inequality insures the continuity of the embedding of
H(a) � � �� H1

loc . This claim is true even when M has a compact boundary so that
we will make its proof when there is a boundary. Indeed consider (ψk)k∈N

∈ (C∞
0 )N

a Cauchy sequence with respect to the form a whose elements satisfy the boundary
condition F (ψk) = −ψk (cf. next section for the definition of the boundary en-
domorphism F ). Then we have (the vector field 	k will also be defined in the next
section)∫

M

∣∣∣D̂ψk

∣∣∣2
γ

=
∫ (∣∣∣∇̂ψk

∣∣∣2
γ

+
〈
R̂ψk, ψk

〉
γ

)
+

1
2

∫
∂M

〈
e0 · 	k · ψk, ψk

〉
,

and thus thanks to the weighted Poincaré inequality

∀Ω ⊂M |Ω| <∞ ψk

L2(Ω) ��ψ and ∇̂ψk

L2(M) ��ρ.

Now let us take a ϕ ∈ C1
0 such that Suppϕ ⊂ K ⊂ (M \ ∂M) (K compact without

boundary) and then ∫
K

〈
∇̂∗ϕ, ψk

〉
k→∞

��

∫
K

〈
ϕ, ∇̂ψk

〉
k→∞

��∫
K

〈
∇̂∗ϕ, ψ

〉 ∫
K
〈ϕ, ρ〉

,

and therefore ρ = ∇̂ψ in the distributional sense.
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We notice that for r great enough and for σ ∈ IKS (Σ)

∇̂X(Aσ) = ∇X(Aσ) +
i

2
X ·γ (Aσ)

= (∇X − ∇̃X)(Aσ) − 1
2

(k(X) ·γ e0 + i(A− Id)X) ·γ (Aσ).

But the relations{
T̃ (X,Y ) = −((DXA)A−1Y − (DY A)A−1X)

2g(∇̃XY −∇XY, Z) = g(T̃ (X,Y ), Z) − g(T̃ (X,Z), Y ) − g(T̃ (Y, Z), X)

tell us that |(ωij − ω̃ij)(ek)| ≤ C|A−1||DA|. We get an estimate

|D̂(Aσ)| ≤ C|A|(|DA| + |A − Id | + |k|)|σ| ∈ L2(M, dμg),

which infers that D̂(fAσ) ∈ L2(M, dμg). We now consider the linear form l
on H(a) defined by

l(ψ) =
∫

M

〈
D̂(fAσ), D̂ψ

〉
γ

dμg.

Thanks to our estimate above we get |l(ψ)|2 ≤
∥∥∥D̂(fAσ)

∥∥∥2

L2
a(ψ, ψ), that gives

the continuity of l in H(a). We can claim, thanks to Lax-Milgram theorem, that
there exists a unique ξ0 ∈ H(a) such that l = a(−ξ0, ·). In other words∫

M

〈
(D̂)∗D̂(fAσ + ξ0), ψ

〉
γ

= 0.

Since D̂∗ = D̂ + in, we have in the distributional sense (D̂ + in)D̂ξ = 0, where we
have set ξ = fAσ + ξ0. By an elliptic regularity argument, D̂ξ is in fact smooth
and (D̂)kξ are L2, for every k ∈ N. It follows∫

M

〈
(D̂)2ξ, (D̂)2ξ

〉
γ

=
∫

M

〈
(D̂ + in)(D̂)2ξ, D̂ξ

〉
γ

=
∫

M

〈
D̂(D̂ + in)D̂ξ, D̂ξ

〉
γ

= 0,

that implies (D̂)2ξ = 0, but we already know that (D̂ + in)D̂ξ = 0, and thereby
D̂ξ = 0. We now apply our integration formula to ξ

H(Vσ, ασ) = lim
r→+∞

∫
Sr

〈
∇̂Aνr

ξ + Aνr · D̂ξ, ξ
〉

γ

= 4
∫

M

(∣∣∣∇̂ξ∣∣∣2
γ

+
〈
R̂ξ, ξ

〉
γ

)
− 4

∫
M

∣∣∣D̂ξ∣∣∣2
γ

= 4
∫

M

(∣∣∣∇̂ξ∣∣∣2
γ

+
〈
R̂ξ, ξ

〉
γ

)
≥ 0,

and the proof is complete. �
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3.2.2. The non-empty boundary case. We will consider, in this section, a Riemann-
ian slice M that has a non-empty inner compact boundary ∂M . ğ,

�

∇, k̆ will denote
respectively the induced metric, the connection and the second fundamental form
which is defined by

∇XY =
�

∇X Y − k̆(X,Y )ν

∇Xψ =
�

∇X ψ − 1
2
k̆(X) · ν · ψ,

where ν is the normal to ∂M pointing toward infinity (that is to say pointing
inside), and · still denotes the Clifford action with respect to the metric γ. Conse-
quently our integration formula has another boundary term∫

Mr

∣∣∣D̂ψ∣∣∣2
γ

=
∫

Mr

(∣∣∣∇̂ψ∣∣∣2
γ

+
〈
R̂ψ, ψ

〉
γ

)
−

∫
Sr

〈
∇̂Aνr

ψ + Aνr · D̂ψ, ψ
〉

γ

+
∫

∂M

〈
∇̂νψ + ν · D̂ψ, ψ

〉
γ
.

But if ψ is a compactly supported smooth spinor field then, making r → ∞ one
finds ∫

M

∣∣∣D̂ψ∣∣∣2
γ

=
∫

M

(∣∣∣∇̂ψ∣∣∣2
γ

+
〈
R̂ψ, ψ

〉
γ

)
+

∫
∂M

〈
∇̂νψ + ν · D̂ψ, ψ

〉
γ
.

We then have to estimate the boundary integrand
〈
∇̂νψ + ν · D̂ψ, ψ

〉
.

Lemma 3.6. If (ν = e1, e2, . . . , en) is a local orthonormal frame of TM|∂M then

∇̂νψ + ν · D̂ψ = ν ·
n∑

k=2

∇̂ek
ψ .

Proof. Just remark that ∇̂νψ = −e1 · e1 · ∇̂e1ψ. �

Lemma 3.7. Keeping our orthonormal frame (ν = e1, e2, . . . , en), we have

∇̂νψ + ν · D̂ψ =
n∑

k=2

ν · ek·
�

∇ek
ψ +

1
2

{
− tr k̆ − (n− 1)iν + (tr k)ν · e0 − k(ν) · e0

}
· ψ .

Proof. Using the formula above, we then express ∇̂ in term of the (n− 1)-dimen-
sional connection and second form, and the n-dimensional second form. �

Let us define F ∈ End(Σ|∂M ) by F (ψ) = iν · ψ. We sum up some basic properties
of F in the following

Proposition 3.8. The endomorphism F is symmetric, isometric with respect to 〈·, ·〉,
commutes to the action of ν· and anticommutes to each ek·, (k �= 1).
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Lemma 3.9. If F (ψ) = −ψ then〈
∇̂νψ + ν · D̂ψ, ψ

〉
|∂M

=
1
2

〈
e0 ·

(
(− tr k̆ + (n− 1))e0 + k(ν)

)
· ψ, ψ

〉
.

Proof. Using the proposition above we know that ν · ek (k �= 1) anticommutes
with F and the formula follows since F respects 〈·, ·〉. �

Assumption. Let us suppose that the 4-vector 	k := (− tr k̆ + (n − 1))e0 + k(ν) is
causal and positively oriented, that is to say γ(	k,	k) ≤ 0 and tr k̆ ≤ (n− 1).

This assumption (which is exactly the same as for R̂) guarantees the non-negativity
of the boundary integrand term

〈
∇̂νψ + ν · D̂ψ, ψ

〉
|∂M

= 1
2

〈
e0 · 	k · ψ, ψ

〉
, when-

ever the boundary condition F (ψ) = −ψ is satisfied. Although this assumption is
vectorial, it clearly extends the one given in [15].

Let us defineH−(a) = {ψ ∈ H(a) | F (ψ) = −ψ} whereH(a) has been defined
in Section 3.6.1. Still taking ψ a compactly supported smooth spinor field inH−(a),
we have

a(ψ, ψ) =
∫

M

(∣∣∣∇̂ψ∣∣∣2
γ

+
〈
R̂ψ, ψ

〉
γ

)
+

1
2

∫
∂M

〈
e0 · 	k · ψ, ψ

〉
,

whose each single term is non-negative tanks to our assumption.
We consider the linear form l on H−(a) defined by

l(ψ) =
∫

M

〈
D̂(fAσ), D̂ψ

〉
γ

dμg.

It still is a continuous linear form on the Hilbert space H−(a) (it is complete since
the condition F (ψ) = −ψ is closed) and applying again Lax-Milgram theorem we
get the existence of a unique ξ0 ∈ H(a) such that l = a(−ξ0, ·). In other words

∀ψ ∈ H−(a)
∫

M

〈
χ, D̂ψ

〉
= 0,

where we have set ξ = fAσ + ξ0 and χ = D̂ξ.
For any ψ ∈ C1

0 we have∫
M

〈
χ, D̂ψ

〉
= 0 =

∫
M

〈
D̂∗χ, ψ

〉
+

∫
∂M

〈ν · χ, ψ〉 .

But remembering that C∞
0 (M \ ∂M) the space of smooth spinor fields compactly

supported in M \ ∂M is dense in L2(M) then we obtain that D̂∗χ = 0 and χ ∈
H+(a) = {ψ ∈ H(a) | F (ψ) = +ψ}. By ellipticity χ is smooth and D̂kχ ∈ L2(M)
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for every k ∈ N. Finally we notice that∫
M

∣∣∣D̂χ∣∣∣2 =
∫

M

〈
D̂∗D̂χ, χ

〉
+

∫
∂M

〈
ν · D̂χ, χ

〉
= 0 +

∫
∂M

〈−inν · χ, χ〉

= −n
∫

∂M

|χ|2 ,

and therefore D̂χ = 0 which implies that χ = 0. We can conclude with the

Proposition 3.10. For every σ ∈ IKS (Σ) there exists a unique ξ0 ∈ H−(a) such
that ξ = fAσ + ξ0 ∈ Ker D̂ ∩H−(a) and

H(Vσ, ασ) = lim
r→+∞

∫
Sr

〈
∇̂Aνr

ξ + Aνr · D̂ξ, ξ
〉

γ

= 4
∫

M

(∣∣∣∇̂ξ∣∣∣2
γ

+
〈
R̂ξ, ξ

〉
γ

)
+ 2

∫
∂M

〈
e0 · 	k · ψ, ψ

〉
≥ 0.

3.3. Imaginary Killing spinors

In general (that is to say whatever the dimension), the spinor bundle under con-
sideration is Σ = Spin0(n, 1)/ Spin(n)×ρCd for a certain spinorial representation ρ
and some integer d depending upon n+ 1. It is known that Σ is trivialized by the
space of imaginary Killing spinors of AdSn,1 along H

n (cf. [14] for instance). Now
consider some σ ∈ IKS (Σ), and define the function Vσ = 〈σ, σ〉 and the real 1-form
ασ(X) = 〈X · e0 · σ, σ〉. We can easily compute the first derivative of ασ

DXασ(Y ) =
i

2
〈(X · Y − Y ·X) · e0 · σ, σ〉 ,

which is a real skew symmetric 2-form and hence ασ is a Killing form on Hn.
Furthermore, it is clear that Vσ ∈ Nb

∼= R
n,1 [15]. By this way, we merely define a

quadratic application

IKS (Σ) �� Rn,1 ⊕ so(n, 1) .

Now the complex isomorphism Cd
∼ �� IKS (Σ) is quite difficult to explicit (it

may be possible by the means of harmonic analysis, and it will be the aim of a
future paper) because of the non-explicit character of the Clifford action when the
dimension is arbitrary. However we have a formal Hermitian quadratic application

K : Cd �� IKS (Σ) �� Rn,1 ⊕ so(n, 1) ,

that we will explicit when the dimension of the slice is n = 3 (because of exceptional
isomorphisms of Lie groups).
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The 3-dimensional case

The aim of this section is to solve explicitly the Killing equation of Section 2.2.
As a matter of fact, representation theory provides us good candidates for the
imaginary Killing spinors. Thanks to Schur’s lemma, we have an isomorphism

C
2 −→ HomSU(2)(C2,C2 ⊕ C

2)(
z1
z2

) �−→ (
z1I2
z2I2

)
.

We are now considering two families of spinors which are derived from represen-
tation theory. To this end, we will denote w ⊗ z ∈ C

2 ⊗ HomSU(2)(C2,C2 ⊕ C
2)

thanks to the isomorphism above.

Definition 3.11. Let w⊗ z ∈ C
2 ⊗C

2 and set σ−1
w⊗z[g̃] =

{
g̃, z(g̃−1w)

}
, σ∗

w⊗z[g̃] =
{g̃, z(g̃∗w)}.
Let us consider a spinor field τ ∈ Γ(Σ) and a vector field X ∈ Γ(T) tangent to H3.
We can write τ [g̃] = {g̃, v(g̃)} and X[g] = {g, ζ(g)}, where v : H3 −→ C4 and
ζ : H

3 −→ G are respectively SO(3) and SU(2)-equivariant functions. We can now
differentiate τ in the direction of X and write down

(DXτ)[g̃] = {g̃, v∗(X)[g̃] + ρ̃∗ ◦ s∗θ(ζ)[g̃]v[g̃]},
where θ is the connection 1-form of the bundle of SL(2,C)-frames, restricted to H3.
If one remembers that θ is only the projection on the first factor in the decompo-
sition sl2(C) ∼= su(2)⊕G, we can conclude that ρ̃∗ ◦ s∗θ(ζ)[g̃]v[g̃] vanishes. Besides
we will apply this formula to spinors in

{
σ−1

w⊗z, σ
∗
u⊗z, w, u ∈ C

2
}

so that we can
only derive at the point g̃ = 1 unity in SL(2,C) since we have the

Proposition 3.12. The set
{
σ−1

w⊗z, σ
∗
u⊗z, w, u ∈ C

2
}

is stable under the SL(2,C)
action. More precisely for every ẽ ∈ SL(2,C) we have ẽ ∗ σ−1

w⊗z = σ−1
ẽw⊗z and

ẽ ∗ σ∗
u⊗z = σ∗

(ẽ∗)−1u⊗z.

We obtain {
(DXσ

−1
w⊗z)[1] = {1,−z(ζw)}

(DXσ
∗
u⊗z)[1] = {1, z(ζu)} ,

where ζ = ζ(1). We also compute the Clifford action of X on σ−1
w⊗z, σ

∗
u⊗z at the

point 1: {
X · σ−1

w⊗z[1] = {1,Θ(ζ)z(w)}
X · σ∗

u⊗z[1] = {1,Θ(ζ)z(u)} .

We must precise Θ|G : ζ �−→
(

0 2ζ
−2ζ 0

)
, and if we introduce the sections σ−1

w⊗( 1
−i)

and σ∗
w⊗(1

i)
, for any w ∈ C

2, we have on one hand⎧⎨⎩− i
2X · σ−1

w⊗( 1
−i)

[1] = −i {1,−iζw ⊕−ζw} = {1,−ζw ⊕ iζw}
− i

2X · σ∗
u⊗(1

i)
[1] = −i {1, iζu⊕−ζu} = {1, ζu⊕ iζu} ,
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and on the other hand⎧⎪⎪⎨⎪⎪⎩
(
DXσ

−1

w⊗( 1
−i)

)
[1] = {1,−ζw ⊕ iζw}(

DXσ
∗
u⊗(1

i)

)
[1] = {1, ζu⊕ iζu} .

Since
{
σ−1

w⊗( 1
−i)

+ σ∗
u⊗(1

i)

∣∣∣ w, u ∈ C
2

}
is a 4-dimensional complex vector space,

we obviously obtain the

Proposition 3.13. The space of imaginary Killing spinors denoted by IKS(Σ) is
generated by {

σ−1

w⊗( 1
−i)
, σ∗

u⊗(1
i)
, w, u ∈ C

2

}
.

Let σ an imaginary Killing spinor and set Vσ := <σ, σ> which is a function on H3,
and if e0 denotes a unit normal of H

3 in AdS, we set ασ(Y ) := 〈Y · e0 · σ, σ〉 which
is a real 1-form on H

3. The goal of the two next paragraphs is to define some
SL(2,C)-equivariant application

K : IKS (Σ) ∼= C2 ⊕ C2 −→ (M ⊕ sl2(C))∗R

w ⊕ u �−→ Kw⊕u := (Vw⊕u ⊕ αw⊕u) .

The functions Vσ when n = 3
We compute the functions Vσ which are by definition

Vσ[g̃] =
∣∣∣∣σ−1

w⊗( 1
−i)

[g̃]
∣∣∣∣2
C4

+
∣∣∣∣σ∗

u⊗(1
i)

[g̃]
∣∣∣∣2
C4

+ 2�e
(〈

σ−1

w⊗( 1
−i)

[g̃], σ∗
u⊗(1

i)
[g̃]

〉
C4

)
= 2

∣∣g̃−1w
∣∣2
C2 + 2 |g̃∗u|2

C2 .

Remark 3.14. σ−1

w⊗( 1
−i)

and σ∗
u⊗(1

i)
are orthogonal spinors for every u,w ∈ C

2.

If g̃ ∈ SL(2,C), the corresponding base point is g̃g̃∗ ∈ H3 ⊂ M ∼= R3,1 whose
coordinates are given by (xk)3k=0 = Λ−1(g̃g̃∗).

Proposition 3.15. Vσ is a causal element of Nb.

Proof. Let U =
(

u1
−w2

) ∈ C
2, V =

(
u2
w1

) ∈ C
2. We notice that

Vσ[g̃] = x0(|U |2 + |V |2) + x1(|U |2 − |V |2) + 2x2�e(<U, V >) − 2x3�m(<U, V >),

so that the norm of Vσ is |Vσ[g̃]|2 = 4
(|<U, V >|2 − |U |2|V |2) ≤ 0, thanks to the

Cauchy-Schwarz inequality for the standard Hermitian form on C
2. �

More conceptually we see that Vσ[g̃] = 2(w∗Ŵw + u∗Wu), where we have set
W := g̃g̃∗ ∈ H3 ⊂ M. Thereby we can define by extension an application

C
2 ⊕ C

2 −→ M∗

w ⊕ u �−→
(
Vw⊕u : W �→ 2(w∗Ŵw + u∗Wu)

)
.
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The 1-forms ασ when n = 3
The positively oriented unit normal of H3 in AdS is given by e0[g̃] =

{
g̃, 1

2μ(g̃)I2
}

and for any ξ ∈ G satisfying −det ξ = 1 we set Xξ[g̃] =
{
g̃, 1

2μ(g̃)ξ
}

. Just remem-
ber that ασ(Xξ)[g̃] :=

〈
Xξ · e0 · σ, σ

〉
[g̃]

. As we suppose that σ ∈ IKS (Σ), we can
easily compute the first derivative of ασ

DXηασ(Xξ)[g̃] =
i

2
〈
(Xη ·Xξ −Xξ ·Xη) · e0 · σ, σ

〉
[g̃]
,

which is a real skew symmetric 2-form and hence ασ is a Killing form on H
3. From

now on we set ασ = (ασ)1 and Dασ = (Dασ)1, that we will write as function of
w ⊕ u. After some computations we find{

ασ(ξ) = 2(w∗ξu+ u∗ξw)
Dασ(η, ξ) = (w∗(ξη − ηξ)u− u∗(ξη − ηξ)w) .

We have to notice that ξη − ηξ ∈ iG so that Dασ is naturally a linear form
on iG. As a consequence we define, thanks to the Killing 1-form ασ, the following
application

C
2 ⊕ C

2 −→ sl2(C)∗R

w ⊕ u �−→ (αw⊕u : ξ �→ 2(w∗ξu+ u∗ξ∗w)) ,

where ∗R stands for the duality with respect to the reals. We then define

Kw⊕u = Vw⊕u ⊕ αw⊕u

and conclude with the

Proposition 3.16. The application K is SL(2,C)-equivariant. More precisely, for
every ẽ ∈ SL(2,C)

Kẽ∗(w⊕u) =
(
Vw⊕u ◦ μ(ẽ−1)

)⊕ (αw⊕u ◦ Ad(ẽ∗)) .

Proof. We must compute for every W ∈ M and ξ ∈ sl2(C)

Kẽ∗(w⊕u)(W, ξ) = Kẽw⊕(ẽ∗)−1u(W, ξ)

= 2(w∗ẽ∗Ŵ ẽw + u∗ẽ−1W (ẽ∗)−1u+ w∗ẽ∗ξ(ẽ∗)−1u+ u∗ẽ−1ξ∗ẽw)

= Vw⊕u ◦ μ(ẽ−1)(W ) ⊕ αw⊕u ◦ Ad(ẽ∗)(ξ). �

Remark 3.17 (The norm of imaginary Killing spinors). Classical considerations
on Lie algebras show that so(3, 2) endowed with its Killing form, is isometric to
(M,−det) ⊕ (sl2(C),−�e(det)) which is a 10-dimensional real vector space of
signature (6,4). The norm of K(w⊕ u) with respect to the Killing form is, up to a
multiplicative and positive constant |K(w ⊕ u)|2 = |<U, V >|2 −|U |2|V |2 +�e(χ2),
where we have set χ = u1w1 +u2w2. Besides, if Vw⊕u is isotropic in M then αw⊕u

and K(w⊕ u) are also isotropic respectively in sl2(C)∗ and (M ⊕ sl2(C))∗. Indeed
the equality case in the Cauchy-Schwarz inequality occurs if and only if U and V
satisfy detC2(U, V ) = χ̄ = 0.
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3.4. End of the proof

Whatever the dimension is, we obtain a Hermitian quadratic application

Q : C
d

K �� Rn,1 ⊕ so(n, 1) H �� R ,

which has to be non-negative in vertue of the non-negativity results of Sections
3.2.1 and 3.2.2. This completes the proof of the first part of the (positivity) Theo-
rem 1.3. It is also important to notice that in the zero extrinsic curvature case, that
is k ≡ 0, then H(f, α) = H(f, 0) which is merely the hyperbolic mass functional,
and thereby we recover the result of [15].

In dimension n = 3, we can be more specific giving the explicit formula of Q
in terms of the components of the energy-momentum H. More precisely, on one
hand we have found a quadratic application

K : IKS (Σ) ∼= C2 ⊕ C2 −→ (M ⊕ sl2(C))∗R ∼= Ker dΦ∗
(b,0)

w ⊕ u �−→ (Vw⊕u ⊕ αw⊕u) ,

which is SL(2,C)-equivariant. On the other hand we know that the energy-momen-
tum functional H can be seen as a real linear form on (M ⊕ sl2(C))∗R that is to say,
as a vector H = M ⊕Ξ ∈ M⊕sl2(C). In the following, we will adopt the notations
Ξ = N ⊕ iR ∈ G ⊕ iG, and M = Λ(m0,m), N = Λ(0, n), R = Λ(0, r), where Λ is
the isomorphism defined in Section 2.4. Now applying the non-negativity results
of Section 3.2.1 or 3.2.2, we know that (even if our AdS-asymptotically hyperbolic
manifold has a compact boundary such that 	k is causal and positively oriented)

∀σ ∈ IKS (Σ) H(Vσ, ασ) ≥ 0.

In other words, for each w ⊕ u ∈ C4, we have H(Kw⊕u) ≥ 0. But the complete
study of IKS (Σ) of Section 3.3 implies that actually

H(Kw⊕u) = Vw⊕u(M) + αw⊕u(Ξ)

= 2(w∗M̂w + u∗Mu) + 2(w∗Ξu+ u∗Ξ∗w),

and consequently the application w ⊕ u �−→ H(Kw⊕u) is a Hermitian form on
C2 ⊕ C2 whose matrix is

Q = 2

(
M̂ Ξ
Ξ∗ M

)
= 2

(
Λ(m0,−m) Λ(0, n) + iΛ(0, r)

Λ(0, n) − iΛ(0, r) Λ(m0,m)

)
.

It is easy to conclude since we have the identity

∀w ⊕ u ∈ C
4 H(Vw⊕u ⊕ αw⊕u) = Q(w ⊕ u,w ⊕ u) ≥ 0,

which ends the proof of

Theorem 1.3 Let (Mn, g, k) be an AdS-asymptotically hyperbolic spin Riemannian
manifold satisfying the decay conditions stated in Section 1.2 and the following
conditions

(i) 〈(f, α), (Φ(g, k) − Φ(b, 0))〉 ∈ L1(M, dVolb) for every (f, α) ∈ Nb⊕Kill(M, b),
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(ii) the relative version of the dominant energy condition (cf. Section 2.2) holds,
that is to say (Φ(g, k)−Φ(b, 0)) is a positively oriented causal (n+ 1)-vector
along M ,

(iii) in the case where M has a compact boundary ∂M , we assume moreover that
	k is causal and positively oriented along ∂M .

Then there exists a (hardly explicitable) map R
n,1 ⊕ so(n, 1) −→ Herm(Cd) which

sends, under the assumptions (i)–(iii), the energy-momentum on a non-negative
Hermitian form Q.

Moreover, when n = 3, we can explicit Q in terms of the components of the
energy-momentum as described above.

The end of this section is devoted to the 3-dimensional case.
As the invariance of the energy-momentum under asymptotic hyperbolic

isometries was proved in [19], one can be interested in the description of the orbit
of Q under the action of SL(2,C).

Proposition 3.18. If M is timelike, there exists a (non-unique) representative el-
ement of the orbit of H = M ⊕ Ξ under the natural action (cf. Section 3.3) of
SL(2,C) on M ⊕ sl2(C) which can be written

m0

(
1 0
0 1

)
⊕ n1

(
1 0
0 −1

)
⊕ i

(
r1 r2
r2 −r1

)
, m0, n1, r1, r2 ∈ R.

The positive energy-momentum theorem then reduces tom0 ≥
√

(|n1| + |r2|)2 + r21.

Proof. Let us suppose that M ∈ M is timelike. Thus considering the action of
SL(2,C) on M⊕ sl2(C) (cf. Section 3.3), then there exists an element in the orbit

of H that can be written m0

(
1 0
0 1

)
⊕ Ξ′. Since the isotropy group of

(
1 0
0 1

)
is

SU(2) whose action on G is transitive, then there exists an element in the orbit

of H that can be written m0

(
1 0
0 1

)
⊕n1

(
1 0
0 −1

)
⊕ iR′. But the isotropy group

of
(

1 0
0 −1

)
is the one parameter group

{(
eiθ 0
0 e−iθ

)
, θ ∈ R

}
. Finally there ex-

ists an element (not unique since the isotropy group of
(

0 1
1 0

)
is isomorphic

to Z2) in the orbit of H that can be written as announced in the proposition. The
corresponding Hermitian matrix is

Q = 2

⎛⎜⎜⎝
m0 0 n1 + ir1 ir2
0 m0 ir2 −n1 − ir1

n1 − ir1 −ir2 m0 0
−ir2 −n1 + ir1 0 m0

⎞⎟⎟⎠ .
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Since Q is non negative we have

m0 ≥ 0

m0(m2
0 − (n2

1 + r21 + r22)) ≥ 0

(m2
0 − (n2

1 + r21 + r22))2 ≥ 4(n1r2)2,

which can be summarized with m0 ≥
√

(|n1| + |r2|)2 + r21. �

Remark 3.19. The {t = t0} slices of the Kerr-AdS metrics are AdS-asymptotically
hyperbolic and parametrized by 2 real parameters: the mass and the angular mo-
mentum. The proposition above then shows that there exists some energy-momenta
that could not be obtained by the action of SL(2,C) on a Kerr-AdS solution. As
a consequence, an interesting question would be to find some (new) AdS-asymp-
totically hyperbolic metrics which have an energy-momentum of the form given in
the proposition above with non-zero coefficients m0, n1, r1, r2, and which satisfy the
dominant energy condition or the (stronger) cosmological vacuum constraints.

4. Rigidity theorems

Theorem 1.4 Under the assumptions of the positive energy-momentum theorem,
Q = 0 implies that (M, g, k) is isometrically embeddable in AdSn,1.

Proof. The vanishing of Q implies that our spinor bundle Σ is trivialized by a basis
of γ-imaginary Killing spinors. We denote by ξ any γ-imaginary Killing spinors
of this basis. We will need the following spinorial Gauss-Codazzi equation.

Proposition 4.1. For every X,Y ∈ Γ(TM) we have

Rγ
X,Y = Rg

X,Y − 1
2

(
d∇k(X,Y ) · e0 +

1
2
(
k(X) · k(Y ) − k(Y ) · k(X)

)) · ,

where · denotes the Clifford action with respect to the metric γ.

Proof of the proposition. It is a straightforward computation where we use vector
fields X,Y satisfying at the point ∇XY = ∇Y X = 0.

∇X∇Y = ∇X

(
∇Y − 1

2
k(Y ) · e0·

)
= ∇X∇Y − 1

2
k(X) · e0 · ∇Y

− 1
2

(∇Xk(Y ) · e0 · +k(Y ) · (∇Xe0) · +k(Y ) · e0 · ∇X)

= ∇X∇Y − 1
2
(
k(X) · e0 · ∇Y + k(Y ) · e0 · ∇X − k ◦ k(X,Y )e0·

)
−

(
1
2
∇Xk(Y ) · e0 − 1

4
k(Y ) · k(X)

)
· ,

and the curvature formula above follows. �
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Using the fact that ξ is a γ-imaginary Killing spinor one gets〈
Rg

X,Y ξ −
1
4

(
X · Y − Y ·X + k(X) · k(Y ) − k(Y ) · k(X)

)
· ξ, ξ

〉
=

1
2

〈
d∇k(X,Y ) · e0 · ξ, ξ

〉
,

where
〈
Rg

X,Y ξ, ξ
〉

and
〈(

X · Y − Y ·X + k(X) · k(Y ) − k(Y ) · k(X)
)
· ξ, ξ

〉
are

purely imaginary terms whereas
〈

d∇k(X,Y ) · e0 · ξ, ξ
〉

is real. As a consequence〈
d∇k(X,Y ) · e0 · ξ, ξ

〉
= 0 for any ξ of our γ-imaginary Killing spinor basis and

so d∇k = 0. This implies

Rg
X,Y =

1
4
(
X · Y − Y ·X + k(X) · k(Y ) − k(Y ) · k(X)

)· ,

and using the natural isomorphism between C�0(R3,1) and Λ2(R3,1) (cf. [24] propo-
sition 6.2) we get that

Rg =
1
2
(
g � g + k � k

)
d∇k = 0.

Let us denote by V the function <ξ, ξ>, α the real 1-form defined by α(Y ) =
〈Y · e0 · ξ, ξ〉. Then the couple (V,W ) := (V,−α�) is a Killing Initial Data (KID)
[10]. If we consider (M̃, g̃, k̃) the universal Riemannian covering of (M, g, k),
then we can make the Killing development of (M̃, g̃, k̃) with respect to the KID
(Ṽ , W̃ ) which by definition is R × M̃ endowed with the Lorentzian metric γ̃ =(
−Ṽ 2 + |W̃ |2

)
du2 +2W̃ ��du+ g̃. By construction, M̃ is embedded in (R×M̃, γ̃)

with induced metric g̃ and second fundamental form k̃. Besides R× M̃ is the uni-
versal covering of N , and γ̃ which has sectional curvature −1, is a stationary
solution of the vacuum Einstein equations with cosmological constant that is to
say Gγ̃ = n(n−1)

2 γ̃. But (M̃, g̃) is complete since (M, g) is complete and there-
fore [1] (R × M̃, γ̃) is geodesically complete. It follows that (R × M̃, γ̃) is AdSn,1

(in vertue of Proposition 23 [p. 227] of [27]). It only remains to show that M is
simply connected. We know that R × M̃ ∼= R

n+1 and thereby using the following
compactly supported de Rham cohomology isomorphisms {0} = H2

dR,c(R× M̃) =
H2

dR,c(Rn+1) = H1
dR,c(M̃) (cf. Proposition 4.7 and Corollary 4.7.1 [p. 39] of [12]

for instance), we obtain that M̃ has only one asymptotic end. This last fact com-
pels the universal covering map M̃ → M to be trivial and as a consequence
(M, g, k) ≡ (M̃, g̃, k̃) is isometrically embedded in AdSn,1 ≡ (Ñ , γ̃). This com-
pletes the proof of the theorem. �
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A natural and less restriction on Q is to assume that it is degenerate, and one can
wonder whether this implies rigidity. The end of this section is devoted to a study
of the rigidity case in dimension n = 3. Namely we prove the following

Theorem 4.2. Let us suppose that (M3, g, k) satisfies the assumptions of the posi-
tive energy-momentum theorem and that the matrix Q is degenerate. Then there ex-
ists some ∇̂-parallel spinor field ξ such that

〈
R̂ξ, ξ

〉
= 0 and consequently (M, g, k)

is isometrically embeddable in a stationary pp-wave space-time.
If furthermore the constant function (ξ, ξ) is non-zero then (M, g, k) admits

a vacuum Killing development which is a solution of the Einstein equations (with
the cosmological constant −3).

Remark 4.3. A pp-wave space-time is a Lorentzian manifolds such that its stress-
energy tensor satisfies Tμν = λZμ ⊗ Zν where Zμ is an isotropic Killing vector
field and λ a function on the manifold. Some results were also proved by Siklos in
[32] and by Leitner in [25] for Lorentzian manifolds admitting a Killing spinor.

Proof. The degenerate character ofQ implies the existence of a non-zero w⊕u ∈ C4

and a unique ξ0 such that ξ = fAσw⊕u + ξ0 satisfies the conditions

∇̂ξ = 0〈
R̂ξ, ξ

〉
= 0.

By the same argument as above we get that
〈

d∇k(X,Y ) · e0 · ξ, ξ
〉

= 0 (which can

also be thought as ∇Xk(Y, α) = ∇Y k(X,α)). Now since ξ is ∇̂-parallel we get

�e
〈

3∑
k=1

ek ·Rγ
X,ek

ξ, Y · ξ
〉

=
1
4
�e

〈
3∑

k=1

ek · (X · ek − ek ·X) · ξ, Y · ξ
〉

= 〈X,Y 〉 ∀X,Y ∈ Γ(TM).

On the other hand a direct computation leads to

3∑
k=1

ek ·Rγ
X,ek

=
1
2

3∑
l,m=1

d∇k(X, el, em)el · e0 · em · +
1
2

3∑
l,m=1

Rγ(X, el, el, em)el · el · em ·

=
1
2

3∑
l,m=1

d∇k(X, el, em)el · e0 · em ·

− 1
2

3∑
l,m=1

{Rg(X, el, el, em) − k(X, el)k(el, em) + k(X, em)k(el, el)} · em ·
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=
1
2

3∑
l,m=1

d∇k(X, el, em)el · e0 · em · − 1
2

(E(X) − 2X)· ,

where we have set E = Ricg +2g + (tr k)k − k ◦ k. It is then clear that

�e
〈

3∑
k,l=1

d∇k(X, el, em)el · e0 · em · ψ, Y · ψ
〉

= V E(X,Y ).

In the following computation we will set Y = es. We recall that

�e
〈

3∑
l,m=1

d∇k(X, el, em)el · e0 · em · ψ, es · ψ
〉

=
3∑

l,m=1

d∇k(X, el, em)�e 〈el · e0 · em · ψ, es · ψ〉

=
3∑

l=1

d∇k(X, el, el)�e 〈el · e0 · el · ψ, es · ψ〉

+
∑
l �=m

d∇k(X, el, em)�e 〈el · e0 · em · ψ, es · ψ〉

= (I + II)(X, es),

and we will treat I and II separately for convenience. The easiest one is

I(X, es) = −〈es · e0 · ψ, ·ψ〉
3∑

l=1

(
∇Xk(el, el) −∇el

k(X, el)
)

= −
(

(δgk + dtrg k) ⊗ α

)
(X, es).

Thereby we can conclude that I = −(δgk+dtrg k)⊗α. We compute now II(X, es).

II(X, es) =
∑
l �=s

d∇k(X, el, es)�e 〈el · e0 · es · ψ, es · ψ〉

+
∑
m�=s

d∇k(X, es, em)�e 〈es · e0 · em · ψ, es · ψ〉

+
∑

l �=m, l �=s, m�=s

d∇k(X, el, em)�e 〈el · e0 · em · ψ, es · ψ〉 ,

but the last sum is zero since 〈ek · e0 · em · ψ, es · ψ〉 is purely imaginary whenever
k,m, s are distinct indices. Thereby it comes out that II(X, es) =

(∇es
k(X,α) −

∇αk(X, es)
)
, so that we can conclude

II(X,Y ) = ∇Y k(X,α) −∇αk(X,Y ),
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and consequently

V

(
Ricg + 2g + (trg k)k − k ◦ k

)
(X,Y ) = −

(
(δgk + dtrg k) ⊗ α

)
(X,Y )

+
(
∇Y k(X,α) −∇αk(X,Y )

)
.

Moreover the couple (V, α) satisfies the following differential equations

∇Xα(Y ) = V k(X,Y ) +
i

2
(
(X · Y − Y ·X) · ξ, ξ)

δ∗gα = V k

dV (X) = k(X,α) + i 〈X · ψ, ψ〉
and

(HessgV )(X,Y )

= ∇Y k(X,α) − V (k ◦ k)(X,Y ) + V g(X,Y ) + ∇Xα(k(Y )) + ∇Y α(k(X))

= ∇Y k(X,α) −∇αk(X,Y ) − V (k ◦ k)(X,Y ) + V g(X,Y ) + Lαk(Y,X)

= V

(
Ricg + 3g + (trg k)k − 2(k ◦ k)

)
(X,Y )

+
(

(δgk + dtrg k) ⊗ α

)
(X,Y ) + Lαk(Y,X) .

It is clear that the couple (V,W ) := (V,−α�) satisfies the first KID equation [10],
and using the second KID equation for defining the symmetric tensor τ of [10],
namely

V

(
τ − 1

2
(trg τ − ρ)g

)
= V

(
Ricg + (trg k)k − 2(k ◦ k)

)
− LW k − (Hessg V )

=
(

(δgk + dtrg k) ⊗W �

)
− 3V g,

where 2ρ := Scalg +(tr k)2 − |k|2. Taking the trace of last equation one gets
trg τ − ρ = 12 and consequently

V τ =
(

(δgk + dtrg k) ⊗W �

)
+ 3V g.

Now the equation 〈R̂ξ, ξ〉 = 0 implies
(

Scalg+6+(trg k)2−|k|2g
)

= 2 |δgk + dtrg k|.

We also know that V
(

Scalg + 6 + (trg k)2 − |k|2g
)

= 2
〈
(δgk + dtrg k),W �

〉
, and

thereby it is clear that there exists some function on M denoted by ϑ such that
W = ϑ(δgk + dtrg k) and so

V

(
Scalg + 6 + (trg k)2 − |k|2g

)
= 2 |ϑ| |δgk + dtrg k|2
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and therefore

2V |δgk + dtrg k| =
(

2ρ+ 6
)
|W | ,

which shows that in the Killing development the Killing vector field (V,W ) will
be colinear to the cosmological constraints 4-vector (2ρ+ 6, 2(δgk+ dtrg k)) which
is isotropic. It follows that the Killing vector field (N,W ) is also isotropic in the
Killing development. We finally obtain the relation V 2(τ−3g) = 1

2 (2ρ+6)W �⊗W �

which means that the Killing development is a stationary pp-wave space-time.
Supposing furthermore that the constant function (ξ, ξ) is non-zero, we get

(δgk + dtrg k)(ξ, ξ) = 0 and so (δgk + dtrg k) = 0 by tracing the equation〈
d∇k(X,Y ) · e0 · ξ, ξ

〉
= 0. It follows by the dominant energy condition that

Scalg +(tr k)2 − |k|2 = −6, and we obtain finally that τ = 3g. Thereby the couple
(V,W ) is a cosmological vacuum KID. It is known [10] that in that case (M, g, k)
has a cosmological vacuum Killing development denoted by (N, γ) which is a sta-
tionary 4-dimensional Lorentzian manifold satisfying Gγ = 3γ and carrying a
Killing vector field which is the natural extension of the KID (V,W ). �
Remark 4.4. It is clear that expecting m0 = 0 so as to define the rigidity situation
is much stronger than expecting the degenerate character of Q. A good issue would
certainly be to use the geometry at infinity in the same way as in [18] but in
the AdS-asymptotically hyperbolic context, in order to prove under the degenerate
character of Q the existence of an isometric embedding of (M, g, k) in AdS.

5. Appendix

5.1. Non-negativity of Q seen through its coefficients when n = 3
Classical linear algebra results state that every principal minor of Q must be non-
negative which give rise to a set of inequalities on the coefficients of H.

m0 +m1 ≥ 0
m0 −m1 ≥ 0

m2
0 − |m|2 ≥ 0

(m0 +m1)2 − (n2 + r3)2 − (r2 − n3)2 ≥ 0
(m0 −m1)2 − (n2 − r3)2 − (r2 + n3)2 ≥ 0

m2
0 −m2

1 − n2
1 − r21 ≥ 0

(m0 +m1)(m2
0 − (|m|2 + n2

1 + r21)) − (m0 −m1)((n2 + r3)2 + (n3 − r2)2)
− 2((n2 + r3)(m2n1 +m3r1) + (−n3 + r2)(m2r1 −m3n1) ≥ 0

(m0 −m1)(m2
0 − (|m|2 + n2

1 + r21)) − (m0 +m1)((n2 − r3)2 + (n3 + r2)2)
+ 2((n2 − r3)(m2n1 −m3r1) + (n3 + r2)(m2r1 +m3n1) ≥ 0

(m2
0 − (|m|2 + |n|2 + |r|2))2 − 4(|m|2|n|2 + |m|2|r|2 + |n|2|r|2)

+ 4(<m,n>2 +<m, r>2 +<n, r>2) + 8m0 detR3(m,n, r) ≥ 0.
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5.2. Rigidity results for the Trautman-Bondi mass

Oppositely to the rest of the paper, we consider here the situation of the Trautman-
Bondi mass [16], namely (M, g, k) is assumed to be Minkowski-asymptotically
hyperbolic which means that the triple (M, g, k) is asymptotic at infinity to a
standard hyperbolic slice of Minkowski space-time. It has been proved (cf. The-
orem 5.4 of [16]) that the Trautman-Bondi four-momentum pμ is timelike and
future directed under the dominant energy condition (and some other technical
assumptions). The aim of this section is to prove some rigidity results for the
Trautman-Bondi four-momentum which are analogous to the statements of Sec-
tion 4. More precisely

Theorem 5.1. Under the assumptions of Theorem 5.4 of [16], and if the compo-
nent p0 of the Trautman-Bondi four-momentum pμ vanishes, then (M, g, k) can
be isometrically embedded in Minkowski space-time.

Proof. This can be done in the same way as our rigidity theorem: since pμ is
timelike, the condition p0 = 0 implies that pμ actually vanishes. Consequently there
exists a basis of ∇-parallel spinor fields on M , where ∇ is the connection on some
cylinder ]−ε,+ε[ ×M endowed with some Lorentzian metric γ = −dt2 + gt (such
that M has induced metric g and extrinsic curvature k satisfying the conditions
of [16]). Now if ∇ denotes the Levi-Civita connection of g = g0, we still have the
relation ∇Xξ = ∇Xξ − 1

2k(X) · e0 · ξ where · is the Clifford action with respect
to γ. Our spinorial Gauss-Codazzi formula is still valid, that is

Rγ
X,Y = Rg

X,Y − 1
2

(
d∇k(X,Y ) · e0 +

1
2
(
k(X) · k(Y ) − k(Y ) · k(X)

)) · = 0 ,

and so

Rg =
1
2
k � k

d∇k = 0.

Furthermore, the couple (V,W ) := (V,−α�) is a vacuum KID if one defines V =
<ξ, ξ> and the real 1-form α by α(Y ) = 〈Y · e0 · ξ, ξ〉. We consider again the
Killing development of (M̃, g̃, k̃) with respect to (Ṽ , W̃ ), and observe that it must
be a geodesically complete stationary solution of vacuum Einstein equations of zero
sectional curvature and thereby must be Minkowski space-time (cf. Proposition 23
[p. 227] of [27]). Now the same cohomological arguments give (M̃, g̃, k̃) = (M, g, k)
which is by construction embedded in its Killing development that is Minkowski.

�

Theorem 5.2. Let us suppose that (M, g, k) satisfies the assumptions of Theorem
5.4 of [16] and that pμ is null. Then there exists some ∇-parallel spinor field ξ
such that 〈Rξ, ξ〉 = 0 and consequently (M, g, k) is isometrically embeddable in a
stationary pp-wave space-time.
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If furthermore the constant function (ξ, ξ) is non-zero then (M, g, k) admits
a vacuum Killing development which is a stationary solution of the Einstein equa-
tions.

Proof. pμ is null implies the existence of a spinor field ξ satisfying the conditions

∇ξ = 0
〈Rξ, ξ〉 = 0.

Then in the same way as in the last Theorem of Section 4, but defining here the
2-tensor E =: Ricg +(tr k)k − k ◦ k we obtain that the couple (V,W ) is a vacuum
KID and the corresponding Killing development satisfies V 2τ = ρ(W �⊗W �) which
means that it is a stationary pp-wave space-time.

Still using the same computations as in the last Theorem of Section 4 and
assuming that the constant function (ξ, ξ) is non-zero we find that the constraints
equations are satisfied (because of the dominant energy condition) and that τ = 0.
Thereby (V,W ) is a vacuum KID and it is known that in this case (M, g, k) has a
stationary vacuum Killing development. �

Remark 5.3. It is clear that expecting p0 = 0 so as to define the rigidity situation
is much stronger than expecting the null character of pμ. As in our situation (cf.
the remark at the end of Section 4), a good issue would certainly be to use the
geometry at infinity in the same way as in [18] but in the Minkowski-asymptotically
hyperbolic context, in order to prove under the equality case of Theorem 5.4 of [16],
the existence of an isometric embedding of (M, g, k) in Minkowski.
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métriques, Comm. Math. Phys., 144 (1992) n 3, 581–599.

[14] M. Cahen, S. Gutt, L. Lemaire, P. Spindel, Killing Spinors, Bull. Soc. Math. Belg.,
Ser. A 38 (1986) 2, 75–102.
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