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On a Characteristic Initial Value
Problem in Plasma Physics

Simone Calogero

Abstract. The relativistic Vlasov-Maxwell system of plasma physics is considered
with initial data on a past light cone. This characteristic initial value problem
arises in a natural way as a mathematical framework to study the existence of
solutions isolated from incoming radiation. Various consequences of the mass-energy
conservation and of the absence of incoming radiation condition are first derived
assuming the existence of global smooth solutions. In the spherically symmetric
case, the existence of a unique classical solution in the future of the initial cone
follows by arguments similar to the case of initial data at time t = 0. The total
mass-energy of spherically symmetric solutions equals the (properly defined) mass-
energy on backward and forward light cones.

1 Introduction

In a system of Cartesian coordinates (t, x), t ∈ R, x ∈ R
3, the Vlasov-Maxwell

system is given by

∂tf + p̂ · ∇xf + (E + p̂ × B) · ∇pf = 0, (1.1)

∂tE −∇× B = −j, ∂tB + ∇× E = 0, (1.2)

∇ · E = ρ, ∇ · B = 0, (1.3)

ρ(t, x) =
∫

f(t, x, p) dp, j(t, x) =
∫

p̂ f(t, x, p) dp. (1.4)

The Vlasov-Maxwell system models the dynamics of collisionless plasmas. We con-
sider for simplicity a plasma consisting of a single species of particle. The unknowns
are the particle density in phase-space, f = f(t, x, p), where p ∈ R

3 is the momen-
tum variable, and the mean electromagnetic field (E, B) = (E, B)(t, x) generated
by the particles. The expression

p̂ =
p√

1 + |p|2

denotes the relativistic velocity of a particle with momentum p. Units are chosen
such that the mass and the charge of each particle and the speed of light are
equal to unity. The symbol × denotes the usual vector product in R

3. We refer
to [3, 5, 9, 11, 12, 14, 15, 16, 17] for background on the Cauchy problem for



234 S. Calogero Ann. Henri Poincaré

the Vlasov-Maxwell system. Classical solutions of (1.1)–(1.4) satisfy the energy
identity

∂te + ∇ · p = 0, (1.5)

where

e(t, x) =
∫ √

1 + |p|2 f dp +
1
2
|E|2 +

1
2
|B|2, p(t, x) =

∫
p f dp + E × B.

Integrating (1.5) one obtains the conservation of the total energy

M(t) =
∫ ∫ √

1 + |p|2f dp dx +
1
2

∫ (|E|2 + |B|2) dx = const. (1.6)

Solutions of Vlasov-Maxwell also satisfy the continuity equation

∂tρ + ∇ · j = 0, (1.7)

which upon integration leads to the conservation of the total (rest) mass

N(t) =
∫ ∫

f dp dx = const. (1.8)

The purpose of this paper is to set up a mathematical framework for the analysis
of solutions to the Vlasov-Maxwell system which satisfy the no-incoming radiation
condition, that is

lim
r→∞

∫ v2

v1

∫
|x|=r

k · [E × B](v − |x|, x) dSr(x) dv = 0, (1.9)

for all v1, v2 ∈ R, where dSr is the surface element on the sphere of radius r and
k = x/r is the unit normal on this sphere. This corresponds to the physical con-
dition that the electromagnetic field carries no energy to the past null infinity of
Minkowski space, see [5, 6].

Solutions of Vlasov-Maxwell isolated from incoming radiation were first stud-
ied in [5]. The result of [5] is that such solutions exist globally in time for small data
of the Cauchy problem (i.e., data at time t = 0). However the Cauchy problem is
not a natural framework to generate solutions isolated from incoming radiation. In
fact, since the no-incoming radiation condition is imposed at t → −∞, there is no
meaningful notion of local isolated solution with data at t = 0. Therefore, in the
framework of the Cauchy problem, one can only prove the existence of global (or
semiglobal) solutions which satisfy (1.9). This requires the use of uniform in time
a priori estimates, which are not available in general for non-linear problems.

A more natural setting for the study of isolated solutions is the initial value
problem with data on a surface which cuts past null infinity. Examples of such
surfaces are past light cones and backward hyperboloids. This paper is concerned
with the first case.



Vol. 7, 2006 On a Characteristic Initial Value Problem in Plasma Physics 235

Another motivation for studying the initial value problem with data on a
past light cone comes from physical grounds. The initial data correspond to the
outcome of an experimental measurement on the state of the physical system at
the present time; the existence of a unique solution with the given data assures
that the outcome of any future measurement is predicted by the theory. If this
physical interpretation of the initial value problem is accepted, then it is clear
that the initial data for relativistic models, such as the Vlasov-Maxwell system,
should be given on a past light cone. In fact the set of events which are accessible
to an observer at the proper time t = 0 lie on the past light cone with vertex on the
world line of the observer at t = 0. The state of the system on the surface t = 0,
on the other hand, cannot be measured, because these events form a spacelike
hypersurface in Minkowski space. Such a discrepancy between the “physical” and
the “mathematical” initial value problem has been sometimes discussed in the
physical literature, see [7, 8, 10] and the references therein.

In order to study the Vlasov-Maxwell system with initial data on a past light
cone, we first rewrite the equations in the coordinates (v, x), where x ∈ R

3 and
v ∈ R is the advanced time, which is defined by the condition that the surfaces
v = constant correspond to the past light cones with vertex on the timelike curve
|x| = 0 (the world-line of the observer). Denote by f∧ = f∧(v, x, p), (E∧, B∧) =
(E∧, B∧)(v, x) the particle density and the electromagnetic field expressed in these
coordinates. They are related to the solutions of (1.1)–(1.4) by f∧(v, x, p) =
f(v − |x|, x, p), (E∧, B∧)(v, x) = (E, B)(v − |x|, x) and therefore they satisfy the
equations

(1 + p̂ · k)∂vf∧ + p̂ · ∇xf∧ + (E∧ + p̂ × B∧) · ∇pf∧ = 0, (1.10)

∂v(E∧ − k × B∧) = ∇× B∧ − j∧, (1.11)
∂v(B∧ + k × E∧) = −∇× E∧, (1.12)

∂v(E∧ · k) + ∇ · E∧ = ρ∧, (1.13)
∂v(B∧ · k) + ∇ · B∧ = 0, (1.14)

where
k =

x

|x| , ρ∧(v, x) =
∫

f∧ dp, j∧(v, x) =
∫

p̂ f∧ dp. (1.15)

Initial data are given at v = 0 and denoted by

f in
∧ (x, p) = f∧(0, x, p), Ein

∧ (x) = E∧(0, x), Bin
∧ (x) = B∧(0, x).

Later we shall discuss the equivalence of the system above with the evolution
equations (1.10)–(1.12) and a set of constraint equations on the initial data.

In this paper we are interested in the question of existence and uniqueness
of classical solutions in the future (i.e., for v ∈ [0,∞[) which match the initial
data at v = 0. Obviously, one cannot expect (in general) that a unique solution
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is determined by initial data at v = 0, since the intersection between the initial
surface and the domain of dependence of the solutions on a space-time point in
the future is not a compact set. However it turns out that the Maxwell equations
(1.11)–(1.14) have indeed at most one solution for given data (Ein

∧ , Bin
∧ ) at v = 0

provided the no-incoming radiation condition is satisfied. This suggests that the
solutions we seek to the initial value problem with data on a past light cone should
be restricted to the class of solutions isolated from incoming radiation.

This paper is organized as follows. In Section 2 we prove some general prop-
erties of smooth solutions to the system (1.10)–(1.15). The results of Section 2 are
conditional, as they assume the existence of global classical solutions. In Section
2 we also discuss the relation between the conservation laws satisfied by solutions
with data on a past light cone and solutions with data at t = 0. Note in fact that
for solutions with data on a past light cone, the conservation of the total mass
and of the total energy are not obvious. In Section 3 we prove global existence and
uniqueness of spherically symmetric solutions. This result is obtained by adapting
to our case the proof of global existence for the Cauchy problem given in [1, 13].
In spherical symmetry the magnetic field vanishes identically (if decay at infinity
is imposed) and the Maxwell equations reduce to the Poisson equation for the
electric field. Hence there is neither incoming nor outgoing radiation in spherical
symmetry. We will show that, as a consequence of the absence of radiation, spher-
ically symmetric solutions satisfy the conservation laws (1.6), (1.8) and that the
total mass-energy equals the mass-energy on the past light cones and on the future
light cones.

In a subsequent publication the results of this paper will be extended to the
Nordström-Vlasov system (see [4] for a derivation of this model). While it is easy to
generalize the formal analysis of Section 2 below to the Nordström-Vlasov system,
the proof of global existence and uniqueness of spherically symmetric solutions is
different and considerably more involved since the Nordström scalar field equation
remains hyperbolic – and so radiation propagates – also in spherical symmetry.

2 The initial value problem with data on a past light cone

An assumption on the initial data which will be made throughout is that

0 � f in
∧ ∈ C1

c (R3 × R
3), Ein

∧ , Bin
∧ ∈ C2(R3)

and we define
R0 = inf{R : f in

∧ (x, p) = 0, |x| � R, p ∈ R
3}.

Hence f in
∧ = 0, for |x| � R0. In this section we study several properties of global

solutions satisfying the regularity condition

f∧ ∈ C1([0,∞[ × R
3 × R

3), E∧, B∧ ∈ C1([0,∞[ × R
3)
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and so they are solutions of (1.10)–(1.15) in a classical sense. We also assume that
f∧ has bounded support in the momentum, precisely

P∧(v) = sup{|p| : f∧(s, x, p) �= 0, 0 � s � v, x ∈ R
3} < ∞, ∀ v ∈ R.

In particular, all the integrals in the momentum variable in the sequel are under-
stood to be extended over a compact set. We split the analysis in two different
subsections.

2.1 The Vlasov equation

We start by pointing out some basic properties of f∧. Note the estimate

1 + p̂ · k = 1 +
p · k√
1 + |p|2 � 1 − |p|√

1 + |p|2

=
1√

1 + |p|2(√1 + |p|2 + |p|) � 1/2
1 + |p|2 ; (2.1)

hence when the support in p of f∧ is bounded, the equation (1.10) is equivalent to

∂vf∧ +
p

p0
· ∇xf∧ +

1
p0

(√
1 + |p|2E∧ + p × B∧

)
· ∇pf∧ = 0, (2.2)

where p0 is defined by
p0 =

√
1 + |p|2 + p · k > 0.

The characteristics of the differential operator in the left-hand side of (2.2) are the
solutions of

ẋ =
p

p0
, ṗ =

1
p0

(√
1 + |p|2E∧ + p × B∧

)
(2.3)

and we denote by (X, P )(s, v, x, p), or simply (X, P )(s), the characteristic satisfy-
ing (X, P )(v) = (x, p). Since the particle density f∧ is constant along these curves,
we obtain the following representation formula for the solution of the Vlasov equa-
tion:

f∧(v, x, p) = f in
∧ ((X, P )(0, v, x, p)). (2.4)

In particular f∧ remains non-negative for all times and ‖f∧(v)‖∞ � ‖f in
∧ ‖∞. In

the next lemma we estimate the x-support of f∧.

Lemma 1 For all v � 0,

f∧(v, x, p) = 0, for |x| � R0 +
1
2
v.

Proof. For all 0 � s � v we have, by the first equation in (2.3),

|x| = |X(0)| +
∫ v

0

P (τ) · K(τ)√
1 + |P (τ)|2 + P (τ) · K(τ)

dτ,
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where K = X/|X |. Let [0, v] = I− ∪ I+, where

I− = {τ ∈ [0, v] : (P · K)(τ) � 0}, I+ = {τ ∈ [0, v] : (P · K)(τ) > 0}.
Thus, using

√
1 + |p|2 > p · k,

|x| � |X(0)| +
∫
I+

P · K√
1 + |P |2 + P · K dτ

� |X(0)| + 1
2
meas(I+) � |X(0)| + 1

2
v.

Since |X(0)| � R0 in the support of f∧, the lemma is proved.

We shall now derive the conservation laws satisfied by the solutions of (2.2). A
straightforward computation reveals that the right-hand side of the system (2.3),
i.e., the vector

F (v, x, p) =
[

p

p0
,

1
p0

(√
1 + |p|2E∧ + p × B∧

)]
,

satisfies [∇(x,p) · F
]
(s, X(s), P (s)) = − d

ds
log

(
1 + P̂ (s) · K(s)

)
, (2.5)

where P̂ = P/
√

1 + P 2. In fact, each side of (2.5) equals, along characteristics,

− 1
(1 + p̂ · k)2

[
|p̂ × k|2

|x| +
1√

1 + |p|2
(
E∧ · (k − (p̂ · k)p̂) − (p̂ × k) · B∧

)]
.

From (2.5) we deduce

det
[
∂(X, P )(s)

∂(x, p)

]
=

1 + p̂ · k
1 + P̂ (s) · K(s)

.

Hence using (2.4) the next lemma follows.

Lemma 2 For any measurable function Q : R → R,∫ ∫
Q(f∧)(1 + p̂ · k) dp dx = const.

In particular, by choosing Q(z) = zq, q � 1,

‖(1 + p̂ · k)1/qf∧(v)‖Lq(R3×R3) = const. (2.6)

The case q = 1 in (2.6) corresponds to the conservation of the (rest) mass on the
past light cones. To be more precise, observe that ρ∧, j∧ defined in (1.15) satisfy
the equation

∂v(ρ∧ + j∧ · k) = −∇ · j∧. (2.7)
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The latter can be proved either by using (1.10) or by a simple change of variable
in (1.7). We define the mass N∧(v) on the past light cone at time v as

N∧(v) = lim
r→∞n∧(v, r), n∧(v, r) =

∫
|x|�r

(ρ∧ + j∧ · k) dx.

Note that the function n∧(v, ·) is non-decreasing and so the above limits exists. By
(2.6), N∧(v) = N∧(0), for all v � 0. The total mass of a solution, given by (1.8),
can be rewritten as

N(t) = lim
r→∞ n(t, r), n(t, r) =

∫
|x|�r

ρ(t, x) dx =
∫
|x|�r

ρ∧(t + |x|, x) dx, t � 0.

In the next lemma we prove a formula which relates the mass functions N(v) and
N∧(v).

Lemma 3 For all v � 0,

n(v, r) = n∧(v, r) −
∫ v+r

v

∫
|x|=r

j∧ · k(v′, x) dSr(x) dv′.

Proof. Integrating (2.7) between v and v + |x| we get

(ρ∧ + j∧ · k)(v + |x|, x) − (ρ∧ + j∧ · k)(v, x) = −
∫ v+|x|

v

∇ · j∧(v′, x) dv′.

Integrating in the region |x| � r we get∫
|x|�r

(ρ∧ + j∧ · k)(v + |x|, x) dx =
∫
|x|�r

(ρ∧ + j∧ · k)(v, x) dx (2.8)

−
∫
|x|�r

∫ v+|x|

v

∇ · j∧(v′, x) dv′ dx.

Now we use the identity

∇ ·
∫ v+|x|

v

j∧(v′, x) dv′ = (j∧ · k) (v + |x|, x) +
∫ v+|x|

v

∇ · j∧(v′, x) dv′.

Substituting into (2.8) and using the Gauss theorem proves the lemma.

By Lemma 1 all characteristics of the Vlasov equation must cross the surfaces
t = v + |x| = const. for all t � 0 in compact sets of x. This means in particular
that no mass can be lost at spacelike infinity, which explains why the following
lemma holds true.

Lemma 4 For all v � 0, N(v) = N∧(v) = N∧(0).
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Proof. By Lemma 1 and Lemma 3 we have n(v, r) = n∧(v, r), for r > 2R0 + v.
The claim follows by letting r → ∞.

Next we define the mass on the future light cone at time v as

N∨(v) = lim
r→∞ n∨(v, r), n∨(v, r) =

∫
|x|�r

(ρ∨ − j∨ · k) dx,

where

ρ∨(v, x) = ρ∧(v + 2|x|, x) = ρ(v + |x|, x),
j∨(v, x) = j∧(v + 2|x|, x) = j(v + |x|, x).

By a change of variable in (2.7) (or in (1.7)) we have

∂v(ρ∨ − j∨ · k) = −∇ · j∨, (2.9)

Integrating (2.7) in time between v and v + 2|x| and proceeding as in the proof of
Lemma 3 we obtain

n∨(v, r) = n∧(v, r) −
∫ v+2r

v

∫
|x|=r

j∧ · k(v′, x) dSr(x) dv′. (2.10)

Moreover, by (2.9), n∨ satisfies the equations

∂vn
∨ = −

∫
|x|=r

j∨ · k dSr(x), ∂vn∨ − ∂rn
∨ = −

∫
|x|=r

ρ∨ dSr(x). (2.11)

The evolution of the mass on the future light cones is studied in the following
lemma.

Lemma 5 The function N∨(v) is non-increasing, that is,

N∨(v2) � N∨(v1), ∀ v1 � v2.

Moreover

(i) N∨(v2) = N∨(v1) iff lim
r→∞

∫ v2

v1

∫
|x|=r

j∨ · k dSr(x) dv = 0;

(ii) N∨(v) = N∧(v) iff lim
r→∞

∫ v+2r

v

∫
|x|=r

j∧ · k dSr(x) dv′ = 0.

Proof. Integrating the second equation in (2.11) along characteristics we have
n∨(v2, r − v2) � n∨(v1, r − v1), for all v2 � v1 and r > v2. In the limit r → ∞ this
implies that N∨ is non-increasing. The claim (i) follows by integrating in time the
first equation in (2.11) on the interval [v1, v2] and letting r → ∞, while (ii) follows
by (2.10), again in the limit r → ∞.
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We remark that for solutions with data on a past light cone it is not obvious
that N∨(v) is bounded. Moreover, even if bounded, it needs not to be constant. If
N∨(v2) < N∨(v1), for 0 � v1 < v2, the difference N∨(v1) − N∨(v2) measures the
mass lost at future null infinity in the interval [v1, v2] of the advanced time. Finally,
even if N∨ is bounded and constant it is not obvious that it must equal N∧, since
the limit condition in (ii) of Lemma 5 might not be satisfied.

In the next lemma we show that a sufficient condition for the limits in (i)
and (ii) of Lemma 5 to be zero is that the momentum support of f∧ is bounded
uniformly in v ∈ R, as this condition implies that no particles can reach future
null infinity.

Lemma 6 Assume P∧(v) � D, for all v � 0 and for some positive constant D.
Then, for all v1, v2, v � 0,

N∨(v2) = N∨(v1), N∨(v) = N∧(v).

In particular, by Lemma 4, N∨(v) = N(v) = N∧(v) = N∧(0), for all v � 0.

Proof. By the assumption,

√
1 + |p|2 �

√
1 + D2

D
|p| �

√
1 + D2

D
(p · k)

in the support of f∧ and so, as in the proof of Lemma 1,

|x| � |X(0)| +
∫
I+

P (τ) · K(τ)√
1 + |P (τ)|2 + P (τ) · K(τ)

dτ � R0 +
D

D +
√

1 + D2
v,

for all (x, p) ∈ supp f∧(v), where I+ = {τ ∈ [0, v] : (P · K)(τ) > 0}. This implies
that f∧(v, x, p) = 0, for |x| � R0 + av and a ∈ [

0, 1
2

[
. Hence∫ v2

v1

∫
|x|=r

j∨ · k dSr(x) dv = 0, for r > (1 − 2a)−1(R0 + av2),

∫ v+2r

v

∫
|x|=r

j∧ · k dSr(x) dv′ = 0, for r > (1 − 2a)−1(R0 + av).

Lemma 4 concludes the proof.

2.2 The Maxwell equations

We now pass to study some general properties of the electromagnetic field
(E∧, B∧). First we show the equivalence of the Vlasov-Maxwell system with a
set of evolution equations and a set of constraint equations on the initial data.
An important point is that, in the present situation, there are more constraint
equations than in the case of the Cauchy problem, since the initial data are given
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on a characteristic surface. Computing the vector product of (1.11) with the unit
vector k, subtracting (1.12) and then using (1.14) we obtain

k × (∇× B∧) − k (∇ · B∧) + ∇× E∧ − k × j∧ = 0. (2.12)

Moreover, computing the vector product of (1.12) with k, adding (1.11) and then
using (1.13) we obtain

∇× B∧ + k (∇ · E∧) − k × (∇× E∧) − ρ∧k − j∧ = 0. (2.13)

On the other hand, the equation (1.13) follows from (1.11) and (2.13), whereas
(1.14) follows from (1.12) and (2.12). Hence the whole set of the Maxwell equations
is equivalent to the system composed by (1.11)–(1.12) and (2.12)–(2.13). Clearly,
since (2.12)–(2.13) are valid for all times, then they must be imposed at v = 0
in order to obtain a solution of the initial value problem, i.e., (2.12)–(2.13) are
constraint equations on the initial data. However these constraint equations are
not totally independent. Let W1, W2 denote the left-hand side of (2.12) and (2.13),
respectively. It is easy to verify the following identities:

W1 = k × W2 + k (k · ∇ × E∧ −∇ · B∧) ,

W2 = −k × W1 + k (k · ∇ × B∧ + ∇ · E∧ − ρ∧ − j∧ · k) .

From this it follows that (2.12)–(2.13) are equivalent to the equations

∇ · B∧ = k · ∇ × E∧, k · ∇ × B∧ + ∇ · E∧ = ρ∧ + j∧ · k, (2.14)

together with one of the equations k × W1 = 0, or k × W2 = 0, that is

k × [(k ×∇× B∧) + ∇× E∧ − k × j∧] = 0 (k × W1 = 0), (2.15)

or
k × [∇× B∧ − k ×∇× E∧ − j∧] = 0 (k × W2 = 0). (2.16)

The following proposition concludes our discussion on the reduction of the Vlasov-
Maxwell system to a set of evolution equations and a set of constraint equations
on the initial data.

Proposition 1 The following assertions are equivalent:

(1) (f∧, E∧, B∧) is a solution to the initial value problem for (1.10)–(1.14)

(2) (f∧, E∧, B∧) is a solution to the initial value problem for (1.10)–(1.14) and
the initial data satisfy (2.12)–(2.13)

(3) (f∧, E∧, B∧) is a solution to the initial value problem for (1.10)–(1.12) and
the initial data satisfy (2.14)–(2.15)

(4) (f∧, E∧, B∧) is a solution to the initial value problem for (1.10)–(1.12) and
the initial data satisfy (2.14) and (2.16).
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Proof. We already proved that (1)⇔(2)⇒(3) and (3)⇔(4). Thus it is sufficient to
establish (4)⇒(1). It is a simple exercise of vector algebra to show that (2.14) are
satisfied for all times provided they are satisfied at time v = 0 and E∧, B∧, ρ∧, j∧
satisfy (1.11), (1.12) and (2.7). The latter holds in virtue of the Vlasov equation
(1.10). Moreover, (1.13) follows from (1.11) and the second equation in (2.14),
while (1.14) follows from (1.12) and the first equation in (2.14). Thus (f∧, E∧, B∧)
is a solution of (1.10)–(1.14) and since (2.12)–(2.13) are satisfied at v = 0, then it
is also a solution of the initial value problem.

The no-incoming radiation condition in the coordinates (v, x) reads as in the
following

Definition 1 A global solution of (1.10)–(1.15) is said to satisfy the no-incoming
radiation condition (NIRC ) if, for all v1, v2 � 0,

lim
r→∞

∫ v2

v1

∫
|x|=r

k · [E∧ × B∧] (v, x) dSr(x) dv = 0.

A local solution in the interval [0, V [, V > 0, satisfies NIRC if the above limit is
zero for all v1, v2 ∈ [0, V [.

We impose NIRC only in the future, since our purpose is to study the initial
value problem forward in time. Likewise we may introduce the concept of outgoing
radiation as in [6].

Definition 2 The outgoing radiation Eout(v1, v2) emitted by a (global) solution of
the Vlasov-Maxwell system in the interval [v1, v2] of the advanced time is given by

Eout(v1, v2) = lim
r→∞

∫ v2

v1

∫
|x|=r

k · [E∧ × B∧] (v + 2r, x) dSr(x) dv,

provided the limit exists.

The energy identity in the coordinates (v, x) reads

∂v(e∧ + p∧ · k) = −∇ · p∧, (2.17)

where

e∧ =
∫ √

1 + |p|2f∧ dp +
1
2
|E∧|2 +

1
2
|B∧|2, p∧ =

∫
p f∧ dp + E∧ × B∧.

The identity (2.17) can be proved either by a direct calculation using the equations
(1.10)–(1.15), or by a simple change of variables in (1.5). Next define

m∧(v, r) =
∫
|x|�r

(e∧ + p∧ · k)dx.
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By (2.17), m∧ satisfies the equations

∂vm∧ = −
∫
|x|=r

p∧ · k dSr(x), ∂vm∧ + ∂rm∧ =
∫
|x|=r

e∧dSr(x). (2.18)

We define the energy M∧(v) on the past light cone at time v as

M∧(v) = lim
r→∞m∧(v, r).

The function m∧(v, ·) is non-decreasing and so the above limit exists.

Lemma 7 M∧ is a non-decreasing function:

M∧(v1) � M∧(v2), ∀ v1 � v2.

Moreover if the NIRC is satisfied then M∧(v) is constant for all v � 0.

Proof. For all v1 � v2 and r > v2 − v1 we have, integrating the second equation
in (2.18), m∧(v2, r) � m∧(v1, r + v1 − v2) and letting r → ∞ we prove that M∧ is
non-decreasing. To show that M∧ is constant in the absence of incoming radiation,
we use that, by the first equation in (2.18),

m∧(v2, r) − m∧(v1, r) = −
∫ v2

v1

∫
|x|=r

∫
p · kf∧ dp dSr(x) dv

−
∫ v2

v1

∫
|x|=r

k · [E∧ × B∧] dSr(x) dv.

By Lemma 1, the first term in the right-hand side vanishes for r > 2R0 + v2, while
the second term tends to zero in the limit r → ∞ by the NIRC.

From Lemma 7 we obtain the following uniqueness theorem for the Maxwell
equations.

Lemma 8 (E∧, B∧) ≡ 0 is the unique C1 solution of the homogeneous system

∂v(E∧ − k × B∧) −∇× B∧ = 0, ∂v(B∧ + k × E∧) + ∇× E∧ = 0, (2.19)

which satisfies the NIRC and the initial condition (E∧, B∧)(0, x) = 0.

Proof. By Lemma 7 we have

0 = 2
[|E∧|2 + |B∧|2 + 2(E∧ × B∧) · k]

= |E∧ · k|2 + |B∧ · k|2 + |E∧ − k × B∧|2 + |B∧ + k × E∧|2.
Hence the solution is a plane wave propagating along the k−direction, i.e., the
vectors (E∧, B∧, k) form an orthogonal triad. It follows by (2.19) that ∇× E∧ =
∇× B∧ = 0 and so, by (2.14), ∇ · E∧ = ∇ · B∧ = 0. The claim follows.
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By a standard interpolation argument we obtain

Lemma 9 If the initial data are chosen such that M∧(0) is bounded and the solution
satisfies NIRC, then

‖(ρ∧ + j∧ · k)(v)‖L4/3(R3) � CM∧(0), ∀ v � 0,

where C is a positive constant which depends only ‖f in∧ ‖∞.

Proof. We write

ρ∧ + j∧ · k =
∫
|p|�R

(1 + p̂ · k)f∧ dp +
∫
|p|>R

(1 + p̂ · k)f∧ dp

� 8π

3
‖f in

∧ ‖∞R3 + R−1

∫
p0f∧ dp � C

(∫
p0f∧

)3/4

� C(e∧ + p∧ · k)3/4,

where in the second line we choose

R =
(
‖f in

∧ ‖−1
∞

∫
p0f∧ dp

)1/4

.

The claim follows.

We shall now briefly discuss the relation between the the total energy and
the energy on the past light cones. The total energy (1.6) can be rewritten as

M(t) = lim
r→∞m(t, r), m(t, r) =

∫
|x|�r

e(t, x) dx =
∫
|x|�r

e∧(t + |x|, x) dx.

By (1.5), m(v, r) satisfies the equations

∂vm = −
∫
|x|=r

p · k dSr(x), (2.20)

∂vm ± ∂rm =
∫
|x|=r

(±e − p · k) dSr(x). (2.21)

The right-hand side of (2.21) is non-negative in the + sign case and non-positive
in the − sign case.

Lemma 10 The total energy is constant, i.e.,

M(v2) = M(v1), ∀ v1, v2 � 0.

Proof. Integrating (2.21) with the plus sign along the characteristics of ∂v + ∂r

we obtain m(v2, v2 + r) � m(v1, v1 + r) for all v1 � v2, which implies, in the limit
r → ∞, M(v2) � M(v1). On the other hand, integrating (2.21) with the minus
sign along the characteristics of ∂v − ∂r gives m(v2, r − v2) � m(v1, r − v1), for all
v2 � v1, r > v2 and so, letting r → ∞, M(v2) � M(v1). The claim follows.
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We emphasize that for solutions with data on a past light cone it is not
obvious that M is bounded. If it is bounded, then, by Lemma 10, it is conserved.
In the latter case, however, the total energy and the energy on the past light cones
might be different. To see this consider the equation

m(v, r) = m∧(v, r) −
∫ v+r

v

∫
|x|=r

p∧ · k(v′, x) dSr(x) dv′. (2.22)

The latter is obtained by integrating (2.17) in time from v to v+|x| and proceeding
as in the proof of Lemma 3. By Lemma 1 and (2.22) we have

m(v, r) = m∧(v, r) −
∫ v+r

v

∫
|x|=r

k · [Eout
∧ × Bout

∧ ](v′, x) dSr(x) dv′, (2.23)

for r > 2R0 + v, where Eout
∧ , Bout

∧ is the field outside the support of the matter.
Hence the answer to the question whether or not M∧ = M depends on the decay
of the solutions of (2.19) as r → ∞. As we shall discuss in Section 3, the equality
M∧ = M holds for spherically symmetric solutions, as in this case the magnetic
field vanishes identically. An interesting open question is whether M∧ = M holds
in general in the absence of incoming radiation.

To conclude this section we study the evolution of the energy on the future
light cones. Let

e∨(v, x) = e∧(v + 2r, x) = e(v + r, x),
p∨(v, x) = p∧(v + 2r, x) = p(v + r, x),

which satisfy the equation

∂v(e∨ − p∨ · k) = −∇ · p∨.

Now let

m∨(v, r) =
∫
|x|�r

(e∨ − p∨ · k) dx, M∨(v) = lim
r→∞m∨(v, r)

and note the equations

∂vm
∨ = −

∫
|x|=r

p∨ · k dSr(x), ∂vm
∨ − ∂rm

∨ = −
∫
|x|=r

e∨ dSr(x), (2.24)

m∨(v, r) = m∧(v, r) −
∫ v+2r

v

∫
|x|=r

p∧ · k(v′, x) dSr(x) dv′. (2.25)

By (2.24)–(2.25) and the same argument as in the proof of Lemma 5 we obtain

Lemma 11 For all v1 � v2,

M∨(v2) � M∨(v1).
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Moreover

(i) M∨(v2) = M∨(v1) iff lim
r→∞

∫ v2

v1

∫
|x|=r

p∨ · k dSr(x) dv = 0;

(ii) M∨(v) = M∧(v) iff lim
r→∞

∫ v+2r

v

∫
|x|=r

p∧ · k dSr(x) dv′ = 0.

The remarks on N∨ following the proof of Lemma 5 apply to M∨ as well. In
particular, the difference M∨(v1) − M∨(v2), when it does not vanish, measures
the energy dissipated by the system to future null infinity in the interval [v1, v2] of
the advanced time. By (ii) of Lemma 11, this is the sum of two contributions: an
energy lost in form of outgoing radiation by the electromagnetic field (as given in
Definition 2) and a kinetic energy carried by the particles, which is given by the
limit

lim
r→∞

∫ v2

v1

∫
|x|=r

p · k f∧(v + 2r, x, p) dp dSr(x) dv.

As in the proof of Lemma 6, the latter term vanishes if the momentum support of
f∧ is uniformly bounded in v ∈ R, as in this case no particles can move to future
null infinity. Given this interpretation, it is natural to identify M∨ as the analogue
of the Bondi mass in General Relativity, see [2].

3 Spherically symmetric solutions

In spherical symmetry we have ∇×E∧ = ∇×B∧ = 0 and so, by the first equation
in (2.14), ∇ · B∧ = 0. Under the additional boundary condition limr→∞ B∧ = 0,
this implies that the magnetic field vanishes identically. Moreover, by the second
equation in (2.14),

E∧(v, x) =
k

r2

∫ r

0

(ρ∧ + j∧ · k)(v, r′)r′2 dr′

=
1
4π

∫
(x − y)
|x − y|3 (ρ∧ + j∧ · k)(v, y) dy, (3.1)

the second equality being valid in spherical symmetry. By abuse of notation we
use the same symbol to denote a spherically symmetric function in spherical and
Cartesian coordinates. The Vlasov equation reduces to

∂vf∧ +
p

p0
· ∇xf∧ +

√
1 + |p|2
p0

E∧ · ∇pf∧ = 0. (3.2)

In spherical symmetry the particle density is invariant under proper rotations in
phase-space. This allows one to write f∧ = f∧(v, r, w, q), where w = (p · k) ∈ R

and q = |x ∧ p|2 � 0, see [15]. However the Vlasov equation is more conveniently
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studied in the coordinates (x, p). Note also the conservation of angular momentum:
along characteristics,

d

ds
|x × p|2 = 0. (3.3)

In the spherically symmetric case we have the following global existence theorem.

Theorem 1 Let 0 � f in∧ ∈ C1
c (R3 × R

3) be spherically symmetric and satisfy

F = inf{|x × p|2 : (x, p) ∈ suppf in
∧ } > 0; (3.4)

there exists a unique, spherically symmetric f∧ ∈ C1([0,∞[ × R
3 × R

3) solution
of (3.1)–(3.2) such that f∧(0, x, p) = f in∧ (x, p). Moreover, there exists a constant
C > 0, depending only on bounds on the initial datum, such that

P∧(v) � C. (3.5)

Before giving the proof of Theorem 1, let us observe the following

Corollary 1 For the solution of Theorem 1,

N∨(v) = N(v) = N∧(v) = N∧(0),

M∨(v) = M(v) = M∧(v) = M∧(0).

Proof. The equality of the mass functions follows from Lemma 6. Since spherically
symmetric solutions are isolated from incoming radiation, then M∧(v) is constant
by Lemma 7. Setting Bout

∧ = 0 and letting r → ∞ in (2.23), we have M(v) =
M∧(v). Hence it remains to show that M∨(v) = M∧(v), for all v � 0. For this
purpose we use (2.25) with B∧ = 0, that is

m∨(v, r) = m∧(v, r) −
∫ v+2r

v

∫
|x|=r

∫
|p|�C

p · k f∧(v′, x, p) dp dSr(x) dv′;

as in the proof of Lemma 6, the integral in the right-hand side of this identity
vanishes for r large enough and letting r → ∞ concludes the proof.

The proof of Theorem 1 is formally identical to the proof of global existence
for the Cauchy problem with data at time t = 0 given in [13, Theorem II] (see
[15] for the case of two different species of particle). We shall sketch it for the
sake of completeness, restricting ourselves to derive the main estimates which lead
to the proof. Note however that the assumption (3.4) is not made in [13]. Here
the condition (3.4) is used to ensure that the characteristics are C1 in all the
parameters. In fact, due to the presence of the unit vector k, the coefficients of the
Vlasov equation are in general discontinuous at x = 0. But thanks to (3.4) and the
conservation of angular momentum, the solution is supported away from the axis
|x| = 0 and so it can be defined in a classical sense in terms of the characteristics.
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The assumption (3.4) can probably be removed by passing to a weaker solution
concept, but we shall not pursue this here.

For the proof of Theorem 1, we denote by C any positive constant which
depends only on the initial datum. Moreover we define

Rmin(v) = inf{|x| : f∧(s, x, p) �= 0, 0 � s � v, p ∈ R
3}.

By the conservation of angular momentum and (3.4),

Rmin(v) �
√

F

P∧(v)
. (3.6)

Hence a bound on the momentum support of f∧ implies that the particle density
vanishes in a neighbourhood of the axis |x| = 0. Now observe that, by (2.6) for
q = 1,

|E∧(t, x)| � N∧
r2

.

Moreover, the bound (ρ∧ + j∧ · k) � CP∧(v)3, Lemma 9 and Hölder’s inequality
imply

|E∧(t, x)| � 1
r2

(∫ r

0

(ρ∧ + j∧ · k)4/3r′2
)1/3 (∫ r

0

(ρ∧ + j∧ · k)5/6r′2
)2/3

� C

r2
‖ρ∧ + j∧ · k‖4/9

L4/3P∧(v)5/3r2 � CP∧(v)5/3.

Next define

G(v, r) = −
∫ ∞

r

min
(

N∧
λ2

, CP∧(v)5/3

)
dλ, v, r � 0.

It follows that G(v, ·) ∈ C1 is increasing and |E∧(v, x)| � ∂rG(v, r), for all v � 0.
Moreover, and since P∧(·) is non-decreasing, ∂rG(v1, r) � ∂rG(v2, r), for v1 � v2.
Splitting the integral at R =

√
N∧(CP∧(v)5/3)−1/2 one obtains

G(v, 0) = −2
√

N∧
(
CP∧(v)5/3

)1/2

and therefore, for all r1, r2 � 0,

|G(v, r1) − G(v, r2)| � |G(v, 0)| � CP∧(v)5/6.

Next we claim that

(�) there exists at most one v0 ∈ [0,∞[ such that d
ds |X(s)| = 0 and if such v0 exists

then |X(s)| has an absolute minimum at s = v0.
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This follows because, along characteristics,

d

ds
|X(s)| =

p · k
p0

,
d

ds
(p · k) =

1
p0

(√
1 + |p|2 E∧ · k +

|p × k|2
|x|

)
> 0.

Since p · k is increasing and d
ds |X(s)| > 0 (resp. < 0) for p · k > 0 (resp. < 0), the

claim (�) is proved. Now observe that, along characteristics,

d

ds

√
1 + p2 =

p · k
p0

|E∧|.

Hence, for all v � 0 and s ∈ [0, v] we have, denoting I+ = {τ ∈ [0, s] : d
dτ |X(τ)|

� 0}, √
1 + P (s)2 −

√
1 + P (0)2 =

∫ s

0

|E∧ (τ, X(τ)) |P (τ) · K(τ)
P0(τ)

dτ

=
∫ s

0

|E∧ (τ, X(τ)) | d

dτ
|X(τ)| dτ

�
∫
I+

∂rG(τ, |X(τ)|) d

dτ
|X(τ)| dτ

�
∫
I+

∂rG(s, |X(τ)|) d

dτ
|X(τ)| dτ

=
∫
I+

d

dτ
[G(s, |X(τ)|)] dτ.

By virtue of (�), either I+ = [s1, s], for some 0 < s1 < s, or I+ = [0, s], or I+ is
empty. In the first case we obtain√

1 + P (s)2 �
√

1 + P (0)2 + G(s, |X(s)|) − G(s, |X(s1)|)
�

√
1 + P (0)2 + CP∧(v)5/6

and since this is true for all 0 � s � v, then P∧(v) � C(1 + P∧(v)5/6), which
implies P∧(v) � C. The other two cases lead to the same inequality. The bound
on the momentum support of f∧ implies, by (3.6), that the particle density is
supported away from the axis |x| = 0. This allows one to define f∧ in terms of the
characteristics and derive L∞ estimates for its derivatives. A standard iteration
scheme completes the proof of the theorem.
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