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An Existence Proof for the Gravitating BPS Monopole*

Todd A. Oliynyk

Abstract. We prove the existence of the gravitating BPS monopole in Einstein-
Yang-Mills-Higgs (EYMH) theory. Existence is established using a Newtonian per-
turbation argument which shows that a Yang-Mills-Higgs BPS monopole solution
can be be continued analytically in powers of 1/c2 to an EYMH solution.

1 Introduction

In this paper we rigorously prove the existence of the gravitating Bogomol'nyi-
Prasad-Sommerfield (BPS) monopole which has been constructed numerically in
[4]. We prove existence by using a Newtonian perturbation argument to show
that the flat space Yang-Mills-Higgs (YMH) BPS monopole solution [14] can be
continued analytically to a Einstein-Yang-Mills-Higgs (EYMH) solution which we
refer to as the gravitating BPS monopole. The Newtonian perturbation argument
in the form that is employed in this paper was developed by Lottermoser in [13] and
subsequently used by Heilig to establish the existence of slowly rotating stars [9].
For an elegant alternate presentation of the Newtonian perturbation formalism
using different but equivalent variables see [3].

The results of Heilig and of this paper show that the Newtonian perturbation
method is a powerful method for obtaining existence theorems in general relativity
for static or stationary matter models. In addition to establishing existence, the
method also provides an analytic deformation from a Newtonian solution to its
general relativistic counterpart. The deformation parameter is 1/¢? where c is the
speed of light. So a Taylor expansion in 1/c? can be considered as a converging
post-Newtonian expansion. In this way, the Newtonian perturbation argument can
be thought of as the inverse of the Newtonian limit where Newtonian solutions are
obtained from general relativistic ones via the limit 1/¢? — 0. An attractive feature
of the method is that it produces solutions to the Einstein field equations where
the matter fields are uniformly close to their corresponding Newtonian solutions.
This means that the properties of the Newtonian solution pass directly to the
corresponding relativistic solution.

In [11] it is shown how to formulate the Newtonian limit of the EYMH equa-
tions. The limiting equations have the important property that the Newtonian
potential and the YMH fields decouple. Moreover, the static equations coincide
with the static YMH equations on Minkowski space. Since the BPS monopole is a
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static solution to the YMH equations on Minkowski space, it can be interpreted as
a solution of the Newtonian YMH equations. Although we use a different formal-
ism from [11], the results are the same. We find that in the limit as 1/¢* — 0, the
YMH variables decouple from the Newtonian potential and also they satisfy the
static YMH equations. This allows us to use the BPS monopole solution as the
starting point for the perturbation argument. Also, the fact that the Newtonian
potential decouples from the YMH variables in the limit 1/c¢? — 0 helps to make
the perturbation argument relatively simple.

The paper is organized as follows: in Section 2 we set up the field equations
in a form suitable to use the Newtonian perturbation argument while in Section 3
we review the theory of weighted Sobolev spaces which will be essential to our
existence proof. The Banach spaces for our field variables (i.e., the Higgs field,
gauge potential, and metric density) are set up in Section 4 and then in Section 6
the field equations are shown to be analytic on those spaces. Sections 7-8 contain
the Newtonian perturbation argument. In these sections it is shown that BPS
monopole solution can be continued analytically to a solution of the full EYMH
equations.

2 EYMH equations

For indexing of tensors and related quantities Greek indices, «, 8, etc., will always
run from 0 to 4 while Roman indices, i, j, k etc., will range from 1 to 3. Partial
derivatives will be denoted both by d,u and u , while covariant derivatives will
be denoted by V.

Let ¢ denote the Minkowski metric on R*. Fix a global coordinate system
o

(20, 21, 22, 23) so that

1
Jop = diag(=A"1,1,1,1) X\:= = (2.1)

where c is the speed of light. Define g by (g*?) := (gap)~" which gives
o o o

g°? = diag(—X,1,1,1). (2.2)

o

Define the Minkowski metric density

1«
g’ = |g|2g™" where |[g] :=|det(gap)|- (2:3)

o o o o

Assume that g,g is another Lorentzian metric defined on R*. Let (g*F) =
(gap)~! and introduce the density

« 1 «
g°? = |g|2g®" where |g| := |det(gap)] - (2.4)
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Following Lottermoser [13], we form the tensor density
1
U = of _ gof 2.5
@ -9 (2.5)
which will be taken as our primary gravitational variable. Observe that the metric
g*? can be recovered from {4*° by

1

\/ﬁg

where g% = g*® + 4A24*F and |g| = |det(g™?)].

g°f = ap (2.6)

o
The Einstein equations can be written in terms of the density (2.5) as [13],

ArGP|T*? = AP + B*F + C*F + DP | (2.7)
where

g = Vg, (2.8)

o p
Bap = ‘/Xgaﬁ where (gaa) = (g“ﬁ ) (2.9)
g7 = Vg = g% + 4N2y*P, (2.10)
Gos = VAgap where (gag) = (8*)7", (2.11)
0 := Adet(g*?), (2.12)
AP =2 (38u08qp — Bpubow) (877877 — 59°75"7) W 07, (2.13)
B = 4Xguo (2@7@115)%11”% — 1goPURp U7, — grPsen s(Pe ) (2.14)
CP = 4N (U ume |, — o uie ) (2.15)
DB .— gwua,@’uy + ga,@um/’ _ 211#( Wgﬁ)l’ (2.16)
)

and T is the stress-energy tensor. As discussed in [9], any solution (\, 4®?, T8
of (2.7) for A > 0 is a solution of Einstein’s equations displayed in units Where
¢ = 1/v/\. Following [9], we choose harmonic coordinates

VaVe%? =0, or equivalently 4’ 5=
which allows us to write the full Einstein field equations as
U 5 = (2.17)
4nGo|TP = EO"B, (2.18)
where

B0 = g7 L, 4N (00 4 0040, — 200 07

+ A8 4 BB 4 P (2.19)
The equations (2.18) will be called the reduced field equations.
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It is important to recognize that alone the reduced field equations (2.18) are
not equivalent to the Einstein field equations (2.7). However, it is shown in [9] §6
that if V5T = 0 and (2.18) can be solved and the stress-energy tensor 7" sat-
isfies certain conditions then the harmonic condition (2.17) will be automatically
satisfied. In this case, a solution to (2.18) will actually be a solution to the full
Einstein equation (2.7).

We will let A = A,dz® denote the SU(2)-gauge potential and ® the Higgs
field. The SU(2) Yang-Mills-Higgs equations are

9" D F 5 = [®, D5 9], (2:20)
g"*DADA® =0, (2.21)

where
DA() = Va(-) + [Aa, ] (2.22)

is the gauge covariant derivative on gauge-scalars and
Flly = 0aA5 — 0sAa + [Aa, Ag] (2.23)
is the gauge field. For later use we define

lo)é(') = aoz(') + [Aom ] (2'24)

which is the gauge covariant derivative on Minkowski space.
Multiplying (2.20) and (2.21) by /A|g| we find that

8 (Fupw = D Fus — Ty, Py + [Ay, Fagl) = V[0, Dg®] =0, (2.25)
§oo (aaD5<I> ~T" DAD + [A,, Dﬁ@]) =0, (2.26)
where the Christoffel I'G symbols are given by
Gy = 87 (286087 — 87 80r )Y 1+ 20007 005U ) — 2803477 ) - (2:27)
We note that since @ is a g-valued scalar,
Di® = 0,® + [Aq, P] (2.28)

does not involve the metric.
The stress-energy tensor can be written as

T°F = (g*g™ (D}®|D;}®) — 39 g (D1 ®| D} @) +
(919" g (P | Fit) — 291 g7 g*P(FA|F2L)) (2.29)

where (-|-) is an Ad-invariant positive definite inner-product on su(2). Using the
YMH equations (2.20)—(2.21), it is straightforward to verify that any YMH solution
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satisfies
VT =0 (2.30)
automatically irrespective of the metric. Consequently, it will be enough to solve
the reduced field equations (2.18) and the YMH equations (2.20)-(2.21) to obtain
a solution to the full EYMH field equations.
Let
T .= 4xGo|T*P (2.31)

so that
TP = AxG (gaﬂg5V<D,f¢>|ch1>> — 3g*gm(D1®|D}®)) +
4G

Vil

3 Weighted Sobolev Spaces

(@rg g (Fib|Fh) — Lgmvgomgo (FiL|FA)) (2.32)

In this section we introduce two different types of weighted Sobolev spaces and
prove a number of results that will be essential to our existence proof. The following
subsets of R will be needed: Br(z) the open ball of radius R centered at © € R™,
Qr(z) the open n-cube centered at x with vertices defined by the boundary of
Br(z), and the exterior domain Er(x) := R™\ Br(x). We will also repeatedly use
the cutting function x g € C§°(R™) which is defined as follows: let x € C'*°[0, c0)
be any function such that

Xloa) =1, suppx C[0,2), and 0<yx<1. (3.1)
Then for R > 0, xg is given by

xr(z) := x(|z[/R). (3.2)

3.1 Radially weighted Sobolev Spaces

Let V denote a finite dimensional vector space with norm | - |.

Definition 3.1 The radially weighted Lebesgue space LE(R™, V), 1 < p < oo, with
weight § € R is the set of all measurable maps from R™ to V in LY (R™, V) such
that the norm

1

p
/ luPo= P d" g if p< oo
lullps = n

ess supgn (0 %|ul) if p=o00,

is finite. Here o(x) = \/|z[?+1. If V = R then we write LY(R™) instead of
L2(R™, V).
5 )
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Definition 3.2 The radially weighted Sobolev space ng’p (R™, V), 1 < p < oo,
k € Ng, with weight 6 € R is the set

WEP(R™ V) = {u e LE(R", V) |du e LD

5 (R™, V) for all I:|I| <k}

with norm

llliep.s = D 10 ullps—ir

1<k

where I = (I, Iy, ..., I,,) is a multi-index and 8" := &' 9% ... 9. If V =R then
we will write ng’p(R") instead of W’g’p(R”, V).

We note that the set Cg°(R™, V') of smooth maps from R" to V' with compact
support is dense in ng’p (R™, V). As above, if V' = R then we write C;°(R") instead
of Cg°(R™, V)

Two easy consequences of these definitions are that differentiation

d;: WEP(R™ V) — WEZIP(R™, V) : u s dju (3.3)
is a continuous map and that
WEP(R™, V) C WEP(R™, V) for 0y < 41 (3.4)
As with the Sobolev spaces, we can define weighted versions of the
CE(R™, V) = C*R", V)N WkE>(R" V)
and C*<(R™, V) spaces. For a map u € C°(R",V) and 6 € R, a > 0, let

-0
lulleg := sup fo(z)" u(@)|
TER?

e ju(z) — uly)
_ u(z) —uly
lullgge = llullcg + sup (77 (x) sup  TEE—E,
s ¥ zeRn 4z—y|<o(z) |$ - y|a
Using these two norms we define the norms || - [|cx and || - Hcg“*“ in the usual way:
I
HUHCJ; = Z 10 U||cg7m
1<k
and
o 1
lullgr = 3 19 ullne
|I|<K
So then
CER™,V) = {u € C*®™, V)| Jull s < o }
and

CrYR™, V) :={uec CFR", V)| | e < 00}
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Our main references for the radially weighted Sobolev spaces will be [1] and
[5]. Contained in these articles are a number useful theorems including weighted
versions of the Sobolev embedding theorems, the Rellich-Kondrachov theorem,
and interior estimates for elliptic operators. Also contained in these papers in an
analysis of the Laplace operator and its mapping properties between the radially
weighted spaces. We will frequently require results from these papers and will refer
the reader to the appropriate theorems. A result we would like to mention is the
following improvement of Lemma 2.5 of [5].

Lemma 3.3 If there exists a multiplication Vi x Vo — V3 (u,v) — u - v then for
1 < p < o the corresponding multiplication

WhP(R™, Vi) x Wi2P(R", Va) — WP (R™, Va) © (u,0) = u-v
is bilinear and continuous if k1,ke > k3, ks < k1 + ka —n/p, and 61 + 52 < 03.

Proof. This can be proved using the weighted Sobolev and Hélder inequalities
from Theorem 1.2 of [1] in exactly the same fashion as for the regular unweighted
Sobolev spaces. Note that Theorem 1.2 of [1] is missing the weighted version of the
Sobolev inequality for kp = n. The same arguments in Theorem 1.2 can be used to
establish this case which reads: if u € W5? and n = kp, then |[ullgs < Cllullpr.s
for p < ¢ < . |

We also will need the following variation of Proposition 1.6 of [1].

Proposition 3.4 Suppose 1 < p < oo and § € R and f(x) is a continuous function
that satisfies f(x) = O(|x|=2) as |x| — oo. Then there exists a constant C' such

that if u € Lg’”’ and Au + fu € ng then u € Wéz’p and

[ull2p.s < C(lAu+ fullop.s—2 + [lullop.s) -
Proof. This proof follows from the local elliptic estimates and scaling in exactly
the same fashion as the proof of Proposition 1.6 in [1]. O

3.2 Exponentially weighted Sobolev Spaces

Definition 3.5 The exponentially weighted Lebesgue space L], (R", V), 1 < p < oo,

with weight j1 € R is the set of all measurable maps from R™ to V in LE (R™,V)

loc
such that the norm

(/ |u(a:)|pe_“p'”d"a:> ’ if p< oo
lllp,. = n

ess supga (e 7lu(z)])  ifp = oo,

is finite. If V =R then we write L}, (R™) instead of LL(R™, V).
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Definition 3.6 The exponentially weighted Sobolev space W/’j’p (R", V), 1 < p
< 00, k € Ny, with weight pu € R is the set
k, n . n I n .
WiP(R", V) = {ue LL(R",V)|0'ueLh(R",V) forall I:]I| <k}

with norm

lullkp,u = Z |||8Iu|||p7u-

I1]<k
If V =R then we will write W?’p(R") instead of Wl’j’p(R”, V).
We note that the C3°(R™, V) is dense in W}?”(R",V). A straightforward
consequence of the above definitions is that differentiation

dr WEP(R™, V) = WE=LP(R™, V) : u— dju (3.5)

is a continuous map. Also note that Wg’p (R™, V) = WFP(R", V) while it follows
from [1] Theorem 1.2 (i) that ng’p(R",V) c WHP(R™, V) for § < —n/p. Conse-
quently we have the inclusion

WEP(R™ V) c WEP(R™, V) for § < —n/p. (3.6)

It also follows directly from Holders inequality and the definitions of the radially
and exponentially weighted spaces that

WEP(R™, V) € WyP(R", V) for all § € R provided p < 0. (3.7)

As with the radially weighted case, we can also define the corresponding ex-
ponential weighted C%(R", V) and C*<(R", V) spaces. For a map u € C°(R3,V)
and d € R, a > 0, let

Jullc == sup |e”*"lu(z)|
L rERnP
and
u(z) —u
fullgge = [ulley + sup (7t sup D=V,
" ! TER™ Jz—y|<1 |Z‘ - y|
Using these two norms we define the norms || - ”C}j and || - ||Cﬁ,a by
||U|cjf = Z ||31U||cg
1<k
and
I
ullgge = 3 10 ulgee
[I]<k
So then
Ci(R",V) = {ue C*R,V)|||ulley < oo}
and

Cho®, V) i= {u € CHR, V) full g < o0}
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To prove weighted versions of the Sobolev inequalities from local inequalities,
a covering argument is needed. Let {4 }qczn be a sequence of points such that

R" = | Qnr(za) (3.8)

a€zZm™

and Qr(z,) NQr(ze ) = 0 for a # a’. Then there exists a number N independent
of a such that the set

{d' € 2" | B2r(xa) N Qr(zar) # 0} (3.9)

has at most IV elements. The key property we need is that for any ¢ € R there
exists a constant C' = C(o, R) independent of z € R™ such that

C~teolrl < eolvl < Ceclel Yy € Br(x). (3.10)

From this inequality it follows that there exists a constant C independent of x
such that

C_le_ulxlnu:c”k,p;BR(O) < Nullkp,psBr) < Ce—mm‘Huﬁf”k,p;BR(O) (3.11)

where
ug(y) = u(z + ). (3.12)

Note that the constant only depends on u, p, k and R. Equations (3.8)—(3.12) will
allow us to turn local estimates into global ones. The next theorem generalizes
the Holder and Sobolev inequalities to the exponentially weighted spaces and the
proof closely follows that of Theorem 1.2 of [1].

Theorem 3.7
(1) If1<p<qg<o0, ua < andu € LY, then

H2’

lllp e < Cllwll

q P
and hence Em - Lul.

(ii)) If1 <p,q,r < o0 lzé—kl ue Ld  veLlP

’or p’ 5% ey and p3 = p1 + po then

luvllrs < lullgullvllp,us -
(iii) For any € > 0, there is a C(€) such that for all u € Wﬁ’p, 1<p<oo,
lullp < €llullzpn+ Cle)ullopu-
(iv) Ifu € W/’j’p and n — kp > 0 then
lullg.. < Cllulls.p.p

forp < q <np/(n—kp).
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(v) Ifu € W/’j’p and n — kp =0 then
lwlla,e < Cllull,p,p
forp < g < oo.
(vi) Ifu € W/’f’p and n — kp < 0 then u € C), and

]

¢o < Cllullip -

Moreover |u(z)| = o(e*l*l) as x| — co.

(vii) Ifue WP, 0 <a<k—n/p<1, thenu € Cy™ and

lolege < Cllullp.

Proof. Parts (i) and (ii) follow from the definition and Holder’s inequality. The
proofs of (iii)—(vii) follow from the interpolation and Sobolev inequalities on By (0)
together with equations (3.8)—(3.12). We will only prove (iv) and leave the remain-
der to the reader. So assume that n —pk > 0, p < ¢ < np/(n—kp), and u € W[j’p.
Then clearly u, € WF? (B2(0)) and hence applying the standard Sobolev inequal-
ity yields

p,k;Ba(w) -

The constant C' above only depends on p, k, and the ball B2(0). Using (3.11) we
get

[uzllg:32(0) < Clluallp,k;pa0) = Cllul

|||u|”q,u;Bz(x) < Cmump,k,u;Bz(x) (3'13)

for a constant C' independent of u and z. So

1/q
lellg,. < (Z |||u”|g,u;B2(ra)>

a€Zm™

1/q
=C <Z |||u"|;1),k,u;32(;ca)> by (3.13)

a€zZmn

1/p
<C (Z |||U|||§7k,u;32($a)> (3,14)

a€zZm™

where in deriving the last inequality we have used (3_; b;?)l/ < (X b;)l/ ¢ for
bj > 0 and t < s. Using the finite intersection property (3.9), there exists a
constant K independent of u such that

DN [ P ¢ [1 (3.15)
a€Zm™
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To see this it is enough to show it for the norm || - || .. From the finite intersection
property we know that there exists a set of points {z4, = Za,Zas,---,Tay | sSuch
that

N
By(za) C EU | Qi(wa,)
j=1

where F is a set of measure zero. So

|||u|||g7“;32(xa’) :/B( lu(z)|Pe” uplmldnx<z/ z)[Pe~ wplz| gn .,
2 wa

1($a

and hence
SNl pyen S D S / o)fPereld
aEZ”L an7Lj 1 l(aja )
<N Z / z)|PemPlelgny = N [ |u(z)[Pe "PI*ld" e = Njullp,,.
a€zZm™ =

Note in getting the second to last equality we use the fact that the set

( U Q1(za))

a€Zm™

has measure zero. Equation (3.15) now follows immediately. Combining (3.14) and
(3.15) proves (iii). O

The first of the following two lemmas is the exponentially weighted version
of the Rellich-Kondrachov theorem and both lemmas can be proved by adapting
the proof of Lemma 2.1 in [5]. We only prove the second and leave the first to the
reader.

Lemma 3.8 For ky > ko, 1 < po and 1 < p < oo the inclusion Wﬁ} C Wl’jj 18
compact.

Lemma 3.9 Suppose v € Wk (R™) and the function

R) := max sup |0%v
) = s (970(e)

satisfies imp_,oo E(R) = 0. Then for k1 > ko and 1 < p < co the map
k ka,p .
VVM1 —>WM“’ DU U

is compact.
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Proof. Let {un} € WiP be a sequence such that [Ju,[|r, p.. < 1. Then there exists
a subsequence still denoted {u,} such that u, — u weakly in Wl’jl’p for some
u € WP with JJullg, p, < 1. From Theorem 3.7 (ii) we have that [[ouls, p,. <

Cllullx, ,p,p for some C that depends only on &(R). Therefore the map
. ki, k1,p.
Ly: WP — WitPs u— vu (3.16)

is continuous and hence weakly continuous. So vu, — vu weakly in Wl’jl’p. By
(3.10) there exist a constant Cr depending only on , p and |[Xrllc#i (B (0)) Such
that

IVl 232 (0) < Crllvtinllis (3.17)

But then
X RV ||ky p:Bar(0) < CrILollop

by (3.16), (3.17), and |Jun|lk, p,n < 1, where ||L,|/op denotes the operator norm
of L,. The compactness of the embedding W***?(Byz(0)) — W*2P(Byr(0)) (k >
k2) shows that there exist a subsequence {xgvu,,} such that

XRUUn, — fr  strongly in W**?(Byz(0)) (3.18)
for some fr in W*2'P(Byz(0)). Since xz = 1 on Br(0) we must have that
fr=vu on Br(0). (3.19)

Setting cp = sup,¢jo, g € 7", we get

|||1}’U, — VU, zz,p,u < CRHUU = Vlnp, 22710;312(0) + Kf(R)pmu — Un,
Fo (o) T KER)u = un,

ko piBr(0) T 2 KE(R)P

p
k2,p,u; ER

< crljou— v,

< cgllvu — vy,

where K is a constant independent of R and in getting the last inequality we used
lwnllis,p, s 1wl ,p,p < 1. For fixed € > 0 we can choose R large enough so that
P

PKERY < 5.

With R fixed, we get by (3.18) and (3.19) that there exists an M > 0 such that
P e’ ;
cr|lvu — vuni”kz,p;BR(O) < 5 fori > M.

Therefore ||vu — vy, ||k, ,p,p < € for i > M and hence vu,, converges to vu in
W/’j“’. This proves that the map L, (u) = wv is compact. O

The exponentially weighted Sobolev and Hoélder inequalities can also be used
to prove a multiplication lemma as in the radially weighted case (see Lemma 3.3).
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Lemma 3.10 If there exists a multiplication Vi x Vo — V3 (u,v) — u - v then for
1 < p < o the corresponding multiplication

WELP(R™, V1) x WE2P(R™, V3) — WEP(R™, V3) © (u,v) — u-v
is bilinear and continuous if k1, ke > ks, ks < k1 + ka —n/p, and p1 + po < ps.

As with the local Sobolev inequalities, local estimates for elliptic operators
can be extended to global ones on the exponentially weighted spaces.

Proposition 3.11 Let 1 < p < oo, and P be the elliptic operator defined by
Pu= aijafju + b (2)0u + c(x)u

where b®,c € L>(R™) and there exists constants A > 0, 0 < o < 1 such that a” €
C’g’a(R”) and N€)? < a¥(2)&:&; < A7E|? for all for all x,& € R™. Then P defines
a continuous map from Wi’p — Wg’p. Moreover, if u € Wg’p and Pu € Wg’p then
u € WP and there exists a constant C = C(n,p, ), Haincg,a, 164|005 €]l o) sUCH
that

|||U|||27p7u < C(|||Pu|||07p7u + |||U|||0,p,u) .

Proof. If u € Wg’p and Pu € Wg’p , then elliptic regularity shows that u € leof :
The proof then follows from the local elliptic estimates (see [8], Theorem 9.11) and
the covering argument. O

In the analysis of elliptic operators on the radially weighted spaces the Lapla-
cian A played a fundamental role. The corresponding fundamental elliptic operator
on the exponentially weighted spaces is

—A+ k* where k > 0 is a constant. (3.20)

With our applications in mind, we will restrict ourselves to n = 3 for the remainder
of this section. The operator (3.20) has a Green’s function G (x, y) which for n =3
is

1 e rlz—yl

Gr(r,y) = Gu(r —y) (3.21)

)

and is known as the Yukawa potential. It satisfies the distributional identity
(=A, + £2)Gr(z,y) = 5(x —y) in D'(R?). (3.22)

The invertibility of the operator (3.20) can be established from an estimate for the
Green’s function combined with the weighted elliptic estimates in a similar fashion
as for the Laplacian [1].

Theorem 3.12 If k — |u] > 0, 1 < p < 00, and s is a non-negative integer then the

operator
—A+ KT WIESE WP (3.23)
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is an isomorphism with the inverse given by

e—rlo—y]
(—A + %) tu(z) = ﬁ /RS Wu(y)dy (3.24)

Proof. Tt suffices to prove the theorem for s = 0. Let G, be the operator defined
by

Gu(u)(z) = | Gz —yluly)dy. (3.25)
R
Lemma 3.13 Ifp>1, k — [u[ > 0 and u € L}, then

IGs()llp.n < Cllullp,.
for a constant C' independent of u.

Proof. For all u € R and x,y € R3 it holds that u|y| — u|z| < |p||z —y| and hence

etlyl—nlzl < elullz—yl

Using this and the definition of the Green’s function (3.21), we see that for two
non-negative functions u, v

0 < u(@)e G (x — y)e!u(y) < u(@)Gr (@ —y)o(y).
Integrating gives
wlz)e =l z — 1)etvly x
[ @16, — yyesutuasdy
< /R3 /}R3 w(x)Gp_ (2 —y)v(y)dady . (3.26)

Noting that G,,_, € L'(R?) for k—|u| > 0, Young’s inequality (see [12], Theorem
4.2) applied to (3.26) yields

L, [ w16, (e = pyertlutudedy < Clully|Gopa o], (27

where % + % =1, p > 1. Setting

u(x) = </}R3 e el G (z — y)e"lylv(y)dy)p/pl

in (3.27) yields

(L

P 1/p
/ e‘”'”'Gn(x—y)e”v(y)dy‘ dw) < OIGa—jplhillofl, . (3.28)
R3
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Finally, setting v(y) = e #¥lw(y) in (3.28) shows that

IG(w)llp < CIG il llwllpse -

So far our above choices amount to assuming that w > 0. However, it is clear that
the above inequality extends to all w € LF. O

The distributional identity (3.22) shows that G, (Au — k?u) = —u for all
u € C3°(R?), and hence

lullo.pe < CllAu = K2ullop.,.  for all w € Wi

by Lemma 3.13 and the density of C§°(R?) in W;?. Applying Proposition 3.11 to
the above inequality then yields

lullz.k,p < CllAu — /i2u|||07p7“ for all u € Wg’p. (3.29)

Since —A+x%: W2P — WP is bounded, it follows easily from (3.29) that —A+x?
has closed range and a trivial kernel. The distributional identity (3.22) implies that
(=A + £2)G(u) = u for all u € CP(R3). But by Lemma 2.1 G (u) € WP and
hence G (u) € W2P by Proposition 3.11. Therefore —A + £ is surjective. O

4 Static spherically symmetric fields

We assume that all the fields are static and that Jy is a timelike hypersurface
orthogonal killing vector field for the metric. Therefore

DU =0, 9pAa =0, 3@ =0 and W =y% =90.

Since 4P is symmetric, i.e., 47 = 4B, we define the following subspace of the
4 by 4 matrices

S::{X:(Xaﬁ)EM4x4|Xa5=XBO‘ andXOj:O},

Then letting 4 = (U*?), U takes values in S.

In addition to being static, we will also assume that our fields are spheri-
cally symmetric. To define what we mean by spherical symmetry we first need to
specify an action of SO(3) on spacetime R*. We want SO(3) to act on the hy-
persurfaces orthogonal to the timelike Killing vector field dy. So using the matrix
representation of SO(3) given by

SO(3) = {a € Mzy3|a’ =a™" and det(a) =1}
we define a SO(3) action on spacetime by

p: SOB3) xR = R : (a, (2%, 7)) — ®4(2°, x) := (2%, ax)
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where we are treating = as a column vector and ax denotes matrix multiplication.
We then get the induced action on functions via pullbacks. Lifting the SO(3)
action on spacetime to the tensor bundle, we get the following action on the static
metric densities

palt)(z) = atl(a'z))a’

(3

This allows us to define the set of static smooth SO(3)-invariant metric densities
by

where

UF = {U e CPR3S) | U= p,ifor alla € SO(3)}.
Completing in the ng’p norm yields
USP = U C WEP(R3S). (4.1)
Proposition 4.1 For —1 < 0 < 0, 1 < p < o0 and k € Ny the Laplacian A:
M§+2’p — L{f’_Q is an isomorphism.

Proof. From Proposition 2.2 of [1] we have that A: ng’p(RB, S) — ng:g’p(Rg, S)
is an isomorphism for 1 < p < oo, —1 < 0 < 0. A straightforward calculation
shows that A(US°) C UFF. Similarly, using the formula

(A_lﬂaﬁ)(x) _ _1/ ﬂaﬁ(y)dgy

s

e |7 —
it is not difficult to verify that if $ € U5 then p,(A~14U) = A=l for alla € SO(3).
But Ug° is dense in L{f’p and hence the proof follows. O

Let 680 (R?) denote the set of smooth SO(3)-invariant functions with compact
support, i.e.,

CPR?) :={p e CPR?) |¢=p¢forallaec SO(3)}.

In other words, 68" (R3) is the set of radial functions on R3. We then define the
space of static spherically symmetric Higgs fields with compact support by

HE = {d(@)alr; |6 € CF (R®) } (4.2)

101 1 (0 —i C1(1 0
=5\t 0)°™ 2 o) T \0 —1)°

is a basis for su(2). We will choose the normalization of the Ad-invariant inner-
product (-|-) so that

where

(Til75) = bij -
Completing HG® in the ng’p(R3,5u(2)) norm gives
HEP .= THZ® € WEP(R3, su(2)).
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Proposition 4.2 Suppose f € C°°([0,00)) satisfies 1 — f(r) = O(r?) as r — 0,
fr)y = 0@ as r — oo for some n > 0, and f > 0. Then for 1 < p < oo,
—1<d<0, and k € Ny the operator

2

—z (1= f([z]))®(z)

M0 = Mty + @) = AR() +

is an isomorphism.

Proof. Without loss of generality we can assume that £k = 0. We first show that
the operator
P = A+2z|72(1 - f(|z]) (4.3)

has a finite dimensional kernel and closed range on the space of static spherically
symmetric Higgs fields.

Lemma 4.3 For —1 < § <0, 1 < p < oo the operator P defines a continuous map
from Hg’p — Hgfz that has closed range and a finite dimensional kernel.

Proof. Directly from the definition of the weighted spaces it is easy to see that P
defines a continuous map from Wg’p(R3,su(2)) to ng (R3,5u(2)). A calculation
shows that P(H{®) C HG® and hence P defines a continuous map from Hg’p —
HYP,.

Suppose ® € Hg°. Then split @ as & = @y + P where o = x2P and
Do = (1 — x2)®. Since ®(x) = ¢(x)z’7; for some ¢ € 68°(R3),

_ Poo ()

||

Do () 2T
where ¢oo(2) := |2(1 — x2(2))d(z) € CF(R?).

Straightforward calculation verifies that for |2 > 0, [®x|? = oo |?, |[0Poo | =
|00 00?4+ 2|2 2| doo |? and |02 P o |? = |02 o0 |? +8|2|> 7|00 oo |? 4+ 6]2| | doo |2. Using
this and supp |¢|, supp |®| C E1(0) it follows that there exists a C' independent of
¢ and @ such that

[Pooll2,p,6 < Cll¢ooll2,p,s - (4.4)
A short calculation shows that
2f (=) ak
Pd = (Adso(x) — I — 4.
(@) = (Aomle) - 2 o) T (45)

Thus if we define
(1= x1/a(@)) f(|])

|2 ’

then P®.o(z) = Qdoo() L7y, since supp [doc| C Eo. S0 |[POoc(2)] = |Qdoo ()]

||

Q::A—2

and hence
[PPosllo,p,5-2 = [[Qdeclo,p,6-2 - (4.6)
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In the terminology of [1], the operator @) is asymptotic to A. Therefore by [1]
Theorem 1.10 we have the estimate

Ipocll2p.s < C(IIQccllop.s—2 + dsllpiBr(o) (4.7)

for some R > 0. Since |[¢oc || p;Br(0) = [|Poo|lp;Br(0), We get the following estimate
from (4.4), (4.6), and (4.7)

”(1)00”241,5 < C(”P(I)OOHOJMPZ + ||q)00||p;BR(0)) : (4~8)

Once we have this scale broken estimate we can proceed as in the proof of Theorem
1.10 of [1] to conclude that P has closed range and a finite dimensional kernel. O

With respect to the pairing (U, ®) = [(¥|®)d3z the operator has a for-
mal adjoint P* = P. Since W3, (R3,su(2))* = WO’fLB(R3,5u(2)) where p/ =

p/(p—1), it follows from Proposition 3.4 and Proposition 1.14 of [1] that ker P* C
Wz’f: s(R3,5u(2)). Therefore by the above lemma

dim cokerP|H2,p: dim kerP|H2,p < 0. (4.9)
S —1-6
Lemma 4.4 For any § <0, 1 <p < oo, ker P|H2,p: {0}.
s

Proof. Suppose ¥ € Hg’p satisfies PU = 0. Then by elliptic regularity (see [8]
Theorem 9.19 or [7] Theorem 3.6), P¥ = 0 implies that ¥ € C°°(R?,su(2)). So
there exists a function 1 (r) € C*°([0, 00)) such that

x-j

V() = (|z]) 7 and P(r)=cr+0(®) asr—0.

|
It follows from the equality |¥(z)| = |¢(Jz|)] and Theorem 1.2 of [1] that ¢(x) =
o(|z|°), 9;(x) = o|z|°~1), and 9;0;¢(z) = o(|z]°~2) as |z| — co. Now PV =0
implies that (see (4.5)) Av(x) — |z|=22f(|z|)¢(z) = 0. Multiplying by ¢ (z) yields
A — 2f(|z|)|z| 7292 = 0 which by the fall off conditions for ¢ near |z| = 0 and
|z| = oo is integrable. Integrating yields

s, 2f(z]) 5.5
/stAwdx /Rs FE Y*d°r =0.

Integrating by parts which is again valid by the fall off conditions conditions then

gives
2
/ |8z/1|2d3x+/ f(|§|)z/;2d3x:0.
R3 rs |7]
Thus f > 0 implies that ¢ = 0 and hence ¥ = 0. O

The proof now follows from (4.9) and Lemmas 4.3 and 4.4 which imply that
dimcokerP|H2,p: dim ker P|H2,p: 0. O
) )
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In addition to being spherically symmetric, we will assume that our gauge
potential is purely magnetic. Choosing an appropriate gauge, the gauge potential
can then be written as [2]

Ag=0 and A;(z):= a(|z])epa";.
If we write the gauge potential A; as a 3-tuple A = (43, A2, A3) then the gauge
potential A takes values in the space su(2)? which carries a norm

3

AP =) (Al As) .

=1

We define the set of smooth static spherically symmetric purely magnetic
gauge potentials with compact support by

A = {A: R® — su(2)? | Ai(x) = a(x)e; pa*; for some a € C(R?) }.
Completing this in the WEP(R?, su(2)?) gives
AR = A C WhP(R?, su(2)%) .

Notice that every A € AF° satisfies

3
div A := ZajAj =0,

j=1
which implies by the continuity of differentiation (see (3.5)) that
divA=0 forall Ac A}P. (4.10)

This shows that the static spherically symmetric gauge potentials satisfy the
Coulomb gauge condition globally on R3. As is well known, this is a very special
situation and is one of the reasons that makes the static spherically symmetric
Yang-Mills equations easy to analyze.

Proposition 4.5 For x — |u| > 0, k € Ny and 1 < p < oo, the operator A — k?:
Aﬁ”’p — Al’j’p is an isomorphism.

Proof. Follows from directly from Theorem 3.12 using the same arguments as in
the proof of Proposition 4.1. O

5 The modified Yang-Mills equation

Instead of solving the Yang-Mills equation (2.25) we will instead solve a related
system of equations whose solutions will also be solutions to (2.25). The reason for
this modification is to make the Yang-Mills equation differentiable on the spheri-
cally symmetric function spaces introduced in Section 4.



218 T.A. Oliynyk Ann. Henri Poincaré
We begin by splitting the YM potential and the Higgs fields. Let

. -1 . 1-— .
Y = Y}d{EJ = %eﬁkmkﬁ 5 Q= %(x)x]q . (51)

and

where Z € Aﬁ’p and ¥ € ng’p will be considered as the unknowns. Assume for the
moment that Z and ¥ are C! and spherically symmetric. Then we can write

Zj = 2(r)ef pafr; and W =(r)al;
and a short calculation shows that [®, Do®] = 0 and
1—x

[®, D;®] = ( ! +1Z)) (x1+7%2)e p2br = |Q+ T2 (—el KT TJ+Z)

Thus for C! static spherically symmetric fields we have the identity
[, Da®] = (1 —6°) (Xl[@, Da®] + (1 — x1)|®? (gagegkxk@ + 5;Zi)) . (5.2)
This motivates us to consider the following modified Yang-Mills equation
8™ ((1 = x3)DY F)3 + DAF.})

(1= 89) (al®, Ds®] + (1 = x| + W2 (G dhedratny + Z5) ) =0 (53)
where A =Y +Z and ® = ¥ 4 Q. Observe that if the term (1 — Xg)DgFB%
vanished then this equation would be the same as equation (2.25) modified by the
identity (5.2) and written in term of the new variables Z and . We shall see later
that for static spherically symmetric solutions the (1 — Xg)D};Fl},/B does vanish.
This will show that solutions to (5.3) will be solutions to (2.25). Our assumption
that the fields are static and spherically symmetric imply that F4 A =0,FE,=0

and F{“O = 0 and hence equation (5.3) will be satisfied automatically for g = 0.
Therefore we need only solve

(1 — x3)DY F); + DAFL) -
(va[®, Di] + (1= x0)| @2 (3 eidnar; + 22) ) = 0. (5.4)
In terms of the new variables Z and ¥ the Higgs equations (2.26) becomes
§°7 (DY Q T30 Q + [Ya, DY Q] + 0. D} ¥ — T3, DY W + [Ya, DY ¥] +
0alZp, QA+ V] = T05(Z05, 2+ V] + [Ya, [Z5, 2+ V]| +
[Za, DY+ DY +[Z5,Q+ ¥]]) = 0. (5.5)
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6 Analyticity of the field equations

In this section we establish that the reduced field equations (2.18) and the modified
YMH equations (5.4)—(5.5) define analytic maps. For a definition of analytic maps
between Banach spaces see [6] Definition 15.1. As is standard we will use C*
to denote the class of analytic maps. To establish analyticity we will repeatedly
use the following: continuous linear and bilinear maps between Banach spaces are
analytic, and the composition of two analytic maps is again analytic. Also useful
is Proposition 3.6 of [9] which shows how analytic functions on R can be used to
define analytic maps on Banach algebras.

To begin we first fix some notation. If V' is a Banach space with norm || - ||
then we define By (z; R) to be the ball of radius R centered at x € V. We recall
the following results from [9] which are fundamental in establishing analyticity.

Proposition 6.1 (Proposition 3.10, [9]) Suppose 3/2 < p < 0o and —1 < 6 < 0.
Then for any R > 0 there exists a A > 0 such that the following maps are of
class C¥:

(=D, A) X By s )(0; R) — WEP(R%,S) = (A 40) — (§°7 — g*7)

o

(_Aa A) X BW’;"“(H@,S) (07 R) - W?;D(Rga S) : ()‘au) = (@O&ﬁ - gaﬁ)

and

(=2, A) X Bz (s ) (03 R) — WEP(R?) (A, 80) = [o[/* — 1
for q=—-3,-2,—1,1,2. Moreover, the following expansions are valid

P —1=—424" +0(\?), Vo-1=-22"+0()\?),
1 _ _
N 1 =202 +0(\?), (Gap— gaﬁ) = —4A(8269U” + O(N?).

Proposition 6.2 (Proposition 6.2, [9]) Suppose p > 3 and —1 < § < 0. Then for
any R > 0 there exists a A > 0 such that the Christoffel symbols

ng (—A,A) X BW?F(R:’,S)(O; R) — Wéfl(Rg)

are of class C¥ for all o, B,v = 0,1,2,3. Moreover, the following expansion is
valid
Gy = I‘g7|/\:0 +0()

where
I‘O“ _ o iff=y=0and a#0
Brix=0 0 otherwise
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It is important to note that

-2 0 0 O
_ 0 1 0 0
aBy
@=10 010 (6.1)
0 0 0 1
so that
0 00O
—ap |0 1 0 0
(g )|)\:0 “ 1o 0 1 0 (6-2)
0 0 0 1
Using the above propositions and the results from Section 3 we can establish that

the stress-energy tensor defines an analytic map.

Proposition 6.3 Suppose p >3, —1 < § <0 and p < 0. Then for any R > 0 there
exists a A > 0 such that

T: (=M, A) X B (03 R) x Hy? x ARP — Wi, (R%,S) : (A8, 0, Z) > (T*7)
and
T: (A, A) X By (0 R) x HP x AZP — WP, (R3,S) + (WU, ®,Z) — (T*F)
are of class C*. Moreover, the following expansion is valid
7% =T70=0(\) and T = 47TG§”(\1/, Z)+0(\)
where
(v, 7) = (55" (D{@|D{'®) — 1515 (DA®|D/®) ) +
(539 57 i) — KoM i )
and A=Y +Z and  =Q+ V.
Proof. Letting A=Y + Z, we can write

Fffﬁ = Folt/ﬁ + FaZ,B + [Yav Zﬁ] + [Zav Y,@] (63)
where
Y Y XA(r) (n ahal )(1(7")2 -1 4
FOa = 0, Fij = €4k —7" o — 7"2 + 7"4 x| T (64)

and (-)' = 4(-). Since —1 < § < 0, we get from (6.4) that

Yy € WP (R?). (6.5)
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From the definition of Y it is clear that
Y e A%, (6.6)

Then since p < 0 and p > 3, it follows from the inclusion (3.7), the multiplication
Lemma 3.3, the weighted Holder inequality (Theorem 1.2 (ii), [1]), and equations
(6.3), (6.5), (6.6) that the map

Ai@ N W;f’l : Z+— F# is analytic. (6.7)

Also note that for ¥ € W*?, (6.6) implies via the weighted Holder inequality
(Theorem 1.2 (ii), [1]) that [V, ¥] € W3 . There for the map

DY : W2P(R3 su(2)) — WP (R®) : Ui 9,0 + [V, U] (6.8)

is continuous. A short calculation shows that

DYQ =0, (6.9)
L 1—x1(r ; 1 —xa(r
DI Q= (_X;(z ) ;31( ))Xl(r))m’ka + w?ﬁ@”)% (6.10)
and
Di® =DYQ+ DYV + [Z,, Q2+ 7] (6.11)

Again, because p < 0 and p > 3, the inclusion (3.7), the multiplication Lemma
3.3 and (6.8), (6.9), (6.10), (6.11) imply that

WHP(R?, su(2)) x A2 — WP (R%) : (¥, Z) — DA® (6.12)
is analytic. The analyticity of the maps now follows from Lemma 3.3, Proposition
6.1, (6.7), and (6.12). O

Letting

|20 = goB _op (6.13)

2= =g*’DiDj® (6.14)

3Z: = 8™ (xs — VDY F + DAFL) — (al@, D;0] +

(1 _X1)|@|2(%5ijkxk7'j +Z¢)) (6.15)
and
== (15,25,35) = ((E*),25, (:E4), (6.16)

we collect our field equations (2.18), (5.4), and (5.5) into a single expression

(1]

=0. (6.17)
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Proposition 6.4 Suppose p >3, —1 < d < —3/p and u < 0 and
X = WP, (R3,S) x WP, (R?, su(2)) x WOP(R?, su(2)).
Then for any R > 0 there exists a A > 0 such that
: (A, A) X By (03 R) x HP x AZP — X 0 (WU, Z) = ((12%7),22, (55)))

[1]

is of class C¥. Moreover the following expansions are valid

1209 = AU 1 O(N),

127 = AUY — 6" UN U + 56U MO UC U — AGT + O(N),

22 = 5”12;41234@ +0(N),

0% = " DEF — (a[@, D)+ (1 — )l (G e watn; + 2) ) + OV,
where A=Y +7Z and & =Q + V.

Proof. This proposition can be proved in a similar manner to the proof of Propo-
sition 6.3 by using the inclusions (3.4), (3.6), and (3.7), the two multiplication
Lemmas 3.3 and 3.10, Theorem 3.7 and [1] Theorem 1.2, and Propositions 6.1,
6.2, and 6.3. Note that that formulas used in the proof of Proposition 6.3 are also
useful.

The expansion in A can be inferred from (6.1) and (6.2), the expansions in
Propositions 6.1, 6.2, and 6.3, and

[(1 - X3)@WD§FVY¢]A:0 =(1- X3)5jk12jYFkYi =0.
The last equality can be seen from

, , 1-1
5% DY FY da' = (X’{ - M) (—sing i+ cosg)df
o T

2
+ (x’l' _ha-ba ;21)X1 ) (13 — cot O(sin ¢ 72 + cos ¢ 71))dep

where (1) = £L(.). O

Proposition 6.5 Suppose p >3, =1 < § < =3/p and p < 0. Then for any R > 0
there exists a A > 0 such that

E: (=AA) X By (0 R) x HFP 5 ARP — U™, X HGTy x AYP
: (Avﬂa \Ila Z) = ((1301,3)7 257 (3EJ))
is of class C¥.

Proof. For fixed R let A be as given by Proposition 6.4. Then it can be shown
by straightforward calculation that A € (—A,A), & € UF N By20(0;R), ¥ €

HEENHG?, and Z € AF NAZP implies that (), 4L, ¥, Z) € U™ x H> x A®. The
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result now follows from the continuity of the map = (see Proposition 6.4) and the
density of Ug°, Hg®, and AF°. O

7 Solving the reduced/modified EYMH equations

We now employ the same method as in [9] to find solutions to the reduced /modified
EYMH equations. Namely, we first solve the reduced equations for A = 0 and then
use the implicit function theorem to show that there exists a solution for small A.

71 A=0

Fix R > 0, assume p > 3, -1 < 6 < —p/3, p > 0, and let A > 0 be as in
Proposition 6.5. Then the expansion from Proposition 6.4 shows that

2(0,4,%,2) =0
if and only if
AU’ =0, (7.1)
AUT = 5§79 U009, 8100 — 157 579, 11009, 1400 4 4rGTY (¥, Z), (7.2)
5@7’13;410‘);‘@ =0, (7.3)
MDEFE — (ale, Dol + (1 —x)lef (el it + 21)) (7.4)

where A =Y + Z and @ = Q + U. Equations (7.1)—(7.4) can be regarded as the
Newtonian YMH equations with $°° playing the role of the Newtonian potential.
The BPS monopole solution to the Yang-Mills-Higgs equation is

Ab = wr_z 1eijka:krj and ®b = @ijj (7.5)
where
w(r) = sinfl(r) and ¢(r) = coth(r) — % . (7.6)
From this we define
gb_ g _y =¥ ;2 16ijk$k7'ji, Y=t Q= wx%j , (7.7)

and also observe that
Al €Aﬁ’p and Wb EH?’p for 1 <p<oo, k€ Ngandd,pu>—1.

It can be checked that (¥, Z%) solve equations (7.3) and (7.4). Then using Propo-
sition 4.1, 3 N
=0, U7 = A*{”(pr, A (7.8)

solve the remaining equations (7.1) and (7.2).
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72 A>0

To use the implicit function theorem, we first need to establish that the derivative
of the map
Eo(, U, Z) :=E(0,4, U, Z)

evaluated at (U, ¥°, Z%) is an isomorphism.

Proposition 7.1 Suppose p > 6, —1 < § < —=3/p and —1 < pu < 0. Then the linear
map
Do (8hy, U, Z%): UFP x HEP x AZP — 3P, x HYP, x ANP

is an isomorphism.

Proof. For 0¥ € H{°, a short calculation shows that

w

—1)2 . _
5iJ[A§,[A§,5@]]=—2%72”5@ and 5%J[A§,aj5m]:—2%5m.

This and (4.10) shows that
ij AP nAb wQ(r)_l 0
59D DA 5w = AW — 25 6T for all 60 € HY.
o o r
But since HE® x A is dense in Hg’p x AP, the continuity of the maps §*/ beDf‘b :
HYP — HOP, (see (6.8)) and A —2r—2(w?(r) — 1): HyP — HyP, (see Proposition
4.2) implies that
AP oAb w?(r) —1 2,p
6D DO = AJW — 2750w for all 6¥ € H;. (7.9)
o o

Using this and (4.10), the derivative of = at (U°, U®, Z%) can be written as

U A 0 0 U
D=(0,0%, 2% |60 | =0 A—2u31 oW
5z 0 0 A—-1) \6Z
0 Ji  J\ [ou
+{0 0 K| |dv], (7.10)
0 Ky K»n) \6Z

where
J1(00)1 = 25§71 DA P | DA 50) — 5% 5% (DA 00| DA 5) (7.11)
Jo(82)19 = (DX 0[5, D)) — 5164 (DA ®P|[52,, D)) +

2F3|0Fin) — $616™n 5 (FA [6Fi) (7.12)
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K12(87) = 69 (9,[62;, "] + [6Z:, D} @] + [}, [02;, @), (7.13)
Ko (0%); = —x1 (69, Di" '] + [@", D} 60))
— (1= 02(0"0w) (X5 uatr; + 21) (7.14)
K22(07); = 0" (90 (621, AN + [A}, 07]) + 62k, Fil'] + (A}, 6 Fii))
= X[@",[62:, ") = (12" = 1) = xa|®**)0Z:,  (7.15)

and
OFy; = 010Z; — 0i06Z1 + [0 2y, AY) + [AL,6Z;] .

Since A: Ug’p — UP? is an isomorphism (see Proposition 4.1), it follows from
the structure of the (7.10) that DZq (U, ¥°, Z?) will be an isomorphism provided

that
g._ (A= 2“’i—;1 0, 0 Ko
' 0 A—1 Ko Koo
is an isomorphism. Let
0 Ko
K =
<K21 Kzz)

Then the weighted Rellich-Kondrachov theorems (see Lemma 3.8 and Lemma 2.1
of [5]), Lemma 3.9, Theorem 1.2 (iv) of [1], and the inclusion (3.7) shows that map

K: H(Q;’p X Ai’p — Hgg X A%p is compact. As the Index of a operator is preserved
under compact perturbations, we get

Index(S) =0 (7.16)

by Propositions 4.2 and 4.5. Thus if we can establish that S is injective then the
proof will be complete.

Lemma 7.2
ker(S)=0.

Proof. We first consider the YMH Lagrangian
L(V,27) = / $0RGI(FAFS) + 0% (D@ DI @) d (7.17)
R3 o o
where A=Y + Z and ® = Q + ¥ as above. Since p > 6 and —1 < § < —3/p, we

get from (6.7), (6.8), Theorem 2.1 (i) of [1] and the multiplication Lemma 3.3 that
the map

HyPx AZP — WoP L (R?) € LY (R®) : (W, 2) — $0™%6 (FiH|Fi)+6" (DAD|DAD)
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is analytic. Consequently the Lagrangian (7.17) defines analytic map from Hg’p X
A%P to R. Differentiating (7.17) yields

DL(V,Z) - (69,6Z) = | 669 (F|0;0Z — k0 Z; + [6Z;, Ar] + [A}, 6 Zk]))d>x
R3

+/ 26" (D{*@| DoV + [62;, D)) d*x
]RS o o
— /Rg 95k 5l <lo);“ij — [@,1234@]|5Zl> + 25ij<10)2410)34(1)|5\1,>d3x

where in deriving the last inequality we used integration by parts. A similar cal-
culation shows that the second derivative evaluated on the diagonal is

DL(V,Z)- ((6V,62),(8V,62)) = — 2/3 §9(Lo(V, Z) - (09,02)i|6Z;)
+ <L1R(\I/, Z) - (60,62)|60)d>x (7.18)
where
Ly(V,Z) - (60,0Z) = 6% (109;4 (D6 + (52, ®]) + 52, 109;‘@]) . (7.19)
La(¥, 2) - (00,02); = 5 (DM 0482, — 0,625 + 821, Ay, [A, 075))
+ [5Zi,F,fj])—[\I/,l;)ffI>] ~ (@, D)0 + [52;, 0] (7.20)

Let
FA 1 _ij FA
= §6jk ij

be the Hodge dual of F4. Then the Bianchi identities for F4 imply that
59 (xFA + 13;4q>| « FA + zo);‘@dxl Ada® A da® — d((®|Fff)da’ Ada) =
(3057 (FA|FA) + 5 (DABIDA®)) da A da® A da
Therefore the Lagrangian (7.17) can be written as

L(V,Z) = 9 59 (xFA + 10‘){‘@| « A+ 10‘);‘<I>>d3x - /Rs d((®|F])da' A da?) .
But for (¥, Z) € HY x AF we have that

/Rg d((®|F})dx' A da?) = /R d((QIF) yda' A dz?)
+ /R d(QIFF + (2, V3] + Vi, Z3)) + (V| FY + F + (23, Y] + [Vi, Zg])da' A da)

= lim (QIFY)da' N da? = Ax (7.21)
R—c0 Japr(0)
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where we have used Stokes’ theorem to convert to a surface integral. Using the
weighted Sobolev inequalities (see Theorem 3.7 and Theorem 1.2 of [1]), it follows
from the density of H° x AS° that

/Rs d((®|F)da' Ada?) = 4n for all (¥, Z) € HyP x A2P.
Thus we have the alternate form for the Lagrangian

L(V,Z)= | 69(xF!+ D{®|« F/* + D{®)d*x — 4r.
R3 o o

This way of expressing the Yang-Mills-Higgs Lagrangian is well known and leads
to Bogomol’'nyi first order equations. Differentiating the above Lagrangian twice
and using integration by parts yields

D*L(V,Z) - ((0V,62), (5V,62)) :/ 209 (x F{* + DO M, (69,07);) +

5
269 (M (¥, Z) - (69, 6Z)i|§42(\11, Z) - (69,82),))d>x (7.22)
where
My (69,62, = €71[62;,6Z;] + 2[6 Zk, 0] (7.23)
My(V,2) - (69,862, = £€91,(8;6Z; — 0;0Z; + [6Z;, Aj] + [Ai, 6 Z;])
+ (1;)?&1/ + (02K, ®]) . (7.24)

Now suppose that (6¥,§2) € H?’p X .Ai?” satisfies S(0¥,6Z) = 0. Since S
is an elliptic operator with smooth coefficients, elliptic regularity implies that ¥
and 0Z are C*°. Then using (5.2) and (7.9) 0¥ and 67 satisfy

Li(9°, 2% - (09,6Z) =0 and Lo(U° 2% . (60,67) =0.
Also, we note that ®° and A° satisfy the Bogomol'nyi equations
*FJAb —|—D34b<1>b =0 <= w+wp=0, ¢ +w>-1=0.

So we get by (7.18) and (7.22) that

1e91,(8:0Z; — 9;0Z; + [02;, A% + |AL,6Z;]) + (1;)?”&1/ + (67, ®%) = 0. (7.25)

Letting 0¥ = +(r)r—'2*r, and §7; = Z(T)T*QQikaj, we can write (7.25) as

24 pz+wp=0 and r*Y +2wz=0, (7.26)
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where w(r) and ¢(r) are given by (7.6). Differentiating 1/w times the second
equation and then using the two equations to eliminate z and z’ yields

(r*y’) + 2612’ — 2w’ = 0. (7.27)

Since 60 € C* NA%P (-1 < § < 0) we get that ¢(r) = O(r) as 7 — 0 and that
Y(r) = o(r’) as r — oo by Theorem 1.2 of [1]. Since w > 0 on [0,00) the only
solution satisfying the differential equation (7.27) and the asymptotic conditions
is the trivial solution ¥ = 0. But ¢ = 0 implies that z = 0 and thus ¥ = 0 and
dZ = 0. This establishes that ker(S) is trivial.

O

We can now solve the reduced/modified EYMH equations.

Theorem 7.3 Suppose p > 6, —1 < 6 < =3/p and —1 < p < 0. Then there exists
a A >0 and an analytic map

(=M, A) = 887 X HEP x AZP 0 X (U(N), T(N), Z(N)

such that (4(0), ¥ (0), Z(0)) = (U, ¥°, Z%) and (X, U(N), ¥(N), Z(\)) = 0 for all
A€ (=AA).

Proof. Propositions 6.5 and 7.1 and the results of Section 7.1, allow us to apply
the analytic version of the implicit function theorem (see [6] Theorem 15.3) to
reach the desired conclusion. |

8 Existence

We have so far only found a solution to the reduced/modified EYMH equations
(2.18), (5.4), and (5.5). However, we will now show that the solution obtained in
Theorem 7.3 is also a solution to the EYMH equations (2.25)—(2.26).

Proposition 8.1 Suppose p > 6, —1 < 6 < —3/p, and —1 < p < 0. Let

(—AA) — U537 X HEP X AZP 0 X (U(N), (M), Z(N))
be the map from Theorem 7.3. Then there exists a A* € (0, A] such that for every
A€ (=A% A7), (U(N),®(N) = Q+ ¥(N),A(\) = Y + Z(\)) solves the YMH
equations (2.25)~(2.26) and (¥(\), Z(\)) € UzP N O x H3P N C? x AZP 0 C2.
Proof. Fix R > 0. Then for each A € (—=A,A), 4(\) € W?P(Bg(0),S%), ¥ ¢

W2P(Br(0),5u(2)), and Z(\) € W*P(Bg(0), su(2)?). To reduce notation we will
often write U, ¥, and Z instead of t4(N\), U(\), and Z(A). Since Y and Q are C*
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it follows from (6.14)—(6.15) and the Sobolev inequalities that
g7050 = f and Q05 Zr =l
where f,h; € W"P(Bg(0),su(2)) € C%'=3/P(Bg(0),su(2)) and
g7 =67 + 4Ny,
Q™ = (QM;) = (™ + 4N24)5! — 4x2g(tkg1)

By the weighted Sobolev inequality, [1] Theorem 1.2(v), the embedding Wj?
(R3,S3) — Cg’l_g/p(]R?’, S3) is continuous and hence the map (—A, A) — Cg,1—3/p
(R3,S3) : X+ U()) is continuous. Therefore, there exists a A* € (0,A) such
that the operators g 8%» and QY 81.2]. are uniformly elliptic with coefficients in
Cg’l_g/p(R3) for all A € [~A*, A*]. By elliptic regularity, ¥, Z;, € C?(Bg(0),5u(2)).
As A* is independent of R, we get that W(\), Zx(\) € C*(R3,5u(2)) for all X €
(—A*, A%).

For A > 0 we can, using (2.6), recover the metric gog from H,g. Since U €
W2P(R3,S), we have by Theorem 1.2(v) of [1] that 4% ¢ Cg’l_g/p(R?’) and

AP e Cgfl_g/p(R3). Therefore, in spherical coordinates the metric becomes

1

o ye3 — _ 2
Japdx®dx S(r)N(r)dt* + N

dr® 4+ R(r)?(d6? + sin? 0d¢?)

where N, S, and R are in C!((0, 0)). But then a straightforward calculation shows
that for all r € (0, 00)

(1—X3)g°‘5DZngdx” =

2 _
(1— X3)(%(NSX/1)/ - ()(1]%#) (—sing 1 + cos ¢ 72)df
1

2
+(x3 — 1)(S(NSx'1)’ — (le%#)(’rg — cot O(sing 72 + cos ¢ 7)) dep = 0.

where (-) = %(). Using this result and the identity (5.2) which is valid for
C! static spherically symmetric fields, it is clear that (U, ¥, Z) satisfy the YMH
equations. |

To complete the existence proof, we now use the following result of Heilig.

Proposition 8.2 (Proposition 6.1, [9]) Suppose —1 < 6 < 0, p > 3, and A > 0.
Furthermore, suppose
T:[0,A] —» WJ7, (R, §%) N C(R®,S%) : A s (T57)
and
€ [0,A] — WEP(R3,S?) = A - (U5F)
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are two continuous maps such that for every A € [0, A]: ()\,Ll‘j\"g, T:\)‘ﬁ) s a solution
to the reduced field equations (2.17), VT3P =0, and 9,17 € By (ga)(0, R) for
some R > 0 independent of A\ and a, 8,7. Then there exists a constant A € (0, A]
such that 9,45° = 0 for all X € [0, A].

Theorem 8.3 Suppose p > 6, —1 <6 < —3/p, and —1 < u < 0. Let
(—AA) = 43P X HEP X AZP 0 X (U(N), (M), Z(N)

be the map from Theorem 7.3. Then there exists a A* € (0,A] such that for every

€ (=A% A7), (4(N),2(N) = Q4+ T(N),A(\) =Y + ()\) solves the EYMH
equations (2.17)(2.18) and (2.25)-(2.26). Moreover, ($4(\), U(N), Z(N)) EU(?”’
C2 x Hy" N C? x A2P N C? for all X € (—A*, A*).

Proof. From Proposition 8.1 we know that there exist a A* € (0,A] such that
(LU(N), ®(N) = Q+T(N), A(N) = Y+Z(N)) solves the YMH equations (2.25)—(2.26),
and U4(N) € CH(R3,S3), U(N), Ax(N\) € C*(R3,5u(2)) for all A € (—A*,A). It can
then be checked that the YMH equations imply that V7% = 0 is automatically
satisfied. Therefore, the harmonic equation

DoP =0 (8.1)

is satisfied for all A € (—A*, A) by Propositions 6.3 and 8.2. So we have shown
that (U(N), P(\) = Q@+ ¥(A),A(N) =Y + Z(\)) satisfies the EYMH equations
(2.17)—(2.18) and (2.25)—(2.26) for all A € (—A*, A). To complete the the proof we
use (8.1) to write the reduced equations (2.18) as

zga? 7ua,8 _ Ha,@
where H*? = — AP — B8 — CF 4 47G|0|T*#. As in Proposition 8.1, it can

be shown that there exist a A > 0 such that for all A € (0,A) and R > 0 that
HP e % 173/”(BR) and the operator ﬁijafj is uniformly elliptic with coefficients

in CO 1=3/p (R3). Therefore we conclude via elliptic regularity that 4% 2. O

As the Newtonian solutions (7.7) and (7.8) are C*°, we do not have to restrict
the differentiability to & = 2. All the same arguments go through for & > 2. Then
using the weighted Sobolev inequalities we get the following result:

Corollary 8.4 Suppose —1 < § <0, and -1 < u < 0,0 < o < 1. Then for any
integer k > 2 there exist a constant A > 0 and an analytic map

(A, A) — CP(R3,S) x Cp*(R®,5u(2)) x CE*(R?, su(2)*) :
A= (UA), W (A), Z(N))
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such that for every A € (=, A), (U(X), ®(A) = Q+T(N), A(N) =Y 4+ Z(X)) solves
the EYMH equations (2.17)~(2.18) and (4(0) = Uy, ®(0) = B, A(0) = A°).
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