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From Repeated to Continuous Quantum Interactions
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Abstract. We consider the general physical situation of a quantum system Hg in-
teracting with a chain of exterior systems @« H, one after the other, during a
small interval of time h and following some Hamiltonian H on Ho ® H. We dis-
cuss the passage to the limit to continuous interactions (h — 0) in a setup which
allows to compute the limit of this Hamiltonian evolution in a single state space: a
continuous field of exterior systems ) 1 H. Surprisingly, the passage to the limit
shows the necessity for three different time scales in H. The limit evolution equation
is shown to spontaneously produce quantum noises terms: we obtain a quantum
Langevin equation as limit of the Hamiltonian evolution. For the very first time,
these quantum Langevin equations are obtained as the effective limit from repeated
to continuous interactions and not only as a model. These results justify the usual
quantum Langevin equations considered in continual quantum measurement or in
quantum optics. Physically, the typical Hamiltonian allowing this passage to the
limit shows up three different parts which correspond to the free evolution, to an
analogue of a weak coupling limit part and to a scattering interaction part. We
apply these results to give an Hamiltonian description of the von Neumann mea-
surements. We also consider the approximation of continuous time quantum master
equations by discrete time ones; in particular we show how any Lindblad generator
is naturally obtained as the limit of completely positive maps.

I Introduction

Quantum Langevin equations as a model for quantum open systems have been con-
sidered for at least 40 years (for example [FKM], [FLO], [AFL]). They have been
given many different meanings in terms of several definitions of quantum noises or
quantum Brownian motions (for example [G-Z], [H-P], [GSI]). One of the most de-
veloped and useful mathematical languages developed for that purpose is the quan-
tum stochastic calculus of Hudson and Parthasarathy and their quantum stochas-
tic differential equations ([H-P]). The quantum Langevin equations they allow to
consider have been used very often to model typical situations of quantum open
systems: continual quantum measurement ([Bal], [B-B]), quantum optics ([F-R],
[FRS] [Ba2]), electronic transport [BRSW], thermalization ([M-R], [L-M]), etc.

The physical justification for considering such quantum Langevin equations
is often given in terms of some particular approximations of the true Hamiltonian
interaction dynamics: rotating wave approximation, Markov approximation, large
band approximation (cf [G-Z] Chapter 11).

They are also often justified as natural dilations of quantum master equations
on the small system. That is, for any (good) semigroup of completely positive
maps on the small system (with Lindblad generator £), one can dilate the small
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system with an appropriate Fock space and obtain an explicit quantum stochastic
differential equation on the whole space. The unique solution of this equation is
a unitary evolution in interaction picture such that the trace on the small system
of the induced evolution yields the original semigroup. This corresponds, at the
quantum level, to the well-known way of realizing a concrete Markov process from
a given semigroup (or generator) by adding a noise space to the (classical) system
space and solving an adequate stochastic differential equation.

Some quantum stochastic differential equations have also been obtained in
the so-called stochastic limit from explicit Hamiltonian dynamics ([A-L], [AGL],
[ALV]). These results show some similarity with the ones described here, but they
are actually quite different in the type of limit considered. In those articles the
weak coupling regime is studied and the convergence is convergence of correlation
functions of processes living in different spaces; we study a continuous limit and
obtain weak or strong convergence of operators in a single space.

In this article we consider the effective Hamiltonian dynamics describing the
repeated interactions, during short time intervals of length h, of a small system H
with a chain of exterior systems ) ;. H. We embed all these chains as particular
subspaces, attached to the parameter h, of a continuous field

QH
R+

in such a way that the subspaces associated to the chain increase and fill the
field when h tends to 0. This framework may seem to specialize to the case of a
zero-temperature exterior system; actually, it also applies to the case of positive
temperature, using the cyclic (GNS) representation of the given state (see [AJ2]).

By developing an appropriate language for the chain ). H and for the
field @+ H and by describing the discrete time Hamiltonian evolution generated
by the repeated interactions, we are able to pass to the limit when h — 0 and
to prove that the limit evolution equation is the solution of a quantum stochastic
differential equation. This limit is obtained in the strong topology of operators and
in a single space: the continuous field @) + H, and implies the weak convergence
of the Heisenberg evolutions of any observable.

Of course, such a limit cannot be obtained without assumptions on the ele-
mentary interaction Hamiltonian H. This is similar to the central limit theorem:
a random walk gives a trivial limit when its time step h goes to zero and it is only
when suitably renormalized (by a factor v/h) that it yields a Gaussian. Other nor-
malizations give either trivial limits or no limit at all. In our Hamiltonian context
the situation is going to be the same. For a non-trivial limit of these repeated inter-
actions to exist, we will need the Hamiltonian H to satisfy some renormalization
properties. The surprise here is that the necessary renormalization factor is not
global, it is different following some parts of the Hamiltonian operator. We identify
three different time scales in H: one of order 1, one of order vk, one of order h.

We describe a large class of Hamiltonians which seems to be typical for the
above conditions to be satisfied. These typical Hamiltonians are a combination of
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a free evolution part and two parts which are reminiscent of a weak coupling limit-
like interaction part and a scattering-like interaction part. The precise relation of
our limits with the more classical weak coupling is studied in [AJ1]. Another way
to interpret these different time scales is to see them as a renormalization of the
field operators of the photon chain. In the limit we observe a quantum Langevin
equation which shows up both diffusion-like terms and Poisson-like terms. The
combination of the two limits here shows an effective Hamiltonian for the small
system which contains the surprising term

V*D™2(sin D — D)V

which comes from the simultaneous presence of all the different parts of the Hamil-
tonian. Notice a possible extension of our results: only the case of time-indepen-
dent coupling is discussed here but results for time-dependent ones can easily be
deduced from our proofs.

This article is structured as follows. In Section II we present the exact math-
ematical model of repeated quantum interactions and end up with the associated
evolution equation (Subsection II.1). We then introduce a mathematical setup for
the study of the space )« H which will help much for passing to the continuous
field. In particular this includes a particular choice of an orthonormal basis of the
phase space and a particular choice of a basis for the operators on that phase space
(Subsection I1.2). Finally we show how the typical evolution equations obtained in
II.1 are the general model for the unitary dilation of any given discrete semigroup
of completely positive maps (Subsection II.3).

Section III is devoted to presenting the whole formalism of the continuous
atom field. In Subsection III.1 we present the space which is candidate for rep-
resenting the continuous field limit of the atom chain. It is actually a particular
Fock space on which we develop an unusual structure which shows up the required
properties. In Subsection III.2 we present the natural quantum noises on the con-
tinuous field and the associated quantum stochastic integrals, the quantum Ito
formula and the quantum stochastic differential equations. In Subsection I11.3 we
concretely realize the atom chain of Section II as a strict subspace of the atom
field. Not only do we realize it as a subspace, but also realize the action of its
basic operators inside the atom field. All these atom chain subspaces are related
to a partition of IRT. When the diameter of the partition goes to 0, we show that
the corresponding subspace completely fills the continuous field and the basic op-
erators of the chain converge to the quantum noises of the field (with convenient
normalizations). Finally, considering the projection of the continuous atom field
onto an atom chain subspace, we state a formula for the projection of a general
quantum stochastic integral.

In Section IV all the pieces of the puzzle fit together. By computing the pro-
jection on the atom chain of a quantum stochastic differential equation we show
that the typical evolution equation of repeated interactions converges in the field
space to the solution of a quantum Langevin equation, assuming the fact that
the associated Hamiltonian satisfies some particular renormalization property cor-
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responding to three different time scales. It is to that result and to some of its
extensions that Subsection IV.1 is devoted. In Subsection IV.2 we describe a fam-
ily of Hamiltonians which seems to be typical of the conditions obtained above.
We show that this family of Hamiltonians describes altogether free evolution, weak
coupling limit-like and scattering-like terms. Computing the associated quantum
Langevin equation at the limit, we obtain an effective Hamiltonian on Hy which
contains a new term. This new term appears only when weak coupling and low den-
sity limits terms are in presence together in the Hamiltonian. In Subsection IV.3,
we apply these results to describe the von Neumann measurement apparatus in
the Hamiltonian framework of repeated quantum interactions. In Subsection 1V .4
we explicitly compute a simple example. In Subsection IV.5 we show that our
approximation theorem puts into evidence a natural way that completely positive
maps have to converge to Lindblad generators.

II Discrete dynamics on the atom chain

II.1 Repeated quantum interactions

Here we give a precise description of our physical model: repeated quantum in-
teractions. All Hilbert spaces that we consider in the sequel are supposed to be
separable.

We consider a small quantum system Hy and another quantum system H
which represents either a piece of environment, a measuring apparatus or incoming
photons ... We consider the space Hy ® H in order to couple the two systems,
an Hamiltonian H on Ho ® H which describes the interaction and the associated
unitary evolution during the interval [0, h] of time:

IL =e i,

This single interaction is therefore described in the Schrédinger picture by
p— Lpl*

and in the Heisenberg picture by
X—L'XIL.

Now, after this first interaction, we repeat it but this time coupling the same
Ho with a new copy of H. This means that the new copy was kept isolated until
then; similarly the previously considered copy of H will remain isolated for the rest
of the experience. One can think of many physical examples where this situations
arises: in repeated quantum measurement where a family of identical measurement
devices are presented one after the other before the system (or a single device is
refreshed after every use), in quantum optics where a sequence of independent
atoms arrives one after the other to interact with a field in some cavity for a
short time. More generally it can be seen as a good model if it is assumed that
perturbations in H due to the interaction are dissipated after every time h.
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The sequence of interactions can be described in the following way: the state
space for the whole system is
Ho ® ® H .
Pyt

Index for a few lines only the copies of H as Hi, Ha, ... Define then a unitary
operator IL,, as the canonical ampliation to Hy ® H1 ® Hs ® ... of the operator
which acts as IL on Hy ® H,,; that is, IL,, acts as the identity on copies of H other
than H,,.

The effect of the n-th interaction in the Schrédinger picture writes then

pr> LyplLy,
for every density matrix p, so that the effect of the n first interactions is
P Un P Uy,

where (un)nen is a sequence in B(Ho ® @) - H) which satisfies the equations

Un+1 = En—i—l Un
uyg = I.

(1)

It is evolution equations such as (1) that we are going to study in this article.

I1.2 Structure of the atom chain

We here describe some useful mathematical structure on the space )« H which
will constitute the main ingredient of our approach.

Let us fix a particular Hilbertian basis (Xi)'LEAU{O} for the Hilbert space H,
where we assume (for notational purposes) that 0 ¢ A. This particular choice of
notations is motivated by physical interpretations: indeed, we see the X*, i € A,
as representing for example the different possible excited states of an atom. The
vector X O represents the “ground state” or “vacuum state” of the atom and will
usually be denoted Q.

Let T® be the tensor product @) ,.H with respect to the stabilizing se-
quence 2. In other words, this means simply that an orthonormal basis of T® is
given by the family

{Xa; A€ Pn-a}
where
— the set Py, 4 is the set of finite subsets

{(n1,i1), .o, (nyin) }

of IN* x A such that the n;’s are mutually different. Another way to describe the
set P+ is to identify it to the set of sequences (Ay),,c - With values in AU{0}
which take a value different from 0 only finitely often.

— X 4 denotes the vector
02 00 X"190®--- 90 X2®---
where X% appears in ni-th copy of H. ..
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The physical signification of this basis is easy to understand: we have a chain
of atoms, indexed by IN*. The space T® is the state space of this chain, the
vector X4 with A = {(n1,1),..., (ng,ix)} representing the state in which exactly
k atoms are excited: atom n; in the state i1, etc, all other atoms being in the
ground state.

This particular choice of a basis gives T® a particular structure. If we denote
by T, the space generated by the X 4 such that A C {1,...,n} x A and by T®,
the one generated by the X 4 such that A C {m,m+1,...} x A, we get an obvious
natural isomorphism between T® and T®, 1} @ T®, given by

[fogl(A)=f(An{l,...,.n—1} xA) g(An{n,...} xA).
Put {a};4,j € AU{0}} to be the natural basis of B(H), that is,
ab(X*) =03 X7
We denote by aé (n) the natural ampliation of the operator a§- to T® which acts
3

% and the identity elsewhere. That is, in terms of the

on the copy number n as a
basis X 4,
a3(n)Xa = N ieaX a\(n,i)Un,j)
if neither ¢ nor j is zero, and
ah(n)Xa = NnieaXa\(ni),
a(n)Xa = Un0yeaX au(mn.g)»
a’g(n)XA = ]l(n,O)GAXAv
where (n,0) € A actually means “for any 4 in A, (n,i) € A”.

II.3 Unitary dilation of completely positive maps

The evolution equations
obtained in the physical setup of repeated quantum interactions are actually of
mathematical interest on their own for they provide a canonical way of dilating
discrete semigroups of completely positive maps into unitary automorphisms.
The mathematical setup is the same. Let IL be any operator on Hg ® H. Let
TP = Q- H and (L,)nen+ be defined as in the above section. We then consider
the associated evolution equations
with ug = 1.
The following result is obvious.

Proposition 1 The solution (uy), . of (1) is made of unitary (resp. isometric,
contractive) operators if and only if IL is unitary (resp. isometric, contractive).

Note that if IL is unitary, then the mappings
Jn(H) = u) Huy,
are automorphisms of B(Ho ® H).
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Let IF( be the partial trace on Hy defined by
(¢, Eo(H) ) = (0@ QL HYP®Q)

for all ¢, € Hy and every operator H on Hy ® T®.

Unitary dilations of completely positive semigroups are obtained in the fol-
lowing theorem. Recall that, by Kraus’ theorem, any completely positive operator ¢
on B(Hy) is of the form

UX) =) A XA;
where the summation ranges over A U {0}, the A; are bounded operators and the

sum is strongly convergent. Conversely, any such operator is completely positive.

Remark. Of course the Kraus form of an operator is a priori indifferent to the
specificity of the value i = 0. The special role played by one of the indices will
appear later on.

Theorem 2 Let IL be any unitary operator on Ho ® H. Consider the coefficients
(L;)i,jeAu{o}, which are operators on Hy, of the matriz representation of IL in the
basis Q, X, i € A of H.
Then, for any X € B(Ho) we have

Eoljn(X ® I)] = "(X)

where € is the completely positive map on B(Ho) given by
0X)= > (L) XL
i€AU{0}

Conversely, consider any completely positive map

(X)= Y AXA

i€AU{0}
on B(Ho) such that €(I) = I. Then there exists a unitary operator IL on Ho @ H
such that the associated unitary family of automorphisms
Jn(H) =uyHuy

satisfies
for allm € IN.

Proof. Consider IL = (Eé)i,jeAu{O} such as in the above statements. Consider the
unitary family

Up =1Ly ... ILy.
Note that

un+1 = EnJrlun.
Put j,(H) = ul Hu,, for every operator H on Ho ® H. Then, for any operator X
on Hy we have

j”+1(X ® I) = U'ZE:;-H(X ® I)Ln-i-lun-
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When considered as a matrix of operators on Hy, in the basis Q, X*, i € A of H,
the matrix associated to X ® I is of diagonal form. We get

(Ly)* (mLh)H* ...\ /X 0 ..\ (LY L}
X @ DLy = | (Lo)* (Ly)* .. [ |0 X || L} I
which is the matrix L1 (X) = (B; (X))i,jeAu{o} with
Bi(X)= > (L) XL
keAU{0}

Note that the operator L, 1(X) acts non trivially only on the tensor product of
Ho with the (n 4 1)-th copy of H. When represented as an operator on

7_{O ® ’Iq)n-i-l] = (HO & rItI)n]) (9 H
as a matrix with coefficients in B(Ho @ T®,) it writes exactly in the same way as
above, just replacing B;- (X) (which belongs to B(Ho)) by
Bi(X) ® Iire, -

Also note that, as can be proved by an easy induction, the operator u,, acts
on Ho ® T®,; only. As an operator on Ho ® T®,, ) it is represented by a diagonal
matrix. Thus jn41(X) = u),Lny1(X)u, can be written on Ho ® TP, 41y = Ho @
T®, ® H as a matrix of operators on Ho ® T®,; by

(os1(X @ 1))} = ju(BI(X) @ I).
Note that BJ(X) = 2 ienu{o} (IL?)*X ILY which is the mapping £(X) of the state-
ment.

Put T, (X) = Eo[jn(X ® I)]. We have, for all ¢, € Hy

<¢7 Tn+1(X)w> =(¢® ijn+1(X ® I)w ® Q>

— (080 (IW(BI(X) 8 1)), , 40 0)
¢ ® Qa,) @ U, (Jn(Bj(X) @ 1)), % @ Q1a,,) @ Qo)
»® QT@,,] 7j7z(B(()] (X) ® IW ® QT‘PH]>
= (¢, Th(£(X)) ).
This proves that Tj,41(X) = T,,(¢(X)) and the first part of the theorem is proved.

Conversely, consider a decomposition of a completely positive map ¢ of the
form

o~ o~~~

LX)= Y AXA
i€ AU{0}
for a family (A;);cauqoy of bounded operators on Hy such that

Y oAjA =1

1€ AU{0}
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We claim that there exists a unitary operator I on Hy ® H of the form
Ao
L= |4

Indeed, the condition Zie AU{0} A¥A; = I guarantees that the first columns of IL
are made of orthonormal vectors of Ho ® H. We can thus complete the matrix by
completing it into an orthonormal basis of Ho®H. This makes out a unitary matrix
IL the coefficients of which we denote by (Aé')i,jeAu{o}' Note that AY = A; ;1. We

now conclude easily by the first part of the theorem. O

ITIT From the atom chain to the atom field

ITI.1 Structure of the atom field

We now describe the structure of the continuous version of T®. The structure we
are going to present here is rather original and not much expanded in the litera-
ture. It is very different from the usual presentation of quantum stochastic calculus
([H-P]), but it actually constitutes a very natural language for our purpose: ap-
proximation of the atom field by atom chains. This approach is taken from [At1].
We first start with a heuristical discussion. By a continuous version of the atom
chain T® we mean a Hilbert space with a structure which makes it the space

o =Q)H.
Rt

We have to give a meaning to the above notation. This could be achieved by in-
voking the framework of continuous tensor products of Hilbert spaces (see [Gui]),
but we prefer to give a self-contained presentation which fits better with our ap-
proximation procedure.

Let us make out an idea of what it should look like by mimicking, in a
continuous time version, what we have described in T®.

The countable orthonormal basis X 4, A € P~ a is replaced by a continuous
orthonormal basis dx, 0 € Pr,a, where P 4 is the set of finite subsets of R xA.
With the same idea as for T®, this means that each copy of H is equipped with
an orthonormal basis (€2,dxi;i € A) (where ¢ is the parameter attached to the
copy we are looking at). The orthonormal basis above is just the one obtained
by specifying a finite number of sites ¢1,...,t, which are going to be excited, the
other ones being supposed to be in the fundamental state €2, and by specifying
their level of excitation.

The representation of an element f of T®:

f=> f(AXa

AEP = A

AP = > 1f AP

AE’P}N*,A
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is replaced by an integral version of it in ®:

f= f(o)dxo

Pr,A

17112 = /P P do

This last integral has to be explained: the measure do is a “Lebesgue measure”
on Pr,a, as will be explained later. From now on, the notation P will denote,
depending on the context, spaces of the type Ppn+ a or Pra.

A good basis of operators acting on ® can be obtained by mimicking the
operators a’(n) of T®. We will here have a set of infinitesimal operators da’(t),
i,7 € AU {0}, acting on the “t-th” copy of H by:

dag(t) dxo = dxo dt I 0)eo

dad(t) dxoe = dXoui (.0} Lit0)eo
daf(t) dxo = dxo\{(1,i)} At Ditiyeo
daji(t) dXo = dXo\{(ti ol ()} Dwijeo

for all 4,5 € A. Similarly as in the discrete-time case, (t,0) € 0 means “for any ¢
in A, (t,3) € o”.

We shall now describe a rigorous setup for the above heuristic discussion. We
recall the structure of the bosonic Fock space ® and its basic structure (cf [Atl]
for more details and [At3] for a complete study of the theory and its connections
with classical stochastic processes).

Let H be, as before, a Hilbert space with an orthonormal basis X*, i € AU{0}
and let H’ be the closed subspace generated by vectors X*, i € A (or simply said,
the orthogonal of X©).

Let ® = I',(L?(IR",H’)) be the symmetric (bosonic) Fock space over the
space L2(IR", H’ ). We shall here give a very efficient presentation of that space,
the so-called Guichardet interpretation of the Fock space.

Let P (= Pr.a) be the set of finite subsets {(s1,41), ..., (Sn,in)} of RT x A
such that the s; are two by two different. Then P = U,P, where P, is the
subset of P made of n-elements subsets of IR™ x A. By ordering the IR"-part of
the elements of o € P,, the set P, can be identified to the increasing simplex
¥, ={0< t; <+ <tp} x Aof R" x A. Thus P,, inherits a measured space
structure from the Lebesgue measure on IR"™ times the counting measure on A.
This also gives a measure structure on P if we specify that on Py = {0} we
put the measure dy. Elements of P are often denoted by o, the measure on P is
denoted do. The o-field obtained this way on P is denoted F.

We identify any element o € P with a family {o;, ¢ € A} of (mutually dis-
joint) subsets of IR™ where

o, ={s € R";(s,i) € o}
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The Fock space ® is the space L?(P,F,do). An element f of ® is thus a
measurable function f: P — € such that

I1£12 =/P|f(a)|2da < .

One can define, in the same way, Py, ;) and @[,y by replacing R with [a,b] ¢ RT.
These spaces are canonically identified to subspaces of ® by identifying ®(, 5 with
{f € ®; f(c) =0 unless o C [a,b]}.

As in discrete time, there is a natural isomorphism between @ ® @ 1 given
by h ® g — f where f(o) = h(c N[0,t] x A)g(o N (¢, +00[xA). This isomorphism
is the usual “exponential property” of Fock spaces.

We shall use the following notations:

Dy = Do, Dy = Ppy oo

Define Q2 to be the vacuum vector, that is, Q(o) = dy(0).
We now define a particular family of curves in ®, which is going to be of
great importance here. Define yi € ® by

’L(O_) — H[O,t](s) if o= {(Sa Z)}
0 otherwise.
Then notice that for all + € IRT we have that x! belongs to Do, We actually
have much more than that: we have
xi—xt e P g for all s < 2.
This last property can be checked immediately from the definitions, and it is
going to be of great importance in our construction. Also notice that x! and x?
are orthogonal elements of ® as soon as i # j. As we will see later on, apart from
trivialities, the curves (x});s, are the only ones to share these properties.
These properties allow to define the so-called Ito integral on ®. Indeed, let
g = {(g})t>0, i € A} be families of elements of ® indexed by both IR and A, such
that
i) t— |lgi|| is measurable, for all 7,

i) gi € Do, for all ¢,

i) Y Jy* Nl dt < o0
then one says that g is Ito integrable and we define its Ito integral

3 /0 gl dx

€A

YN G e (xfém - xij) (2)

ieA jeIN

to be the limit in ® of

where S = {t;, j€IN} is a partition of IR" which is understood to be refining
and to have its diameter tending to 0, and (g’); is an Ito integrable family in @,
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such that for each i, t — g is a step process, and which converges to (g%); in
L*(R* x P).
Note that by assumption we always have that ﬁ%ﬂ belongs to ®;;) and Xij o
Xij belongs to ®(;, ;;41], hence the tensor product symbol in (2).
Also note that, as an example, one can take
~; 1 f i
s /t Py gy ds
where P; is the orthogonal projection onto ®q 4.
One then obtains the following properties ([At1], Proposition 1.4), where the
notation Vo means max o:

Theorem 3 The Ito integral I(g) = ), fooo gidxi, of an Ito integrable family g =
(g%)ien, is the element of ® given by

0 ifo=10
1 =<
9)(@) {g@[,(a\ (Vo,1)) if Vo € o;.
It satisfies the Tto isometry formula:

i = [X [ dba| =X [ et ar. ®)
ien”0 ien 70

In particular, consider a family f = (f%);ea which belongs to L?(P;) =
L*(IR* x A), then the family (f*(¢)Q), t € IR", i € A, is clearly Ito integrable.
Computing its Ito integral we find that

=Y [ rooa

ieA 70

is the element of the first particle space of the Fock space ® associated to the
function f, that is,

fi(s) ifo={sh
0 otherwise.

1(f)(o) ={

Let us define the “adjoint” mapping of the Ito integral. For all f € &, all 4
in A and all t € IR", consider the following mapping on P:

[DZf} (0)=f(oU {(t7i)})ﬂac[0,t[-
We then have the following result ([Atl], Theorem 1.6).
Theorem 4 (Fock space predictable representation property) For all f € ®, all

i € A and for almost allt € IR, the mapping Dif belongs to ® = L*(P). Further-
more, the family (D'f); is always Ito integrable and we have the representation

f=rwe+y [ bira (4)
ieA 70
with the isometry formula

HW=WW+ZLﬁmm%. (5)

€A
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As an immediate corollary we get the following.
Corollary 5 The representation (4) of f is unique. In particular, if g € ® is of the
form

gch—i—Z/ Rl dyi
iea 0
then for almost all t, all i in A,
Dig=hi.
Let f€L?(P,), one can easily define the iterated Ito integral on ®:

L.(f) = f(o)dxo

Pn
by iterating the definition of the Ito integral:

o ptn ta . ) .
I.(f) = Z /0 /0 /0 Froetn (b, o) dxg L dxg

015enyin €A

We obtain this way an element of ® which is actually the representant of f in the
n-particle subspace of ®, that is

(L. (f)](0) = {f”’”"z"(h, cotn) o ={t1i}i, U...U{tn}i,

0 otherwise.
For any f € P we put
| f@)ixs
P
to denote the series of iterated Ito integrals

i 0 tn t2 . . . .
HOLES Y / / / Frotn () QdxEE L dX
0 0 0

n=1 iy,...,i, €A

We then have the following representation ([Atl], Theorem 1.7).

Theorem 6 (Fock space chaotic representation property) Any element f of ®
admits an abstract chaotic representation

r= [ serax, (6)
satisfying the isometry formula
112 = [ 15(e) o 7)
This representation is unique.

The above theorem is the exact expression of the heuristics we wanted in
order to describe the space
=M.
Rt
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Indeed, we have, for each t € IR", a family of elementary orthonormal elements 2,
dxi, i € A (abasis of H) whose (tensor) products dy, form a continuous basis of ®
(formula (6)) and, even more, form an orthonormal continuous basis (formula (7)).

The attentive reader will have noticed that the only property of the curves
X that we really used is the fact that x! — x% belongs to P, for all s < .
One can naturally wonder if there exists another such family, which will then
allow another Ito integral and furnish another continuous basis for ® via another
chaotic expansion property.

Of course there are obvious curves that can be obtained from the x?: for any
function f on IR™ and any g € L2(IRT x A) put

w=10e+Y [ g0

forallt € IR™. Then one easily checks that (y.) satisfies the same property, namely,
Yt —ys belongs to @, 4 for all s < 7. But clearly the Ito integration theory obtained
from y is the same as the one from y, except that scalar factors g*(s) will appear
in the integration.

One can wonder if there exist more complicated examples, giving rise to
a different Ito integration. The following result shows that there are no more
examples. In particular, there is only one Ito integral, one chaotic expansion and
one natural continuous basis ([Atl], Theorem 1.8).

Theorem 7 Let (yt)tzo be a curve in ® such that y, — ys belongs to @y for all
s < t. Then there exist a function f on IR" and g € L>(IRT x A) such that

t
w100+ Y [ g0 dx
i 0
for allt € R™.

III.2 Quantum noises

The space ® we have constructed is the natural space for defining quantum noises.
These quantum noises are the natural, continuous-time, extensions of the basis
operators a’(n) we met in the atom chain T®.

As indicated in the heuristic discussion above, we shall deal with a family of
infinitesimal operators daé (t) on ® which act on the continuous basis dx, in the
same way as their discrete-time counterparts az- (n) act on the X 4. The integrated
version of the above heuristic infinitesimal formulas easily gives an exact formula

for the action of the operators a} (t) on ®:

[a?(8)f1(0) = D flo\ {s}),

lai(t) f1(0) = / f(o U {s}i)ds,
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[aj()f)(0) = Y flo\{s}; U {s})

s€o;
s<t

[ap(t) f1(o) =t f(o)
for i,7 # 0.

All these operators, except ad(t), are unbounded. Yet note that a good com-
mon domain to all these operators is

={rev: [ 1ol Ir@)ar <o}

This family of operators is characteristic and universal in a sense which is close
to the one of the curves x;. Indeed, one can easily check that in the decomposition
of & ~ &4 ® P, @ P, the operators a}(t) — aj(s) are all of the form

I® (aj(t) = aj(s))je;, , ® 1.

This property is fundamental for the definition of the quantum stochastic integrals
and, in the same way as for (x*), these operator families are the only ones to share
that property (cf [Coq]).

This property allows to consider Riemann sums:

ZHtk aj(trs1) — aj(tr)) (8)

where S = {0 =ty < t; < --- < t}, < ---} is a partition of IR", where (Ht)y>p is
a family of operators on ® such that B

— each H; is an operator of the form H;®1I in the tensor product space ® = &, @,
(we say that H, is a t-adapted operator and that (H;),-, is an adapted process of
operators), B

— (Hy),>( is a step process, that is, it is constant on intervals:
= Z Htk ]l[tk,tk+1] (t)v
k

and where the operator product Hy, (aé» (tk+1) — a} (tx)) is actually a tensor prod-
uct of operators
Htk ® (aé(tk—i-l) — a;(tk)) .
Note that, in particular, the above “product” is commutative and does not impose
any new domain constraint.
The resulting operator associated to the Riemann sum (8) is denoted by

/ H, daé-(s)
0

If we denote by T' the above operator and by T} the operator

/Hda /H]lOt] da()
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we can then compute the action of 7' on a “good” vector f of its domain and we
obtain (cf [A-M] for more details)

Tf = §j/ T,DY fdyl + / H,Dif dy )
keA
with the notations: DY = P, and dx? = dt. For general operator processes (still
adapted but not step process anymore) and general f, it is equation (9) which is
kept as a definition for the domain and for the action of the operator

= / H,da!(s)
0

The maximal domain and the explicit action of the above operator can be described
but is not worth developing here. The interested reader may refer to [At3], chap-
ter 12 or to [A-L]. There are particular domains where the definition simplifies.
The one we shall use here is the case of coherent vectors.

Indeed, if ¢ is any element of L?(IR",H’), consider the associated coherent

vector €(¢) in ®. That is,
@) =T 11 #:(s)

i S€0o;

Put ¢o(s) =1 for all s. If ¢ is such that
¢
[ 1560 (o) 0 ds < o
0
then fg H, da’(s) is well defined on e(¢) with
0

/Hm wb/ENM@mmmwmw

for all ¢ € L2(IR", H').

II1.3 Embedding and approximation by the atom chain

We now describe the way the atom chain and its basic operators can be realized as
a subspace of the Fock space and a projection of the quantum noises. The subspace
associated to the atom chain is attached to the choice of some partition of IR™ in
such a way that the expected properties are satisfied:
— the associated subspaces increase when the partition refines and they constitute
an approximation of ® when the diameter of the partition goes to 0,
— the associated basic operators are restrictions of the others when the partition
increases and they constitute an approximation of the quantum noises when the
diameter of the partition goes to 0.

Note that this approximation has deep interpretations in terms of approxi-
mations of n-dimensional classical noises by extremal random walks in IR™ whose
jumps take n + 1 different values. This aspect is developed in [A-P].
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Let S = {0 =t <t < -+ < t, < ---} be a partition of R' and
0(S) = sup;|tiy1—t;| be the diameter of S. For S being fixed, define ®,, = ®p, | 4 1,
neIN*. We clearly have that ® is naturally isomorphic to the countable tensor
product @),,c i+ Pn (which is understood to be defined with respect to the stabi-
lizing sequence (Q)nemn).

For all neIN*, define for i,j € A

3 Xiw _Xin—l
X'(n) = === € ¥y,
== <
i ab(ty,) — ab(tn_
ahn) = Do) —lot)
n n—
a;(n) = Pl] o (a;(t71) — Cl;-(tn_l)) o P1]7

04 ) — g0
a?(n) _ Pl] ° a; (tn) a; (tnfl)

vV tn - tn—l ’

a’g(n) = PO]v

where for i = 0,1, P is the orthogonal projection onto L?(P;) and where the
above definitions are understood to be valid on ®,, only, the corresponding operator
acting as the identity operator I on the other ®@,,’s.

For every A € P = P« a, define X4 from the X*(n)’s in the same way as
for T®:

Xa=0® --200X"Mn)00®---200 X2(n))®---

in @, - Ho.
Define T®(S) to be the space of f€® which are of the form

f=> f(A)Xa
AeP

(note that the condition ||f[|* =3 ,cp [f(A)[* < oo is automatically satisfied).

The space T®(S) is thus clearly identifiable to the spin chain T®. The space
T®(S) is a closed subspace of ®. We denote by Ps the operator of orthogonal
projection from ® onto T®(S). One can prove for example that the projection of
an exponential vector is an “exponential vector” of the embedded toy Fock space:
indeed, a direct computation shows that for any ¢ in L?(IR",H’),

(Pse(#))(A) = H H ¢i(n)

i nEA;

where the function ¢ belongs to I2(IN*,H’) and is defined by

1 tn
i) = e / " s

We will denote by e(¢) such a discrete time version of a coherent vector.
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We shall now check that the above operators a’(n) act on T®(S) in the same
way as the the basic operators of T®.

Proposition 8 We have, for all i,j € A

ah(n) X7 (n) = 6;;Q
ahb =0

{a?(n) X*(n) = 6 X7 (n)

Proof. This is a direct application of the definitions and computations using equa-
tion (9), cf [At2] for details. For example:

i i 1 ) ) tn _
ao(n)Xj (TL) = W (a%(tn) — a%(tnil)) deg
n n—1 -
1 tn ) , .
=— > / (ai(t) — ap(tn—1)) QdxF +/ 5, QL
tn _tnfl EEA tn_1 .
1

= (0 + (tn — tn,l)éijQ) = (5”9
tn - tn—l

And so on for the other cases. O

Thus the action of the operators a} on the X*(n) is exactly the same as the
action of the corresponding operators on the spin chain of Section II; the operators
a’(n) act on T®(S) exactly in the same way as the corresponding operators do on
Td. We have completely embedded the toy Fock space in the Fock space.

The action of operators aé- (n) on discrete exponential vectors as defined above
will be most useful in the sequel. The following lemma is deduced immediately from

Proposition 8.

Lemma 9 For any ¢, ¢ in L>(IRy,H) and for any t,-adapted operator H, the
bracket

(e(d), Hudj(n+1)e())
is equal to
G5+ 1)din+1) (e(@u), Hne(Wn))) (e(Bni2): e(pua)) -

Where ¢, ¥n), Gint2, Y2 are the restrictions of ¢, to {1,...,n}, {n+2,...}
respectively.
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This lemma is the basis for our future computations involving discrete-time
quantum stochastic integrals (for more precise treatment of this subject see [Pal]
or [Pa3]).

We are now going to see that the Fock space ® and its basic operators a} (1),
1,7 € AU {0} can be approached by the toy Fock spaces T®(S) and their basic
operators a}(n).

We are given a sequence (S, )ne v of refining partitions whose diameter §(S,)
tends to 0 when n tends to +oo. Let T®(n) = T®(S,) and P, = Ps,, for all n€IN.

Theorem 10
i) The orthogonal projectors P, strongly converge to the identity operator I

on ®. That is, any f € ® can be approached in ® by a sequence (fn),cn
such that f, € T®(n) for alln € IN.

i) If S, = {0 =10 < tf <--- <t} <.}, then for all t€IRT, all 3,5 € A, the

operators
> aj(k), Yo/t —tiyap(k), STt -t k),
kst <t kst <t kitn <t

and Y (6 — i 1) ag(k)
kit <t

converge strongly on D to a(t), aj(t), af(t) and ag(t) respectively.

Proof. i) As the S,, are refining then the (P,), forms an increasing family of
orthogonal projections in ®. Let P,, = V, P,. Clearly, for all s <, we have that
Xi — x% belongs to RanP,,. But by the construction of the Ito integral and by
Theorem 6, we have that the ! — x% generate ®. Thus Py, = I.

ii) Let us check the case of a?. A direct computation shows that, for feD

{ D/t trad( } = > D =1 >, flo\{sh).

kit <t kit <t s€aiN[ty_,,t7]

Put t" = sup{tZESn ity < t}. We have

I > Va—asam-ao) 5|

kit <t
/ [D IR IR SR (CAN S D S CAN O
kitp <t s€oiN[ty_,t7] s€0;N[0,t]

2 f| T sevf w2 [ | T too e

s€on[t™,t] st <t

ag.

< fe\ sk d

s€o;N[ty_,t7]
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For any fixed o, the terms inside each of the integrals above converge to 0 when n
tends to +oo. Furthermore we have for n large enough,

LI sevefas [ X e\ ka

s€on[tn,t] 2’%‘11
S

:/Ot+1/73(|a|+1)|f(o)|2dads

< (t+1) /P (o] +1)|f(0)[* do

which is finite for feD;

LIS boog gise X s\ (5] a0

ke <t SEUim[t}’:,lyt}':]

< L(Y ooz X s\ Gsh)

kstp<t s€oN[tp_,,t7]

S/P( Z Z |f(0\{5}i)|)2da

kitp <t seo;n[ty_,,t7]

)Qda

/(Z|f 0\ {s}a)]) " do
/|o|§j|f \ (s3I do

< (t+1)/P(|a| + D[0P do < o

in the same way as above. So we can apply Lebesgue’s theorem. This proves the
result.
The other cases are treated in the same way. See [At2] for details. O

We have fulfilled our duties: not only does the space T®(S) recreate T® and
its basic operators as a subspace of ® and a projection of its quantum noises, but,
when 6(S) tends to 0, this realization constitutes an approximation of the space @
and of its quantum noises.

To any operator H on ® we can associate the projected operator PsH Ps
which acts on the atom chain only and which approximates H (if H is bounded
for example).

We wish to compute the corresponding projections of the quantum stochastic
integral operators. We reduce our computations to the case where integrals are
of the type H = fooo H; da?(s), with (i,7) # (0,0), and satisfy the following
conditions (HS):
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— the operator H is bounded and
~ the integrands H}(t) are bounded for all ¢ and ¢ — ||Hj7 (t)|| is square integrable
if one of 7 or j is zero, essentially bounded otherwise.

Even though they are rather restrictive, these hypotheses will suffice for our
needs.

The following result is a consequence of the theory and the computations
developed in [Pal] and [Pa2] (adapted here to the case of higher multiplicity) and
we do not reproduce the proof here. It is also stated in the following form in [Pa3],
Chapter 4.

Theorem 11 Let (i,5) # (0,0) be fized. Let H = fH}(t)da}(t) be a quantum
stochastic integral on ® that satisfies the assumptions (HS). Then PsH Ps is an

operator on T® of the form
> hf(n)af(n+1)
kil n

where the sum is over all couples (k,1) in (AU {0})? different from (0,0) and is
meaningful in the weak sense. The operators hf are given by:

— if both i and j are nonzero,

1 tntl :
hf(n) = 6yi0yj——— Ps / Py, Hi(t) dt
thrl - tn t

n

—ifi=0, t
n+1

1
h(n) = 6 ———=P,
1 (n) lj Tt — S .

Py, HJ(t)dt
and for all k # 0,

1 tnt1
B ’Lf] = O;
k 1 i j
ho(n) = 6ki 7mps /t Py, Hy(t) dt

and for all 1 # 0,

1 tntl :
hi(n) = 6pi———Ps / P, (ah(t) — ab(t,)) Hi(t) dt.
tn—i—l tn t

n

II1.4 Quantum Langevin equations

In this article what we call quantum Langevin equation is actually a restricted ver-
sion of what is usually understood in the literature (cf [G-Z]); by this we mean that
we here study the so-called quantum stochastic differential equations as defined
by Hudson and Parthasarathy and heavily studied by further authors.
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This type of quantum noise perturbation of the Schrodinger equation is ex-
actly the type of equation which we will get as the continuous limit of our Hamil-
tonian description of repeated quantum interactions.

The aim of quantum stochastic differential equations is to study equations of
the form

AUy = Y LU da(t), (10)
i,EAU{0}
with initial condition Uy = I. The above equation has to be understood as an
integral equation

t
Uy =I+/ > LiUydaj(t),
0 i jeAu{o}
for operators on Hy ® ®, the operators L; being bounded operators on Hg alone
which are ampliated to Ho ® ®.

The main motivation and application of that kind of equation is that it gives
an account of the interaction of the small system Hy with the bath ® in terms of
quantum noise perturbation of a Schrédinger-like equation. Indeed, the first term
of the equation

dUy = LU dt + . ..

describes the induced dynamics on the small system, all the other terms are quan-
tum noises terms.

One of the main application of equations such as (10) is that they give explicit
constructions of unitary dilations of semigroups of completely positive maps of
B(Hop) (see [H-P]). Let us here only recall one of the main existence, uniqueness
and boundedness theorems connected to equations of the form (10). The literature
is huge about those equations; we refer to [Par] for the result we mention here.

Remark. The Hilbert-Schmidt type of summability condition we use here (in the
case where H is infinite dimensional) is not quite the usual one used in the theory
of quantum stochastic differential equations, but it is the one we need for our
convergence theorems.

Theorem 12 Let Hy be a separable Hilbert space and let L;, 1,7 € AU {0}, be
bounded operators on Hy. Assume that

, /2
1= X IEF)” <o

i,7€AU{0}

then the quantum stochastic differential equation
t
U =1+ Z/ LiU, da’(t)
— Jo
i,

admits a unique solution defined on the space of coherent vectors.
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Furthermore, if the coefficients L; are of the form

1
0 __ . *
Ly=—(iH + 3 E LiLy)
keA

LY=1,

Ly=->Y LS
keA
Li =St —6;1.

for a self-adjoint operator H, some operators L;, i € A and some operators S},
1,7 € A such that (S;)q;JEA is unitary, then the solution (Uy),s, is made of unitary
operators. B

IV Convergence theorems

IV.1 Convergence to quantum Langevin equations

We are now ready to put all the pieces of the jigsaw puzzle together and prove
that the Hamiltonian dynamic associated to repeated quantum interactions spon-
taneously converges to a quantum Langevin equation under some normalization
conditions on the Hamiltonian. Notice that for the first convergence theorem we
no longer assume that IL(h) has been conveniently constructed for our needs; in
particular IL is not assumed to be unitary. We shall come back to the unitary case
later on.

Let h be a parameter in IR", which is thought of as representing a small time
interval. Let IL(h) be an operator on Hy ® H, with coefficients L;(h) as a matrix
of operators on Hy. Let u,(h) be the associated solution of

Un+1 (h) = ILn+1 (h)un(h)

with the same notation as in Section II.3. In the following we will drop dependency
in h and write simply IL, or u,. Besides, we denote

Eij = %(501‘ + d0;)
for all 4,7 in AU {0}. That is,
1
5, Eij = 0, o0 = 1.
Note that from now on we take the embedding of T® in ® for granted and we
consider, without mentioning it, all the repeated quantum interactions to happen

in T®(h), the subspace of ® associated to the partition S = {¢; = ih;i € IN}. We
also make the convention that the default summation sets for sums is AU{0}, e.g.,

2o s ZiEAU{O}'

€i0 = €0j =
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The following theorem is our general convergence result.

Theorem 13 Assume that there exist bounded operators L;, 1,7 € AU{0} on Ho

such that -
> I < oo
i,7EAU{0}
and )
, Li(h) =651,
DU

4,jEAU{0}
for all j € AU{0}. Assume that the quantum stochastic differential equation

AU, = LU, daj(t)
1.7

with initial condition Uy = I admits a unique solution (Uy),~, which is a process
of bounded operators with locally uniform norm bound. B
Then, for all t, for every ¢, v in L>=([0,t]), the quantity

(a®e(p), Psup nPsb®e())
converges to
(a®e(9), Urb®e(y))

when h goes to 0.
Moreover, the convergence is uniform for a, b in any bounded ball of H,
uniform for t in a bounded interval of IR .

Remarks.
— This is where we particularize the index zero: the above hypotheses of conver-
gence simply mean that, among the coefficients of I,

(ILJ(h) — I)/h converges,

Eé (h)/Vh converges if either i or j is zero,

Eé (h) — ¢;,; converges if neither ¢ nor j is zero.
We here meet the announced three time scales appearing in the Hamiltonian. We
shall discuss the physical meaning of these normalizations in next section.

— In the case where the operator IL is unitary and satisfies the convergence as-
sumptions of the above theorem, then one can see that the limiting operators L
are of the form given in the second part of Theorem 11.

— In that case, the solution (U;);cr, enjoys a particular algebraic property which
we won'’t define here: it is a cocycle (see [H-P] or Chapter 6 of [Pa3]). This property
traduces the fact that the evolution of the system is, in the limit, memory-less.

Consider the quantum stochastic differential equation on Hy ® ®:

dUs =Y LU, da(s)

i3
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where the L; are the bounded operators on the initial space Hy given by our
assumptions.

We consider that h is fixed and the associated partition § = {0 = ty <
t1 =h <<t =kh< -} is also fixed. Note that we have chosen a regular
partition only for simplicity and that all our results hold with general partitions
when the mesh size tends to 0. We fix some bounded interval [0,T] of IR .

We will proceed by successive simplifications. Consider the operator on the
atom chain defined by

WE = PSUtk Ps.
The following lemma will be used over and again: as a first application note that,
together with obvious estimates it allows us to prove the convergence in Theorem
13 for almost all ¢ only.
Lemma 14 For any r < s, for any vectors a @ (), b ® () such that
¢, € LA(IRT;H') N L¥(RT5 M),
we have
(a®@e(¢), (Us = Up)b@e(y))| < Cllal [l (s —7)

where C depends only on ||L||, defined in Theorem 12, and on the L* and L™
norms of ¢ and .

Proof.
a®e(9),(Us —Ur)b@e(¥))]

< Z/: |6:(u)| [;(w)] [(a®e(e), LiUb @ e(1))] du

< HLII/ o)l [P (W)l la @ (@) [Uub @ e()] du

from which the estimate follows, using the fact that ||¢(u)|| < [|¢] ., and [[9(u)| <
[¢]l > the L’ are bounded and U is locally uniformly bounded. O

The following lemma shows that (wy), converges to (U;),s,, in the same
weak sense as in the theorem, as h goes to 0. B
Lemma 15 For any ty, < s, any vectors a ® (@), b ® e(v)) with
¢, 9 € LA(IRT;H') N L¥(RT5 M),
we have
[{a ®e(9), (wp — Us)b @ e())]
< Cllal[oll ((s = t&) + |(I = Ps)e(@)ll + (I — Ps)e()]])
where C' depends only on |L| and on the L? and L> norms of ¢ and 1.
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Proof. We have

l{a®e(9), (wp—Us)b®@e(y))]
< [{a®e(), (U, —Us)b@e())]
+ [{a ® e(¢), (PsUy, Ps — Uy, Ps)b @ (1))
+[{a ®e(9), (U, Ps — Uy, )b @ ()]

= Z/t: |:(w)] ¥ (w)| [{a ® £(8), LiULb @ £(4h))| du

+ (I = Ps)a @ ()| U, Psb @ ()|
+[|Ufa@e(@)| 11 = Ps)p @ e(v)]

and we conclude as in the previous lemma. O

We can now prove Theorem 13.

Proof of Theorem 13. Let w?(h) be such that
I (h) — 6i;1 = b3 (L} + w!(h))
for all 4,5 in AU {0}. In particular we have that,
i 2
> sl
4,jEAU{0}
converges to 0 when h tends to 0.
Consider the solution (uy), ¢y of
Un+1 = LnJrlun

with the notations of Section II.3. Note that if A denotes the matrix IL — (0;;1); ;
we then have
Up41 — Un = An+1un~

Let F be the matrix (h%s LY + gij hLY); ; where

~ 1 ifi=jand (i,5) # (0,0),
Y 0 ifi#jor (i,5) = (0,0)

and consider the solution (v,),,py of the equation

ne
Unt1l — Un = Frq10n.
Note that
Apig = Z Aja; (n+1)
4,7

and similarly for Fj, ;1.

Also note that a}(n+ 1) commutes with u,, (resp. v, ), for they do not act on
the same part of the space T®. Thus we get another useful way to write the above
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equations in terms of the basis a}(n):

Upt1 — Up = Z A;un a;’»(n +1)
4,
and
Vil — Up = Z (hew'L; 4 S\ithg) Un, aé-(n +1).
0,
From the above lemma it is enough to prove the convergence to zero of u,, — wy.
We actually start with w, — v,.

From the fact that
b1 ,
Utk+1 - Uy, = Z/ L;'US da;(s)
i,j Jte

and thanks to the formulas for projections of Fock space integrals onto the toy
Fock space in Theorem 11, one obtains the followmg expression for wy11 —wy, (be
careful that the da(t) mtegrals gives rise to al(k) terms for all i, for I = > al):

(2

] 1 bt i
W1 — WE = Z hEid Lj (E Ps P, Uy dt) aj(k} +1)Ps
1.7#(0,0) e

+Z hLO( Ps
+ZZPS( /tk I(LgPtkUt(aé(t) _ag(tk))) dt

i€EA JEA

tht1

U, dt) at(k +1)Ps

+ h /tkk#(L?Ptk Ut(a?(t) — a?(tk))) dt) a;(k +1)Ps.

As a consequence

U”—Z Z h¥i Lia k+1)(%P5

k<n 1,j#(0,0)

1 tht1
+3° > hLyai(k +1) (Eps/tk UtdtPg—vk)

tht1
Ptk U; dtPs — Uk>

ty

k<n 1

SR HUAH | (LhPviain) - ahn) dr
k<ni€A jeA

w1 [ W - ) @) B, )

We first wish to replace + Ps ftt:“PtkUt dt or + Ps ftt:HUt dt in the first two terms
by wg. Lemma 14 allows us to estimate the error term. Consider two essentially
bounded functions ¢,v € L?(IR") and two vectors a, b in the unit ball H; of H.
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We expand the first terms in (11) and estimate each term:

(@ e(d), Y L (%ps

k<n

tht1

Ptk Ut dt — ’LUk) Cl;- (k’ + 1)b Y 6(’!;»’
123

bilk)|

tet1
)

~ 1 ~
(@@ edu), PR Ly [ (Us = Ui, )dsb o e(d)
tr

<> |éiw)
k<n
where we have omitted a uniformly bounded factor
<a ® e(Pprr2) b ® 6(113[16+2)> ~
From the fact that >, }(ﬂ(k)‘ < VRl 3, zﬁz(k)‘ < V|||, we obtain an

estimation of the error term of the form
Cllall o]l VR

for some constant C' which depends only on ||L| and on the L? and L® norms of
¢ and 1.

On the other hand, the error term obtained by replacing f Ps f::“Ut dt by
wy, in (11) is clearly dominated by C h in norm because Y, hLja!(k+1) is just hLJ.

We now seek to evaluate the third sum in (11); for that consider again two
functions ¢, ¥ in L2 N L™ and two vectors a, b in the unit ball 7, of H; we have,
up to an uniformly bounded factor,

S [we e Lips( [ PLULG(s) — ad(t) ds) aik + 1) Psb e s(zm\

i,jEA tk

= 3 [600®)] [eoe@u) 1 2s [ Ualad(s) - at)bo el ds)
i,jEA tk

< th3/27

for a?(s) — a}(t1,) is bounded on @, , with norm /5 — f5. One obtains similarly
ijEA
< Ch*?,
so that the third sum in (11) is bounded by C VA2t ||¢] ., |1¥]l..-
We have shown that, putting Fj, =}, ;(h*% Li + &thg) al(k+1),
[{a ® &(¢), Ps(wn — vn) Psb @ e(¢))]
=3 [@®e(d), Fulwe — v b e(@)] +o(1) (12)

k<n

tht1
(@@ e(0). 7L Ps [ P UMals) = al(00)) s+ 1) Psb @ <(v)

where o(1) is a term which converges to zero as h goes to zero uniformly for a, b
in H1 and for t in a bounded interval. That uniform convergence property will be
important in the sequel.
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Expanding F}; in equation (12) gives
|<a ® 5(¢) Ps(wy, — Un)PS b® 5(¢)>|

<ZZh€” ‘ z/;z H Lz a®e(¢k) (w k_vk)b®€(7/~}k])>‘
i,j k<n

3D |G| |9 [(28)"a @ e, (wi = v)b @ ()|
i€EA k<n

+o(1),

where in each term we have omitted an uniformly bounded factor and the notation
o(1) indicates a function of h which converges to zero as h goes to zero.

Since ¢ and ¥ are essentially bounded, the quantities >, ; h/ b (k)| i (k)|

and ) ;o h|gi (k)| |1s(k)| are again of order h at most, with an estimate which is
independent on k. Besides, remark that normalizing all operators would only imply
an additional constant factor, so that we can assume all the Lé to be contractions.
In that case the above implies that for all n,

SUPq b e H, (a® e(én]), (Wn — )b ® e(";n]»’

<ShC supy e, (0@ e(dr), (wk — vi)b @ ()| + o(1)
k<n

for some constant C'. Here we have used our earlier remark that all convergences
are uniform in a, b € Hy. This implies that

(@ @ e(dn), (wn = va)b® ()| < (1+ CR)" x o(1)
and since nh converges to t, the quantity (1 + Ch)™ is bounded so that

<a“ ® e(q;n])a (wn - 'Un)b ® 6(1[}”,]»‘

converges to zero as h goes to zero.
We have proved the desired convergence property for the process (wg)g>o-
Now we will prove that

Supa,be H1

Supa,bEHl

Supa,bEHl

<a“ ® e(q;n])a (un - 'Un)b ® 6(1[}”,]»‘

converges to zero as h goes to zero. We have

=D Filun—ve) + 3 | D0 (wj(h) — hbig L)aj(k+1) |

k<n k<n 1,

=y Fk+Zh€w — Ry LY)ak(k +1) | (up —vk)

k<n

20 | 2o )~ hbiLY)ai(k+ 1) | v (13)

k<n 1,
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Replace for simplicity w?(h) by w’(h) — hgij LY (which does not change the validity
of the earlier estimates). The interest of the second form lies therein, that the term
without recurring ui — v can now be estimated thanks to our previous result:

@@ (@), Y (3 niwi(al(k +1) o b @ e(h))|

k<n  i,j

is bounded by

S (0 |65k [0 [ W) supa e, |(a @ e(u), veb@ el
k<n 1,7
’ (14)
with
SUPg b e H, <a®€(ék]),vkb®e@k])>’

< swpgpere, ([(@ @ edn), (v = web @ e(hy)| + [0 © (i), wi b o e(wn)])

and our estimate shows that the first term on the right-hand side converges to
zero uniformly in k as h goes to zero. The second term is, in turn, bounded by
lle(@)|| lle()|| since any wy, is PsUy, Ps and as such has bounded norm.

Thanks to our assumptions on the perturbative operators, the bound (14)
converges to zero as h goes to zero, uniformly for a, b in H;.

Besides, for the recurring term in (13) we easily obtain as before

(@8 @), 3 (Bt S=0wh 0+ 1)) (w1~ 0 ()

Supa,bEHl
k<n 2,7
SRCY subupen, [(0® e(r), (v — wi)b @ (b))
k<n

thanks to the fact that the w} are assumed to have norms which converge to zero
uniformly in h. We conclude as in the previous case.

This ends the proof. O

Under some additional assumptions, which are verified in many applications,
we can very much improve the convergence.

Theorem 16 Consider the same assumptions and the same notations as in The-
orem 13. If ||ug||p (the norm of operators on T®) is locally uniformly bounded,
then Psup/n Ps converges weakly to Uy on all Ho @ ®. If furthermore ||ug||s (the
norm of operators on ®) is locally uniformly bounded, then up /) converges weakly
to Uy on all Hy ® .

Proof. Theorem 13 allows us to perform a €/3 argument with an approximation of
any vectors of Ho® ® by combinations of vectors a®e(¢), b@e(¢) with essentially
bounded functions ¢, 1. O

One of the main application of this last theorem is the case when the matrices
IL(h) give rise at the limit to a matrix L such as in Theorem 12 (the case of a
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unitary solution (U;),~,). We shall show that the associated discrete evolution
(tn),cpv satisfy the conditions of the above theorem, so that the convergence of
ufy/n) towards Uy is weak.

Theorem 17 Consider a matriz IL on Ho @ H with coefficients

o1 .
]Lg:I—h(zH—kizkszLk)—i—hwg

LY =VhL;+ hot
Ly =-Vh) LiSF+ hwj
k

L) =1+ S — 61+ hw}
where H is a bounded self-adjoint operator, (S;:)MEA, is unitary and L;, i € IL are
ik

operators on Hy, where the coefficients w§ are such that 3, ; Hw;

is uniformly
bounded and ||wd(R)| converge to 0 when h tends to 0.

Then the solution (un), cpn of
Un+1 = En—i—lun

is made of invertible operators which are locally uniformly bounded in norm.
In particular ugn) converges weakly to the solution Uy of (X).

Proof. A straightforward computation shows the special form of IL induces many
cancellations when computing the coefficients of IL*IL — I and of ILIL* — I, and
that they are of order h. Thus for A small enough the operators IL*IL, ILIL* and
thus IL are invertible. Thus so are the operators u,,.

Furthermore the above estimates show that ||| < +/1+ Ch. This easily
gives the locally uniform boundedness of (u,),, v and thus the desired weak con-
vergence. [l

Specializing some more will allow us to answer the natural question of con-
vergence of Heisenberg evolutions of observables:

Corollary 18 If the operator IL is unitary and satisfies the conditions of Theorem 13
then the solution (Uy)iemr, of (E) is unitary. In this case the convergence of uj/p)
to Uy is strong and for all bounded operator X on Hy ® ®, all t, the sequence
u’["t/h]Xu[t/h] converges weakly to U XU as h tends to zero.

Proof. Tt is easy to see from the above conditions that the operators (L;)z ; satisfy
for all 4, j

Li+ L+ > Lyl =0
keA

i i * krkx

Li+ L+ > Lirk =0
keA
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which implies that the equation (E) is of the form which has unitary solutions (see
Theorem 12).
By Theorem 17 and Proposition 1, for all ¢, uf;/p,) is a sequence of contractions
that converges weakly to a unitary operator, so that strong convergence also holds.
It is now straightforward to prove the statement regarding convergence of
u[*t/h]Xu[t/h] to U XUy, for bounded X. O

IV.2 Typical Hamiltonian

We are now coming back to the initial physical motivations of Theorems 13, 16
and 17. These theorems show up quite strong conditions on the unitary operator
IL = e~ *"H and a natural question now is: what kind of Hamiltonian H will produce
such conditions on IL7 What is the typical Hamiltonian for repeated quantum inter-
actions which will produce quantum Langevin equations at the continuous limit?

In this section we answer partly that question. We answer it as we exhibit
a large family of such Hamiltonians and we conjecture that they are the typical
ones. We do not fully answer the question for we are not able to prove that they
are the only ones.

We keep here the notations of Section I1.1-II.3.

On Hy ® H consider the following Hamiltonian

H:Ho®I+I®Hs+%Z(Vi®a?+Vf®aB) +%Z Dj;®ad}  (15)
€A i,jJEA
where Hy, V; and D;; are bounded operators on Ho (with Hy hermitian and
D;; = D;‘i), and Hg is hermitian on H and contains the basis elements X* in its
domain.
Put H’ to be the closed subspace of H generated by the basis elements X,
i € A; that is, the orthogonal of X? = ). Consider the “column operator”

Vi
v=|"

as an operator from Hy to Ho ® H’. Assume that this operator is bounded.
The adjoint of V is then the “row operator”

Vi=(ViVh ..

from Ho ® H' to Hp.

Define the “matrix operator” D = (D;i)q,j as an operator from Ho ® H' to

Ho ® H'. We also assume D to be bounded.

Let us relate the above Hamiltonian with the usual literature on weak cou-
pling and low density limits.

Recall that, in the literature about weak coupling limit, the bath is usually
made of several harmonic oscillators (a Fock space) with associated creation oper-



Vol. 7, 2006 From Repeated to Continuous Quantum Interactions 91

ators a*(g) and annihilation operators a(g), where g runs over a Hilbert space H.
The Hamiltonian which is considered is then of the form

H=Hy@I+I®Hs+X(V®a(9)+V*®Qalg))

The part V ® a*(g9) + V* ® a(g) corresponds to the typical dipole Hamiltonian
usually considered in the weak coupling limit or van Hove limit (cf [Dav], [D-J]).

This Hamiltonian meets (15) when considering an orthonormal basis (e;) of
‘H and when one writes

(V@a™(g)+ V" @alg) = Z ({ei; 9)V @ a”(e:) + (g, ) V" © aleq))

Our time renormalization term 1/ VI does not actually corresponds to the usual
time renormalization for the weak coupling limit (t/A\?> = 7), we are more in a
situation which looks like a strong coupling limit. Actually, as is shown in [AJ1],
they are intimately related, when considering the setup of weak coupling limit for
repeated interactions.

On the other hand, interaction Hamiltonians of the form D ® a*(f)a(h) +
D* @ a*(h)a(f) are of scattering type. They present some important similarity
with the typical interaction Hamiltonians considered in the low density limit (cf
[APV], [AFL]), but we are not able to show that this similarity contains anything
deeper.

We are now back to our general Hamiltonian (15).

We shall take compact notations for the unitary quantum Langevin equations
of Theorem 10. Consider the equation

AUy = LU, dai(t) (16)
i!j

with
. 1 -
L8 = —(ZK + 5 Z LkLk)
keA
Ly =1L,

Ly=-> LSk
keA
L% =5 — i1,
where K is a bounded self-adjoint operator and (S;)Me A is unitary.
We write W for the column operator

L,
Lo
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and S for the matrix operator (S;)z ;- Then, with obvious notations

1
L§ = —(iK + ZW*W)

L'=w
Ly=-W*S
L =5-1
With the Hamiltonian H given by (15), put
U = e—ihH

and consider the evolution equation for repeated interactions associated to U:
Un+1 = Un-l—lun-

Theorem 19 The solution (uy), .- of the discrete time evolution equation con-
verges strongly in Ho®@® to the solution (Ut)tzo of the quantum Langevin equation

dUy= Y LiUddi(t)
i,jEAU{0}
where, with the same notations as above
K = Hy+ (Q, HsQ)I + V*D~?(sin D — D)V
W=D""e"P -1V

S =e P,
Proof. Put k; = (X7, Hs X" for alli,j € AU{0}. We consider the column operator
KT
k)= |

the row operator
(k| = (kdI k3T ...
and the matrix operator 4
k= (k;-I)MeA .
They all are bounded operators.
Put H = Hy+kJI and M = (M;)i,jeA with M} = 6;; Ho+ k%1. We then have
_ ( H FVr+(k |>
ﬁv +|k)y  +D+M
as an operator on Hy ® H which is decomposed as an operator on Hy ® (CQEH H').

In particular N
B hH VhV* + hik|
" \VAV+hlk) D+aM )

Let a be a bound for |||, [V, DI, M1, 1kl ).
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Lemma 20 For all m € IN we have
(hH)m — hAm + h3/2R71n \/EBm + hRTQn
- \VRCy,, + hR3,  D,, +hR%,
with
[ Xom || < ™
forall X = A, B,C,D and A
[Ro]| < 7 la
for alli=1,2,3,4; with
Am+1 :V*CT/M AOZLAl :ﬁ
Bpi1 =V*Dy, By=0,B, =V~
Cerl :Dcm, C():O,Cl =V
D1 = DDy, Dy=1.
Proof of the lemma. For m = 0 the statements are clearly satisfied. For m = 1 we
find the announced Ay, By,C1, Dy and R} =0, R? = (k|, R} = | k), Rf = M. The
norm estimates are then clearly satisfied. Now, applying the induction hypothesis
and computing (hH)™*! from (hH)™ we get

Apy1 =V*Cp and [|Api1]| € o™ = o™t

Rl .1 =VhHA, +hHRL + V*R> + (k|Cp + VR(k|RE,
RS || < 57 tam+t) < 7rmamt

Bpy1 =V*Dy, and || Byl € aa™ = o™t

R% .\ = VhHB,, + hHR2, + VhV*R:, + (k|D., + h{k|R%,
|RZ, ]| < 5(Tm tamt) < 7mam

Cpnt1=DCyp  and [|[Crppa|| € aa™ = o™

R:.\ =VhVA, +hVRL + DR + VhMC,, + hMR?,
|R3, 44| < 5(Tmtamt) < 7mamt

D41 = DDy, and || Dyt < aa™ = a™t!

R} .\ = VB +hVR% + Vh|k)By, + h| k)R, + DR} + MD,, + hMR%,
|Rpa|| < 7(7 Tam ) < 7L

The lemma is proved.

In particular, we get

D,, =D™
B"L — V*DTYL—l
C = D"V

A, =V D™ 2V,
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By the norm estimates of Lemma 20 we have that the series

m' m
are norm convergent. Let us denote by R* their respective limit.
We get
L=> ——(H)" =
I — Zhﬁ + h E::Z (_n?!m V*DTYL—QV \/52221 (—n:)!m V*Dm—l
+R3/2R1 +hR?
\/E Z::l (;:L)'m DmilV I+ Z::l (::L)'m D
+hR? +hR2,
This gives
I —ihH+hV*D 2" — [ +iD)V  VAV*D (e P —1I)
+h3/2R! +hR?
U =
VhD= (e P — )V I+ (e7P — 1)
+hR? +hR2,

We are exactly in the conditions of Corollary 18 and we thus get the strong con-
vergence to the solution of

dUy = Y LiUddi(t)
i,jEAU{0}

where

L) =—iH+V*D 2(e”"P — I +iD)V

LO=D e P - )V

Ly=V*D (e P —T)

L =e P
If we put W = L% and S = e~ ", we then get

—W*S = -V’ —I)D'S=V*D (e - 1) =L

and

1 1
CIWW = =
2 2
1
= —§V*D72(cosD - V.

Vi’ =D 'D e P =)V

This shows that
~ 1
Ly = —iH —iV*D *(sinD — D)V — 5W*W.
The theorem is proved. |
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Let us interpret the above theorem in terms of weak coupling and low density
limit again. If in the above Hamiltonian we consider no term D;;, that is,

H=Hy@I+I0Hs+—=> (Vi®a + V" @a))

1
VhiZ
then we are in a similar situation than the one of a weak coupling limit, with its
typical dipole interaction Hamiltonian. The quantum Langevin equation we obtain
in Theorem 16 then simplifies to

1
U, = — <iH0 il HsI +5 Y ij%) Uy dt +
i

+ Y Vil dad(t) = > Vi Uy daf(t).

This is also typical of the “diffusion” type of quantum Langevin equation one can
meet in the literature for this kind of limit. The fact that only creation and anni-
hilation quantum noises are involved is here the quantum analogue of a classical
stochastic differential equation with Brownian noise. Note that if the V;’s are such
that V;* = —V; then the above quantum Langevin equation becomes a classical
stochastic differential equation with Brownian noises:

. _ 1
AU, = — <ZHO +i(Q, HsQ)I + 3 Z Vf) Uy dt + Z ViU, dW;(t).

We refer to [Atl] for a complete discussion on the classical stochastic interpreta-
tions of the quantum noises.
On the other hand, if in the Hamiltonian we consider no term V;, that is,

1 .
H=Hy®I+I®Hs++ > Dij®a
i,jEA
then the quantum Langevin equation we obtain in Theorem 19 simplifies to
dU; = —i(Ho + (Q, HsQ) DUy dt + > (Si — 8;5)Uy da (1)
i,jEA
where § = e™*P.
This is a rather classical type of Langevin equation which actually describes
a scattering of the bath.
The surprise in our setup in the apparition of the term
V*D™2(sin D — D)V
only when both the limits are in presence in the Hamiltonian.
Indeed, the term
1
LY = —(iK + 5W*W)
is the driving term of the dynamic associated to the quantum Langevin equation.
In some sense it is the generator of the dynamic on Hy. The part %W*W is
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representative of the dissipation from Hg to the bath. The part i/ is an effective
Hamiltonian on Hy. The apparition of this new contribution V*D~2(sin D — D)V
is new in this situation.
Instead of interpreting the typical Hamiltonian
H:H0®I+I®HS+LZ(%®a?+W®a6) o Y Dij®d
vh ieA h i,jeA
as being h dependent, one can view the above expression as a usual constant
Hamiltonian
H=Hy@Il+I®Hs+» (Viod +V/@ap)+ Y Dj®@al
icA i,jeA
but for a photon field which has been renormalized:
W0 s g0
3 \/E 7

Indeed this renormalization implies

and

IV.3 Hamiltonian description of von Neumann measurements

Our setup and approach allow to construct an Hamiltonian description for the
usual von Neumann measurement procedure (collapse of the wave packet postu-
late).

On some quantum system state space Ho consider an observable A with
discrete spectrum (maybe infinite). Let Py, P, ... denote the associated spectral
(orthogonal) projections, with ), P = I.

We want to give a model for the action on Hy of an exterior measurement ap-
paratus which measures the observable A. That is, the action of the measurement
apparatus on Hg should be to transform any observable X of Hj into

> P.XPy.
k

Let ‘H be a Hilbert space with one more dimension than the number of pro-
jectors Py, involved above (infinite dimensional if the Py’s are in infinite number).
On H consider an orthonormal basis 2 = X, X1, Xo,... and the associated cre-
ation operators ag and annihilation operators af, as in Sections I1.1-11.3. Consider
the following Hamiltonian on Hgy ® H:

1
Hzﬁzk:(iPkQ@ag—iPk@a’g).

Let U = e~ and consider the process
Up+1 = LnJrlun
of repeated quantum interactions on Ho @ @ p« H-
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Theorem 21 The repeated quantum interaction process (un)ne - converges weak-
ly in Ho ® @ p+ H, when h tends to 0, to the solution (U;),, of the quantum
Langevin equation a

1
dUy = =5 Uy dt + > (iPU da(t) — iPyUy dag(t)) .
k

Furthermore, for any observable X on Ho, the partial trace along the field Q) p+ H,
in the vacuum state, of Uf(X & I)Uy converges, when t tends to +o00, to

Z P.XP,.
k
Proof. In the basis 2 = Xg, X1, Xo,... for H the Hamiltonian H writes as
0 —ig=P1 —iz=P

1
Zﬁpl 0 0

H=1]7
i P 0 0

G

In particular, as an easy direct computation shows, we have
cosvVhI —sin \/EPl —sin\/EPQ
sin vh P, cos Vh P 0
sin vh Py 0 cos Vh Py

This unitary matrix clearly satisfies the conditions of Corollary 18 (one could also
have directly applied Theorem 19 to the Hamiltonian), we thus have the weak
convergence to the announced quantum Langevin equation

1
dU; = =5 Uy dt + > (iPUy daf(t) — iPeUy dag(t)) ,
k

with Uy = I.
Now, consider the evolution under (Ut)tzo of a system observable X:

U (X ®I)U;
and the partial trace along the field @+ H in the vacuum state:
PAX) = (Q,Uf (X ® DU
with the notation
(a, (2, AQ) by, = (0© 2 A B S Do), #

for any operator A on Ho ® Q p+ H, any a,b € Ho.
It is well known from the usual theory of quantum stochastic differential
equations (cf [H-P]), that (Pt)tzo is then a semigroup, on B(Hp), of completely
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positive maps with Lindblad generator

L(X)= —% > (PX + XP, —2P,XP,).
k
One could also have obtained this “quantum master equation” by simply com-
puting the discrete time quantum master equation associated to (un)ne N+ using
Theorem 2 and then by passing to the limit A — 0 to recover (), (see Section
IV.5). Our approach has the advantage to also describe the exact equation for the
interaction with the bath.

We thus get
LX)=)> PXP—X
k
so that
L3(X) = —L(X)
and
P(X)=e“(X)=(T+(1—-e L) (X).
That is,
P(X)=(1-e") PXP+e'X
k
which converges to
Z P, X P,
k
when ¢ tends to +oo. |

We thus have proved that a von Neumann measurement apparatus can be
described in an Hamiltonian setup by, first considering an Hamiltonian description
of a repeated quantum interaction, second, passing to the limit to continuous quan-
tum interactions (h — 0) and third, passing to the limit to large times (t — 4o00).

The authors are grateful to Prof. K.B. Sinha for bringing to their attention
this application.

IV.4 An example

We shall here follow a very basic example. It is actually the simplest non-trivial
physical example and it already gives very interesting consequences.

Assume Hy = H = €? that is, both are two-level systems with basis states
Q) (the fundamental state) and X (the excited state).

During the small amount of time A the two systems are in contact and they
evolve in the following way:
— if the states of the two systems are the same (both fundamental or both excited)
then nothing happens;
— if they are different (one fundamental and the other one excited) then they can
either be exchanged or stay as they are.
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In the base {2®@ Q,0® X, X ® Q, X ® X} the operator IL is taken to be of
the form

1 0 0 0
0 cosa —sina 0
IL = .
0 sina cosa O
0 0 0 1
The associated Hamiltonian is thus

0 0 0 0

7— 0 0 —ia/h 0

so that IL = e~ "hH
For the choice o = v/h, that is,

00 0 0
1 [o0 —i 0
H‘ﬁ()z'oo

00 0 0

we get

1 0 0 0

0 cosvh —sinvh 0

0 sinvh cosvh 0

0 0 0 1

Repeating this interaction leads to an Hamiltonian equation of the form

L =

Up+1 = LnJrlun

o (1 0 o_ (0 sin\/ﬁ

LO_<O cos Vh Iy = 0 0 ’
1 0 0 1 cosvh 0
]LO_<—sin\/E o) Ti="0 1

for IL. We then have
. Ly-I (0 0
o b \0 —1/2

with coefficients

o . {00
pi Iy I‘<0 0>'

We are exactly in the condition for applying Theorem 15 since for all A the matrix
IL(h) is unitary. We get that for all ¢, uf; /) converges weakly to Uy where (Uy)ier,
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is the unitary solution of

1
dU, = —§V*V Updt + VU dal(t) — V*Uy dap(t)

with V = <8 (1)> This equation is the well-known quantum Langevin equation

associated to the spontaneous decay into the ground state in the Wigner-Weisskopf
model for the two-level atom (see [M-R] for example).

IV.5 From completely positive maps to Lindbladians

Recall, from Section I1.3 that the solution (un)ne v of the equation
Unp+1 = LnJrlun

with ug = I induces a completely positive evolution on the small system. Namely,
in the Heisenberg picture, one has for any a,b in Hy, any X in B(H),

(a®Q,u; Xupb® Q) = (a, 0" (X) b)
where
0X) =) (L))" XL].
ieIN
Theorem 22 Let IL(h) = (E;(h))i.j=0....n be a family of matrices such that
S LY (R)*ILY(h) = T and such that
~ (IL§(h) — I)/h converges to some LY,
~ LY /vh converges to some LY for alli=1,...,n.
Then there exists a self-adjoint operator H in B(Ho) such that for allt € R™,
Jlt/h] _ tL
in operator norm, where L is the Lindblad generator
— 1 0%y 70 _ 70% 70y _ 3 70*70
LX) = ilHX] +5 > (2Li XLO — L0 10X — XL Li)
i€ IN
and { is defined above.

Proof. 1t is a straightforward computation that

UX)=X+h(LY X + XL +hY LI XL+ o(h | X]).
i=1
The equality ¢(I) = I entails
(LY + LY+ > LYLY=0
i€ IN

1 )
i<L8+§ZL? LQ)

i€ IN

so that



Vol. 7, 2006 From Repeated to Continuous Quantum Interactions 101

is self-adjoint. We denote it by H. Then ¢ is of the form

1 * * *
UX)=X+h <i[H, SEEDS (2L? XLY— L0 LOX — XL? L?)) +o(h | X)),
ieIN
which is, with the notations of the statements
X)) =X+ hL(X)+oh]|X]|).
The above mentioned convergence is therefore clear. O

As a consequence, it is very easy to obtain approximations of solutions of

continuous-time master equations:

dX,

St r(x)
by solutions of discrete-time ones:

Tpt1 = L(zy).
Yet notice that the master equation gives no information whatsoever on the in-
teraction between the small system and the environment or on the environment
itself. On the other hand, the associated quantum Langevin equation contains the
information of the whole system; this justifies our effort.

Notice that, in the above proposition, no hypothesis is needed on the other
coefficients of the matrix IL(h). Their properties actually depend on the choice of
additional features of the matrices IL(h), for example their unitarity. The possibil-
ity of choosing IL(h) to be unitary and obtain in the end the desired Lindbladian £
is described by Parthasarathy in Exercises 29.12 and 29.13 of [Par].

What’s more, these manipulations show that the hypotheses of convergence
of Theorem 17 are not as artificial as it seems, and are not only convenient as-
sumptions we set up in order to obtain the right convergence. Indeed, to IL(h) is
associated both a dynamic on the observables, as we have seen, and an evolution 7,
defined by

(a, b)) = (a ® Q, u, bR Q)
for all a,b in Hy, which turns our to be
Tn = (]Lg)n~
If one assumes that 7;/5) converges for almost all ¢ and that ]L8 is assumed to be
continuous at A = 0 then the assumption on ILJ in Theorem 17 is to be fulfilled; this
implies that 7" | L{*ILy = —h(L8* + LY) + o(h), so that the other assumptions
of convergence of Theorem 17 are natural.

The other conditions described in Theorem 13 are in turn necessary if one
wants the process (U;),~ obtained in the limit to be unitary (see Theorem 12) or
alternatively the matrices IL(h) to be sufficiently close to unitarity.

Remark. All the constructions and proofs of this article rely heavily on the fact
that the reference state for the photon chain was chosen to be a pure state, that
is a vector state €. This assumption is here essential for the construction of our
countable and continuous tensor products. The generalization of this work to the
case of an arbitrary state (i.e., a density matrix) has been explored in [AJ2].
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