Erratum to "Determination of Non-Adiabatic Scattering Wave Functions in a Born-Oppenheimer Model"

G.A. Hagedorn* and A. Joye

We correct some typographical errors and mistakes in the published paper [1]. We freely use the paper's notation and equation numbering.

In Section 4, on the scattering properties of exact solutions to the molecular Schrödinger equation, we used too rough a definition of asymptotic states. We need to consider

$$
\begin{aligned}
& \psi^{\sigma}(x, t, \epsilon, \pm) \\
& \begin{array}{l}
=\sum_{j=1, \cdots, m} \phi_{j}(x) \int_{\Delta} \frac{Q(E, \epsilon)}{\sqrt{2 k_{j}(\pm \infty, E)}} e^{-i t E / \epsilon^{2}} c_{j}^{\sigma}(\pm \infty, E, \epsilon) \\
\end{array} \quad \times e^{-i\left(x k_{j}^{\sigma}(\pm \infty, E)+\omega_{j}^{\sigma}(\pm \infty, E)\right) / \epsilon^{2}} d E,
\end{aligned}
$$

instead of $\psi(x, t, \epsilon, \pm)=\sum_{\sigma= \pm} \psi^{\sigma}(x, t, \epsilon, \pm)$. With this definition, Proposition 4.1 should be replaced by

Proposition 4.1' Assume H1, H2, H3 and C0. Then, for any $0<\beta<1 / 2$, we have the following $L^{2}(\mathbb{R})$-norm estimate as $t \rightarrow \pm \infty$,

$$
\left\|\psi(x, t, \epsilon)-\left(\psi^{-}(x, t, \epsilon, \pm)+\psi^{+}(x, t, \epsilon, \mp)\right)\right\|=O_{\epsilon}\left(1 /|t|^{\beta}\right) .
$$

In eqn. (4.4), " $\psi(x, t, \epsilon,-)=$ " should be replaced by " $\psi^{-}(x, t, \epsilon,-) \simeq$," and the qualification "for negative x 's" should be added. Similarly, in the next sentence, the stipulation "for positive x 's" should be added.

The proof of Proposition 4.1 should be amended as follows: Equation (7.14) should begin with

$$
\psi(x, t, \epsilon)-\psi^{\sigma}(x, t, \epsilon, \pm)=\sum_{j=1,2} \phi(x) \times
$$

instead of " $\psi(x, t, \epsilon)-\psi(x, t, \epsilon, \pm)=\sum_{j=1,2 \sigma= \pm} \phi(x) \times$," and every $L^{2}(\mathbb{R})$ should be replaced by $L^{2}\left(\mathbb{R}^{ \pm}\right)$, where $\mathbb{R}^{ \pm}=\{x \in \mathbb{R}: \pm x>0\}$.

[^0]At the end of the proof, one should add the sentence:
If $x \in \mathbb{R}^{\mp}$ and $\operatorname{sign}(t)=\mp \sigma$, one integrates by parts as in (7.12), and one uses

$$
\left|t+\int_{0}^{x} k_{j}^{\sigma}(y, E) d y\right| \geq c(|t|+|x|) \geq c|t|^{\beta^{\prime}}|x|^{1-\beta^{\prime}}
$$

for all $0<\beta^{\prime}<1$, to bound the corresponding $L^{2}\left(\mathbb{R}^{\mp}\right)$ norms by constants times $|t|^{-\beta}$, with $0<\beta<1 / 2$.

Consequently, the statement of Theorem 5.1 should be amended as follows:
A The first equation should read

$$
\lim _{t \rightarrow-\infty}\left\|\psi(x, t, \epsilon)-\psi_{j}^{-}(x, t, \epsilon,-)\right\|_{L^{2}\left(R^{-}\right)}=0
$$

instead of " $\lim _{t \rightarrow-\infty}\left\|\psi(x, t, \epsilon)-\psi_{j}^{-}(x, t, \epsilon,-)\right\|=0$," and it should be followed by the qualification "for negative x 's."
B The sentence before equation (5.8) should begin: Then, there exist $\delta_{0}>0$, $p>0$ arbitrarily close to $5 / 2$, and a function $\epsilon_{0}:\left(0, \delta_{0}\right) \rightarrow \mathbb{R}^{+}$, such that for all $0<\beta<1 / 2, \delta<\delta_{0}$, and $\epsilon<\epsilon_{0}(\delta)$, the following asymptotics hold as $t \rightarrow \infty$:
C Finally, each occurrence of $O_{\epsilon}(1 / t)$ should be replaced by $O_{\epsilon}\left(1 / t^{\beta}\right)$.
As indicated in \mathbf{B}, p is arbitrary close to $5 / 2$ instead of 3 , as previously erroneously stated. This comes from a missing square root in the computation of the $L^{2}(\mathbb{R})$ norm of the error terms in the last paragraph of page 987 . They should read $O\left(e^{-\alpha\left(E^{*}\right)} \epsilon^{1+3 s / 2}\right)$ and $O\left(e^{-\alpha\left(E^{*}\right)} \epsilon^{7 s / 2-1}\right)$ instead of $O\left(e^{-\alpha\left(E^{*}\right)} \epsilon^{1+2 s}\right)$ and $O\left(e^{-\alpha\left(E^{*}\right)} \epsilon^{4 s-1}\right)$. Keeping track of the consequences of this correction, one sees that p is arbitrarily close to $5 / 2$. This change should also be made in Lemma 5.1 and Lemma 5.2.

Finally, due to a miscalculation, formula (5.10) in Lemma 5.1 must be simplified to

$$
\begin{aligned}
& T(\epsilon, x, t)=\epsilon \sqrt{2 \pi k^{*}} P\left(E^{*}, \epsilon\right) e^{-\alpha\left(E^{*}\right) / \epsilon^{2}} \\
& \times \frac{\exp \left\{-i \frac{\left(t E^{*}+\kappa\left(E^{*}\right)-x k^{*}\right)}{\epsilon^{2}}\right\}}{\left(\left.\frac{d^{2}}{d k^{2}} \alpha(E(k))\right|_{k^{*}}+i\left(t+\left.\frac{d^{2}}{d k^{2}} \kappa(E(k))\right|_{k^{*}}\right)\right)^{1 / 2}} \\
& \times \exp \left\{-\frac{\left(x-k^{*}\left(t+\kappa^{\prime}\left(E^{*}\right)\right)\right)^{2}}{2 \epsilon^{2}\left(\left.\frac{d^{2}}{d k^{2}} \alpha(E(k))\right|_{k^{*}}+i\left(t+\left.\frac{d^{2}}{d k^{2}} \kappa(E(k))\right|_{k^{*}}\right)\right.}\right\}+O\left(e^{-\alpha\left(E^{*}\right) / \epsilon^{2}} \epsilon^{p}\right) .
\end{aligned}
$$

This leads to a simplification of Lemma 5.2: Only the second statement should be kept, and the error term $O\left(\epsilon^{3 / 2} /|t|\right)$ should be removed.
This mistake came from the incorrect computation of the Gaussian integral at the end of the proof of Lemma 5.1. It should read, $\int_{-\infty}^{\infty} e^{-\left(M\left(k-k^{*}\right)^{2} / 2+i N\left(k-k^{*}\right)\right) / \epsilon^{2}} d k$ $=\epsilon \sqrt{\frac{2 \pi}{M}} e^{-\frac{N^{2}}{2 \epsilon^{2} M}}($ for $\operatorname{Re} M>0)$.

References

[1] G.A. Hagedorn and A. Joye, Determination of Non-Adiabatic Scattering Wave Functions in a Born-Oppenheimer Model, Ann. Henri Poincaré 6 (2005), 5, 937-990.

George A. Hagedorn
Department of Mathematics and
Center for Statistical Mechanics and Mathematical Physics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0123
USA
Alain Joye
Institut Fourier
Unité Mixte de Recherche CNRS-UJF 5582
Université de Grenoble I
BP 74
F-38402 Saint Martin d'Hères Cedex
France

Communicated by Yosi Avron
received 14/10/04

[^0]: *Partially supported by National Science Foundation Grants DMS-0071692 and DMS0303586.

