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Stability of Standing Waves for Nonlinear Schrödinger
Equations with Inhomogeneous Nonlinearities

Anne De Bouard and Reika Fukuizumi

Abstract. The effect of inhomogeneity of nonlinear medium is discussed concerning
the stability of standing waves eiωtφω(x) for a nonlinear Schrödinger equation with
an inhomogeneous nonlinearity V (x)|u|p−1u, where V (x) is proportional to the
electron density. Here, ω > 0 and φω(x) is a ground state of the stationary problem.
When V (x) behaves like |x|−b at infinity, where 0 < b < 2, we show that eiωtφω(x)
is stable for p < 1 + (4− 2b)/n and sufficiently small ω > 0. The main point of this
paper is to analyze the linearized operator at standing wave solution for the case
of V (x) = |x|−b. Then, this analysis yields a stability result for the case of more
general, inhomogeneous V (x) by a certain perturbation method.

1 Introduction

The nonlinear Schrödinger equations

i∂tu = −∆u− g(x, |u|2)u, (t, x) ∈ R
1+n (1.1)

arise in various physical contexts such as nonlinear optics and plasma physics.
When g(x, |u|2) = V (x)|u|p−1, equation (1.1) can model beam propagation in an
inhomogeneous medium where V (x) is proportional to the electron density. L.
Bergé [2] studied formally the stability condition for soliton solutions of the above
type of equations, depending on the shape of g(x, |u|2). The real function g(x, |u|2)
is a potential which can either stand for corrections to the nonlinear power-law
response, or for some inhomogeneities in the medium. In addition, Towers and
Malomed [29] recently observed by means of variational approximation and direct
simulations that a certain type of time-dependent nonlinear medium gives rise to
completely stable beams.

Akhmediev [1], Jones [17] and Grillakis, Shatah and Strauss [13] studied
the existence and stability of solitary waves of (1.1) when g(x, |u|2) describes three
layered media where the outside two are nonlinear and the sandwiched one is linear.
Also, Merle [23] investigated the existence and nonexistence of blowup solutions
of (1.1) for inhomogeneities of the form g(x, |u|2) = V (x)|u|4/n.

In this paper, we will not exactly deal with the same nonlinearity as those
in [2, 29], we consider the case g(x, |u|2) = V (x)|u|p−1 with V (x) satisfying the
following assumptions (V1) and (V2) with n ≥ 3, 0 < b < 2 and 1 < p <
1 + (4 − 2b)/(n− 2).
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(V1) V (x) ≥ 0, V (x) �≡ 0, V (x) ∈ C(Rn \ {0},R), V (x) ∈ Lθ∗
(|x| ≤ 1),

where θ∗ = 2n/{(n+ 2) − (n− 2)p}.
(V2) There exist C > 0 and a > {(n+ 2) − (n− 2)p}/2 > b such that

∣
∣
∣
∣

(

V (x) − 1
|x|b

)∣
∣
∣
∣
≤ C

|x|a

for all x with |x| ≥ 1.
The main purpose in this paper is to show that under the above assumptions

on V (x), the standing wave solution of (1.1) is stable for p < 1 + (4 − 2b)/n
and sufficiently small frequency. As an example satisfying (V1) and (V2), we keep
V (x) = (1 + |x|2)−b/2 in mind.

By a standing wave, we mean a solution of (1.1) of the form

uω(t, x) = eiωtφω(x),

where ω > 0 and φω(x) is a ground state of the following stationary problem
{−∆φ+ ωφ− V (x)|φ|p−1φ = 0, x ∈ R

n,
φ ∈ H1(Rn), φ �≡ 0. (1.2)

We recall previous results. Several authors have been studying the problem
of stability and instability of standing waves for (1.1) (see, e.g., [3, 6, 7, 9, 11, 13,
22, 25, 30, 32]). First, we consider the case V (x) ≡ 1, namely,

i∂tu = −∆u− |u|p−1u, (t, x) ∈ R
1+n, (1.3)

where 1 < p <∞ if n = 1, 2, and 1 < p < 1 + 4/(n− 2) if n ≥ 3.
For ω > 0, there exists a unique positive radial solution ψω(x) of

{−∆ψ + ωψ − |ψ|p−1ψ = 0, x ∈ R
n,

ψ ∈ H1(Rn), ψ �≡ 0. (1.4)

(See Strauss [26] and Berestycki and Lions [4] for the existence, and Kwong [19] for
the uniqueness). It is known that a positive solution of (1.4) is a ground state. In
[6] Cazenave and Lions proved that if p < 1+4/n then the standing wave solution
eiωtψω(x) is stable for any ω > 0. On the other hand, it is shown that if p ≥ 1+4/n
then the standing wave solution eiωtψω(x) is unstable for any ω > 0 (see Berestycki
and Cazenave [3] for p > 1 + 4/n, and Weinstein [30] for p = 1 + 4/n). The aim of
the paper is to study, in the case where V (x) satisfies (V1) and (V2), what happens
in the complementary case of the result in [11], where instability of standing waves
was shown for p > 1 + (4 − 2b)/n and sufficiently small ω > 0.

We define the energy functional E and the charge Q on H1(Rn) by

E(v) :=
1
2
‖∇v‖2

2 −
1

p+ 1

∫

Rn

V (x)|v(x)|p+1dx, Q(v) :=
1
2
‖v‖2

2.
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We remark that by the assumptions (V1) and (V2), the functional E is well defined
on H1(Rn) if p < 1 + (4 − 2b)/(n− 2).

The time local well-posedness for the Cauchy problem to (1.1) with g(x, |u|2)
= V (x)|u|p−1 in H1(Rn) and the conservation of energy and charge hold (see, e.g.,
Theorem 4.4.6 of Cazenave [5]). Exactly, we have the following proposition.

Proposition 1 Let n ≥ 3 and 1 < p < 1 + (4 − 2b)/(n − 2). Assume (V1) and
lim|x|→∞ V (x) = 0. Then, for any u0 ∈ H1(Rn) there exist T = T (‖u0‖H1) > 0
and a unique solution u(t) ∈ C([0, T ], H1(Rn)) of (1.1) with u(0) = u0 satisfying

E(u(t)) = E(u0), Q(u(t)) = Q(u0), t ∈ [0, T ].

Before we state our theorem, we give some precise definitions.

Definition 1 For ω > 0, we define two functionals on H1(Rn):

Sω(v) := E(v) + ωQ(v) (action),

Iω(v) := ‖∇v‖2
2 + ω‖v‖2

2 −
∫

Rn

V (x)|v(x)|p+1dx.

Let Gω be the set of all non-negative minimizers for

inf{Sω(v) : v ∈ H1(Rn) \ {0}, Iω(v) = 0}. (1.5)

The existence of non-negative minimizers for (1.5) was proved by the standard
variational argument since V (x) vanishes as |x| → ∞ (see [26, 11]). Namely, we
have

Lemma 1.1 Let n ≥ 3 and 1 < p < 1 + (4 − 2b)/(n − 2). Assume (V1) and
lim

|x|→∞
V (x) = 0. Then Gω is not empty for ω > 0.

Remark 1.1

(i) We note that
Iω(v) = ∂λSω(λv)|λ=1 = 〈S′

ω(v), v〉.
(ii) Let φω ∈ Gω. Then, there exists a Lagrange multiplier Λ ∈ R such that

S′
ω(φω) = ΛI ′ω(φω). Thus, we have 〈S′

ω(φω), φω〉 = Λ〈I ′ω(φω), φω〉. Since

〈S′
ω(φω), φω〉 = Iω(φω) = 0

and
〈I ′ω(φω), φω〉 = −(p− 1)

∫

V (x)|φω |p+1 < 0,

we have Λ = 0. Namely, φω satisfies (1.2). Moreover, for any v ∈ H1(Rn)\{0}
satisfying S′

ω(v) = 0, we have Iω(v) = 0. Thus, by the definition of Gω, we
have Sω(φω) ≤ Sω(v). Namely, φω ∈ Gω is a ground state (minimal action
solution) of (1.2) in H1(Rn). It is easy to see that a ground state of (1.2) in
H1(Rn) is a minimizer of (1.5).
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The stability and instability in this paper is defined as follows.

Definition 2 For φω ∈ Gω and δ > 0, we put

Uδ(φω) :=
{

v ∈ H1(Rn) : inf
θ∈R

‖v − eiθφω‖H1 < δ

}

.

We say that a standing wave solution eiωtφω(x) of (1.1) is stable in H1(Rn) if for
any ε > 0 there exists δ > 0 such that for any u0 ∈ Uδ(φω), the solution u(t) of
(1.1) with u(0) = u0 satisfies u(t) ∈ Uε(φω) for any t ≥ 0. Otherwise, eiωtφω(x) is
said to be unstable in H1(Rn).

The following theorem is our main result in this paper.

Theorem 1 Let n ≥ 3 and 1 < p < 1 + (4 − 2b)/n. Assume (V1) and (V2). Let
φω ∈ Gω. Then, there exists ω∗ > 0 such that eiωtφω(x) is stable in H1(Rn) for
any ω ∈ (0, ω∗). In particular, we can take ω∗ = ∞ in the case where V (x) = |x|−b

with 0 < b < 2.

Remark 1.2 We make use of Hardy’s type inequality to control the degree of non-
linearity in the space H1(Rn). That is why the restriction on the spatial dimen-
sions, i.e., n ≥ 3 appears in the assumption of Theorem 1.

Grillakis, Shatah and Strauss [13, 14] gave an almost sufficient and necessary
condition for the stability and instability of stationary states for the Hamiltonian
systems under certain assumptions. By the abstract theory in Grillakis, Shatah and
Strauss [13, 14], under some assumptions on the spectrum of linearized operators,
eiω0tφω0(x) is stable (resp. unstable) if the function ‖φω‖2

2 is strictly increasing
(resp. decreasing) at ω = ω0. In the papers of Shatah [24], Shatah and Strauss
[25], the authors used the variational characterization of ground states instead of
assumptions on the spectrum of linearized operators. In the case V (x) ≡ 1, by the
scaling ψω(x) = ω1/(p−1)ψ1(

√
ωx), it is easy to check the increase and decrease of

‖ψω‖2
2. However, it seems difficult to check this property of ‖φω‖2

2 for V (x) �≡ 1
since we do not have the scaling invariance in general.

To avoid such difficulty, we apply another sufficient condition for stability.

Proposition 2 Let n ≥ 3 and 1 < p < 1 + (4 − 2b)/(n − 2). Assume (V1) and
lim|x|→∞ V (x) = 0. Let φω ∈ Gω. If there exists δ > 0 such that

〈S′′
ω(φω)v, v〉 ≥ δ‖v‖2

H1 (1.6)

for any v ∈ H1(Rn) satisfying Re(φω , v)L2 = 0 and Re(iφω , v)L2 = 0, then the
standing wave solution eiωtφω(x) of (1.1) is stable in H1(Rn).

Remark 1.3 In Proposition 2, the condition Re(φω , v)L2 = 0 is related to the
conservation of charge Q. In fact, we have 〈Q′(φω), v〉 = Re(φω , v)L2 . Moreover,
since it follows from S′

ω(eiθφω) = 0 for θ ∈ R that S′′
ω(φω)iφω = 0, (1.6) does not

hold if we do not restrict v ∈ H1(Rn) to satisfy Re(iφω , v)L2 = 0.
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To check this sufficient condition (1.6) for the case of V (x) satisfying (V1) and
(V2), we first consider the case where V (x) = |x|−b with 0 < b < 2 as a limiting
problem since the stability results are already known in the case V (x) = |x|−b,
which simply follow from the arguments by [24] and [25]. Indeed, in [11], the
authors investigated the rescaling limit of φω(x) as ω → 0. It was shown in [11]
that as ω → 0, the rescaled function φ̃ω(x) defined by

φω(x) = ω(2−b)/2(p−1)φ̃ω(
√
ωx), ω > 0 (1.7)

tends to the unique positive radial solution ψ1,b(x) of (1.2) with ω = 1 and V (x) =
|x|−b. Using this convergence, they proved in [11] that eiωtφω(x) is unstable for
p > 1 + (4 − 2b)/n and sufficiently small ω > 0. Due to the inhomogeneous
medium, the standing wave solution tends to be more unstable for small ω > 0
since 1+(4−2b)/n < p < 1+4/n is the stability region in the case where V (x) ≡ 1.

From known stability properties of ψ1,b(x) (see Section 2 of [11]), we would be
able to prove (1.6) in the limit. However, to our knowledge, there is no verification
of (1.6) even in the case V (x) = |x|−b. For that reason, in Section 2, we first study
the properties of the linearized operator at standing wave solution for the case
where V (x) = |x|−b in (1.1). In Section 3, we continue analyzing the linearized
operator, in particular, we observe that the kernel of real part of the linearized
operator is only zero, following the method of Kabeya and Tanaka [18]. We remark
that their idea could not be applied directly to our case. We need to modify their
perturbed functional in order that the singularity of |x|−b at the origin does not
affect the linear part of the equation (1.2). The crucial part is Section 3 because
uniqueness and nondegeneracy of a solution of semilinear elliptic equations often
plays an essential role in stability problems. In Section 4, we check the condition
(1.6) for V (x) satisfying (V1) and (V2), following Esteban and Strauss [8] (see
also [10]) and we prove Theorem 1.

We remark that Fibich and Wang [9] and Liu, Wang and Wang [22] treated
the stability and instability problems of standing waves for (1.1) with g(x, |u|2) =
V (εx)|u|4/n in a radial space, where ε is a small parameter. Their ways of proof
are also a sort of perturbation method. However, they use (1.4) with p = 1 + 4/n
as a limiting equation, their assumptions for V (x) are different from those in this
paper and it is not clear whether there exists a simple relation between ε and ω.

2 The case V (x) = |x|−b

We consider the stability of standing waves for

i∂tu = −∆u− 1
|x|b |u|

p−1u, (t, x) ∈ R
1+n, (2.1)

where n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n− 2).
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For any ω > 0 there exists a unique positive radial solution ψω,b ∈ H1(Rn) of

−∆ψ + ωψ − 1
|x|b |ψ|

p−1ψ = 0, x ∈ R
n. (2.2)

See Stuart [27] and Remark 3.1 of [11] for existence. The positivity of solutions
follows from the maximum principle. Radial symmetry of solutions was showed by
Gidas, Ni and Nirenberg [12] and Li [20] (see also Li and Ni [21]), and Yanagida
[33] proved the uniqueness. Moreover ψω,b is in C2(Rn) and vanishes as |x| → ∞,
particularly decays exponentially (see [4, 5]). This unique solution is a minimizer of

db(ω) := inf{Sω,b(v) : v ∈ H1(Rn) \ {0}, Iω,b(v) = 0},

where

Sω,b(v) =
1
2
‖∇v‖2

2 +
ω

2
‖v‖2

2 −
1

p+ 1

∫

Rn

1
|x|b |v(x)|

p+1dx,

Iω,b(v) = ‖∇v‖2
2 + ω‖v‖2

2 −
∫

Rn

1
|x|b |v(x)|

p+1dx.

In this section, we note the following fact as a special case of Theorem 1.

Proposition 3 Let n ≥ 3, 0 < b < 2 and 1 < p < 1+(4−2b)/n. Then the standing
wave solution eiωtψω,b(x) of (2.1) is stable in H1(Rn) for any ω > 0.

Actually, this fact can be proved simply by applying the method of [24, 25]
to the present case. Using the variational characterization db(ω), we may check
the sufficient condition for stability d′′b (ω) > 0 in [24] and instability d′′b (ω) < 0
in [25]. Since ψω,b(x) is a solution of S′

ω,b(v) = 0, we have d′b(ω) = Q(ψω,b). In
this case, by the scaling ψω,b(x) = ω(2−b)/2(p−1)ψ1,b(

√
ωx), we have 2Q(ψω,b) =

‖ψω,b‖2
2 = ω{(2−b)/(p−1)}−n/2‖ψ1,b‖2

2. Therefore, for any ω > 0, the standing wave
solution is stable if 1 < p < 1 + (4 − 2b)/n, and unstable if 1 + (4 − 2b)/n < p <
1+(4−2b)/(n−2). We have also blow-up instability for the case p ≥ 1+(4−2b)/n,
following Weinstein [30] and Berestycki and Cazenave [3].

However, stability of standing wave solution does not always seem to imply
(1.6) immediately. The constraints in (1.6) depend on the negative and zero eigen-
values of the linearized operator at ψω,b. Therefore, the main aim in this section
is to show the following proposition.

Proposition 4 Assume n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/n. Let ψ1,b(x)
be the unique positive radial solution of (2.2) with ω = 1. Then there exists δ > 0
such that

〈S′′
1,b(ψ1,b)v, v〉 ≥ δ‖v‖2

H1

for any v ∈ H1(Rn) satisfying Re(ψ1,b, v)L2 = 0 and Re(iψ1,b, v)L2 = 0.
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Remark 2.1 By combining this proposition with Proposition 2, it follows that the
standing wave solution eitψ1,b(x) of (2.1) is stable in H1(Rn), that is, Proposition
3 holds.

We define two self-adjoint operators L1,b and L2,b on L2(Rn) by

L1,b = −∆ + 1 − p
1

|x|bψ
p−1
1,b (x), L2,b = −∆ + 1 − 1

|x|bψ
p−1
1,b (x)

with domain D(Lj,b) = {v ∈ H2(Rn,R) : |x|−bψp−1
1,b v ∈ L2(Rn)} for j = 1, 2. We

remark that for v ∈ H1(Rn) with v1(x) = Re v(x) and v2(x) = Im v(x),

〈S′′
1,b(ψ1,b)v, v〉 = 〈L1,bv1, v1〉 + 〈L2,bv2, v2〉,

〈L1,bv1, v1〉 = ‖v1‖2
H1 − p

∫

Rn

1
|x|bψ

p−1
1,b (x)|v1(x)|2 dx,

〈L2,bv2, v2〉 = ‖v2‖2
H1 −

∫

Rn

1
|x|bψ

p−1
1,b (x)|v2(x)|2 dx,

and
Re(ψ1,b, v)L2 = (ψ1,b, v1)L2 , Re(iψ1,b, v)L2 = (ψ1,b, v2)L2 .

Thus it suffices to show the following.

Lemma 2.1 Assume n ≥ 3, 0 < b < 2 and 1 < p < 1+(4−2b)/(n−2). Let ψ1,b(x)
be the unique positive radial solution of (2.2) with ω = 1.

(i) If p < 1 + (4 − 2b)/n, then there exists δ1 > 0 such that

〈L1,bv, v〉 ≥ δ1‖v‖2
H1

for any v ∈ H1(Rn,R) satisfying (v, ψ1,b)L2 = 0.
(ii) There exists δ2 > 0 such that

〈L2,bv, v〉 ≥ δ2‖v‖2
L2

for any v ∈ H1(Rn,R) satisfying (v, ψ1,b)L2 = 0.

The part (ii) of Lemma 2.1 is obtained since L2,bψ1,b = 0 and ψ1,b(x) > 0
for x ∈ R

n. Namely, ψ1,b is the first eigenfunction of L2,b corresponding to the
eigenvalue 0. Moreover, by Weyl’s theorem, the essential spectrum of L2,b are in
[1,∞), since ψ1,b tends to zero at infinity. These conclude (ii).

Therefore, we prove the part (i) of Lemma 2.1. For that purpose, we need to
show the following two propositions.

Proposition 5 Assume n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n − 2). If
v ∈ H1(Rn,R) satisfies L1,bv = 0, then v ≡ 0.
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Proposition 6 Assume n ≥ 3, 0 < b < 2 and 1 < p ≤ 1+(4−2b)/n. Then we have

inf{〈L1,bv, v〉 : v ∈ H1(Rn,R), (v, ψ1,b)L2 = 0} = 0. (2.3)

We shall prove Proposition 5 in the next section. As to Proposition 6, we give
a proof in the same way as Proposition 2.7 in Weinstein [31]. First, we show the
following lemma.

Lemma 2.2 Assume n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n − 2). For
v ∈ H1(Rn), we define the functional

J(v) =
‖∇v‖θ

2‖v‖γ
2∫

1
|x|b |v|

p+1,

where θ = {n(p− 1)}/2 + b > 0 and γ = {n+ 2 − (n− 2)p− 2b}/2 > 0. Then,

α := inf{J(v) : v ∈ H1(Rn)}

is attained at a positive radial function ψ∗(x) ∈ H1(Rn) ∩ C∞(Rn) such that

ψ∗(x) =
(
γ1−b/2θb/2

α(p+ 1)

)1/(p−1)

ψ1,b(γ1/2θ−1/2x).

Proof. We follow the proof of Theorem B of [30]. Since J(v) ≥ 0, there exists a
minimizing sequence {vν} ⊂ H1(Rn), that is, limν→∞ J(vν) = α. We can assume
that vν is positive since ‖∇|v|‖2 ≤ ‖∇v‖2. Now, let vλ,µ(x) = λv(µx) for λ, µ > 0.
Then we have

J(vλ,µ) = J(v),
‖∇vλ,µ‖2

2 = λ2µ2−n‖∇v‖2
2,

‖vλ,µ‖2
2 = λ2µ−n‖v‖2

2,
∫

1
|x|b |v

λ,µ|p+1 = λp+1µ−n+b

∫
1

|x|b |v|
p+1.

We choose µν = ‖vν‖2/‖∇vν‖2 and λν = ‖vν‖n/2−1
2 /‖∇vν‖n/2

2 so that ψν :=
vλν ,µν has the following properties.

ψν(x) ∈ H1(Rn), ψν(x) ≥ 0, x ∈ R
n,

‖ψν‖2 = 1, ‖∇ψν‖2
2 = 1,

J(ψν) → α as ν → ∞.

Namely {ψν} is bounded in H1(Rn). Thus there exists a subsequence {ψν} and a
limit ψ∗(x) ∈ H1(Rn) such that ψν converges to ψ∗ weakly in H1(Rn). It follows
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from the Sobolev embedding on a bounded domain and the smallness of |x|−b for
large |x| that

∫

Rn

1
|x|bψ

p+1
ν (x)dx →

∫

Rn

1
|x|bψ

p+1
∗ (x)dx as ν → ∞

for 1 < p < 1+(4−2b)/(n−2) (see the argument in [27], Lemma 1.1 and Remark
3.1 of [11]). By weak convergence, ‖ψ∗‖2 ≤ 1 and ‖∇ψ∗‖2 ≤ 1. Furthermore,

α ≤ J(ψ∗) =
‖∇ψ∗‖θ

2‖ψ∗‖γ
2∫

1
|x|b |ψ∗|p+1

≤ lim inf
ν→∞

‖∇ψν‖θ
2‖ψν‖γ

2∫
1

|x|b |ψν |p+1
= lim inf

ν→∞ J(ψν)

= lim inf
ν→∞

1
∫

1
|x|b |ψν |p+1

= α.

It follows that ‖∇ψ∗‖θ
2‖ψ∗‖γ

2 = 1 and therefore ‖∇ψ∗‖2 = ‖ψ∗‖2 = 1, which
implies that ψν → ψ∗ strongly in H1(Rn). This minimizing function ψ∗ satisfies
the Euler-Lagrange equation:

d

dε
J(ψ∗ + εη)

∣
∣
∣
∣
ε=0

= 0 for any η ∈ C∞
0 (Rn).

Taking into account that ‖∇ψ∗‖2 = ‖ψ∗‖2 = 1 and that
∫ |x|−b|ψ∗|p+1 = 1/α, we

have
−θ∆ψ∗ + γψ∗ − α(p+ 1)

1
|x|bψ

p
∗ = 0.

The smoothness of ψ∗ follows from the same method as Section 8 of Cazenave [5].

The scaling ψ∗(x) =
(

γ1−b/2θb/2

α(p+1)

)1/(p−1)

ψ(γ1/2θ−1/2x) makes ψ(x) be a pos-
itive solution of (2.2) with ω = 1. By the results in [12] and [20], ψ(x) is radial.
Accordingly, ψ(x) is the unique solution ψ1,b(r). �
Proof of Proposition 6. We remark that the infimum of (2.3) is nonpositive because
the value 〈L1,bv, v〉 is zero for v = 0. Since J(v) attains its minimum at ψ1,b,

d2

dε2
J(ψ1,b + εη)

∣
∣
∣
∣
ε=0

≥ 0

for all η ∈ C∞
0 (Rn). A simple calculation concludes

〈L1,bv, v〉 ≥ 2θ
α

(

1 − θ

2

)

(∇ψ1,b,∇v)2L2 (2.4)

for any v ∈ H1(Rn,R) with (v, ψ1,b)L2 = 0, where α and θ have been defined in
Lemma 2.2. The result follows since the right-hand side of (2.4) is nonnegative for
p ≤ 1 + (4 − 2b)/n. �
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Now we are ready to give a proof of part (i) of Lemma 2.1.

Proof of Lemma 2.1 (i). Let

τ := inf{〈L1,bv, v〉 : v ∈ H1(Rn,R), (v, ψ1,b)L2 = 0, ‖v‖H1 = 1}

and suppose τ = 0 under the condition 1 < p < 1+(4−2b)/n. Let {vj} ⊂ H1(Rn)
be a minimizing sequence, that is,

lim
j→∞

〈L1,bvj , vj〉 = 0,

‖vj‖H1 = 1, (vj , ψ1,b)L2 = 0.

Since {vj} is bounded in H1(Rn), there exists a subsequence still denoted by
{vj} ⊂ H1(Rn,R) which converges weakly to some f∗ ∈ H1. By weak convergence,
f∗ satisfies (f∗, ψ1,b)L2 = 0. We also have

∫
1

|x|bψ
p−1
1,b v2

j →
∫

1
|x|bψ

p−1
1,b f2

∗ (2.5)

as j → ∞ for 1 < p < 1 + (4 − 2b)/(n − 2). Indeed, we note that v2
j converges

weakly to f2
∗ in Ln/(n−2)(Rn) by the Sobolev embedding, and that |x|−bψp−1

1,b (x) ∈
Ln/2(Rn) since |x|−b vanishes at infinity and ψ1,b(x) decays exponentially for |x| ≥
C with some C > 0. For |x| ≤ C, we know that |x|−bψp−1

1,b (x) ∈ Ln/2(|x| ≤ C) if
p < 1 + (4 − 2b)/(n− 2). Thus, we have

0 = lim
j→∞

〈L1,bvj , vj〉

= 1 − p lim
j→∞

∫

Rn

1
|x|bψ

p−1
1,b v2

j

= 1 − p

∫

Rn

1
|x|bψ

p−1
1,b f2

∗

and then, f∗ �≡ 0. Moreover, by weak convergence, ‖f∗‖H1 ≤ 1 and

0 ≤ 〈L1,bf∗, f∗〉 ≤ lim
j→∞

〈L1,bvj , vj〉 = 0,

where the first inequality follows from Proposition 6. We define g∗ := f∗/‖f∗‖H1

and then g∗ satisfies g∗ ∈ H1(Rn), ‖g∗‖H1 = 1, (g∗, ψ1,b)L2 = 0, g∗ �≡ 0 and
〈L1,bg∗, g∗〉 = 0. Since the minimum is attained at an admissible function g∗ �≡ 0,
there exists (g∗, λ, β) solution of the Lagrange multiplier problem

L1,bg∗ = λ(−∆g∗ + g∗) + βψ1,b, λ, β ∈ R, (2.6)
‖g∗‖H1 = 1, (2.7)
(g∗, ψ1,b)L2 = 0. (2.8)
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By (2.6), (2.7) and (2.8), λ = 〈L1,bg∗, g∗〉. Thus, λ = 0 since we have assumed
τ = 0. Therefore,

L1,bg∗ = βψ1,b.

On the other hand, let

g :=
b− 2

2

(
1

p− 1
ψ1,b +

1
2 − b

x · ∇ψ1,b

)

.

Then we have L1,bg = ψ1,b. Accordingly, L1,b(g∗ −βg) = 0. It follows from Propo-
sition 5 that g∗ = βg. If β = 0, then g∗ = 0, which is a contradiction. Thus β �= 0.
Here,

(g∗, ψ1,b)L2 = (βg, ψ1,b)L2 = −β
2

(
2 − b

p− 1
− n

2

)

‖ψ1,b‖2
2,

which violates (2.8) when p < 1 + (4 − 2b)/n. Thus, g∗ ≡ 0, a contradiction. We
now conclude that τ > 0 if p < 1 + (4 − 2b)/n. �

3 Nondegeneracy of unique positive radial solution for (2.2)

In this section, we give a proof of Proposition 5, following Kabeya and Tanaka
[18]. We always assume that n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n− 2).

Let ψ1,b(r) ∈ H1(Rn) be the unique positive radial solution of (2.2). ψ1,b(r)
decays exponentially and can be characterized as a critical point of the C2 func-
tional

S1,b,+(v) =
1
2
‖∇v‖2

2 +
1
2
‖v‖2

2 −
1

p+ 1

∫

Rn

1
|x|b v

p+1
+ dx,

where v+ = max{v, 0}.
Remark 3.1 We briefly explain why S1,b,+(v) is C2 on H1(Rn) when 1 < p <
1 + (4 − 2b)/(n− 2). For v ∈ H1(Rn), let

N(v) =
1

p+ 1

∫

Rn

1
|x|b v

p+1
+ dx, M(s) =

∫ s

0

m(x, τ)dτ,

where m(x, τ) = |x|−bτp
+. For v, h ∈ H1(Rn) and t ∈ (−1, 1) \ {0}, we have

∣
∣
∣
∣

M(v + th) −M(v)
t

∣
∣
∣
∣
≤ C|x|−b(|v+ + th+|p + |v+|p)|h| (3.1)

since the function y → yp+1
+ is a C2 function on R if p > 1. The right-hand side of

(3.1) belongs to L1(Rn) if 1 < p < 1 + (4 − 2b)/(n− 2). Therefore, by Lebesgue’s
convergence theorem,

lim
t→0

N(v + th) −N(v)
t

=
∫

Rn

lim
t→0

M(v + th) −M(v)
t

dx

=
∫

Rn

lim
t→0

∫ t

0

m(x, v + th)hdt dx =
∫

Rn

1
|x|b v

p
+hdx.
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We conclude N(v) ∈ C1(H1(Rn),R) and N ′(v)h =
∫

Rn |x|−bvp
+hdx, for v, h ∈

H1(Rn). C2 regularity follows from the same argument.

Any non-zero critical point of S1,b,+(v) is a positive solution by the maximum
principle. On the other hand, as we mentioned in Section 2, radial symmetry of a
positive solution and the uniqueness of positive radial solutions follow from [12, 20]
and [33]. Thus it is ψ1,b(r).

For δ > 0 small, we consider the following perturbed functional:

Sδ(v) = S1,b,+(v) − δ

(
1

p+ 1

∫

Rn

vp+1
+ dx− 1

2

∫

Rn

ψp−1
1,b v2dx

)

.

Critical points v(x) of Sδ(v) satisfy

−∆v + (1 + δψp−1
1,b )v =

(
1

|x|b + δ

)

vp
+, x ∈ R

n.

By the maximum principle, non-zero solutions are positive. Furthermore, such
positive solutions are radial for small δ > 0 (see [12, 20]). Thus they satisfy

−∆v + (1 + δψp−1
1,b )v =

(
1

|x|b + δ

)

vp, x ∈ R
n, (3.2)

v(x) > 0, v(x) = v(|x|), x ∈ R
n, (3.3)

v ∈ H1(Rn). (3.4)

By Yanagida [33], we see that (3.2)–(3.4) has a unique positive radial solution for
small δ > 0 (see Appendix). Since ψ1,b(r) satisfies (3.2)–(3.4), the unique solution
of (3.2)–(3.4) is ψ1,b(r).

For δ ≥ 0, we define the Morse index

index S′′
δ (ψ1,b) = max{dimH : H ⊂ H1(Rn) is a subspace such that

〈S′′
δ (ψ1,b)h, h〉 < 0 for all h ∈ H \ {0}}.

ψ1,b(r) has the following properties.

Lemma 3.1

(i) For sufficiently small δ ≥ 0, ψ1,b is a mountain pass critical point of Sδ(v),
i.e.,

Sδ(ψ1,b) = inf
γ∈Γ

max
s∈[0,1]

Sδ(γ(s)),

where Γ = {γ(s) ∈ C([0, 1], H1(Rn)) : γ(0) = 0, γ(1) = e0}. Here, e0 ∈
H1(Rn) satisfies Sδ(e0) < 0.

(ii) The Morse index at ψ1,b is equal to 1 for small δ ≥ 0, i.e.,

index S′′
δ (ψ1,b) = 1.
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For the proof of Lemma 3.1, we recall Hofer’s result in [15] (see also Tanaka
[28] as a related reference).

Proposition 7 ([15]) Let F be a real Hilbert space and U ⊂ F be a nonempty
open subset. Assume that I ∈ C2(U,R) satisfies Palais-Smale condition and the
gradient I ′ has the form identity−K, where K is compact. Define A, c, d by

A = {a ∈ C([0, 1], F ) : a(i) = ei, i = 0, 1},
d = inf

a∈A
sup I(a[0, 1]),

c = max{I(e0), I(e1)}

and assume d > c. Let u0 ∈ U is an isolated critical point of I at the level d. Then
the Morse index at u0 is at most 1.

Proof of Lemma 3.1. (i) For some ρ0 > 0 and e0 ∈ H1(Rn), we have

inf
‖v‖H1=ρ0

Sδ(v) > 0,

‖e0‖H1 ≥ ρ0 and Sδ(e0) < 0.

Therefore Sδ(v) has mountain pass geometry. Since the embedding H1 ⊂ L2 is
compact on a bounded domain and |x|−b vanishes at infinity, Sδ(v) satisfies the
Palais-Smale compactness condition if p < 1+(4−2b)/(n−2) (see Lemma 1.1 and
Remark 3.1 of [11]) and small δ ≥ 0. Therefore we can apply the mountain pass
theorem. Since ψ1,b is the unique non-zero critical point of Sδ(v) for sufficiently
small δ ≥ 0, ψ1,b is the mountain pass critical point.
(ii) By Proposition 7, the Morse index is at most one at the mountain pass
critical point, i.e., index S′′

δ (ψ1,b) ≤ 1. Indeed, Sδ(v) satisfies the conditions in
Proposition 7. For v, h ∈ H1(Rn), let S′

δ(v)h = 〈v − K(v), h〉H1 , where K(v) =
K1(v) + K2(v) : H1(Rn) → H1(Rn) defined by 〈K1(v), h〉H1 =

∫

Rn δψ
p−1
1,b hdx,

〈K2(v), h〉H1 =
∫

Rn(|x|−b + δ)vp
+hdx. We see that K1 is compact and that K2 is

compact for sufficiently small δ ≥ 0. Furthermore, ψ1,b is the unique mountain
pass critical point for sufficiently small δ ≥ 0.

On the other hand,

〈S′′
δ (ψ1,b)h, h〉 = ‖∇h‖2

2 +
∫

Rn

(1 + δψp−1
1,b )|h|2 −

∫

Rn

p

(
1

|x|b + δ

)

ψp−1
1,b h2dx.

Setting h = ψ1,b and using 〈S′
δ(ψ1,b), ψ1,b〉 = 0, we have

〈S′′
δ (ψ1,b)ψ1,b, ψ1,b〉 = −(p− 1)

∫

Rn

(
1

|x|b + δ

)

ψp+1
1,b dx < 0.

Thus we get index S′′
δ (ψ1,b) = 1. �
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Using Lemma 3.1, we verify Proposition 5.

Proof of Proposition 5. Suppose that there exists a non-zero solution w0 ∈ H1(Rn)
of L1,bw0 = 0. It satisfies

〈S′′
1,b,+(ψ1,b)w0, ξ〉 = 0 for all ξ ∈ H1(Rn).

By Lemma 3.1 (ii) with δ = 0, we may also find a w1 ∈ H1(Rn) such that

〈S′′
1,b,+(ψ1,b)w1, w1〉 < 0.

We define a 2-dimensional subspace H of H1(Rn) by H = span{w0, w1}. Then we
have

〈S′′
1,b,+(ψ1,b)h, h〉 ≤ 0 for all h ∈ H.

On the other hand, we have for all δ > 0,

〈S′′
δ (ψ1,b)h, h〉 = 〈S′′

1,b,+(ψ1,b)h, h〉 − δ(p− 1)
∫

Rn

ψp−1
1,b h2dx

≤ −δ(p− 1)
∫

Rn

ψp−1
1,b h2dx for all h ∈ H.

We remark that ψ1,b(x) > 0 in R
n and we get

〈S′′
δ (ψ1,b)h, h〉 < 0 for all h ∈ H \ {0}.

It means that for all δ > 0,

index S′′
δ (ψ1,b) ≥ 2,

which is a contradiction to Lemma 3.1 (ii) with sufficiently small δ ≥ 0. �

4 Proof of Theorem 1

In this section, we prove the following Lemma 4.1 to show Theorem 1. For ω > 0,
we define

(v, w)H1(ω) = Re(∇v,∇w)L2 + ωRe(v, w)L2 ,

‖v‖H1(ω) = (v, v)1/2
H1(ω), v, w ∈ H1(Rn). (4.1)

Then, we see that ‖ · ‖H1(ω) is an equivalent norm on H1(Rn) to ‖ · ‖H1 .
We remark that for v ∈ H1(Rn) with v1(x) = Re v(x) and v2(x) = Im v(x),

we have

〈S′′
ω(φω)v, v〉 = 〈L1,ωv1, v1〉 + 〈L2,ωv2, v2〉, (4.2)

〈L1,ωv1, v1〉 = ‖v1‖2
H1(ω) − p

∫

Rn

V (x)φp−1
ω (x)|v1(x)|2 dx, (4.3)

〈L2,ωv2, v2〉 = ‖v2‖2
H1(ω) −

∫

Rn

V (x)φp−1
ω (x)|v2(x)|2 dx, (4.4)

Re(φω , v)L2 = (φω , v1)L2 , Re(iφω, v)L2 = (φω, v2)L2 , (4.5)

under the assumptions in Proposition 2.
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Lemma 4.1 Let n ≥ 3, 0 < b < 2 and 1 < p < 1 + (4 − 2b)/(n− 2). Assume (V1)
and (V2). Let φω ∈ Gω.

(i) Let p < 1 + (4 − 2b)/n. There exists ω1 > 0 with the following property: for
any ω ∈ (0, ω1), there exists δ1 > 0 such that

〈L1,ωv, v〉 ≥ δ1‖v‖2
H1(ω)

for any v ∈ H1(Rn,R) satisfying (v, φω)L2 = 0.
(ii) For any ω ∈ (0,∞), there exists δ2 > 0 such that

〈L2,ωv, v〉 ≥ δ2‖v‖2
H1(ω)

for any v ∈ H1(Rn,R) satisfying (v, φω)L2 = 0.

Proof of Theorem 1. Since ‖ · ‖H1(ω) is equivalent to ‖ · ‖H1 , by (4.2) and Lemma
4.1, there exists δ > 0 such that (1.6) holds for any v ∈ H1(Rn) satisfying
Re(φω , v)L2 = 0 and Re(iφω , v)L2 = 0. Hence, Theorem 1 follows from Propo-
sition 2. �

In order to show Lemma 4.1, we use the rescaled function φ̃ω defined by (1.7).
For ω > 0, we define the rescaled operators L̃1,ω and L̃2,ω by

〈L̃1,ωv, v〉 = ‖v‖2
H1 − pω−b/2

∫

Rn

V

(
x√
ω

)

φ̃p−1
ω (x)|v(x)|2 dx,

〈L̃2,ωv, v〉 = ‖v‖2
H1 − ω−b/2

∫

Rn

V

(
x√
ω

)

φ̃p−1
ω (x)|v(x)|2 dx.

Then, for v(x) = ω(2−b)/2(p−1)ṽ(
√
ωx), we have

‖v‖2
H1(ω) = ω1+(2−b)/(p−1)−n/2‖ṽ‖2

H1 ,

(φω , v)L2 = ω(2−b)/(p−1)−n/2(φ̃ω , ṽ)L2 ,

〈Lj,ωv, v〉 = ω1+(2−b)/(p−1)−n/2〈L̃j,ω ṽ, ṽ〉, j = 1, 2

(see (4.1), (4.3) and (4.4)).

Proof of Lemma 4.1. We show (i) by contradiction. Suppose that (i) were false.
Then, there would exist {ωj} and {vj} ⊂ H1(Rn,R) such that ωj → 0,

lim
j→∞

〈L̃1,ωjvj , vj〉 ≤ 0, (4.6)

‖vj‖2
H1 = 1, (vj , φ̃ωj )L2 = 0. (4.7)

Since {vj} is bounded in H1(Rn), there exists a subsequence of {vj} (still de-
noted by {vj}) and v0 ∈ H1(Rn,R) such that vj → v0 weakly in H1(Rn,R).
Therefore, |vj |2 → |v0|2 weakly in Ln/(n−2)(Rn). Further, by Proposition 3 of
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[11], we see that φ̃ωj → ψ1 strongly in H1(Rn), so that φ̃p−1
ωj

→ ψp−1
1 strongly

in L2n/{(n−2)(p−1)}(Rn) ∩ L(p+1)/(p−1)(Rn). Moreover, by (V1) and (V2) if p <
1 + (4 − 2b)/(n− 2),

lim
j→∞

∥
∥
∥
∥
ωj

−b/2V

(
x√
ωj

)

− 1
|x|b

∥
∥
∥
∥

θ∗
= 0

follows from Lemma 4.2 of [11]. Thus, we have

lim
j→∞

ωj
−b/2

∫

Rn

V

(
x√
ωj

)

φ̃p−1
ωj

(x)|vj(x)|2 dx =
∫

Rn

1
|x|bψ

p−1
1,b (x)|v0(x)|2dx.

(4.8)
Indeed,
∫

Rn

(

ωj
−b/2V

(
x√
ωj

)

φ̃p−1
ωj

v2
j − 1

|x|bψ
p−1
1,b v2

0

)

dx

=
∫

Rn

1
|x|bψ

p−1
1,b (v2

j − v2
0)dx +

∫

Rn

1
|x|b (φ̃p−1

ωj
− ψp−1

1,b )v2
j dx

+
∫

Rn

(

ωj
−b/2V

(
x√
ωj

)

− 1
|x|b

)

φ̃p−1
ωj

v2
j dx.

The first term converges to 0 as j → ∞ since |x|−bψp−1
1,b ∈ Ln/2(Rn) (see Proof

of Lemma 2.1 (i)). The two remaining terms are estimated as follows: For some
R > 0 such that |x|−b ≤ ε if |x| ≥ R,

∫

Rn

1
|x|b (φ̃p−1

ωj
− ψp−1

1,b )v2
j dx

≤ ‖|x|−b‖Lθ∗(|x|≤R)‖φ̃p−1
ωj

− ψp−1
1,b ‖2n/{(n−2)(p−1)}

‖vj‖2
2n/(n−2) + ε‖φ̃p−1

ωj
− ψp−1

1,b ‖(p+1)/(p−1)‖vj‖2
p+1,

∫

Rn

(

ωj
−b/2V

(
x√
ωj

)

− 1
|x|b

)

φ̃p−1
ωj

v2
j dx

≤
∥
∥
∥
∥
ωj

−b/2V

(
x√
ωj

)

− 1
|x|b

∥
∥
∥
∥

θ∗
‖φ̃ωj‖p−1

2n/(n−2)‖vj‖2
2n/(n−2),

which conclude (4.8). Therefore, by (4.6), (4.7) and (4.8), we have

0 ≥ lim inf
j→∞

〈L̃1,ωjvj , vj〉

= lim inf
j→∞

(

‖vj‖2
H1 − pωj

−b/2

∫

Rn

V

(
x√
ωj

)

φ̃p−1
ωj

(x)|vj(x)|2 dx
)

= 1 − p

∫

Rn

1
|x|bψ

p−1
1,b (x)|v0(x)|2dx. (4.9)
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Again, by (4.6), (4.8), we have

0 ≥ lim inf
j→∞

〈L̃1,ωjvj , vj〉

= lim inf
j→∞

(

‖vj‖2
H1 − pωj

−b/2

∫

Rn

V

(
x√
ωj

)

φ̃p−1
ωj

(x)|vj(x)|2 dx
)

≥ ‖v0‖2
H1 − p

∫

Rn

1
|x|bψ

p−1
1,b (x)|v0(x)|2dx = 〈L1,bv0, v0〉.

Moreover, by (4.7), we have (v0, ψ1,b)L2 = 0. Therefore, by Lemma 2.1 (i), we have
v0 ≡ 0. However, this contradicts (4.9). Hence, we conclude (i). By an analogous
argument as (ii) of Lemma 2.1, we can also prove (ii). �

5 Appendix

5.1 Uniqueness for (3.2)–(3.4)

We have cited the uniqueness result by Yanagida [33]. Here, we briefly check the
conditions to prove the uniqueness of a solution (3.2)–(3.4). The condition ap-
peared as (C1)–(C6) in Theorem 2.2 of [33]. In the paper [33], the following type
of semilinear elliptic equations was treated:

u′′(r) +
n− 1
r

u′(r) + g(r)u(r) + h(r)u(r)p = 0, r > 0, n ≥ 3,

where we denote d/dr by ′.
As an application to our present case, we consider g(r) = −(1 + δψp−1

1,b ) and
h(r) = r−b + δ, where δ ≥ 0, n ≥ 3, 0 < b < 2 and ψ1,b(r) is the unique positive
radial solution of (2.2) with ω = 1. We remark that ψ1,b(r) ∈ C2(Rn) decays
exponentially as r → ∞ by the standard argument for radial solutions of elliptic
equations (see, for example, Berestycki and Lions [4]) and ψ1,b(r) is monotone
decreasing with respect to r > 0 from [12, 20, 21], i.e., ψ′

1,b(r) < 0 for r > 0. First,
we know that two conditions
(A1) g(r) and h(r) are in C1((0,∞)),
(A2) r2−σg(r) → 0 and r2−σh(r) → 0 as r → +0 for some σ > 0,
are satisfied. Now let m ∈ [0, n− 2] be a parameter and define

G(r;m) := −δ(p− 1)rm+2ψp−2
1,b (r)ψ

′
1,b(r) + 2(n− 3 −m)rm+1(1 + δψp−1

1,b (r))

+m(n− 2 −m)(n− 2 −m/2)rm−1,

H(r;m) := −
{

2(n− 2) −m+
2b− 2(m+ 2)

p+ 1

}

rm−b+1

−
{

2(n− 2) −m− 2(m+ 2)
p+ 1

}

δrm+1.

These are related to Pohozaev identity (see Yanagida [33] for details).
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Required conditions in [33, Theorem 2.2] are following:

(C1) h(r) ≥ 0 for all r ∈ (0,∞) and h(r) > 0 for some r ∈ (0,∞).
(C2) G(r;n− 2) ≤ 0 for all r ∈ (0,∞).
(C3) For each m ∈ [0, n− 2), there exists an α(m) ∈ [0,∞] such that G(r;m) ≥ 0

for r ∈ (0, α(m)) and G(r;m) ≤ 0 for r ∈ (α(m),∞).
(C4) H(r; 0) ≤ 0 for all r ∈ (0,∞).
(C5) For each m ∈ (0, n− 2], there exists a β(m) ∈ [0,∞] such that H(r;m) ≥ 0

for r ∈ (0, β(m)) and H(r;m) ≤ 0 for r ∈ (β(m),∞).
(C6) When g(r) ≡ 0 for all r ≥ 0, h(r) satisfies h(r) �≡ C0r

q, where C0 > 0 is an

arbitrary constant and q :=
n− 2

2

(

p− n+ 2
n− 2

)

.

The condition (C6) is excluded in the present case. It is clear that (C1), (C4)
and (C5) hold since

H(r; 0) = − 2b
p+ 1

r−b+1 − 2
{

n− 2 − 2
p+ 1

}

r(r−b + δ).

Also, since

G(r;n − 2) = {r2g(r)}′ = −r(2 + 2δψp−1
1,b (r) + δr(p− 1)ψp−2

1,b (r)ψ′
1,b(r)),

taking δ so small that the right-hand side is nonpositive for all r ≥ 0, we can
conclude (C2) for sufficiently small δ ≥ 0. The condition (C3) follows for small
δ ≥ 0, too. Indeed, if 0 ≤ n − 3 − m, then we have G(r,m) > 0 for all r > 0,
therefore we may take α(m) = ∞. If −1 < n − 3 −m < 0 and m ≥ 1, we have
that G(r,m) → −∞ as r → ∞ and that G(r,m) tends to a nonnegative constant
as r → 0. For the case where −1 < n − 3 − m < 0 and m < 1, we see that
G(r,m) → −∞ as r → ∞ and G(r,m) → ∞ as r → 0. Moreover, in both cases,
d

dr

(
G′(r,m)
rm−2

)

< 0 for r > 0 and sufficiently small δ ≥ 0. Thus, there exists α(m)

satisfying (C3) (see a similar investigation in [18, Lemma 1.3]).

5.2 Orbital stability

Next, we remark on the proof of Proposition 2. Proposition 2 implies the following
lemma:

Lemma 5.1 Under the assumptions in Proposition 2, there exist C > 0 and ε > 0
such that

E(u) − E(φω) ≥ C inf
θ∈R

‖u− eiθφω‖2
H1

for u ∈ Uε(φω) with Q(u) = Q(φω).

We can prove this lemma following Grillakis, Shatah and Strauss [13, Theo-
rem 3.4] (see also [16, Proposition 1], Section 2 of [10]). Theorem 1 follows from
Lemma 5.1 and the proof of Theorem 3.5 of [13].
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[13] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in
the presence of symmetry I, J. Funct. Anal. 74, 160–197 (1987).

[14] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in
the presence of symmetry II, J. Funct. Anal. 94, 308–348 (1990).

[15] H. Hofer, A note on the topological degree at a critical point of mountain
pass type, Proc. A.M.S. 90, 309–315 (1984).

[16] I.D. Iliev and K.P. Kirchev, Stability and instability of solitary waves for one-
dimensional singular Schrödinger equations, Differential and Integral Equa-
tions 6, 685–703 (1993).

[17] C.K.R.T. Jones, Instability of standing waves for non-linear Schrödinger-type
equations, Ergodic Theory Dynam. Systems 8∗, 119–138 (1988).

[18] Y. Kabeya and K. Tanaka, Uniqueness of positive radial solutions of semi-
linear elliptic equations in R
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