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An Extension Principle for the Einstein-Vlasov System
in Spherical Symmetry

Mihalis Dafermos and Alan D. Rendall

Abstract. We prove that “first singularities” in the non-trapped region of the maxi-
mal development of spherically symmetric asymptotically flat data for the Einstein-
Vlasov system must necessarily emanate from the center. The notion of “first” de-
pends only on the causal structure and can be described in the language of terminal
indecomposable pasts (TIPs). This result suggests a local approach to proving weak
cosmic censorship for this system. It can also be used to give the first proof of the
formation of black holes by the collapse of collisionless matter from regular initial
configurations.

1 Introduction

A fundamental problem in mathematical relativity is to resolve the so-called weak
cosmic censorship conjecture, the statement that for “reasonable” Einstein-matter
systems, generic asymptotically flat data do not lead to singularities visible from
infinity.

The notion of “reasonable” above is of course not a precise one, and depends
very much on the context one has in mind. A natural matter source for models is
provided by kinetic theory. The simplest example is then a self-gravitating colli-
sionless gas. The study of the equations describing such a gas, the Einstein-Vlasov
system, was initiated by Choquet-Bruhat in [1], where the existence of a unique
maximal development was proven for the Cauchy problem.

The problem of weak cosmic censorship concerns the global behaviour of the
maximal development for asymptotically flat initial data. Given the current state
of the art in nonlinear evolution equations, symmetry must be imposed on initial
data for there to be any hope of making progress. The global study of the initial
value problem for the Einstein-Vlasov equations for spherically symmetric asymp-
totically flat initial data was begun in [7], where, in particular, it was proven that
for sufficiently small initial data, the maximal development was future causally
geodesically complete. The analysis took place in so-called Schwarzschild coordi-
nates. In [8], an extension principle was proven, again in these coordinates, saying
in particular that if the solution stopped existing after finite coordinate time t,
there was necessarily a singularity at the center. These results were meant to pro-
vide a first step for a global existence theorem in Schwarzschild coordinates. If this
coordinate system could then be shown to cover the domain of outer communi-
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cations, and if null infinity could moreover be shown to be complete, this would
then imply a proof of weak cosmic censorship for this system.

There is another approach to the problem of weak cosmic censorship, due
to Christodoulou [3], for the problem of a self-gravitating spherically symmetric
scalar field. Christodoulou showed that initial data leading to a naked singularity
was codimension 1 in the space of all initial data. This was shown by embedding
such exceptional data in a one-dimensional subset of the space of initial data, such
that all other initial data in this subset evolved to a spacetime with the following
property, which can be expressed in the language of causal sets [6]. Given a terminal
indecomposable past (TIP) with compact intersection with the Cauchy surface,
then the domain of dependence of any open set containing this intersection contains
a trapped surface. The statement that this latter property is true for generic
initial data can be termed the trapped surface conjecture. From this property, the
completeness of null infinity was then inferred, proving weak cosmic censorship.

It turns out that the relation between the existence of trapped surfaces and
the completeness of null infinity is quite general. Specifically, in [12], it was proven
that a weaker version of the trapped surface conjecture is sufficient to prove weak
cosmic censorship for a wide variety of matter in spherical symmetry. In particular,
the completeness of null infinity follows from the existence of a single trapped or
marginally trapped surface in the maximal development. The only really restrictive
hypothesis on the matter is that “first” singularities necessarily emanate from
the center. Here, the notion of “first” is tied to the causal structure and can be
formulated in terms of TIPs.

The goal of this paper is to prove that the above mentioned hypothesis of [12]
is indeed satisfied by the Einstein-Vlasov system. As noted before, extension prin-
ciples similar in spirit to this one have been proven before (cf. [8, 10]). These earlier
results, however, concern the portion of the development of the Einstein-Vlasov
system covered by particular coordinate systems. Thus, these previous results, as
far as they concern the maximal development itself, are weaker than the results pre-
sented here, and in particular, are not sufficient to deduce the assumptions of [12].1

Finally, we make the following remark: In view of [9], there do exist spher-
ically symmetric asymptotically flat initial data for the Einstein-Vlasov system
possessing a trapped surface. Thus, the results of this paper provide in particular
the first proof of the existence of solutions for collisionless matter representing the
formation of a black hole.

2 Initial data

Initial data in this paper are always given as follows:

1. We have a C∞ Riemannian manifold (Σ, ḡ), together with an additional sym-
metric 2-tensor Kab, such that there do not exist closed antitrapped surfaces

1Of course, the results of [8, 10] also say something about the behaviour of the coordinate
system to which they apply, something not addressed here.
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in the data, and a compactly supported function f0 defined on the tangent
bundle of Σ, such that these satisfy

R̄ − KabK
ab + (trK)2 = 16π

∫
f0(pa)papa/(1 + papa)1/2√ḡdp1dp2dp3 ,

∇aKa
b −∇b(trK) = 8π

∫
f0(pa)pa

√
ḡdp1dp2dp3 .

Here the metric ḡ is used to move indices and to define the trace and covari-
ant derivative. R̄ is the scalar curvature of ḡ and

√
ḡ the square root of its

determinant.
2. A smooth SO(3) action on Σ such that ḡ, Kab, f0 are preserved, and such

that Σ/SO(3) inherits naturally the structure of a 1-dimensional manifold.

Here and throughout this paper physical units are chosen so that the gravita-
tional constant has the numerical value unity. We recall the definition of a closed
antitrapped surface. Let S be a surface in Σ which is closed, i.e., compact without
boundary. Suppose that there is a preferred choice na of an outward normal to this
surface and let σab be the second fundamental form of S in Σ corresponding to
the outward normal. Then S is said to be antitrapped if trσ < −trK + Kabn

anb.

3 The maximal development

The theorem of Choquet-Bruhat [1], applied to the data considered here, together
with a standard argument on preservation of symmetry, yields

Proposition 1. There exists a unique C∞ collection (M, g, f) such that

1. g and f satisfy the Einstein-Vlasov equations
2. (M, g) is globally hyperbolic,
3. (M, g, f) induces the initial data (Σ, ḡ, K, f0) and Σ is a Cauchy surface
4. Any other collection (M, g, f) with these properties 1–3 can be embedded in

the given one.

Moreover, SO(3) acts smoothly by isometry on M and preserves f , and Q =
M/SO(3) inherits the structure of a time-oriented 2-dimensional Lorentzian man-
ifold, with timelike boundary Γ, the center.

Let π : M → Q denote the natural projection. On Q we can define the
so-called area-radius function

r(p) =
√

Area(π−1(p))/4π .

We have r(p) = 0 iff p ∈ Γ. We can always choose global future directed null
coordinates on Q, i.e., such that the metric takes the from −Ω2dudv. The metric
of M then takes the form:

−Ω2dudv + r2γ (1)
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where γ = γABdxAdxB is the standard metric on S2 and xA, A = 2, 3, are local
coordinates on S2. Let u and v be chosen so that ∂

∂u points “inwards” and ∂
∂v “out-

wards”. Such definitions are meaningful in view of the assumption of asymptotic
flatness. We define

ν = ∂ur ,

λ = ∂vr .

The assumption of no antitrapped surfaces initially means by definition that

ν < 0 (2)

holds on the initial hypersurface. It follows that it holds throughout Q as a con-
sequence of the Einstein equations and the dominant energy condition [2].

We shall call the region where λ > 0, the regular region, and denote it R. We
call the region where λ = 0 the marginally trapped region, and denote it by A, and
finally, we shall can the region where λ < 0 the trapped region, and denote it by
T .

4 The extension theorem

The extension principle proven in this paper will apply to a region D ⊂ Q with
Penrose diagram:

D
Q

?

(i.e., a subset D = [u1, u2] × [v1, v2] \ (u2, v2)) such that

D ⊂ R ∪A .

Let Cin and Cout be the parts of the boundary of D defined by v = v1 and u =
u1 respectively. One can think of D as the “top” of a non-trapped non-central
indecomposable past (IP) corresponding to a candidate “first” singularity. In this
language, the result of this paper is that such an IP cannot be a TIP, i.e.,

Theorem 1. If D ⊂ Q, then D ⊂ J−(q) for a q ∈ Q.

The theorem thus says that there is no singularity of this form after all!
As one might expect, the proof of Theorem 1 proceeds by obtaining a priori

estimates in D and then applying an appropriate local existence result. The a
priori estimates make use of a certain energy flux along null hypersurfaces. This
fact, together with the fact that regular null coordinates can always be chosen,
makes it natural to stick to these. We give the form of the equations in local
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null coordinates in the next two sections. Then, in Section 7, we formulate a
local existence theorem (Proposition 2) for a double characteristic initial value
problem. The “time” of existence, in the sense of null coordinates, will depend
only on the C2 norm of the metric and the C1 norm (and the support) of f . We
obtain energy estimates in Section 8, and use these, together with the structure
of the Vlasov equation, to derive in Sections 9–10 a priori estimates for the norm
of Proposition 2. The proof of Theorem 1 will follow immediately in Section 11.
Finally, in Section 12, we state two applications of our results, discussed already
in the Introduction.

The above theorem depends on having a well-behaved matter model and
the analogous result must be expected to fail for dust. This is illustrated by the
Penrose diagram Fig. 1 in [13].

5 The Einstein equations in null coordinates

The reader should consult [2] for general facts about the initial value problem in
spherical symmetry. When specialized to this case, the Einstein equations are:

∂u∂vr = −Ω2

4r
− 1

r
λν + 4πrTuv , (3)

∂u∂v log Ω = −4πTuv +
Ω2

4r2
+

1
r2

λν − πΩ2

r2
γABTAB , (4)

∂v(Ω−2∂vr) = −4πrTvvΩ−2 , (5)

∂u(Ω−2∂ur) = −4πrTuuΩ−2 . (6)

The former two equations can be viewed as wave equations for r and Ω, while the
latter two equations can be viewed as constraint equations on null hypersurfaces.
A specific choice of matter model, such as a collisionless gas, leads to expressions
for the components of the energy-momentum tensor.

6 The Vlasov equation

To describe the Vlasov equation in local coordinates, we need a coordinate system
on TM. Let pu, pv, and pA denote the functions on TM, defined by writing an
arbitrary X ∈ TM as

X = pu ∂

∂u
+ pv ∂

∂v
+ pA ∂

∂xA
.

Together with the pull-back of the coordinates on spacetime these functions define
a local coordinate system on TM.

Let P ⊂ TM be defined by

P = {g(X,X) = −1} ,
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where X ranges over future-pointing vectors. We call P the mass shell. It follows
that

−Ω2pupv + r2γABpApB = −1 . (7)

We use pu, pA and the pull-back of the coordinates on spacetime to define coor-
dinates on P and pv is regarded as a function of these coordinates defined by the
relation (7). The Vlasov equation is an equation for a non-negative function

f : P → R

which, in the case that f is spherically symmetric, is given by

pu ∂f

∂u
+ pv ∂f

∂v
= (∂u(log Ω2)(pu)2 + 2Ω−2rλγABpApB)

∂f

∂pu

+ 2r−1(νpu + λpv)pA ∂f

∂pA
. (8)

In deriving this we have used the expressions for the Christoffel symbols given in
Appendix A and the fact that a spherically symmetric function f on the mass shell
is a function of the variables u, v, pu, and γABpApB. This implies the identity

pA ∂f

∂xA
= ΓA

BCpBpC ∂f

∂pA

which has been used to simplify the Vlasov equation. Note that both the expres-
sions γABpApB and pA ∂

∂pA have a meaning independent of the particular choice
of coordinates xA on S2.

Finally, to close the system, we must define the energy-momentum tensor.
We first note that for any point q ∈ M, it follows that Pq, as a spacelike hy-
persurface in TqM, inherits a volume form from the Lorentzian metric. In local
coordinates this volume form can be written r2(pu)−1dpu√γdpAdpB or alterna-
tively r2(pv)−1dpv√γdpAdpB, where

√
γ is the square root of the determinant of

γAB. We then have

Tab =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
r2papbf(pu)−1√γdpudpAdpB , (9)

where pa = gabp
b. It follows immediately that this matter model satisfies the

energy conditions:
Tuv ≥ 0, Tvv ≥ 0, Tuu ≥ 0 . (10)

7 A local existence theorem

To prove our extension theorem, we will certainly need to appeal to some sort of
local existence theorem. In particular, it is the norm in this theorem that will tell
us what quantities we must bound a priori in D. In principle, one could try to



Vol. 6, 2005 An Extension Principle for the E-V System in Spherical Symmetry 1143

prove estimates so as to apply the local existence result of [1]. For various reasons,
however, the following local existence theorem for a characteristic initial value
problem will be more convenient:

Proposition 2. Let k ≥ 2. Let Ω, r be positive Ck-functions defined on [0, d]×{0}∪
{0} × [0, d], and let f be a non-negative Ck−1 function defined on the part of the
mass shell over [0, d] × {0} ∪ {0} × [0, d]. Suppose that equations (5), (6) hold on
{0}× [0, d] and [0, d]×{0} respectively, where Tuu and Tvv are defined by (9), and
suppose in addition that the Ck compatibility condition holds at (0, 0). Define the
norm:

Nu = sup
[0,d]×{0}

{|Ω|, |Ω−1|, |∂uΩ|, |∂2
uΩ|, |r|, |r|−1, |∂ur|, |∂2

ur| ,

S, |f |, |∂uf |, |∂puf |, |∂pAf |γ} ,

Nv = sup
{0}×[0,d]

{|Ω|, |Ω−1|, |∂vΩ|, |∂2
vΩ|, |r|, |r|−1, |∂vr|, |∂2

vr| ,

S, |f |, |∂vf |, |∂puf |, |∂pAf |γ} ,

N = sup{Nu, Nv} ,

were S denotes the supremum of (pu)2 + (pv)2 + γABpApB on the support of f
and |vA|γ = (γABvAvB)1/2. Then there exists a δ, depending only on N , and Ck

functions (unique among C2 functions) r, Ω and a Ck−1 function (unique among
C1 functions) f , satisfying equations (3), (4), (5), (6), (8) in [0, δ∗]× [0, δ∗], where
δ∗ = min{d, δ}, such that the restriction of these functions to [0, d]×{0}∪{0}×[0, d]
is as prescribed.

Proof. See Appendix B.

The compatibility conditions referred to in the statement of the proposition
are as follows. The data includes the values of the function f on the part of the
mass shell over [0, d] × {0}. All derivatives of f tangential to this manifold can
be calculated by direct differentiation. By using the field equations transverse
derivatives (and thus all derivatives) of f can be computed up to order k− 1. In a
similar way, all derivatives up to order k− 1 can be computed on {0}× [0, d]. The
condition that derivatives determined in these two different ways agree at (0, 0) is
what is referred to above as the Ck compatibility condition.

Let us add the remark that, defining g on M by (1), the above gives rise to
a solution of the Einstein-Vlasov equations upstairs, with the obvious relation to
characteristic data, interpreted upstairs.

8 Energy estimates

A fundamental fact about the analysis of spherically symmetric Einstein matter
systems in the non-trapped region is the existence of energy estimates.

To describe these, let us first settle for a particular null-coordinate description
of the set D. We normalize our u-coordinate such that ν = −1 along Cin. For the
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v coordinate, we first define the quantity

κ = −1
4
Ω2ν−1 .

and then define v such that κ = 1 along Cout. D is thus given by [0, U ] × [0, V ] \
{(U, V )}.

The concept of energy in spherical symmetry is given by the so-called Hawking
mass, given by:

m =
r

2
(1 − ∂ar∂ar) =

r

2
(1 − 2guv∂ur∂vr) =

r

2
(1 + 4Ω−2λν) .

We will also introduce the so-called mass-aspect function

µ =
2m

r
.

Note that
κ(1 − µ) = λ . (11)

From (3)–(6), we compute the identities:

∂um = 8πr2Ω−2(Tuvν − Tuuλ)

= −2πκ−1r2Tuv + 2π
1 − µ

ν
r2Tuu , (12)

∂vm = 8πr2Ω−2(Tuvλ − Tvvν)

= −2π
1 − µ

ν
r2Tuv + 2πκ−1r2Tvv . (13)

The first point to note is that the signs of (12) and (13), together with the
signs of λ and ν, give a priori bounds for both r and m. Indeed, set

m0 = m(U, 0) ≥ 0 , r0 = r(U, 0) > 0 ,

M = m(0, V ) , R = r(0, V ) .

By (2) and the fact that D ⊂ R ∪A, we have that

r0 ≤ r ≤ R (14)

throughout D. On the other hand, (12), (13) and (10) give ∂um ≤ 0, ∂vm ≥ 0,
and thus

m0 ≤ m ≤ M . (15)

Now we make a trivial observation. In view of the fact that we have the a
priori bounds (15), if we reexamine the equations (12), (13), keeping in mind that
both terms on the right-hand side have the same sign, we obtain the bounds:

∫ v2

v1

2π(1 − µ)
−ν

r2Tuv(u, v)dv ≤ M − m0 , (16)
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∫ v2

v1

2πκ−1r2Tvv(u, v)dv ≤ M − m0 , (17)

∫ u2

u1

2πκ−1r2Tuv(u, v)du ≤ M − m0 , (18)

∫ u2

u1

2π(1 − µ)
−ν

r2Tuu(u, v)du ≤ M − m0 . (19)

These will be our energy estimates.
As we shall see, our use of the above estimates will not quite be symmetric

for u and v. The reason is this: The “constraint” equation (6) can be seen to be
equivalent to the following equation for κ:

∂uκ = 4πrν−1Tuuκ . (20)

From (2), (20) and (10), we see immediately

0 < κ ≤ 1 (21)

throughout D, i.e., κ−1 ≥ 1. This means that a priori we control
∫

Tvvdv, but not∫
Tuudu.

Finally, note that we can rewrite equation (3) as

∂vν = 2r−2κνm + 4πrTuv , (22)

or alternatively
∂uλ = 2r−2κνm + 4πrTuv . (23)

Thus, integrating (22), in view of (21), (15), (14), and (10), we have that

ν ≥ −e2r−2
0 MV = −Ñ . (24)

9 C1 estimates for the metric

So far, we have not used the Vlasov equation, only the energy condition (10).
Indeed, all estimates obtained so far are familiar from the results of [12]. To go
further, we must use the Vlasov equation itself and the special structure of the
energy-momentum tensor. In this section, we shall estimate the support of f and
show C1 estimates for the metric.

Before proceeding, let us give names to bounds on certain quantities on the
initial segments Cin ∪ Cout. Define

G = max

{
sup

[0,U ]×{0}
|∂u log Ω2|, sup

{0}×[0,V ]

|∂v log Ω2|
}

F = sup
π−1
1 ({0}×[0,V ]∪[0,U ]×{0})

f ,
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where π1 denotes the projection from the mass shell, define Σ to be supremum of
the radius of support of f in the pv and pu directions along π−1

1 ({0} × [0, V ] ∪
[0, U ]×{0}), and define X be the supremum of r4γABpApB over the support of f .

Let us note first two easy bounds. Clearly,

0 ≤ f ≤ F

throughout the mass shell over D. Moreover, by (14) and conservation of angular
momentum applied to geodesics, it follows that

r4γABpApB ≤ X (25)

for any x ∈ P in the support of f over D. In particular, in the expressions defining
energy-momentum, we can thus always replace an integral over the variables pA

by the integral over the ball of radius X about the origin.
We have the following:

Lemma 1. The inequality
−guvg

ABTAB ≤ 2Tuv

holds throughout D.

Proof. The inequality is equivalent to the statement that the trace of the energy-
momentum tensor is non-positive. This holds for collisionless matter independently
of symmetry assumptions. It is proved straightforwardly by taking a trace in the
formula defining the energy-momentum tensor in general coordinates with the
spacetime metric. �

We can rewrite (4) as

∂u(∂v log Ω2) = −8πTuv − 4κmr−3ν + 8πκνr−2γABTAB . (26)

Integrating (26), applying the above lemma, the energy estimate (18), and the
bounds (14), (15), (21), we estimate ∂v log Ω2:

|∂v log Ω2| ≤ G +
∣∣∣∣
∫

8πTuvdu −
∫

8πκνr−2γABTABdu

∣∣∣∣ −
∫

4κmr−3νdu

≤ G +
∫

8κr−2
(
2πr2κ−1Tuv

)
du −

∫
4κmr−3νdu

≤ G + 8r−2
0

∫
2πr2κ−1Tuvdu −

∫
4κmr−3νdu

≤ G + 8r−2
0

∫
2πr2κ−1Tuvdu −

∫
4κmr−3νdu

≤ G + 8r−2
0 (M − m0) + 2(r−2

0 − R−2)M
= G′ . (27)
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Integrating now (41), using (27), we obtain

| log Ω2(u, v)| ≤ | log Ω2(u, 0)| + G′V ,

and thus, since | log Ω2(u, 0)| ≤ C for some C, we have,

0 < c ≤ Ω2(u, v) ≤ D . (28)

Now, we turn to estimate the projection to the pv-axis of the support of f .
We proceed by considering the geodesic equation. Let γ(s) be a geodesic crossing
{0}× [0, V ]∪ [0, U ]×{0} at s = 0, such that γ′(0) is in the support of f . Let pv(s)
denote the ∂

∂v component of the tangent vector of γ. We have

(pv)′(s) = −Γv
vv(p

v)2 − Γv
ABpApB . (29)

using the Christoffel symbols in Appendix A. Integrating (29), we have now by (37)

pv(s) = pv(0)e−
∫ s
0 Γv

vv(pv)ds̃ −
∫ s

0

Γv
ABpA(s̃)pB(s̃)e−

∫ s
s̃

Γv
vv(pv)ds̄ds̃

= pv(0)e−
∫ v(s)

v(0) Γv
vvdv −

∫ s

0

Γv
ABpApBe

− ∫ v(s)
v(s̃) Γv

vvdv
ds̃

= pv(0)e−
∫ v(s)

v(0) Γv
vvdv +

∫ v(s)

v(0)

2(−ν)Ω−2rγABpApBe
− ∫ v(s)

v(s̃) Γv
vvdv(pv)−1dv .

Thus, for s′ < s, (replacing 0 with s′) we have, by (28) and (24), the inequality

pv(s) ≤ pv(s′)e−
∫ v(s)

v(s′) Γv
vvdv +

∫ v(s)

v(s′)
2Ñc−1rγABpApBe

− ∫ v(s)
v(s̃) Γv

vvdv(pv)−1dv . (30)

Suppose pv(s) > 2Σ for some 0 ≤ v(s) ≤ V , and let s′ be the last previous time
s > s′ > 0 such that pv(s′) ≥ 2Σ, i.e., we have pv(s∗) ≥ 2Σ on [s∗, s]. By (30),
(27), the angular momentum bound (25), and (41), we have

pv(s) ≤ 2ΣeV G′
+ r−3

0 XÑc−1eV G′
V (2Σ)−1 ,

i.e.,
pv(s) ≤ C̃ . (31)

We can now easily estimate Tuu pointwise:

Tuu =
∫ ∞

0

∫
|γABpApB |≤Xr−4

r2(pu)2f
dpv

pv

√
γdpAdpB

= (guv)2
∫ ∞

0

∫
|γABpApB |≤Xr−4

r2(pv)2f
dpv

pv

√
γdpAdpB

= 4ν2κ2

∫ ∞

0

∫
|γABpApB |≤Xr−4

r2(pv)2f
dpv

pv

√
γdpAdpB
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= 4ν2Fκ2

∫ C̃

0

∫
|γABpApB |≤Xr−4

r2(pv)dpv√γdpAdpB

≤ 16π r−2
0 ν2FC̃2X2 = ν2E

≤ Ñ2E ,

in view of (31), (24), (21), (14) and the angular momentum bound (25). (Note
that Tuuν−2 ≤ E is a coordinate invariant2 bound.) Integrating (20), we obtain
now

κ ≥ e−
∫

4πr Tuu
ν2 νdu ≥ e−4πREÑU .

(Actually, we have in fact already estimated κ from below since κ−1 = 4(−ν)Ω−2.)
From the inequality

pupv ≤ 1
2
(p2

u + p2
v) , we have Tuv ≤ 1

2
(Tuu + Tvv) .

This allows us to estimate ∂u log Ω2 = Γu
uu:

|Γu
uu| ≤ G +

∣∣∣∣
∫

8πTuvdv −
∫

8πκνr−2γABTABdv

∣∣∣∣ −
∫

4κmr−3νdv

≤ G + 8πÑ2EV +
∫

8πTvvdv −
∫

4κmr−3νdv ≤ C̄ .

We can easily obtain an estimate now for Tvv. λ can be bounded by integrating (3).

10 C2 estimates for the metric

In this section, we derive C2 estimates on the metric and C1 estimates for f . The
ideas of this section originate in [7].

It has already been shown that the following quantities are bounded: r, r−1,
m, m−1, κ, κ−1, ν, ν−1, λ, Ω, Ω−1, all first order derivatives of Ω, all components
of the energy-momentum tensor, and all Christoffel symbols in (36)–(41). From
these estimates and (22) and (23), it follows that ∂vν and ∂uλ are bounded, from
(12) and (13) it follows that ∂um and ∂vm are bounded, and from (26), it follows
that ∂u∂vΩ is bounded. Writing ν = − 1

4Ω2κ−1 and differentiating in u, we see from
(20) that ∂uν is bounded, while writing κ = − 1

4Ω2ν−1 and differentiating in v, we
see that ∂vκ is bounded, and thus, from (11), we see that ∂vλ is bounded. These
estimates and the formulas (36)–(41) allow us to control all first order derivatives
of the Christoffel symbols, except ∂uΓu

uu and ∂vΓv
vv.

Since the components of the curvature tensor can be expressed in terms of
those derivatives of the Christoffel symbols which have already been estimated, we
obtain bounds for all components of the curvature tensor in our coordinates. The
above estimates allow us to estimate the first derivatives of the exponential map

2i.e., it does not depend on the normalization of u
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on the tangent bundle. This, in turn allows one to estimate the derivatives of f in
terms of initial data.

We can, however, argue more directly as follows. Let us abbreviate the Vlasov
equation (8) by X(f) = 0 where X is the Vlasov operator written in these coor-
dinates. Note that pv is to be thought of as expressed in terms of pu and pA via
the mass shell condition (7).

Define f1 = ∂uf − pu∂u log Ω2∂puf . Differentiating the Vlasov equation with
respect to v, pu and pA gives the following equations:

X(∂vf) = −(∂vpv)∂vf + (∂u∂v log Ω2(pu)2 + ∂v(−2Ω−2rλ)γABpApB)∂puf

+ 2(∂v(νr−1)pu + ∂v(λr−1)pv + λr−1∂vpv)pA∂pAf , (32)

X(∂puf) = −∂uf − (∂pupv)∂vf + 2∂u log Ω2pu∂puf

+ 2(νr−1 + λr−1∂pupv)pA∂pAf , (33)

X(pD∂pDf) = −pD(∂pDpv)∂vf − 4Ω−2rλγABpApB∂puf

+ 2r−1λpD∂pDpvpA∂pAf . (34)

Differentiating the Vlasov equation with respect to u gives the following equation
for f1:

X(f1) = −pu∂u(log Ω2)X(∂puf) − ∂upv∂vf

+ (−pupv∂u∂v log Ω2 − ∂u log Ω2(∂u log Ω2(pu)2 + 2Ω−2rλγABpApB)
− 2∂u(Ω−2rλ)γABpApB)∂puf

+ 2(∂u(νr−1)pu + ∂u(λr−1)pv + ∂upvλr−1)pA∂pAf . (35)

The quantity X(∂puf) can be substituted for by one of the previous equations and
∂uf may be eliminated from the equations in favour of f1. The result is a linear
system of equations for the evolution of (f1, ∂vf, ∂puf, pA∂pAf) along the charac-
teristics of the Vlasov equation. The coefficients are known to be bounded and so
we can conclude that ∂uf , ∂vf , ∂puf and pA∂pAf are also bounded. (Note that
since pu and pv are bounded the derivative with respect to X is uniformly equiv-
alent to a derivative along the characteristic with respect to u or v as parameter.)

From this, we immediately estimate ∂uTab and ∂vTab pointwise. We now
estimate ∂uΓu

uu by differentiating (26) in u and integrating in v, and similarly,
∂vΓv

vv by differentiating in v and integrating in u. Note that |∂pA |γ can also be
bounded. This can be seen by passing from polar to Cartesian coordinates and
noting that the resulting metric components are C2. As a consequence f is C1.

11 The Proof of Theorem 1

Let N/2 denote the sup of the norm defined in Proposition 2, where the sup is
taken now in all of D. By the estimates of the previous section, we have that
N/2 < ∞. Let δ be the constant of Proposition 2 corresponding to N . Consider
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the point (U − δ/2, V − δ/2). Translate the coordinates so that this point is (0, 0).
Since Q is by definition open, by continuity, there exists a δ > δ∗ > δ/2 such that

{0} × [0, δ∗] ∪ [0, δ∗] × {0} ⊂ Q
and the assumptions of Proposition 2 hold on {0} × [0, δ∗] ∪ [0, δ∗] × {0}, with N
and δ∗ as already defined. It follows that there exists a unique solution of in

E = [0, δ∗] × [0, δ∗] .

Q

q

D

E
?

Thus the solution coincides in E ∩Q by uniqueness. One sees that E ∪Q is clearly
the quotient of a development of initial data. By maximality of M, we must have
E ∪ Q ⊂ Q. Thus, in particular, in the old coordinates we have (U, V ) ∈ Q, and
the theorem holds with q = (U, V ).

12 Applications

We will say that a spherically symmetric maximal development has a black hole,
if I+ is complete in the sense of [4],3 and if J−(I+) has a non-empty complement.

We have shown that the results of [12] apply to our matter model. In partic-
ular, the fact that the complement of J−(I+) is non-empty implies the complete-
ness of null infinity. That this set is non-empty can be inferred in turn from the
existence of a single trapped or marginally trapped surface. Asymptotically flat
spherically symmetric solutions of the Einstein-Vlasov system possesing a trapped
surface were constructed in [9]. Thus we have

Corollary 1. There exist solutions of the Einstein-Vlasov system which develop
from regular initial data and contain black holes.

The fundamental open question in gravitational collapse is to show that
generically, either the solution is future geodesically complete or a black hole forms.
In view of [12] and the results of this paper we have

Corollary 2. Suppose that for generic initial data, the maximal development ei-
ther contains a trapped surface or marginally trapped surface, or is future causally
geodesically complete. Then weak cosmic censorship is true.

Thus, weak cosmic censorship can be reduced to a slightly weaker version of
Christodoulou’s trapped surfaces conjecture. As remarked in the Introduction, this
suggests a local approach to its proof (cf. [3]).

3See [12] for a definition of I+ in this context.
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A The Christoffel symbols

Note:

guv = −1
2
Ω2 ,

guv = −2Ω−2 ,

Ω2 = −4κν .

The nonvanishing Christoffel symbols are given by:

Γu
AB = −guvrλγAB , (36)

Γv
AB = −guvrνγAB , (37)

ΓA
Bv = λr−1δA

B , (38)

ΓA
Bu = νr−1δA

B , (39)

Γu
uu = ∂u log Ω2 , (40)

Γv
vv = ∂v log Ω2 . (41)

In fact the Christoffel symbols ΓC
AB, which depend on a choice of coordinates on

the spheres of symmetry need not vanish but the expressions for them are not
needed in this paper.

B Proof of Proposition 2

The proof of local existence follows from simpler considerations than the proof
of the estimates of Sections 8–10. In particular, one does not need to consider
energy estimates, for one can recover naive pointwise estimates using the smallness
parameter. As in Section 10, the idea of [7] again makes its appearance, to show
C1 bounds on f directly from C0 bounds on the curvature, before bounding the
C2 norm of the metric. Since all these methods have appeared before, we will only
sketch the details here.

Let initial data be fixed. Define the space

A ⊂ C2([0, δ] × [0, δ]) × C1([0, δ] × [0, δ]) ,

for δ to be determined later, consisting of all twice continuously differentiable
nonnegative functions r, continuously differentiable nonnegative functions Ω, ex-
tending the prescribed values, such that

N−1/2 ≤ r ≤ 2N , (42)

N−1/2 ≤ Ω ≤ 2N , (43)

sup{|∂ur|, |∂vr|, |∂2
ur|, |∂2

vr|} ≤ 2N , (44)

sup{|∂uΩ|, |∂vΩ|} ≤ 2N . (45)
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Consider the subset B ⊂ A, consisting of those (r, Ω) for which Ω is C2, and
for which

sup{|∂2
uΩ|, |∂2

vΩ|, |∂u∂vΩ|} ≤ 2N . (46)

Note that the closure of B in A, denoted B, consists of (r, Ω) such that ∂uΩ,
∂vΩ, are Lipschitz, with Lipschitz constants given by the above.

We shall define in the next few paragraphs a continuous map Φ : B → A
taking (r, Ω) to (r̃, Ω̃).

Given r, Ω, first, let f be defined to solve the Vlasov equations on the metric
defined by r and Ω, with given initial conditions. Note that since the Christoffel
symbols of this metric are Lipschitz, it follows that geodesics can be defined, and
thus f can be defined by the requirement that it is preserved by geodesic motion.
It follows immediately that

0 ≤ f ≤ N , (47)

and, after appropriately restricting to sufficiently small δ, it follows easily by in-
tegration of the geodesic equations that

S ≤ 2N . (48)

In the case where (r, Ω) ∈ B, we have that f is in fact C1, since the exponential
map is differentiable. If δ is chosen sufficiently small, it is clear from (42)–(46)
that, in this case, we can arrange for

sup{|∂vf |, |∂uf |, |∂puf |, |∂pAf |γ} ≤ 2N . (49)

Given now f , we can define T uv, T vv, T uu in the standard way. In view of
(42)–(45), (47), and (48), these terms can be estimated. Now, set ν = ∂ur, λ = ∂vr.
We define r̃ by

r̃(u, v) = r(u, 0)+r(0, v)−r(0, 0)+
∫ u

0

∫ v

0

−1
4
r−2Ω2−1

r
λν+4πrΩ4T uvdudv . (50)

By appropriate differentiation of (50), it is clear from our bounds thus far that
we can define and estimate ν̃ = ∂ur̃, λ̃ = ∂v r̃, and ∂u∂v r̃. We can retrieve the bound
(42) for r̃ by integration of the ν̃, after restricting to small δ. For (r, Ω) ∈ B ⊂ B̄,
it is clear we can also define and estimate ∂2

ur̃, ∂2
v r̃, by differentiating (50) twice in

u or twice in v, in view of the fact that all other derivatives, including ∂uT uv, ∂uν,
etc., are clearly defined and bounded, in view of (49), and since these derivatives are
defined initially. By appropriate choice of δ, we can clearly arrange–for (r, Ω) ∈ B–
so as to retrieve the bound (44).

Define now Ω̃ > 0 by the relation

log Ω̃2 = log Ω2(u, 0) + log Ω2(0, v) − log Ω2(0, 0) (51)

+
∫ u

0

∫ v

0

(−8πTuv +
1
2
Ω2r̃−2 + 2r̃−2λ̃ν̃ − 2πΩ2r̃−2γABTAB)dudv .

Again, for small enough δ, it is clear that one can arrange for Ω̃ to satisfy (43).
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Differentiating (51) appropriately, in view of the initial conditions for Ω̃, it
follows that, for (r, Ω) ∈ B, Ω̃ is C1, and for δ small enough satsfies (45), while for
(r, Ω) ∈ B, Ω̃ is C2, and for δ small enough, satisfies (46).

Thus, we have shown that after judicious choice of δ, Φ maps B to itself. By
continuity, it maps B to itself.

The map Φ can easily be shown to be a contraction in B for the norm of A,
i.e., we can show that

dA((r̃1, Ω̃1), (r̃2, Ω̃2)) ≤ εdA((r1, Ω1), (r2, Ω2)) , (52)

for an ε < 1 and all (ri, Ωi) ∈ B. To see this, define first fi, corresponding to
(ri, Ωi). Let Γi denote an arbitrary Christoffel symbol for (ri, Ωi). We clearly have

|Γ1 − Γ2| ≤ CdA((r1, Ω1), (r2, Ω2)) .

We easily obtain

|f1 − f2| ≤ Cδ sup
Γ

|Γ1 − Γ2| sup
i=1,2

(|∂fi| + |fi|) .

Clearly we can also bound sup |T uv
1 −T uv

2 | ≤ C sup |f1− f2|. One bounds (ν1 − ν2)
by expressing ∂v(ν̃1 − ν̃2) as a linear combination of Ω1 − Ω2, r1 − r2, ν1 − ν2,
λ1 − λ2 and (T uv

1 − T uv
2 ) with bounded coefficients. One immediately obtains a

similar bound for sup |r̃1 − r̃2|. The terms sup |∂ur̃1 − ∂ur̃2|, sup |∂v r̃1 − ∂v r̃2|, and
sup |∂u∂v r̃1 − ∂u∂v r̃2|, can be handled in the same way. One then obtains a bound
of the above form for sup |∂v log Ω̃2

1 − ∂v log Ω̃2
2|, and similarly for sup |∂u log Ω̃2

1 −
∂u log Ω̃2

2|. Either of these bounds of course implies a bound for sup |Ω̃2
1 − Ω̃2

2|.
To bound sup |∂2

ur̃1 − ∂2
ur̃2|, we compute

∂2
ur̃ = ∂2

ur̃|v=0 +
∫ v

0

∂u

(
−1

4
r−2Ω2 − r−1λν

)

+ 4π∂u(rΩ4)T uv + 4πrΩ4∂uT uvdv (53)

= ∂2
ur̃|v=0 +

∫ v

0

∂u

(
−1

4
r−2Ω2 − r−1λν

)
+ 4π∂u(rΩ4)T uv

− 4πrΩ4∂vT
vv + 4πrΩ4(

∑
T · Γ)dv

= ∂2
ur̃|v=0 − 4πrΩ4T vv(u, v) + 4πrΩ4T uv(u, 0)

+
∫ v

0

∂u

(
−1

4
r−2Ω2 − r−1λν

)
+ 4π∂u(rΩ4)T uv

+ 4π∂v(rΩ4)T vv + 4πrΩ4(
∑

T · Γ)dv . (54)

Here we have used the equation ∇aT ab = 0, which follows from the Vlasov equa-
tion, and we have integrated by parts. It is now clear that estimates for differences
follow as before. We argue in an entirely analogous way for sup |∂2

v r̃1 − ∂2
v r̃2|.
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After restricting to sufficiently small δ, all constants in the above bounds can
be made small. We thus have indeed shown (52). It follows by continuity that Φ is
also a contraction on B ⊂ A, and thus, since B is closed, has a fixed point in B.

Given such a fixed point (r, Ω), define f as before. To show that (r, Ω, f)
corresponds to a solution of the equations, we have basically only to show that f
and ∂uΩ, ∂vΩ, which a priori are Lipschitz, are in fact C1. (In particular, from
this it will follow that the constraint equations (5)–(6) are also satisfied.) But, in
view of the fact that f is initially C1, it follows that f is C1 if the exponential map
is C1. (The C2 compatibility condition is used at the point.) But this latter fact
follows from the continuity of the curvature, as shown in Exercise 6.2 of Chapter
V of [5] 4. That the curvature is continuous follows by computation, since r is C2,
Ω is C1 and ∂u∂vΩ is C0, and ∂2

uΩ and ∂2
vΩ do not appear in the expressions for

curvature. From the C1 property of f , the C2 property of Ω follows immediately.
Similarly, higher regularity follows immediately if it is assumed. �
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