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The Translation Invariant Massive Nelson Model:
I. The Bottom of the Spectrum

Jacob Schach Møller

Abstract. In this paper we analyze the bottom of the energy-momentum spectrum
of the translation invariant Nelson model, describing one electron linearly coupled
to a second quantized massive scalar field. Our results are valid for all values of the
coupling constant and include an HVZ theorem, non-degeneracy of ground states,
existence of isolated groundstates in dimensions 1 and 2, non-existence of ground
states embedded in the bottom of the essential spectrum in dimensions 3 and 4, (i.e.,
at total momenta where no isolated groundstate eigenvalue exists), and we study
regularity and monotonicity properties of the bottom of the essential spectrum, as
a function of total momentum.

1 Introduction and results

In this section we introduce the Nelson model and formulate our main results. The
notation we use is standard, but for the sake of completeness we give the basic
constructions in Subsection 2.1.

1.1 Non-relativistic QED: An overview

In the last decade there has been a surge of interest in non-relativistic QED,
sparked by a string of papers by Hübner and Spohn, and by Bach, Fröhlich, and
Sigal. See, e.g., [5, 4, 39, 38]. The purpose of this subsection is to give an overview
over different aspects of the problem and place the model we study, as well as the
results derived, into context.

The fundamental Hamiltonian in non-relativistic QED, describing one charged
particle, with mass M > 0 and charge e, coupled to a radiation field, is the
minimally coupled one

Hmin := 1l ⊗ dΓ(|k|) +
1

2M
(
p⊗ 1l − eA(x)

)2
, on L2(R3

x) ⊗ Γ(L2(R3
k)) . (1.1)

Here dΓ(|k|) is the kinetic energy of the radiation field, p = i∇x is the particle
momentum operator, and A is the second quantized (massless) Maxwell field in
the Coulomb gauge, i.e., ∇x · A = 0. The Hilbert space Γ(L2(R3

k)) is the bosonic
Fock-space. See [34] and [5, 42]. In order to make sense of this operator (a priori
as a form) one must introduce an ultraviolet cutoff into A. We recall that the
model is translation invariant, in the sense that it commutes with the operator
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of total momentum P := p ⊗ 1l + 1l ⊗ dΓ(k). We remark that often the second
quantized Pauli operator is taken as a starting point instead of (1.1). It is defined
by replacing (p− eA)2 by (σ · (p− eA))2, where σ is the vector of Pauli matrices.
This operator differs from (1.1) by a magnetic term σ · (∇x ×A) (and with L2(R3

x)
replaced by L2(R3

x) ⊗ C
2, thus taking into account the spin of the particle).

The study of Hmin is a natural starting point in non-relativistic QED. In
particular in the context of scattering theory, where the dynamics of Hmin is a
natural choice for ”free” dynamics. Unfortunately there are not many rigorous
results established for the minimally coupled model, as it is formulated in (1.1),
which are valid for all values of e (viewed as a coupling constant). We refer the
reader to [35, 41]. Most results obtained in the literature are for Hmin perturbed
by an electric potential, and results then pertain to existence and properties of
ground states for the perturbed model, or localization in L2(R3

x) of states below
an ionization threshold. See [29, 30, 42, 43].

For a recent textbook treatment of the minimally coupled model and its
classical counterpart, the Abraham model, see [56].

There are a number of different ways to obtain simpler problems. Some in-
volve passing to phenomenological Hamiltonians, which are simpler to analyze
than (1.1).

We list some choices typically considered in the literature:
S1) Consider the problem in the weak coupling regime, i.e., for |e| small.
S2) Replace the massless photons by massive photons, which amounts to replacing

the massless dispersion relation k → |k| by a massive one k →
√
k2 +m2,

m > 0. This removes the infrared problem.
S2′) Set the interaction between soft photons (photons with small momenta) equal

to zero.
S3) Replace the minimal coupling with a linear coupling to a scalar field, i.e.,

replace Hmin by

H = 1l ⊗ dΓ(|k|) +
1

2M
p2 ⊗ 1l + gΦ(v),

where Φ(v) is a field operator and g is a coupling constant.
S4) Place the system in a confining external electric potential V , that is

lim
|x|→∞

V (x) = ∞.

This breaks the translation invariance of the problem. An extreme version of
this are the spin-boson and Wigner-Weisskopf models.

S4′) Place the system in an external potential V such that p2 + V has isolated
eigenvalues below the essential spectrum. Then consider Hmin + V ⊗ 1l in a
low energy regime where states are isolated bound states of p2 + V dressed
with photons.

S5) A combination of the above.
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In this paper we consider the massive translation invariant linearly coupled model
in any dimension, which (in dimension 3) can be viewed as a simplification of the
minimally coupled model, by applying S2) and S3) as mentioned above. This model
was considered by Nelson in [47], and it is distinguished by being renormalizable
in a Hamiltonian setting, cf. also [10, 32, 53]. This model is often referred to as
the Nelson model, a convention also adopted here. The models discussed in this
introduction is part of a body of models sometimes referred to as Pauli-Fierz
models. In this paper we do not consider renormalized operators. In addition we
note that we work with more general dispersion relations ω and Ω than

√
k2 +m2

and p2/2M respectively. We emphasize that we are interested in results which
hold for all values of the coupling constant g. See Subsection 1.2 below for a more
detailed description of the model.

We remark that one can formulate the model and the simplifications discussed
above for multiple particles coupled to a radiation field. For confined versions of the
model, cf. S4) and S4′) above, this makes no difference. However, for translation
invariant models, not much is known.

We pause to remind the reader that translation invariance, the fact that
[H,P ] = 0, gives a direct integral representation

∮
H(ξ)dξ of the Hamiltonian.

What we study in this paper is the bottom of the spectrum and essential spectrum
of H(ξ) as functions of total momentum ξ. The former function is also called the
ground state mass shell, or simply the mass shell. We note that in the massive case
isolated excited states could exist and would give rise to excited mass shells.

We are mainly inspired by works of Fröhlich [19, 20], Spohn [55], and one of
Dereziński and Gérard [14]. The results proved in these papers hold for all val-
ues of the coupling constant. Fröhlich considered properties of the ground state
mass shell for the massless translation invariant Nelson model. Most of his results
hold (suitably translated) also for massive photons. Dereziński and Gérard were
concerned with confined, in the sense of S3) above, massive linearly coupled mod-
els. They give a geometric proof of a HVZ theorem, thus locating the essential
spectrum. (They furthermore apply Mourre theory and time-dependent scattering
theory to the model.) Spohn proved a HVZ theorem for the translation invari-
ant model, using in part ideas of Glimm and Jaffe (via a reference to [20]). He
furthermore showed, in dimension 1 and 2, that the Hamiltonian at fixed total
momentum admits an isolated groundstate. The results of Spohn are for a class of
massive and subadditive dispersion relations ω. The result on existence of ground-
states requires an additional assumption which excludes the dispersion relation√
k2 +m2, m > 0.

In this paper we prove the following results for the structure of the bot-
tom of the spectrum of the massive translation invariant Nelson model: A HVZ
theorem, Theorem 1.2 (valid for ω which are not necessarily subadditive). The
ground state mass shell is non-degenerate, Theorem 1.3, using a Perron-Frobenius
argument of [19]. Existence of an isolated groundstate for all total momenta, The-
orem 1.5 i) (dimensions 1 and 2), thus extending the result of Spohn to the case
ω(k) =

√
k2 +m2. Non-existence of a ground state embedded in the essential
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spectrum, Theorem 1.5 ii) (dimensions 3 and 4). Analyticity of the bottom of the
essential spectrum, away from a closed countable set, Theorem 1.9. Maximality of
the spectral gap and analyticity at local minima for the bottom of the essential
spectrum, Theorem 1.10. See Subsection 1.3 for a precise formulation of the main
results. In Subsection 4.2 we discuss how to extend the results to the model with
a cutoff in the photon number operator.

The models considered in this paper only fails to include the so-called (optical
mode) polaron model of an electron in a ionic crystal by the requirement that
ω(k) → ∞, |k| → ∞. This requirement is a consequence of our use of geometric
methods to prove the HVZ theorem, and an adoption of the Glimm-Jaffe approach,
as used in [20], might remedy this. However, the geometric approach is important
for future work on Mourre and scattering theory. For mathematical work on the
polaron model see [32, 44, 53, 54, 55], and for a textbook discussion see [18].

We remark that there are not many results on the translation invariant Nelson
model, other than what we have already mentioned above, which are valid for all
values of g. See however [31], Lemma 4.1 in this paper. In [54] upper and lower
bounds on the effective mass are obtained (the effective mass is the inverse of the
Hessian of the ground state mass shell at zero total momentum). There are more
complete results available if one imposes a cutoff at small photon number, cf. [23]
(the massless case with at most one photon).

In the case of weak coupling there are more results, cf. [11, 22, 48]. See also
[33, 36, 37]. (We remark however, that although the photon dispersion relation in
[22] is massless, the interaction is of the type mentioned in S2′) above, and the
model thus retains massive features.)

Finally we recall that for confined massive models, cf. S4) and S4′) above,
quite strong results, valid for all coupling constants, are available. See, apart from
[14] mentioned above, the papers [1, 3, 21]. As for the massless confined model we
refer the reader to [7, 9, 24, 26, 38].

We end this section with an overview of the paper. The rest of this chapter
is devoted to a formal definition of the model and a presentation of assumptions
and our main results. In Chapter 2 we present the second quantization formalism,
extended objects pertaining to partitions of unity in Fock-space, basic estimates,
and the pull-through formula. The core of the paper is Chapter 3, where all the
main theorems are proved. In Chapter 4 we have assembled some miscellaneous
results, and formulated the main theorems in the setting of the Nelson model with
a cutoff in boson number. Finally in Appendix A, we present two mathematical
tools, namely the calculus of almost analytic extensions, for a vector of commuting
self-adjoint operators, and an abstract Perron-Frobenius result of Faris.

1.2 The translation invariant Nelson model

We consider a particle moving in R
ν and interacting with a scalar radiation field.

We write x and p = −i∇x for the particle position and momentum respectively.



Vol. 6, 2005 The Translation Invariant Massive Nelson Model 1095

The particle Hilbert space is

K := L2(Rν
x) ,

and the Hamiltonian for a free particle is taken to be Ω(p), where Ω : R
ν → R

is a smooth dispersion relation. We are primarily interested in the standard non-
relativistic and relativistic choices, i.e., Ω(p) = p2

2M and Ω(p) =
√
p2 +M2. Here

M > 0 is the mass of the particle.
The photon coordinates will be denoted by x = i∇k and k respectively and

the one-photon space is
hph := L2(Rν

k) .

The Hilbert space for the radiation field is the bosonic Fock-space

F ≡ Γ(hph) :=
∞⊕

n=0

F (n) , where F (n) ≡ Γ(n)(hph) := h⊗sn
ph . (1.2)

We write Ω = (1, 0, 0, . . . ) for the vacuum. The creation and annihilation operators,
a∗(k) and a(k) satisfy the canonical commutation relations (CCR for short)

[a∗(k),a∗(k′)] = [a(k),a(k′)] = 0 , [a(k), a∗(k′)] = δ(k − k′) , (1.3)

and a(k)Ω = 0. The free photon energy is the second quantization of the one-
photon dispersion relation ω

dΓ(ω) :=
∫

Rν

ω(k)a∗(k)a(k) dk , where ω(k) :=
√
k2 + m2 . (1.4)

Here m > 0 is the mass of the scalar photon. Our methods do not extend to the
case of massless photons, m = 0. The full Hilbert space of the combined system is

H := K ⊗ F .

We will make the following identification

H ≡ L2(Rν
x ; F).

The interaction considered here is linear in the field operator and is given by

V :=
∫

Rν

{
e−ik·xv(k) 1lK ⊗ a∗(k) + eik·x v(k) 1lK ⊗ a(k)

}
dk , (1.5)

where the physical form of the interaction is v(k) = χ(k)/
√
ω(k) and χ is an

ultraviolet cutoff, which ensures that v ∈ hph = L2(Rν
k). The free and coupled

Hamiltonians for the combined system are

H := H0 + V , where H0 := Ω(p) ⊗ 1lF + 1lK ⊗ dΓ(ω) . (1.6)
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The total momentum for the combined system is given by

P := p ⊗ 1lF + 1lK ⊗ dΓ(k) . (1.7)

The Hamiltonian H is translation invariant. That is, the energy momentum vec-
tor (P,H) has mutually commuting coordinates. Similarly for H0. Translation
invariance implies that H0 and H are fibered operators. We introduce a unitary
transformation

Ifib := F Γ(e−ik·x) : H → L2(Rν
ξ ; F) , (1.8)

where F is the Fourier transform F : L2(Rν
x ;F) → L2(Rν

ξ ;F) and Γ(e−ik·x) re-
stricted to K ⊗F (n) is multiplication by e−i(k1+···+kn)·x. We have

IfibH0 I
∗
fib =

∮

Rν

H0(ξ) dξ and IfibH I∗fib =
∮

Rν

H(ξ) dξ . (1.9)

The fiber operators H0(ξ) and H(ξ), ξ ∈ R
ν , are operators on F given by

H(ξ) = H0(ξ) + Φ(v) where H0(ξ) = dΓ(ω) + Ω(ξ − dΓ(k)) (1.10)

and the interaction is

Φ(v) =
∫

Rν

{
v(k)a∗(k) + v(k) a(k)

}
dk . (1.11)

We will in general use the notation v ∈ hph to denote a form-factor. In this paper
we study the properties of the bottom of the joint spectrum of the vector (P,H).

1.3 Main results

In this subsection we will formulate precise conditions and state our main results.
Proofs will be given in Section 3. The first condition is on the particle dispersion
relation. We use the standard notation 〈t〉 := (1 + t2)1/2.

Condition 1.1 (The particle dispersion relation) Let Ω ∈ C∞(Rν). There exists
sΩ ∈ {0, 1, 2}, a constant C, and for any multi-index α, with |α| ≥ 1, constants
Cα, such that

Ω(η) ≥ C−1〈η〉sΩ − C and ∀α : |∂αΩ(η)| ≤ Cα〈η〉sΩ−|α| .

We note that the standard choices Ω(p) = p2

2M and Ω(p) =
√
p2 +M2 satisfy

this condition with sΩ = 2 and sΩ = 1 respectively.

Condition 1.2 (The photon dispersion relation) Let ω ∈ C∞(Rν) satisfy

i) There exists m > 0, the photon mass, such that infk∈Rν ω(k) = ω(0) = m.
ii) ω(k) → ∞, in the limit |k| → ∞.
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iii) There exists sω ≥ 0, a constant Cω, and for any multi-index α, with |α| ≥ 1,
constants Cα, such that:

ω(k) ≥ C−1
ω 〈k〉sω − Cω and ∀α : |∂α

k ω(k)| ≤ Cα〈k〉sω−|α| .

The condition iii) is used in connection with pseudo differential calculus. The
physical choice of ω used in (1.4) satisfies this condition (with sω = 1), and so
does ω(k) = k2 +m (with sω = 2).

We introduce a space of test functions

C∞
0 := Γfin(C∞

0 (Rν)) . (1.12)

Note that since H0(ξ) is a bounded from below multiplication operator on each
n-particle sector, we find that it is essentially self-adjoint on C∞

0 . We recall the
following result, cf. [47], [19], and [20]. For completeness we give a proof in the
beginning of Section 3.

Proposition 1.1 Let v ∈ L2(Rν). Assume Ω and ω, satisfy Conditions 1.1 and 1.2 i)
respectively. Then

i) D(H0(ξ)) is independent of ξ and we denote it by D.
ii) Φ(v) is H0(ξ)-bounded with relative bound 0. In particular H(ξ) is bounded

from below, self-adjoint on D(H(ξ)) = D(H0(ξ)), and essentially self-adjoint
on C∞

0 .
iii) The bottom of the spectrum of the fiber Hamiltonians,

ξ → Σ0(ξ) := inf σ(H(ξ)),

is Lipschitz continuous.

We introduce some notation. First the bottom of the spectrum of the full
operator:

Σ0 := inf
ξ∈Rν

Σ0(ξ) > −∞ .

For n ≥ 1 and k = (k1, . . . , kn) ∈ R
nν we often write k(n) = k1 + · · · + kn.

We now introduce the bottom of the spectrum for a composite system at total
momentum ξ, consisting of an interacting system at total momentum ξ− k(n) and
n non-interacting photons with momenta k:

Σ(n)
0 (ξ; k) := Σ0

(
ξ − k(n)

)
+

n∑

j=1

ω(kj) . (1.13)

The following functions are thresholds due to ground states dressed by n photons,
at critical momenta:

Σ(n)
0 (ξ) := inf

k∈Rnν
Σ(n)

0 (ξ; k) . (1.14)
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The bottom of the essential spectrum (see Theorem 1.2 below)

Σess(ξ) := inf
n≥1

Σ(n)
0 (ξ) . (1.15)

We have the following elementary properties of the functions introduced above.
Namely

0 ≤ Σess(ξ) − Σ0(ξ) ≤ m (1.16)
Σ0(ξ) = Σ0 ⇒ Σess(ξ) = Σ0(ξ) + m (1.17)

lim
|ξ|→∞

Σ0(ξ) = lim
|ξ|→∞

Σess(ξ) = lim
|ξ|→∞

Σ(n)
0 (ξ) = ∞ (1.18)

lim
n→∞Σ(n)

0 (ξ) = ∞ . (1.19)

Our first result is

Theorem 1.2 (HVZ) Let v ∈ L2(Rν). Assume Conditions 1.1, and 1.2. Then
i) Eigenvalues of H(ξ) below Σess(ξ) have finite multiplicity and can only ac-

cumulate at Σess(ξ).
ii) σess(H(ξ)) = [Σess(ξ),∞).

The method of proof for the HVZ theorem is geometric and follows ideas of
[14], cf. Subsection 3.2. See also [1, 2, 9, 15, 24]. The name ”HVZ” (Hunziker–van
Winter–Zhislin) is used because the geometric idea of the proof is quite similar to
that employed in the proof of the standard HVZ theorem for N -body Schrödinger
operators, cf. [13, Theorem 6.2.2]. We recall that there is another method, due
to Glimm and Jaffe [28], one can employ to obtain an HVZ theorem. See [55,
Section 4], for the case of subadditive dispersion relations ω, and in addition [8, 20].

In the following we will impose either

v ∈ L2(Rν) , v is real-valued, and v �= 0 a.e. (1.20)

or

v ∈ L2(Rν) , v is real-valued, and ∀R > 0 : essinf
k:|k|≤R

|v(k)| > 0 . (1.21)

We have the following result on non-degeneracy of groundstates. This type
of result is not new, cf. [31, Section 6] and [20, Section 2].

Theorem 1.3 (Non-degeneracy of ground states) Let v satisfy (1.20) and assume
Conditions 1.1 and 1.2. Then, if Σ0(ξ) is an eigenvalue for H(ξ), it is non-
degenerate.

We note that the result of Gross [31] is for zero total momentum only, and
assumed that p → exp(−tΩ(p)) is a positive definite function for all t > 0. Gross
pass to the Schrödinger representation of the Fock-space, where H0(ξ) is positivity
improving if and only if ξ = 0.
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For the remaining results we will need either i) or i′) in the condition below.

Condition 1.3 ω ∈ C∞(Rν) satisfies
i) Subadditivity: For k1, k2 ∈ R

ν we have ω(k1 + k2) ≤ ω(k1) + ω(k2).
i′) Strict subadditivity: For k1, k2 ∈ R

ν we have ω(k1 + k2) < ω(k1) + ω(k2).

The standard dispersion relation ω(k) =
√
k2 +m2 satisfies Condition 1.3

i′), but ω(k) = k2 +m does not. We remark that if ω is convex and satisfies:

∀k ∈ R
ν : ω(k) − k · ∇ω(k) (>)

≥ 0 , (1.22)

then ω is (strictly) subadditive.
If ω is (strictly) subadditive we find, for all ξ ∈ R

ν ,

Σ(n)
0 (ξ) (<)

≤ Σ(n′)
0 (ξ) , for n < n′ . (1.23)

We thus get the following supplement to the HVZ Theorem, cf. also [55, Section 4],

Corollary 1.4 Let v ∈ L2(Rν). Assume Conditions 1.1, 1.2, and 1.3 i). Then
Σess(ξ) = Σ(1)

0 (ξ).

We introduce the notation

I0 := { η ∈ R
ν : Σ0(η) < Σess(η) } . (1.24)

We prove the following result on existence and non-existence of ground states.

Theorem 1.5 Let v satisfy (1.21) and assume Conditions 1.1, 1.2, and 1.3 i′). Then
we have:

i) If 1 ≤ ν ≤ 2, then I0 = R
ν , that is; Σ0(ξ) is an isolated eigenvalue of H(ξ)

for any ξ ∈ R
ν .

ii) If 3 ≤ ν ≤ 4 and ξ �∈ I0, then H(ξ) has no ground state; i.e., Σ0(ξ) is not
an eigenvalue.

The statement i) above is an extension to the Nelson model of a result of
Spohn, [55, Section 5]. We give a new proof replacing Spohn’s functional integral
approach by the pull-through formula. As for ii), we show that the expectation
value of the number operator in any embedded groundstate must be infinite, thus
arriving at a contradiction.

The remaining results are derived under the following condition

Condition 1.4 The functions Ω, ω ∈ C∞(Rν), v ∈ L2(Rν), and
i) Invariance under rotations: For any ξ ∈ R

ν and O ∈ O(ν) (the orthogonal
group), we have: Ω(Oξ) = Ω(ξ), ω(Oξ) = ω(ξ), and v(Ok) = v(k) a.e.

ii) ω is convex.
iii) Ω and ω are analytic.



1100 J. Schach Møller Ann. Henri Poincaré

We remark that under Conditions 1.2 i) and 1.3 i), iii), subadditivity and
strict subadditivity of ω are equivalent.

The rotation invariance of Ω, ω, and v, implies that the ground state mass
shell Σ0 is invariant under rotations, and hence also the Σ(n)

0 ’s and Σess.
For ξ ∈ R

ν and n ∈ N we define

I(n)
0 (ξ) := { k ∈ R

nν : ξ − k(n) ∈ I0 } . (1.25)

The next theorem is concerned with regularity of the functions ξ → Σ(n)
0 (ξ).

Our strategy is to study local minima of k → Σ(n)
0 (ξ; k). The following lemma,

in conjunction with (1.23), ensures that under Condition 1.3 i′), the relevant lo-
cal minima, i.e., global minima, are located in I(n)

0 (ξ), where the bottom of the
spectrum is smooth.

Lemma 1.6 Let v ∈ L2(Rν). Assume Conditions 1.1 and 1.2 i). Let ξ ∈ R
ν , n ≥ 1

and k ∈ R
nν . If Σ(n)

0 (ξ; k) < infn′>n Σ(n′)
0 (ξ), then k ∈ I(n)

0 (ξ).

The following lemma allows us to restrict the analysis to one dimension.

Lemma 1.7 Assume Conditions 1.1, 1.2 i), and 1.4 i), ii). Let ξ ∈ R
ν\{0} and

n ∈ N. Any local minimum k ∈ I(n)
0 (ξ) of k → Σ(n)

0 (ξ; k) is of the form k1 = · · · =
kn = θξ, for some θ ∈ R.

Let �u be a unit vector in R
ν . We write σ(t) = Σ0(t�u), for t ∈ R. By rota-

tion invariance, σ is independent of �u. Similarly we write σ(n)(t) := Σ(n)
0 (t�u) and

σess(t) := Σess(t�u). With a slight abuse of notation we write ω(s) = ω(s�u) and I0

to denote the set of t’s such that t�u ∈ I0. We furthermore use the symbol I(n)
0 (t),

n > 0 (not necessarily integer), to denote the set {s ∈ R : t− ns ∈ I0}.
In light of the previous lemma, we introduce now, for n > 0 and not neces-

sarily integer, the following functions

σ(n)(t; s) = σ(t − ns) + nω(s) and σ(n)(t) = inf
s∈R

σ(n)(t; s) . (1.26)

Note that by Lemma 1.7 we have, for integer n, Σ(n)
0 (ξ) = σ(n)(|ξ|), and in

particular Σess(ξ) = σ(1)(|ξ|). In this connection we mention that a local minimum
for Σ(n)

0 (ξ; ·) induces a local minimum for σ(n)(|ξ|; ·). Conversely however, a local
minimum for σ(n)(t; ·), which is not a global minimum, could be associated with
a saddle point for Σ(n)

0 (t�u; ·).

We have, cf. also [19, Lemma 1.6],

Proposition 1.8 Let v satisfy (1.20) and assume Conditions 1.1, 1.2, and 1.4. Let
λ < Σ0. The family of self adjoint operators t→ (H(t�u)− λ)−1 is analytic of type
A. Furthermore, the map I0 � t→ σ(t) is analytic.
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See [40, Chapter VII] for analytic perturbation theory. The following reg-
ularity result is proved by keeping track of global minima of s → σ(n)(t; s), as
functions of t.

Theorem 1.9 Let v satisfy (1.20) and assume Conditions 1.1, 1.2, 1.3 i), and 1.4.
Let n > 0. There exists a closed countable set T (n) ⊂ R, and an analytic map
R\T (n) � t → Θ(n)(t) ∈ I(n)

0 (t) with the property that the maps s → σ(n)(t; s),
t ∈ R\T (n), has a unique global minimum at s = Θ(n)(t) which is non-degenerate,
i.e., ∂2

sσ
(n)(t; Θ(n)(t)) > 0. In particular R\T (n) � t→ σ(n)(t) is analytic and

d

dt
σ(n)(t) = ∂ω

(
Θ(n)(t)

)
, for t ∈ R \ T (n) . (1.27)

Our final main result is concerned with the structure of the spectrum near
local minima of the essential spectrum

Theorem 1.10 Let v satisfy (1.20) and assume Conditions 1.1, 1.2, 1.3 i), and 1.4.
Let t0 be a local minimum of t → σess(t). Then the spectral gap at t0 is maximal,
i.e., σess(t0) − σ(t0) = m, the map t → σ(t) has a local minimum at t0, the map
t→ σess(t) is analytic near t0, and

d2

dt2
σess(t0) =

∂2ω(0) ∂2σ(t0)
∂2ω(0) + ∂2σ(t0)

. (1.28)

2 Notation and preliminaries

In this section we recall known facts. The reader is urged to consult in particular
[14], where most of the results pertaining to second quantization can be found.

2.1 The second quantization functor Γ

Let h be a complex Hilbert space with inner product 〈·, ·〉, which is conjugate
linear in the first variable and linear in the second. We use the standard notation
Γ(h) for the associated bosonic Fock-space, see (1.2). For a (not necessarily dense)
subspace C ⊂ h, we write Γfin(C) for the subspace of Γ(h) consisting of finite linear
combinations of elements of the algebraic tensor products C⊗sn, n ≥ 0. If C is
dense in h, then Γfin(C) is dense in Γ(h).

We write a∗(f) and a(f), f ∈ h, for the creation and annihilation operators.
Recall that for u ∈ Γ(n)(h) := h⊗sn, the n-particle sector; a∗(f)u =

√
n+ 1Sn+1f⊗

u ∈ Γ(n+1)(h). Here Sk is the symmetrization operator on h⊗k. We furthermore
recall that a∗(f) and a(f) are closed and densely defined, and that D(a(f)) =
D(a∗(f)). They satisfy the CCR:

[a∗(f),a∗(g)] = [a(f),a(g)] = 0 , [a(f), a∗(g)] = 〈f, g〉 (2.1)

and a(f)Ω = 0, for f ∈ h. The field operator

Φ(f) := a∗(f) + a(f) (2.2)
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is self-adjoint on D(a∗(f)) = D(a(f)) and essentially self-adjoint on Γfin(h). In
the case h = hph we have the relation with (1.3): a∗(f) =

∫
Rν f(k)a∗(k)dk and

a(f) =
∫

Rν f(k)a(k)dk. In particular (2.2) and (1.11) coincide. We frequently write
a#(k) to denote either a(k) or a∗(k). Similarly for a#(f). Recall that a(k) is well
defined on C∞

0 = Γfin(C∞
0 (Rν)), but it is not closable. The domain of its adjoint

(a(k))∗ equals {0}. The ”operator” a∗(k) should be understood as a form. See the
monograph by Berezin [6].

Let b be a bounded operator between Hilbert spaces h1 and h2. We define
Γ(b) : Γ(h1) → Γ(h2) by its restriction to Γ(n)(h1)

Γ(b)|Γ(n)(h1) :=

n times
︷ ︸︸ ︷
b ⊗ · · · ⊗ b .

In particular we have Γ(b)Ω = Ω. Recall that Γ(b) is bounded if and only if
‖b‖B(h1;h2) ≤ 1.

We introduce dΓ(a) for operators a : h → h with domain D(a) by

dΓ(a)|Γ(n)(h) := a ⊗ 1lh ⊗ · · · ⊗ 1lh + · · · + 1lh ⊗ · · · ⊗ 1lh ⊗ a , (2.3)

a priori on the domain Γfin(D(a)). In particular; dΓ(a)Ω = 0. The operators Γ(b)
and dΓ(a) are related through the formula Γ(ea) = edΓ(a) (suitably interpreted).
It is easy to see that if a is closed (or closable) on D(a) then dΓ(a) is closable on
Γfin(D(a)). See [24, Section 3.2] for a simple proof, which applies also to similar
situations below. In addition, if a is self-adjoint, then dΓ(a) is essentially self-
adjoint on Γfin(D(a)), cf. [51, Subsection VIII.10, Theorem VIII.33 and Example
2]. For closed a we will by dΓ(a) understand the closure of (2.3). Otherwise dΓ(a)
denotes the operator in (2.3) with the a priori domain Γfin(D(a)).

For a quadratic form a with form-domain Q(a) we also write dΓ(a) for the
quadratic form defined on Γfin(Q(a)) by (2.3).

An important operator is the number operator

N := dΓ(1lh) , (2.4)

which in the case h = hph can be written as N =
∫

Rν a∗(k)a(k)dk. See also (1.4).
Let a and b be densely defined operators on h and v ∈ D(a). We have

the following commutation properties, which should be interpreted as forms on
Γfin(D(a∗) ∩D(b∗))× Γfin(D(a) ∩D(b)) and Γfin(D(a∗))× Γfin(D(a)) respectively.

i[dΓ(a), dΓ(b)] = dΓ(i[a, b]) ,
[a∗(v), dΓ(a)] = −a∗(av) , [a(v), dΓ(a)] = a(av) , (2.5)

and i[Φ(v), dΓ(a)] = − Φ(iav) .

Let b : h1 → h2 be a contraction and a : h1 → h2 with domain D(a). We
define dΓ(b, a) : Γ(h1) → Γ(h2) on Γfin(D(a)) by

dΓ(b, a)|Γ(n)(h1) := a ⊗ b ⊗ · · · ⊗ b + · · · + b ⊗ · · · ⊗ b ⊗ a . (2.6)
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In particular (in the case h1 = h2 = h) dΓ(1lh, a) = dΓ(a); cf. (2.3). If a is closed
(or closable) we find, as above, that dΓ(b, a) is closable on Γfin(D(a)). As for dΓ(a)
we use the notation dΓ(b, a) also in the case where a is a form on h2 × h1.

Let b : h1 → h2 be a contraction, a1 : h1 → h1 and a2 : h2 → h2 be densely
defined. As a form on Γfin(D(a∗2)) × Γfin(D(a1)) we have

(Γ(b) dΓ(a1) − dΓ(a2) Γ(b)) = dΓ(b, (ba1 − a2b)) . (2.7)

2.2 Basic estimates involving Γ

We have the following lemma, cf. [14, Lemma 2.1],

Lemma 2.1 For f ∈ h and s ≥ 0, we have a#(f) : D(Ns+1/2) → D(Ns) and the
following holds true

i) Let f1, . . . , fn ∈ h and k ≥ 0. Then
∥
∥(N + 1)k a#(f1) · · ·a#(fn) (N + 1)−

n
2 −k

∥
∥ ≤ Ck,n‖f1‖ · · · ‖fn‖ .

ii) The following map is norm-continuous

hn � (f1, . . . , fn) → (N + 1)k a#(f1) · · ·a#(fn) (N + 1)−
n
2 −k ∈ B(Γ(h)) .

iii) Let {f1,�}�∈N, . . . , {fn,�}�∈N be uniformly bounded sequences, converging weak-
ly to zero in h. Then

s − lim
�→∞

(N + 1)k a(f1,�) · · ·a(fn,�) (N + 1)−
n
2 −k = 0 .

Suppose b ∈ B(h1; h2) is a contraction, a1 : h1 → h̃ and a2 : h2 → h̃. Define
a as a form on D(a2) × D(a1) by (f, ag) := (a2f, a1g). Then, for v ∈ Γfin(D(a1))
and u ∈ Γfin(D(a2)),

|〈u, dΓ(b, a)v〉| ≤ 〈u, dΓ(a∗2a2)u〉
1
2 〈v, dΓ(a∗1a1)v〉

1
2 . (2.8)

Here a∗#a# denote the obvious forms on h#. Taking in particular h̃ = h2, a2 = 1lh2 ,
and a1 = a we get, for v ∈ Γfin(D(a)),

‖(N + 1)−
1
2 dΓ(b, a)v‖ ≤ 〈v, dΓ(a∗a)v〉 1

2 . (2.9)

In connection with this bound we also use the easy property

a ≤ b =⇒ dΓ(a) ≤ dΓ(b) , (2.10)

where a and b are self-adjoint operators (or symmetric forms) on h. We also make
use of the following estimate, cf. [27, Lemma A.2]. Let k ∈ N and let a and b be
self-adjoint operators on h. If 0 ≤ a� ≤ b� for all 1 ≤ 
 ≤ k, with 
 ∈ N. Then

(dΓ(a))k ≤ (dΓ(b))k . (2.11)

We note that there are several bounds involving powers of second quantized oper-
ators, cf., e.g., [15, Lemma 3.2] and [24, Section 3.2] for a selection.
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2.3 The extended space and Γ̌

Let h0 and h∞ be two Hilbert spaces. We will use the standard unitary identifica-
tion U : Γ(h0 ⊕ h∞) → Γ(h0) ⊗ Γ(h∞), which is determined uniquely by linearity
and the two properties

U Ω = Ω ⊗ Ω (2.12)
U a∗((f, g)) =

(
a∗(f) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ a∗(g)

)
U . (2.13)

Let a0 : h0 → h0 and a∞ : h∞ → h∞. We have the intertwining property

U dΓ(a0 ⊕ a∞) =
(
dΓ(a0) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ dΓ(a∞)

)
U , (2.14)

as an identity on Γfin(D(a0) ⊕D(a∞)).
Let h, h0 and h∞ be Hilbert spaces and let b = (b0, b∞), where b0 ∈ B(h; h0)

and b∞ ∈ B(h; h∞). We view b as an element of B(h; h0 ⊕ h∞) and define the
associated operator Γ̌(b) by

Γ̌(b) := U Γ(b) : Γ(h) → Γ(h0) ⊗ Γ(h∞) . (2.15)

In this paper we always require b∗0b0+b∗∞b∞ = 1lh, which implies ‖b‖B(h;h0⊕h∞) = 1
and Γ̌(b) is an isometry:

Γ̌(b)∗ Γ̌(b) = 1lΓ(h) . (2.16)

We interpret Γ̌(b) as a partition of unity.
Let b = (b0, b∞) be as above, and let a = (a0, a∞) be an operator from

h to h1 ⊕ h2, with domain D(a) = D(a0) ∩ D(a∞). We introduce the operator
dΓ̌(b, a) : Γfin(D(a)) → Γ(h0) ⊗ Γ(h∞) by

dΓ̌(b, a) := U dΓ(b, a) . (2.17)

We use the same notation for forms a = (a0, a∞), where a# are forms on h# × h.
Let r : h → h, q0 : h0 → h0 and q∞ : h∞ → h∞, be densely defined operators.

We have the following intertwining relation, viewed as an identity between forms
on {Γfin(D(q∗0)) ⊗ Γfin(D(q∗∞))} × Γfin(D(r)):

Γ̌(b)dΓ(r) −
(
dΓ(q0) ⊗ 1lΓ(h∞) + 1lΓ(h0) ⊗ dΓ(q∞)

)
Γ̌(b) = dΓ̌(b, a) , (2.18)

where a = (b0r − q0b0, b∞r − q∞b∞) has form-domain {D(q∗0) ⊕D(q∗∞)} × D(r).

2.4 Basic estimates involving Γ̌

Let b = (b0, b∞) be as in (2.17). Let a#,1 : h → h̃# and a#,2 : h# → h̃#, where
h̃# are auxiliary Hilbert spaces. Here # denotes 0 and ∞. We define a form a =
(a0, a∞) on {D(a0,2) ⊕ D(a∞,2)} × {D(a0,1) ∩ D(a∞,1)} by prescribing the forms
a0 and a∞ as follows: (f, a#g) := (a#,2f, a#,1g) on D(a#,2) ×D(a#,1).
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Let u0 ∈ Γfin(D(a0,2)), u∞ ∈ Γfin(D(a∞,2)), v ∈ Γfin(D(a0,1)∩D(a∞,1)). The
following key estimate follows from (2.14) and (2.8)

|〈u0 ⊗ u∞, dΓ̌(b, a)v〉|
≤

{
〈u0, dΓ(a0,2a

∗
0,2)u0〉

1
2 ‖u∞‖ + ‖u0‖ 〈u∞, dΓ(a∞,2a

∗
∞,2)u∞〉 1

2
}

×〈v, dΓ(a∗0,1a0,1 + a∗∞,1a∞,1)v〉
1
2 . (2.19)

Again a∗#,2a#,2 denote the obvious forms on D(a#,2), and a∗0,1a0,1 + a∗∞,1a∞,1 is
a form on D(a0,1) ∩ D(a∞,1).

As for (2.9) this implies (here h̃# = h#, a#,2 = 1lh# , and a#,1 = a#)

‖(N0 +N∞)−
1
2 dΓ̌(b, a)v‖ ≤ 〈v, dΓ(a∗0,1a0,1 + a∗∞,1a∞,1)v〉

1
2 . (2.20)

Here and in the following we use the notation (cf. (2.4))

N0 = dΓ(1lh0) ⊗ 1lΓ(h∞) and N∞ = 1lΓ(h0) ⊗ dΓ(1lh∞) . (2.21)

2.5 Auxiliary spaces and operators

In this subsection we introduce some notation which will be used in the proof of
the HVZ theorem in Subsection 3.2.

We introduce auxiliary Hilbert spaces for an interacting system accompanied
by a fixed number 
 ≥ 1 of auxiliary photons

H(�) := F ⊗ F (�) ≡ L2
sym(R�ν ; F) .

Here the subscript sym indicates that functions are symmetric under permuta-
tion, i.e., f(kτ(1), . . . , kτ(�)) = f(k1, . . . , k�) a.e., for any τ ∈ S(
) the group of
permutations of the set {1, . . . , 
}.

For 
 ∈ N we extend the notation for second quantization as follows

dΓ(�)(a) = dΓ(a) ⊗ 1lF(�) + 1lF ⊗ dΓ(a)|F(�) ,

for operators a on hph. Again dΓ(a) defined on Γfin(D(a))⊗D(a)⊗s� is closable (es-
sentially self-adjoint) if a is closable (essentially self-adjoint). For the Hamiltonian
we write

H(�)(ξ) := H
(�)
0 (ξ) + Φ(v) ⊗ 1lF(�) , (2.22)

where
H

(�)
0 (ξ) := dΓ(�)(ω) + Ω

(
ξ − dΓ(�)(k)

)
. (2.23)

We note that H(�)
0 (ξ) is essentially self-adjoint on

C∞(�)
0 := C∞

0 ⊗ Γ(�)(C∞
0 (Rν)) . (2.24)

and write D(�) = D(H(�)
0 (ξ)), which is independent of ξ. Observe that there is

no interaction between the 
 auxiliary photons, nor are they coupled with the
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interacting system (apart from the coupling coming from the dispersive structure).
Note that as for Proposition 1.1, Φ(v) ⊗ 1lF(�) is H(�)

0 (ξ)-bounded with relative
bound 0, so H(�)(ξ) is essentially self-adjoint on C∞(�)

0 and self-adjoint on D(�).
Using a direct integral representation we can write the auxiliary Hamiltonian

for each total momentum ξ as

H(�)(ξ) =
∮

R�ν

H(�)(ξ; k) d�νk , (2.25)

where

H(�)(ξ; k) := H(ξ − k) +
( �∑

j=1

ω(kj)
)
1lF . (2.26)

Here d�νk = Π�
j=1d

νkj . We have a similar fibration of H(�)
0 (ξ). The fiber operators,

being spectral translates of a Hamiltonian at a different total momentum, are
clearly self-adjoint on D and essentially self-adjoint on C∞

0 .
We note the following important observations

Σ(�)
0 (ξ; k) = inf

{
σ
(
H(�)(ξ; k)

)}
, (2.27)

Σ(�)
0 (ξ) = inf

{
σ
(
H(�)(ξ)

)}
. (2.28)

2.6 Geometric partition of unity and extended operators

In the analysis of the many-body problem, a central tool is a geometric partition of
unity in the configuration space; cf. [13]. Here we will need a similar notion, made
complicated by the fact that we have to partition an infinite number of particles.
The type of partition of unity used here was introduced in [14] and subsequently
used by many authors, cf. [1, 2, 15, 21, 24, 27].

Here h = h0 = h∞ = hph. Let j0, j∞ ∈ C∞(Rν) be non-negative functions
satisfying: j0 = 1 on {k : |k| ≤ 1}, j0 = 0 on {k : |k| > 2}, and finally j20 + j2∞ = 1.
By jR, R > 1, we understand the operator jR = (j0(x/R), j∞(x/R)). Recall that
x = i∇k is a differential operator. We view jR as a map from hph into hph ⊕ hph

and the operator Γ̌(jR) is an isometry, see (2.16),

Γ̌(jR) : F → Fext := F ⊗ F and Γ̌(jR)∗ Γ̌(jR) = 1lF . (2.29)

The partition of unity is used to decouple photons at infinity from photons
near the electron. In fact the reader should think of the first component as the
Fock-space for interacting photons and the second component as the Fock-space
for non-interacting photons at infinity.

As in the previous section we extend the notation for second quantization
to these extended spaces. We will in general call operators constructed this way,
extended operators. The simplest extended operator is the extended number op-
erator, already encountered in Subsection 2.4

N ext := N0 + N∞ .
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This is a particular case of the following notation, which will be used for operators
a on hph,

dΓext(a) = dΓ(a) ⊗ 1lF + 1lF ⊗ dΓ(a) . (2.30)

As in the previous section dΓext(a) is closable (essentially self-adjoint) if a is
closable (essentially self-adjoint). Using this notation we introduce the extended
Hamiltonian as

Hext(ξ) := Hext
0 (ξ) + Φ(v) ⊗ 1lF , (2.31)

where
Hext

0 (ξ) := dΓext(ω) + Ω
(
ξ − dΓext(k)

)
. (2.32)

The free extended Hamiltonian (2.32) is essentially self-adjoint on C∞
0 ⊗ C∞

0 and
we write Dext = D(Hext

0 (ξ)), which is independent of ξ. Note that as for Propo-
sition 1.1, Φ(v) ⊗ 1lF is Hext

0 (ξ)-bounded with relative bound 0, so Hext(ξ) is
essentially self-adjoint on C∞

0 ⊗ C∞
0 and self-adjoint on Dext.

Using the notation introduced in the previous subsection we have

Fext = F ⊕
{ ∞⊕

�=1

H(�)
}
, (2.33)

and

Hext(ξ) = H(ξ) ⊕
{ ∞⊕

�=1

H(�)(ξ)
}
. (2.34)

2.7 The pull-through formula

In the following we use that a(k) makes sense as an operator on C0 = Γfin(hph ∩
C0(Rν)). Here C0(Rν) denotes the space of continuous functions on R

ν . Note that
a(k) : C0 → C0, a(k) : C∞

0 → C∞
0 , and under the assumption v ∈ L2(Rν)∩C0(Rν),

we have H(ξ) : C∞
0 → C0. Note that v need not be real-valued. For the definition

of C∞
0 , see (1.12). The type of formula presented here has been used previously in

the study of ground states of translation invariant models, cf. [19], and confined
models, see, e.g., [5, 24, 26].

Proposition 2.2 Suppose v ∈ L2(Rν) ∩ C0(Rν). Let ξ ∈ R
ν , n ≥ 1, k ∈ R

nν , and
z ∈ C. For ψ ∈ C∞

0 we have the identity

a(k1) · · ·a(kn) (H(ξ) − z)ψ

=
(
H(ξ − k(n)) +

n∑

i=1

ω(ki) − z
)
a(k1) · · ·a(kn)ψ

+
n∑

i=1

v(ki)a(k1) · · · â(ki) · · ·a(kn)ψ ,

where k(n) = k1 + · · · + kn.

The notation â(ki) indicates that the term a(ki) is omitted from the product.



1108 J. Schach Møller Ann. Henri Poincaré

For n = 1 we formulate another pull through formula. Note that for ψ ∈
D(N

1
2 ), the map k → a(k)ψ is in L2(Rν ;F). In general, for ψ ∈ F we have

k → a(k)ψ in L2(Rν ;D(N
1
2 )∗). The following proposition can be proved directly

as in [26, Proposition 3.4], or by using Proposition 2.2 and an approximation
argument.

Proposition 2.3 Suppose v ∈ L2(Rν). Let ξ ∈ R
ν and z ∈ C, Imz �= 0. For ψ ∈ D,

we have the L2(Rν ;F)-identity

(
H(ξ − k) + ω(k) − z

)−1
a(k) (H(ξ) − z)ψ

= a(k)ψ + v(k)
(
H(ξ − k) + ω(k) − z

)−1
ψ .

3 Spectral theory

We start this section by giving a proof of Proposition 1.1. First some simple ob-
servations.

Since 1� ≤ m−�ω(k)� for any 
 ≥ 0, we obtain from (2.11) that Nk ≤
m−kdΓ(ω)k, for k ∈ N. Since 0 ≤ dΓ(ω) ≤ H0(ξ) and they commute, we find
that dΓ(ω)k ≤ H0(ξ)k for any k ∈ N. We thus get Nk ≤ m−kH0(ξ)k, for k ∈ N.
This estimate in particular shows that for k ∈ N

N
k
2 is H0(ξ)

k
2 − bounded and N ext

k
2 is Hext

0 (ξ)
k
2 − bounded . (3.1)

Proof of Proposition 1.1. We begin by showing that D(H0(ξ)) is independent of
ξ. We compute on C∞

0 as an operator identity H(ξ) − H(0) = ξ ·
∫ 1

0 ∇Ω(tξ −
dΓ(k))dt. By Condition 1.1 and the estimate ab ≤ aq +bp, q−1 +p−1 = 1 we obtain
‖(H(ξ)−H(0))ψ‖ ≤ ε‖Ω(dΓ(k))ψ‖+C(ε, ξ)‖ψ‖, for any ε > 0 and ψ ∈ C∞

0 . That
the domain is independent of ξ now follows from the Kato-Rellich theorem [49,
Theorem X.12].

As for ii), the observation (3.1) (applied with k = 1), together with the
N1/2-boundedness of Φ(v), cf. Lemma 2.1 i), implies the result.

The last part follows from the variational principle and an argument similar
to the one given for i). We leave it to the reader. �

Clearly Proposition 1.1 also holds with {H0(ξ), H(ξ)} replaced by either of
the pairs {Hext

0 (ξ), Hext(ξ)} or {H(�)
0 (ξ), H(�)(ξ)}.

We note the following consequence, for k ∈ {1, 2},

N
k
2 is H(ξ)

k
2 − bounded , N ext

k
2 is Hext(ξ)

k
2 − bounded , (3.2)

N (�)
k
2 is H(�)(ξ)

k
2 − bounded . (3.3)

Here N (�) := dΓ(�)(1lhph).
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3.1 Localization errors

In this subsection we show that localization errors arising when we apply Γ̌(jR)
are small for large R.

Lemma 3.1 Let s ∈ N0 ∩ [0, sΩ] and f ∈ C∞(Rν) satisfy the bound |(∂αf)(η)| ≤
Cα〈η〉s−|α|, for any multi-index α. Let t = 1, if s = 0, and t = (1 + sΩ − s)/2 if
s ≥ 1. We have as a form on Fext ×F ,

(Hext
0 (ξ) − i)−1

(
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

)
(H0(ξ) − i)−1

= (Hext
0 (ξ) − i)−tB1(R) = B2(R)(H0(ξ) − i)−t ,

where B1 and B2 are families of bounded operators which satisfy ‖B1(R)‖ +
‖B2(R)‖ = O(R−1/2), as R→ ∞, locally uniformly in ξ.

Proof. As a first step we compute as a form on (C∞
0 ⊗ C∞

0 ) × C∞
0 , for 1 ≤ p ≤ ν,

Γ̌(jR) dΓ(k;p) − dΓext(k;p) Γ̌(jR) = dΓ̌(jR, sR
p ) , (3.4)

sR
p = ([jR

0 , k;p], [jR∞, k;p]). Clearly sR
p are bounded operators and

[jR
#, k;p] = O(R−1) , as R → ∞ . (3.5)

Here we used the notation k;p to denote the p’th coordinate of a vector k ∈ R
ν .

(This notation should not be confused with the labeling kj of a family of vectors
kj ∈ R

ν .)
We consider first the case s = 0. Let f̃ ∈ C∞(Cν) denote an almost analytic

extension of f . Let χ ∈ C∞
0 (Rν) be equal to 1 near 0. Write χn(η) = χ(η/n).

Then fn = χnf has almost analytic extensions f̃n satisfying that, for all z ∈ C
ν :

∂̄f̃n(z) → ∂̄f̃(z), and the estimates

|∂̄f̃n(z)| ≤ C�〈z〉−1−�|Imz|� (3.6)

hold uniformly in n, cf. (A.4). If we take for example the Borel construction (A.2),
for f̃ and the f̃n’s, then this property is easy to verify. This well-known approx-
imation technique has been used by many authors (in the case ν = 1), see, e.g.,
[52, Section 5] and [46, Section 4].

We use (3.4) to compute as a form on (C∞
0 ⊗ C∞

0 ) × C∞
0 , for Imz �= 0,

T (z;R) := Γ̌(jR) |ξ − dΓ(k) − z|2 − |ξ − dΓext(k) − z|2 Γ̌(jR)

=
ν∑

p=1

{
dΓ̌(jR, sR

p ) (ξ;p − dΓ(k;p) − z;p) + (ξ;p − dΓext(k;p) + z;p) dΓ̌(jR, sR
p )

}
.

Using (2.10), (2.20) (with h = h̃# = h# = hph and a#,1 = [jR
#, k;p]), and (3.5), we

conclude the following estimate

(N ext + 1)−
1
2 |ξ − dΓext(k) − z|−1T (z;R) |ξ − dΓ(k) − z|−1(N + 1)−

1
2

= O
(
|Imz|−1R−1

)
. (3.7)

The estimate is valid uniformly in ξ and Rez = {Rez1, . . . ,Rezν}.
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We proceed to compute

Γ̌(jR) |ξ − dΓ(k) − z|−2ν − |ξ − dΓext(k) − z|−2ν Γ̌(jR)

= −|ξ − dΓ(k) − z|−2ν
{
Γ̌(jR) |ξ − dΓ(k) − z|2ν

− |ξ − dΓext(k) − z|2ν Γ̌(jR)
}
|ξ − dΓ(k) − z|−2ν

= −
ν−1∑

j=0

|ξ − dΓ(k) − z|−2(ν−j)T (z;R) |ξ − dΓ(k) − z|−2(j+1) . (3.8)

Combining this identity with (3.7), we obtain the estimate

(N ext + 1)−
1
2

{
Γ̌(jR) |ξ − dΓ(k) − z|−2ν

− |ξ − dΓext(k) − z|−2ν Γ̌(jR)
}

(N + 1)−
1
2

= |ξ − dΓext(k) − z|−1O
(
|Imz|−2νR−1

)

= O
(
|Imz|−2νR−1

)
|ξ − dΓ(k) − z|−1 . (3.9)

A small calculation using (3.4) (and again the estimates (2.10), (2.20), and
(3.5)) in conjunction with (3.6) and (3.9) gives the following estimate for all 1 ≤
p ≤ ν and 
 ≥ 0

∂̄pf̃n(z)(N ext + 1)−
1
2

{
Γ̌(jR) (ξ;p − dΓ(k;p) + z;p) |ξ − dΓ(k) − z|−2ν

− (ξ;p − dΓext(k;p) + z;p) |ξ − dΓext(k) − z|−2ν Γ̌(jR)
}

(N + 1)−
1
2

= O
(
〈z〉−�−1|Imz|�−2νR−1

)
. (3.10)

By choosing 
 = 2ν, in order to dampen the singularity at the real axis, we get an
integrable weight factor 〈z〉−2ν−1, uniformly in n. We can now invoke the Lebesgue
theorem on dominated convergence, and remove the cutoff by taking n → ∞ in
the representation formula (A.6). This gives finally

(N ext + 1)−
1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−

1
2

= O(R−1) .

Note that the term in the brackets above is a bounded operator with norm bounded
uniformly in R and ξ. We thus get by interpolation (and since powers of N can be
moved around as we please) for 0 ≤ ρ ≤ 1/2.

(N ext + 1)ρ− 1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−ρ

= O(R− 1
2 ) . (3.11)

By (3.1), this concludes the proof for the case s = 0.
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Next we consider the case s = 1 (and hence sΩ ∈ {1, 2}). Use Taylor’s formula
to write f(η) = f(0) + η · F0(η), where F0(η) =

∫ 1

0
(∇f)(tη)dt. It is easy to verify

that F0’s coordinate functions satisfy the assumption of the lemma with s = 0.
From (3.4) (again combined with (2.10), (2.20), and (3.5)) and (3.11) we get, as a
form estimate on (C∞

0 ⊗ C∞
0 ) × C∞

0 ,

(N ext + 1)ρ− 1
2

{
Γ̌(jR) f(ξ − dΓ(k)) − f(ξ − dΓext(k)) Γ̌(jR)

}
(N + 1)−ρ

= O(R− 1
2 ) +

ν∑

p=1

(ξ;p − dΓext(k;p))O(R− 1
2 )

= O(R− 1
2 ) +

ν∑

p=1

O(R− 1
2 ) (ξ;p − dΓ(k;p)) . (3.12)

Note that if sΩ = 1 then dΓ(k) is H0(ξ)-bounded, and if sΩ = 2 then dΓ(k) is
H0(ξ)1/2-bounded. Corresponding relative bounds for the extended operators hold
as well. This implies the lemma for s = 1.

In the remaining case s = 2 (and hence sΩ = 2). We proceed in a similar
fashion, writing f(η) = f(0)+η ·F1(η), where F1’s coordinate functions satisfy the
assumptions of the lemma with s = 1. Since in this case dΓ(k) and F1(ξ − dΓ(k))
are H0(ξ)1/2-bounded, the result follows (by a similar argument) from the s = 1
case. �
Lemma 3.2 We have as a form on Fext ×F ,

(Hext
0 (ξ) − i)−1

{
Γ̌(jR)H(ξ) − Hext(ξ) Γ̌(jR)

}
(H0(ξ) − i)−1

= (Hext
0 (ξ) − i)−

1
2B1(R) = B2(R)(H0(ξ) − i)−

1
2 ,

where B1 and B2 are families of bounded operators satisfying ‖B1(R)‖+‖B2(R)‖ =
o(1), as R→ ∞, locally uniformly in ξ.

Proof. By Lemma 3.1, applied with f = Ω and s = sΩ, we only need to prove the
lemma with H(ξ) replaced by dΓ(ω) and Φ(v), and Hext(ξ) replaced by dΓext(ω)
and Φ(v) ⊗ 1lF respectively.

We begin by computing as a form on Dext ×D

Γ̌(jR) dΓ(ω) − dΓext(ω) Γ̌(jR) = dΓ̌(jR, rR) ,

where rR = ([jR
0 , ω], [jR

∞, ω]). By Condition 1.2 iii) and pseudo differential calculus,
the components of rR satisfies, as operators on D(ω

1
2 )∗,

ω− 1
2 [jR

#, ω]ω− 1
2 = O(R−1) , for R → ∞ .

(Alternatively one could also use here the calculus of almost analytic extensions.)
The contribution to B1 and B2 coming from dΓ(ω) thus satisfies the required



1112 J. Schach Møller Ann. Henri Poincaré

bounds by (2.10), (2.19), and (3.1). Here we choose h = h# = hph, h̃# = D(ω
1
2 )∗,

a#,2 = ω
1
2 , and a#,1 = {ω− 1

2 [jR
#, ω]ω− 1

2 }ω 1
2 , when applying (2.19).

It remains to treat the contribution from the perturbation. We compute as a
form on Dext ×D, using [14, Lemma 2.14 (iii)]

Γ̌(jR)Φ(v) − Φ(v) ⊗ 1lF Γ̌(jR)

= − 1√
2

{(
a∗((1 − jR

0 )v) ⊗ 1lF + 1lF ⊗ a∗(jR
∞v)

)
Γ̌(jR)

+ Γ̌(jR)a((1 − jR
0 )v)

}
.

Eq. (3.1) and Lemma 2.1 ii) now yield the result, since s − limR→∞ jR
∞ = s −

limR→∞(1 − jR
0 ) = 0 and v ∈ L2(Rν). �

We immediately get the following two corollaries.

Corollary 3.3 We have for any R > 1

Γ̌(jR) : D → Dext
1/2 and Γ̌(jR)∗ : Dext → D1/2 ,

where D1/2 = D(H0(ξ)1/2) and Dext
1/2 = D(Hext

0 (ξ)1/2) are independent of ξ.

The first part of the following corollary follows from Lemma 3.2 while the sec-
ond part follows from the first part and the calculus of almost analytic extensions
(with ν = 1), as presented in Subsection A.1.

Corollary 3.4 We have, in the limit R → ∞,

i) The following estimate holds true locally uniformly in ξ and z ∈ C with
Imz �= 0

Γ̌(jR) (H(ξ) − z)−1 − (Hext(ξ) − z)−1 Γ̌(jR) = |Imz|−2 o(1) .

ii) For f ∈ C∞
0 (R), we have uniformly in ξ

Γ̌(jR) f(H(ξ)) − f(Hext(ξ)) Γ̌(jR) = o(1) .

3.2 The HVZ-Theorem

In this subsection we prove Theorem 1.2.
Recall the abbreviations k = (k1, . . . , kn) ∈ R

nν and k(n) = k1 + · · ·+ kn. We
start by establishing three lemmas
Proof of Lemma 1.6. Suppose to the contrary that k �∈ I(n)

0 (ξ), that is Σ0(ξ −
k(n)) ≥ Σess(ξ − k(n)), cf. (1.25). Then there exist 
 ≥ 1 and kn+1, . . . , kn+�,
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cf. (1.15), such that (writing k(n+�) =
∑n+�

i=1 ki)

Σ(n)
0 (ξ; k) = Σ0

(
ξ − k(n)

)
+

n∑

i=1

ω(ki)

≥ Σ0

(
ξ − k(n+�)

)
+

n+�∑

i=1

ω(ki)

≥ Σ(n+�)
0 (ξ) > Σ(n)

0 (ξ; k) ,

which is a contradiction. This proves the lemma. �

Lemma 3.5 Let n ≥ 1, and B ∈ L2
sym(Rnν ;B(F)). Suppose B(k) commute with N

for almost all k ∈ R
nν . Define for ψ ∈ C∞

0 the map

a(B)ψ :=
∫

Rnν

B(k)a(k1) · · ·a(kn)ψ dnνk .

Then (N + 1)−n/2a(B) extends from C∞
0 to a bounded operator on F and there

exists C = C(n) such that

C−1
∥
∥(N + 1)−n/2 a(B)

∥
∥
B(F)

≤ ‖B‖ :=
(∫

Rnν

‖B(k)‖2
B(F) d

nνk
) 1

2
. (3.13)

Proof. Let ψ ∈ C∞
0 and ϕ ∈ F , with ‖ϕ‖ = 1. We estimate

∣
∣〈ϕ, (N + n+ 1)−n/2 a(B)ψ

〉∣∣

≤
∫

Rnν

∣
∣〈ϕ, (N + n+ 1)−

n
2 B(k)a(k1) · · ·a(kn)ψ

〉∣∣ dnνk

=
∫

Rnν

∣
∣〈ϕ,B(k)a(k1) · · ·a(kn) (N + 1)−

n
2 ψ

〉∣∣ dnνk

≤
∫

Rnν

‖B(k)‖B(F)

∥
∥a(k1) · · ·a(kn) (N + 1)−

n
2 ψ

∥
∥ dnνk

≤ ‖B‖
(∫

Rnν

∥
∥a(k1) · · ·a(kn) (N + 1)−

n
2 ψ

∥
∥2
dnνk

) 1
2

≤ ‖B‖ ‖ψ‖ .

Here we used the representation N =
∫

Rν a∗(k)a(k)dνk repeatedly in the last step.
This estimate yields the lemma (with C = ((n+ 1)/2)n/2). �

Lemma 3.6 Let χ ∈ C∞
0 (R) and ξ ∈ R

ν . Then, for all k, 
 ≥ 0, the form
Nkχ(H(ξ))N � extends from C∞

0 to a bounded form on D∗.

Remark. We employ the standard triple: D ⊂ F ⊂ D∗ continuously and densely.
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Proof. Recall from [14, Lemma 3.2] that Nkχ(H(ξ))N � extends to a bounded form
on F . It remains to prove that it extends further by continuity to D∗. It is sufficient
to verify that H(ξ)Nkχ(H(ξ)), viewed as a form on C∞

0 ×F , extends to a bounded
form on F ⊗ F .

Let ψ ∈ C∞
0 and ϕ ∈ F . We compute for k ≥ 1,

〈
H(ξ)ψ, (N + 1)kχ(H(ξ))ϕ

〉

=
〈
Φ(v)ψ, (N + 1)kχ(H(ξ))ϕ

〉
+

〈
(N + 1)kψ, H0(ξ)χ(H(ξ))ϕ

〉

=
〈
(N + 1)−

1
2 Φ(v)ψ, (N + 1)k+ 1

2χ(H(ξ))ϕ
〉

+
〈
(N + 1)kψ, H(ξ)χ(H(ξ))ϕ

〉

−
〈
(N + 1)−k− 1

2 Φ(v) (N + 1)kψ, (N + 1)k+ 1
2 χ(H(ξ))ϕ

〉
.

An application of Lemma 2.1 i) now yields the result. �

Proof of Theorem 1.2. We begin with i). Let ξ ∈ R
ν and let f ∈ C∞

0 (R) be such
that supp f ⊂ (−∞,Σess(ξ)). By definition of Σess(ξ) (see (1.13–1.15)), (2.21),
(2.33), (2.34), and (2.28), we observe that

Hext(ξ) 1l(N∞ ≥ 1) =
∞⊕

�=1

H(�)(ξ)

≥
∞⊕

�=1

Σ(�)
0 (ξ) 1lH(�) ≥ Σess(ξ) 1l(N∞ ≥ 1) .

Here we used the identification 1lH(�) = 1l(N∞ = 
). The lower bound above,
together with (2.29) and Corollary 3.4 ii), yields

f(H(ξ)) = Γ̌(jR)∗ f(Hext(ξ)) Γ̌(jR) + o(1)
= Γ(jR

0 ) f(H(ξ)) Γ(jR
0 )

+ Γ̌(jR)∗ f(Hext(ξ)) 1l(N∞ ≥ 1) Γ̌(jR) + o(1)
= Γ(jR

0 ) f(H(ξ)) Γ(jR
0 ) + o(1) , for R → ∞ .

The first term on the right-hand side is compact, by a standard argument using
Condition 1.2 ii). This implies that f(H(ξ)) is a compact operator, and hence;
that the spectrum of H(ξ) below Σess(ξ) is locally finite.

As for ii), fix ξ ∈ R
ν and λ ≥ Σess(ξ). We wish to show that there exists

n0 ≥ 1 and η = (η1, . . . , ηn0) ∈ R
n0ν such that

λ = Σ0(ξ − η(n0)) +
n0∑

i=1

ω(ηi) and η ∈ I(n0)
0 (ξ) , (3.14)

where η(n0) =
∑n0

i=1 ηi.
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Let n0 be given by n0 + 1 = min{n : λ < minn′≥n Σ(n′)
0 (ξ)}. The minima

exist, and n0 ≥ 1, due to (1.15) and (1.19). There exists k = (k1, . . . , kn0) such
that Σ(n0)

0 (ξ) = Σ0(ξ − k(n0)) +
∑n0

i=1 ω(ki) ≤ λ, where k(n0) = k1 + · · ·+ kn0 . By
Condition 1.2 ii), (1.18), and continuity of Σ0(ξ), cf. Proposition 1.1, we can find
η such that the first part of (3.14) is fulfilled. The choice of n0 and Lemma 1.6
implies the last part.

By i); Σ0(ξ − η(n0)), given by (3.14), is an eigenvalue for H(ξ − η(n0)). We
write ϕ0 for a corresponding ground state; H(ξ − η(n0))ϕ0 = Σ0(ξ − η(n0))ϕ0. Let
f ∈ C∞

0 (Rν) with f ≥ 0 and f(0) = 1. Write fi,�(k) = 
ν/2f(
(k − ηi)). Then
{f1,�}�∈N, . . . , {fn0,�}�∈N is a family of uniformly bounded sequences in hph, which
all converge weakly to 0.

Let ψ� = a∗(fn0,�) · · ·a∗(f1,�)ϕ0. The rest of the proof is concerned with
showing that ψ� is a Weyl sequence for the energy λ. Note that by Lemma 3.6 and
Lemma 2.1 i), we have ϕ0 ∈ D(a∗(fn0,�) · · ·a∗(f1,�)). Lemma 2.1 iii) furthermore
implies that {ψ�}�∈N converges weakly to zero in F .

For ψ� to be a Weyl sequence it must satisfy ‖ψ�‖ > 0 uniformly in 
. Let
S(n) denote the group of permutations of n elements, and write (σk)j = kσ(j), for
σ ∈ S(n) and k ∈ R

nν .
Let n be such that ϕ(n)

0 �= 0. Pick a compact set (of non-zero measure)
K ⊂ R

nν with the following properties: (K1) If k ∈ K then σk ∈ K, for all
σ ∈ S(n). (K2) For k ∈ K we have ki �= ηj , 1 ≤ i ≤ n and 1 ≤ j ≤ n0. (K3)
1l(k ∈ K)ϕ(n)

0 �= 0.
Let ψK be defined by ψ(n′)

K := 0, for n′ �= n, and ψ
(n)
K := 1l(k ∈ K)ϕ(n)

0 . By
property (K2), there exists 
0 such that a(fj,�)ψK = 0, for any 1 ≤ j ≤ n0, and

 ≥ 
0. By the CCR (2.1) we thus get, for 
 ≥ 
0,
〈
a∗(fn0,�) · · ·a∗(f1,�)ψK, ψ�

〉
=

∑

σ∈S(n0)

(
Πn0

j=1〈fj,�, fσ(j),�〉
)
〈ψK, ϕ0〉

=
∑

σ∈S(n0)

(
Πn0

j=1〈fj , fσ(j)〉
) 〈
ϕ

(n)
0 , 1l(k ∈ K)ϕ(n)

0

〉

≥ ‖f‖2n0‖1l(k ∈ K)ϕ(n)
0 ‖2 .

This estimate and property (K3), implies ‖ψ�‖ > 0 uniformly in 
 ≥ 
0.

It remains to prove that ‖(H(ξ) − λ)ψ�‖ → 0 as 
→ ∞.
Let ṽ ∈ L2(Rν) ∩ C(Rν). Write H̃(ξ) for the fiber Hamiltonian with the

interaction Φ(v) replaced by Φ(ṽ). Compute, as an identity on D,

H̃(ξ − k(n0)) − H(ξ − η(n0))
= (k(n0) − η(n0)) · (∇Ω)(ξ − η(n0) − dΓ(k)) (3.15)

+
〈
(k(n0) − η(n0)), T (k(n0), η(n0)) (k(n0) − η(n0))

〉
+ Φ(ṽ − v) ,

where T (ζ1, ζ2) =
∫ 1

0 (1 − t)(∇2Ω)(ξ − tζ1 − (1 − t)ζ2 − dΓ(k))dt.
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Note that this operator is continuous and bounded uniformly in ζ1 (and ζ2)
and commutes with the number operator.

Abbreviate

ωΣ(k, η) :=
n0∑

j=1

(
ω(kj) − ω(ηj)

)
.

By (3.14), (3.15), and the pull-through formula, Proposition 2.2, we get for ψ ∈ C∞
0

〈ϕ0,a(k1) · · ·a(kn0) (H̃(ξ) − λ)ψ〉

=
〈{
H̃(ξ − k(n0)) − H(ξ − η(n0)) + ωΣ(k, η)

}
ϕ0, a(k1) · · ·a(kn0 )ψ

〉

+
n0∑

i=1

ṽ(ki)
〈
ϕ0,a(k1) · · · â(ki) · · ·a(kn0 )ψ

〉

= 〈Φ(ṽ − v)ϕ0,a(k1) · · ·a(kn)ψ〉 + ωΣ(k, η) 〈ϕ0, a(k1) · · ·a(kn)ψ〉
− (k(n0) − η(n0)) ·

〈
(∇Ω)(ξ − η(n0) − dΓ(k))ϕ0, a(k1) · · ·a(kn0)ψ

〉

+
〈〈

(k(n0) − η(n0)), T (k(n0), η(n0))(k(n0) − η(n0))
〉
ϕ0, a(k1) · · ·a(kn)ψ

〉

+
n0∑

i=1

ṽ(ki)
〈
ϕ0,a(k1) · · · â(ki) · · ·a(kn0 )ψ

〉
.

Abbreviate

B1
� (k) := ωΣ(k, η)Πn0

j=1fj,�(kj) 1lF ,

B2
p,�(k) := (k(n0)

;p − η(n0)
;p )Πn0

j=1fj,�(kj) 1lF ,

B3
� (k) :=

〈
(k(n0) − η(n0)), T (k(n0), η(n0))(k(n0) − η(n0))

〉
Πn0

j=1fj,�(kj) .

By construction of the fj,�’s we find (see (3.13) for the definition of the norm)

‖B1
� ‖ +

ν∑

p=1

‖B2
p,�‖ + ‖B3

� ‖ → 0 , for 
→ ∞ . (3.16)

Using the notation introduced in Lemma 3.5, we can now compute

〈ψ�, (H̃(ξ) − λ)ψ〉 = 〈ϕ0,Φ(ṽ − v)a(f1,�) · · ·a(fn0,�)ψ〉
+ 〈ϕ0,a(B1

� )ψ〉 +
〈
ϕ0,a(B3

� )ψ
〉

+
ν∑

p=1

〈
∂pΩ(ξ − η(n0) − dΓ(k))ϕ0, a(B2

�,p)ψ
〉

+
n0∑

i=1

〈
fi,�, ṽ〉〈a∗(fn0,�) · · · â∗(fi,�) · · ·a∗(f1,�)ϕ0, ψ

〉
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By Lemma 2.1 ii) we can take the limit ṽ → v in L2(Rν). This amounts to replacing
ṽ by v and H̃(ξ) by H(ξ) in the equation above. The resulting identity together
with Condition 1.1, Lemma 2.1 i), and Lemma 3.6 implies that ψ� ∈ D and

∥
∥(H(ξ) − λ)ψ�

∥
∥ ≤ C

∥
∥(N + 1)

n0
2 ϕ0

∥
∥ (

‖B1
� ‖ + ‖B3

� ‖
)

+ C

ν∑

p=1

∥∥∂pΩ(ξ − η(n0) − dΓ(k)) (N + 1)
n0
2 ϕ0

∥∥ ‖B2
�,p‖

+ C0,n0−1

(
max

1≤j≤ν
|〈fj,�, v〉|

) ∥
∥(N + 1)

n0−1
2 ϕ0

∥
∥

n0∑

i=1

Πk 
=i‖fk,�‖ .

By (3.16) and the fact that w− lim�→∞ fj,� = 0, we thus find ‖(H(ξ)−λ)ψ�‖ → 0
as 
→ ∞, and hence; ψ� is a Weyl-sequence. This concludes the proof. �

3.3 Uniqueness, existence, and non-existence of ground states

We begin by applying the Perron-Frobenius theorem of Faris, which is presented
in Appendix A.2. See also Fröhlich [19, 20].

We write hph = hphR
⊕ ihphR

, where hphR
is the real Hilbert space consisting

of the real valued functions in hph. We define HR := ⊕∞
n=0hph

⊗sn
R

, which is also a
real Hilbert space. We define the cone

C := ×∞
n=0 C(n) ,

C(n) := { f ∈ hph
⊗sn
R

: (−1)n

n−times
︷ ︸︸ ︷
v ⊗ · · · ⊗ v f ≥ 0 a.e. } . (3.17)

In this section we assume (1.20), i.e., that the coupling function v ∈ L2(Rν) is real
valued and non-zero a.e., which implies that C is a Hilbert cone in the sense of
Definition A.1.

Clearly f(H0(ξ)) is positivity preserving in the sense of Definition A.2 ii), for
any bounded non-negative Borel function f .

For µ > 0 sufficiently large, the Neumann series

(H(ξ) + µ)−1 =
∞∑

k=0

(H0(ξ) + µ)−1
{
(−Φ(v)) (H0(ξ) + µ)−1

}k (3.18)

converge. Note that ‖Φ(v)(H0(ξ) + µ)−1‖ ≤ Cµ− 1
2 ; cf. Lemma 2.1 i) and (3.1).

We find from this formula that for any real-valued v ∈ L2(Rν), that the resolvent
(H(ξ)+µ)−1 is positivity preserving. In fact, we find from (3.18) that, the resolvent
(H(ξ) + µ)−1 is a sum of terms of the form

(H0(ξ) + µ)−1
{
− a#(v) (H0(ξ) + µ)−1

}k
,

where all powers k and combinations of a∗(v) and a(v) occur. Furthermore each
of these terms are positivity preserving.
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Let u ∈ C\{0}. There exists n ≥ 0 such that un ∈ hph
⊗sn
c , the projection

onto the n-particle sector, is non-vanishing; un �= 0. We wish to prove that, under
the assumption (1.20) on v, (H(ξ) + µ)−1u is strictly positive in the sense of
Definition A.2 i). Let w ∈ C\{0}. There exists n′ ≥ 0 such that wn′ ∈ hph

⊗sn′
c is

non-zero; wn′ �= 0. We estimate
〈
(H(ξ) + µ)−1u,w

〉
≥

〈
(H(ξ) + µ)−1un, wn′

〉

≥
〈{

− a(v)(H0(ξ) + µ)−1
}n
un,

{
− (H0(ξ) + µ)−1a(v)

}n′
(H0(ξ) + µ)−1wn′

〉

≥ µ−n−n′−1

∫

Rνn

(−1)nv(k1) · · · v(kn)un(k)dnνk

×
∫

Rνn′
(−1)n′

v(k1) · · · v(kn′)wn′ (k)dn′νk .

The right-hand side is strictly positive and hence; (H(ξ) + µ)−1u is strictly posi-
tive. Since u ∈ C\{0} was arbitrary we conclude that (H(ξ) + µ)−1 is positivity
improving in the sense of Definition A.2 iii). The abstract result of Faris, Theo-
rem A.3 now implies that a ground state, if it exists, is unique and strictly positive
in the sense of Definition A.2 i). This proves Theorem 1.3.

We now embark on:

Proof of Theorem 1.5 ii). Let ξ be such that Σ0(ξ) = Σess(ξ). Assume Σ0(ξ) is an
eigenvalue. By Theorem 1.3, the eigenvalue is non-degenerate and we can choose
an eigenfunction ψξ ∈ C which is strictly positive.

Recall from Corollary 1.4 that Σess(ξ) = Σ(1)
0 (ξ), under Condition 1.3. Let

M := {k ∈ R
ν : Σ(1)

0 (ξ; k) = Σ(1)
0 (ξ)} be the set of minimizers. By (1.23) and

Lemma 1.6, M is a compact subset of the open set I(1)
0 (ξ). There exists k0 ∈ ∂M,

a unit vector �u ∈ R
ν , and a number r > 0, with the following property: For any

δ > 0 we have

Ωr
δ := {k ∈ R

ν : ‖k − k0‖ ≤ r and (k − k0) · �u ≥ δ } ⊂ I(1)
0 (ξ) \M .

We also use this notation with δ = 0.
For any δ > 0 there exists C(δ) such that

inf
k∈Ωr

δ

Σ0(ξ − k) + ω(k) − Σ0(ξ − k0) ≥ C(δ)−1 . (3.19)

Recall that Σ0(ξ − k), k ∈ Ωr
0, are isolated eigenvalues and, again by The-

orem 1.3, they are non-degenerate and we can choose eigenfunctions ψξ−k ∈ C
which are strictly positive. Since I(1)

0 (ξ) � k → ψξ−k is continuous, we find

inf
k∈Ωr

0

〈ψξ−k, ψξ〉 > 0 . (3.20)

Let Nδ := dΓ(1l(k ∈ Ωr
δ)) =

∫
Ωr

δ
a∗(k)a(k)dνk. Note that 0 ≤ Nδ ≤ N ,

and hence ψξ ∈ D(Nδ) with ‖Nδψξ‖ ≤ ‖Nψξ‖ < ∞ uniformly in δ > 0. Using
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Proposition 2.3, (3.19), and the Lebesgue theorem on dominated convergence (to
replace z, Imz �= 0, by z = Σ0(ξ)), we get

〈ψξ, Nδψξ〉

≥
∫

Ωr
δ

v(k)2
∥∥(
H(ξ − k) + ω(k) − Σ0(ξ)

)−1
ψξ

∥∥2
dk

≥
∫

Ωr
δ

v(k)2
(
Σ0(ξ − k) + ω(k) − Σ0(ξ)

)−2 |〈ψξ−k, ψξ〉|2 dk (3.21)

≥ inf
k∈Ωr

0

{|〈ψξ−k, ψξ〉|2 v(k)2}
∫

Ωr
δ

(
Σ0(ξ − k) + ω(k) − Σ0(ξ)

)−2
dk .

Since Σ0(ξ − k) is a smooth function of k in I(1)
0 (ξ) and k0 is a global minimum

of the function k → Σ0(ξ − k) + ω(k), we find that there exists C > 0 such that

0 ≤ Σ0(ξ − k) + ω(k) − Σ0(ξ) ≤ C |k − k0|2, for k ∈ Ωr
0 .

This estimate together with (3.20), (3.21), and the assumption 3 ≤ ν ≤ 4 implies
that |〈ψξ, Nδψξ〉| → ∞, as δ → 0. This contradicts ψξ ∈ D(N), and hence; Σ0(ξ)
is not an eigenvalue. �

The first step in the proof of Theorem 1.5 i) is the following Lemma.

Lemma 3.7 Let ξ ∈ R
ν and z < Σ0(ξ). Then

Ω(ξ) − z −
∫

Rν

v(k)2
〈
Ω, (H(ξ − k) + ω(k) − z)−1Ω

〉
dk > 0 .

Proof. Let PΩ := |Ω〉〈Ω|, and PΩ := 1lF − PΩ. Using the Feshbach projection
method, cf., e.g., [4, Section II], we find

〈
Ω, (H(ξ) − z)−1Ω

〉
=

(
Ω(ξ) − z −

〈
v, (H(ξ) − z)−1v

〉
Ran PΩ

)−1

. (3.22)

Here H(ξ) = PΩH(ξ)PΩ as an operator on RanPΩ, and v is viewed as an element
of the one-particle space which is contained in RanPΩ. By the spectral theorem
the left-hand side of (3.22) is strictly positive and hence

Ω(ξ) − z −
〈
v, (H(ξ) − z)−1v

〉
Ran PΩ

> 0 . (3.23)

Viewing (H(ξ) − z)−1v as an element of F we write

〈
v, (H(ξ) − z)−1v

〉
Ran P Ω

=
∫

Rν

v(k)
〈
Ω, a(k)(H(ξ) − z)−1v

〉
dk . (3.24)

Applying the pull-through formula, Theorem 2.3, with ψ = (H(ξ) − z)−1v ∈ D,
yields as an L2(Rν ;F) identity

a(k) (H(ξ) − z)−1v = (H(ξ − k) + ω(k) − z)−1 a(k) (H(ξ) − z) (H(ξ) − z)−1v

− v(k) (H(ξ − k) + ω(k) − z)−1(H(ξ) − z)−1v . (3.25)
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We now make two observations. The first is the identity

a(k) (H(ξ) − z) (H(ξ) − z)−1v = a(k) v = v(k)Ω . (3.26)

The second observation is that (H(ξ)− z)−1 is positivity preserving, with respect
to the cone C introduced in (3.3) (after extending it by zero to the vacuum sec-
tor). This follows by a Neumann expansion, as for (H(ξ) + µ)−1 in (3.18), and
Lemma A.4. Since (H(ξ − k) + ω(k) − z)−1 is also positivity preserving we find
that, for a.e. k ∈ R

ν ,
〈
Ω, (H(ξ − k) + ω(k) − z)−1(H(ξ) − z)−1v

〉
≤ 0 . (3.27)

Combining (3.25)–(3.27) we get the following estimate a.e.

v(k)
〈
Ω, a(k) (H(ξ) − z)−1v

〉
≥ v(k)2

〈
Ω, (H(ξ − k) + ω(k) − z)−1Ω

〉
.

This estimate in conjunction with (3.23) and (3.24) concludes the proof. �
Proof of Theorem 1.5 i). Assume that the statement is false at ξ, i.e., Σ0(ξ) =
Σess(ξ).

The aim is to show that the equation

Ω(ξ) − z =
∫

Rν

v(k)2
〈
Ω, (H(ξ − k) + ω(k) − z)−1Ω

〉
dk (3.28)

has a solution z < Σess(ξ), which would by Lemma 3.7 provide a contradiction.
In the limit z → −∞ the left-hand side dominates the right-hand side. A

solution to (3.28) exists (and is necessarily unique by monotonicity) if we can
show that the right-hand side diverges as z approaches Σess(ξ) from below.

As in the proof of Theorem 1.5 ii) we choose a minimizer k0 ∈ R
ν satisfying

Σ(1)
0 (ξ; k0) = Σ(1)

0 (ξ) = Σess(ξ). Then, by (1.23) and Lemma 1.6, k0 ∈ I(1)
0 (ξ) and

there exists a neighbourhood O ⊂ I(1)
0 (ξ) of k0 satisfying infk∈O〈ψξ−k,Ω〉 > 0.

Here ψξ−k ∈ C, k ∈ O, are the strictly positive ground state eigenfunctions of
H(ξ − k). We thus get

∫

Rν

v(k)2
〈
Ω, (H(ξ − k) + ω(k) − z)−1Ω

〉
dk

≥ inf
k∈O

{〈ψξ−k,Ω〉2v(k)2}
∫

O
(Σ0(ξ − k) + ω(k) − z)−1dk .

Since the right-hand side diverges in dimension 1 and 2, as z → Σess(ξ) from below,
we conclude the result. �

3.4 Regularity of t→ σess(t)

We begin with
Proof of Lemma 1.7. Let k be a local minimum of I(n)

0 (ξ) � k → Σ(n)
0 (ξ; k).

That the kj ’s must be equal follows from strict convexity of ω: Assume n ≥ 2. Let
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kj,s = (1−s)kj +s 1
2 (k1+k2), j = 1, 2 and 0 ≤ s ≤ 1. Note that k1,s+k2,s = k1+k2,

so that substituting k1,s, k2,s for k1, k2 only changes the contribution to Σ(n)
0 (ξ; k)

coming from ω. We compute

d

ds

{
ω(k1,s) + ω(k2,s)

}
=

1
2
(k2 − k1)

{
∇ω(k1,s) − ∇ω(k2,s)} .

Since ∇ω(k1) − ∇ω(k2) = (
∫ 1

0
∇2ω(tk1 + (1 − t)k2)dt(k1 − k2), we find that the

derivative is strictly negative at s = 0, unless k1 = k2.
Write k1 = · · · = kn = Θ. We proceed to argue that Θ is a multiple of ξ.

A local minimum is in particular a critical point, i.e., it satisfies ∇jΣ(n)(ξ; k) =
−∇Σ(ξ− k(n)) +∇ω(kj) = 0, 1 ≤ j ≤ n. By rotation invariance, this implies that
ξ − nΘ is a multiple of Θ. This completes the proof. �

We introduce an index for a local minimum of s→ σ(n)(t; s).

Definition 3.8 Let n > 0, t ∈ R and s ∈ I(n)
0 (t). Assume s is a local minimum.

We define the index to be Ind(n)(t; s) = min{
 ∈ N : ∂2�
s σ

(n)(t; s) > 0}, with the
convention that the index is ∞ if ∂2�

s σ
(n)(t; s) = 0 for all 
. For simplicity we

define Ind(n)(t; s) = 0 if s ∈ I(n)
0 (t) is not a local minimum for s′ → ∂sσ

(n)(t; s′).

Note that index 1 means that the local minimum is non-degenerate.

Proposition 3.9 Let n > 0, t ∈ R and s ∈ I(n)
0 (t) be such that Ind(n)(t; s) ≥ 1.

There exist neighbourhoods Ot � t and Os � s, with Os ⊂ ∪t′∈OtI
(n)
0 (t′), such that

the following holds
1) If Ind(n)(t; s) = 1, then there exists an analytic map Θ : Ot → Os, such that:

Ind(n)(t′; Θ(t′)) = 1 and Ind(n)(t′; s′) = 0, if s′ �= Θ(t′).
2) If Ind(n)(t; s) = 2, then: For t′ ∈ Ot, s′ → σ(n)(t′; s′) has either one or two

local minima in Os. For t′ �= t, they have index 1.
3) If Ind(n)(t; s) = 
 ∈ [3,∞), then there exists a countable set K ⊂ Ot\{t},

with K ∪ {t} closed, such that: For t′ ∈ Ot, s′ → σ(n)(t′; s′) has between 1
and 
 local minima in Os. For t′ ∈ Ot\(K ∪ {t}), they all have index 1. For
t′ ∈ K all local minima s′ ∈ Os satisfies Ind(n)(t′; s′) ≤ 
− 1.

4) If Ind(n)(t; s) = ∞, then for t′ ∈ Ot\{t}, we have Ind(n)(t′; s′) = 0, for all
s′ ∈ Os.

Proof. 1) follows by analyticity in t and s of ∂2
sσ

(n)(t; s), and the implicit function
theorem.

As for 2) and 3), we write 
 = Ind(n)(t; s). We again invoke the implicit
function theorem to construct an analytic function Θ from a neighbourhood Ot of
t, into a neighbourhood Os of s, with the property that ∂2�−1

s σ(n)(t′; Θ(t′)) = 0,
t′ ∈ Ot. Note that by choosing Ot small enough we have t′ − nΘ(t′) ∈ I0.

We begin by showing that near t no local minima can disappear to the same
order as at t. We note that near t we may have at most 
 local minima, but there is
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at least one. Let Ot � tj → t and Os � sj → s be such that sj is a local minimum
of r → σ(n)(tj , r). Assume ∂k

sσ
(n)(tj , sj) = 0 for k ≤ 2
− 1. Then necessarily, we

must have sj = Θ(tj). For 1 ≤ k ≤ 2
 − 2, the function t′ → ∂k
s σ

(n)(t′,Θ(t′)) is
analytic in Ot and vanishes on the sequence {tj}, hence it is identically zero in Ot.

We can now compute

0 =
d

dt′
{
∂2�−2

s σ(n)(t′; Θ(t′))
}

= n2�−2 ∂2�−1σ(t′ − nΘ(t′)) .

This implies that ∂2�−1ω(Θ(t′)) = 0. The function ∂2�−1ω(s) has only isolated
zeroes, since it is a analytic (and not identically zero). Hence Θ(t′) = Θ0 is a
constant function on Ot. Since t′ → σ(t′ − nΘ0) + nω(Θ0) is thus linear near t,
we find that σ is linear near t− ns. This implies in particular that ∂2

sσ
(n)(t; s) =

n∂2ω(s) = 0. Recalling that ω is strictly convex we arrive at a contradiction.
The statement 2) is now proved. The statement 3) follows from an induction

argument in 
, starting with 
 = 2.
As for 4) we note that we must have σ(n)(t; s′) = C, for some constant C. In

other words: σ(t− ns′) = C − nω(s′), for s′ near s. Compute

σ(t′ − ns′) + nω(s′) = σ(t − n(s′ + (t− t′)/n)) + nω(s′)
= C + n{ω(s′) − ω(s′ + (t− t′)/n)}.

This gives ∂sσ
(n)(t′; s′) = n{∇ω(s′) − ∇ω(s′ + (t − t′)/n)}. This expression can

only vanish if t = t′. �
Proof of Theorem 1.9. We argue first that for a given t, the set M of global minima
of s→ σ(n)(t; s) is finite. Note that by Lemma 1.6 we have M ⊂ I(n)

0 (t). Suppose
to the contrary that M is infinite. Then either M contains a connected component
of I(n)

0 (t) or there is a sequence in M converging to ∂I(n)
0 (t). In either case, this

is a contradiction since M is closed and I(n)
0 (t) is bounded and open. We remark

that this also implies that a global minimum has finite index.
By Proposition 3.9 2)–3), we find that the set T0 of t for which at least one of

the global minima for the map s → σ(n)(t; s) have index strictly larger than 1, is
closed and countable. It remains to show that the set of t for which there is more
than one global minimum, all with index 1, is countable and can accumulate only
at T0.

Suppose t is such that the map s → σ(n)(t; s) has 
 global minima all with
index 1. Note that for t′ near t these minima will persist at least as local min-
ima, and any global minima will be found amongst these. There exists 
 analytic
maps t′ → Θj(t′), which parameterize these local minima. they are all defined in
a neighbourhood of t, and satisfies Ind(n)(t′; Θj(t′)) = 1.

We estimate the rate of change of the global minima near t, using twice the
critical equation (∂sσ

(n))(t′; Θj(t′)) = 0,

d

dt′
σ(n)(t′; Θj(t′)) = ∂σ(t′ − nΘj(t′)) = ∂ω(Θj(t′)) . (3.29)
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Since ∂ω is monotonically increasing we find that that there exists a neighbour-
hood Ot of t such that for t′ ∈ Ot\{t}, the map s→ σ(n)(t′; s) has a unique global
minimum, with index 1.

A compactness argument now concludes the proof. Note that (1.27) is implied
by (3.29) since σ(n)(t) = σ(n)(t; Θ(n)(t)), for t ∈ T (n). �

3.5 Local minima of t→ σess(t)

This subsection is devoted to the following proof.

Proof of Theorem 1.10. Let t0 be a local minimum of t → σess(t) and let U � t0
be an open set such that σess(t) ≥ σess(t0), t ∈ U .

The function R
ν � s→ σ(1)(t0; s) has finitely many global minima Θ(1)

1 (t0) <
· · · < Θ(1)

� (t0), all in I(1)(t0) and with finite index, cf. the proof of Theorem 1.9.
Assume there exists 1 ≤ j ≤ 
 such that s0 := Θ(1)

j (t0) > 0. By Proposi-
tion 3.9 there exist Ot0 , Os0 , and K, with t0 ∈ Ot0 ⊂ U , s0 ∈ Os0 ⊂ (0,∞) ∩
(∪t∈Ot0

I(1)
0 (t)), and K ⊂ U is countable with K ∪ {t0} closed, such that: For t ∈

Ot0\(K∪ {t0}) all local minima of Os0 � s→ σ(1)(t; s) have index 1 (and at least
one such local minimum exist). Furthermore, the set Ot0\(K∪{t0}) can be written
as a countable union of disjoint open intervals Iλ. On each of these intervals we get
from the Implicit Function Theorem, that the number of local minima 
λ ≥ 1, is
independent of t ∈ Iλ, and the local minima, Θλ,j(t), 1 ≤ j ≤ 
λ, are analytic in Iλ.

As for (3.29) we compute

∂tσ
(1)(t; Θλ,j(t)) = ∂ω(Θλ,j(t)) , for t ∈ Iλ . (3.30)

Let τ (1)(t) := infs∈Os0
σ(1)(t; s). Note that τ (1) is continuous on Ot0 and on any Iλ

we have τ (1)(t) = min1≤j≤�λ
σ(1)(t; Θλ,j(t)). Since Θλ,j(t) > 0 we conclude from

(3.30) that τ (1) is monotonely strictly increasing on any Iλ and hence by continuity
on Ot0 .

We now arrive at a contradiction with the assumption that t0 is local mini-
mum for σess = σ(1) as follows. Estimate for t ∈ (−∞, t0)∩Ot0 : σ(1)(t) ≤ τ (1)(t) <
τ (1)(t0) = σ(1)(t0).

We conclude from the argument above that any global minimum Θ(1)
j (t0)

must be less than or equal to zero. Similarly one can show that Θ(1)
j (t0) ≥ 0, thus

leaving only the possibility: 
 = 1 and Θ(1)(t0) ≡ Θ(1)
1 (t0) = 0. This implies the

first part of the theorem, namely that σess(t0) = σ(1)(t0; 0) = σ(t0) +m.
Since the gap is m at t0, and σess has a local minimum at t0, we find from

(1.16) that σ also has a local minimum at t0. In particular σ has a critical point
at t0, with ∂2σ(t0) ≥ 0, which yields the bound ∂2

sσ
(1)(t0; s)|s=0 ≥ ∂2ω(0). Hence

Ind(1)(t0; 0) = 1. By Proposition 3.9 1), this implies that σess is analytic near t0
and ∂σess(t) = ∂ω(Θ(1)(t)) near t0, cf. (3.29). Computing 0 = ∂t(∂sσ

(1)(·; Θ(1)(·))),
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near t0, yields the formula

d

dt
Θ(1)(t) =

∂2σ(t − Θ(1)(t))
∂2

sσ
(1)(t; Θ(1)(t))

. (3.31)

The equation (1.28) for ∂2σess(t0) now follows by (1.27), (3.31), and the compu-
tation

d2

dt2
σess(t) =

d

dt

( d
dt
ω(Θ(1)(t))

)
= ∂2ω(Θ(1)(t))

d

dt
Θ(1)(t) .

Recall that Θ(1)(t0) = 0. �

We end this section with a comment on jump discontinuities of the bounded
function ∂σess(t) = ∂ω(Θ(1)(t)). When t increases (away from 0), global minima
are a priori not monotone, but when they jump, they jump from large s to smaller
s. Passing to larger s, can only happen analytically (where ∂2σ(t − s) ≥ 0, and
hence a local minimum has index 1). This implies that

Jump discontinuities of ∂σess always decrease the derivative. (3.32)

4 Additional results

In this section we collect some additional results, most of which have appeared
elsewhere in some form. They serve to give a more complete picture of the bottom
of the joint energy momentum spectrum. In addition we explain how to extend the
results described in this paper to models with a number cutoff in the interaction.

4.1 Complimentary results

In this section we recall some known and partly known related results on the struc-
ture of the ground state mass shell. The first is due to Gross [31, (6.30)], cf. also
[56, (15.26)].

Lemma 4.1 (Gross) Let v ∈ L2(Rν) be real-valued and symmetric, i.e., v(k) =
v(−k) a.e., and ω(k) =

√
k2 +m2, m ≥ 0. Assume Condition 1.1 and that, for

any t > 0, the map p→ e−tΩ(p) is positive definite. Then for all ξ ∈ R
ν

Σ0(ξ) ≥ Σ0(0) .

Gross proved this statement for m > 0, but as remarked in [20] this extends
by a limiting argument to m = 0. The second result we mention is an extension
of a result of Hiroshima and Spohn. See [36, Lemma 3.1] and its proof. See also
[56, (15.34)].
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Lemma 4.2 Let v satisfy (1.20), and assume Conditions 1.1 and 1.2. Let ξ ∈ I0,
write ψξ for a normalized ground state eigenfunction, and P ξ := 1lF − |ψξ〉〈ψξ|.
Then

{∇2Σ0(ξ)}ij = 〈ψξ, ∂i∂jΩ(ξ − dΓ(k))ψξ〉
−

〈
P ξ ∂iΩ(ξ − dΓ(k))ψξ, (H(ξ) − Σ0(ξ))−1 P ξ ∂jΩ(ξ − dΓ(k))ψξ

〉
.

In particular ∇2Σ0(ξ) ≤ supp σ(∇2Ω(p)) 1lRν .

Note that by Theorem 1.3, H(ξ) − Σ0(ξ) is bounded invertible on the range
of P ξ. If ξ ∈ I0 is a critical point for ξ → Σ0(ξ), then ∂jΣ0(ξ) = 〈ψξ, ∂jΩ(ξ −
dΓ(k))ψξ〉 = 0, 1 ≤ j ≤ ν, and hence the P ξ in the formula above for the Hessian is
superfluous. This is the case considered in [36] (see also [54]). We leave the proof to
the reader. In the case Ω(p) = p2/2M , Lemma 4.2 implies a lower bound Meff ≥M
on the effective mass, where M−1

eff := ∂2σ(0) (assuming rotation invariance). See
[56, Section 15.2] for a discussion of effective mass. In [54] an upper bound for the
effective mass is derived, implying in particular that ∂2σ(0) > 0. This is still an
open problem for Ω(p) �= p2/2M .

We note that similarly one can prove the following statement: Replace v by
gv, where g ∈ R is a coupling constant. Let g and ξ be such that ξ ∈ I0, which is
a g-dependent set. Then Σ0(ξ) is an analytic function of the coupling constant in
a neighbourhood of g, d

dgΣ0(ξ) = 〈ψξ,Φ(v)ψξ〉, and

d2

d2g
Σ0(ξ) = −

〈
P ξ Φ(v)ψξ, (H(ξ) − Σ0(ξ))−1 P ξ Φ(v)ψξ

〉
. (4.1)

In particular, the function g → Σ0(ξ) is concave in the set {g : ξ ∈ I0}.
Thirdly we formulate a result, which follows from the proof of [20, Theorem

3.2]. We give a short proof of the statement here because Fröhlich concentrated
on the massless case, and the proof simplifies for massive bosons. We remark that
the infrared cutoff σ > 0 in [20] can be viewed as a mass.

Theorem 4.3 Let v ∈ L2(Rν). Assume Conditions 1.1, 1.2, and that the following
bounds hold for all p, k ∈ R

ν

|∇Ω(p)| ≤ 1 and ω(k) − |k| > 0 . (4.2)

Then I0 = R
ν .

Remark. This theorem implies in particular that in the case of relativistic elec-
trons, i.e., Ω(p) =

√
p2 +M2 (M > 0), and ω(k) =

√
k2 +m2 (m > 0), we have

an isolated ground state mass shell for all total momenta. This type of result was
an important ingredient in [22].

Proof. Suppose I0 �= R
ν , and let ξ ∈ R\I0.
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Define, for ξ, k ∈ R
ν with k �= 0,

F (ξ, k) := |k|−1
{
Ω(ξ − dΓ(k)) − Ω(ξ − k − dΓ(k)

}
.

This self adjoint operator extends from C∞
0 to a bounded operator on F , and by

(4.2) it satisfies the bound

‖F (ξ, k)‖B(F) ≤ 1 . (4.3)

Let
n := max

{
n′ ≥ 1 : Σ(n′)

0 (ξ) = Σess(ξ)
}
. (4.4)

By Theorem 1.2 and (1.19) this choice of n is well defined. For k ∈ I(n)
0 (ξ), we

write ψξ−k(n) ∈ D for a (normalized) ground state eigenfunction at total momen-
tum ξ − k(n). Note that k(n) �= 0. For such k we use (4.3) and the Rayleigh-Ritz
variational principle to estimate

Σ0(ξ) ≤ 〈ψξ−k(n) , H(ξ)ψξ−k(n)〉
= Σ0(ξ − k(n)) + |k(n)|

〈
ψξ−k(n) , F (ξ, k(n))ψξ−k(n)

〉
(4.5)

≤ Σ0(ξ − k(n)) + |k(n)| .

Let U := I(n)
0 (ξ) ∩ {η ∈ R

nν : Σ0(ξ − η(n)) ≤ Σ0(ξ)}. The bound (4.5),
Lemma 1.6, and the choice (4.4) of n, implies

Σ(n)
0 (ξ) = inf

k∈Rnν
Σ(n)

0 (ξ; k) = inf
k∈U

{
Σ0(ξ − k(n)) +

n∑

j=1

ω(kj)
}

≥ Σ0(ξ) + inf
k∈U

{ n∑

j=1

ω(kj) − |k(n)|
}
.

By (1.18) there exists CU > 0, independent of n, such that |k(n)| ≤ CU , k ∈ U .
Now choose R such that ω(k) ≥ CU +1 for |k| ≥ R. Since |k(n)| ≤ |k1|+ · · ·+ |kn|,
we arrive at the following estimate, cf. (4.4),

Σ0(ξ) = Σess(ξ) = Σ(n)
0 (ξ) ≥ Σ0(ξ) + min

{
1 , inf

k:|k|≤R
(ω(k) − |k|)

}
.

By (4.2) this is a contradiction. �
In addition to Theorem 1.9 we have a complimentary result which is con-

cerned with the regularity of σ(n)(t) as a function of n. We leave the proof, which
follows closely the proof of Theorem 1.9, to the reader

Proposition 4.4 Let v satisfy (1.20). Assume Conditions 1.1, 1.2, 1.3 i), and 1.4.
Let t ∈ R. There exists a closed countable set T (t) ⊂ (0,∞), and an analytic
map (0,∞)\T (t) � n → Θ(n)(t) ∈ I(n)

0 (t), with the property that the maps s →



Vol. 6, 2005 The Translation Invariant Massive Nelson Model 1127

σ(n)(t; s), n ∈ (0,∞)\T (t), has a non-degenerate global minimum at s = Θ(n)(t),
i.e., ∂2

sσ
(n)(t; Θ(n)(t)) > 0. Let (a, b) ⊂ (0,∞)\T (t). The global minimum is either

unique for all n ∈ (a, b), or it is accompanied by another global minimum sitting
at s = −Θ(n)(t), for all n ∈ (a, b). The case of two global minima can occur if and
only if σ(t−r) = σ(t+r) for r in a neighbourhood of nΘ(n)(t). We furthermore have

d

dn
σ(n)(t) = ω

(
Θ(n)(t)

)
− ∂ω

(
Θ(n)(t)

)
Θ(n)(t) , for n ∈ (0,∞) \ T (t) . (4.6)

The function x→ ω(x)−x∂ω(x) appearing on the right-hand side of (4.6), is
the one from (1.22). The identity (4.6) can be used to estimate Σ(n+1)

0 (ξ)−Σ(n)
0 (ξ).

4.2 Interactions with a number cutoff

In this subsection and the next we consider models of the form, cf. (1.6),

HN := H0 + 1lK ⊗ 1l(N ≤ N )V 1lK ⊗ 1l(N ≤ N ) .

Here N ∈ Z is the cutoff parameter. Clearly these operators also commute with the
total momentum and The corresponding fiber Hamiltonians are, cf. (1.8)–(1.10),

HN (ξ) := H0(ξ) + ΦN (v), where ΦN (v) := 1l(N ≤ N )Φ(v) 1l(N ≤ N ) .

Note that the notation is consistent since Φ0(v) = 0. For N < 0 we clearly also
have HN (ξ) = H0(ξ).

We remark that for N = 1 a complete picture can be obtained, cf. [23],
(mass zero case). We note that the spin-boson model has been studied in the weak
coupling regime for N = 2 in [45]. See also [25, 38, 39].

We now formulate our main results from Subsection 1.3 in the context of
the cutoff models. We impose for brevity of exposition (1.21), Conditions 1.1, 1.2,
1.3 i), and 1.4 throughout this subsection.

Let N ≥ 1. We introduce some notation. First the bottom of the spectrum
of the full operator:

ΣN ,0 := inf
ξ∈Rν

ΣN ,0(ξ) , where ΣN ,0(ξ) := inf σ(HN (ξ)) .

For n ≥ 1 and k = (k1, . . . , kn) ∈ R
nν we introduce

Σ(n)
N ,0(ξ; k) := ΣN−n,0

(
ξ − k(n)

)
+

n∑

j=1

ω(kj) (4.7)

and
Σ(n)

N ,0(ξ) := inf
k∈Rnν

Σ(n)
N ,0(ξ; k) . (4.8)

The bottom of the essential spectrum is

Σess,N (ξ) := Σ(1)
N ,0(ξ) = inf

k∈Rν
Σ(1)

N ,0(ξ; k) . (4.9)
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We furthermore write

IN ,0 :=
{
ξ ∈ R

ν : ΣN ,0(ξ) < Σess,N (ξ)
}
,

I(n)
N ,0(ξ) :=

{
k ∈ R

nν : ξ − k(n) ∈ IN−n,0

}
.

The energies Σ(n)
N ,0(ξ), n ≥ 1, are bottoms of branches of essential spectrum corre-

sponding to having stripped off n photons to infinity, and having the interacting
systems in a groundstate. Subadditivity of ω, (1.21), the fact groundstates lie in the
cone (3.3), and the Rayleigh-Ritz variational principle ensures that the thresholds
are ordered:

Σ(n)
N ,0(ξ) > Σ(n′)

N ,0(ξ) , (4.10)

for all n > n′ ≥ 1. Here the assumption v �= 0 a.e. comes in. It ensures that the
thresholds appear in an ordered fashion as in the full model.

Note that the properties (1.16) and (1.17) do not hold for the cutoff model.
The gap Σess,N (ξ)−ΣN ,0(ξ) may exceed m. However, we do have that Σess,N (ξ)−
ΣN−1,0(ξ) ≤ m (it may be negative).

We introduce, as in Subsection 1.3, the following notation. Let �u be a unit vec-
tor in R

ν . We write σN (t) = Σ0,N (t�u), for t ∈ R. By rotation invariance, σN is inde-
pendent of �u. Similarly we write, for n ∈ N, σ(n)

N (t; s) := σN−n((t−ns)�u)+nω(s�u),
σ

(n)
N (t) := Σ(n)

0,N (t�u), and σess,N (t) := Σess(t�u).
With a slight abuse of notation, we use the same symbol I0,N to denote the

set of t’s such that t�u ∈ I0,N . We furthermore use the symbol I(n)
0,N (t), n ∈ N, to

denote the set {s ∈ R : t− ns ∈ I0,N }.
We now list a number of results, which we do not prove here. See however the

following subsection. In each case the reader can readily mimic the proofs, given
in Section 3, of the corresponding results for the full model.

I For each N ≥ 1 and ξ ∈ R
ν , ΦN (v) is H0(ξ) bounded with relative bound

zero. In particular HN (ξ) is essentially self-adjoint on C∞
0 , and D(HN (ξ)) is

independent of ξ.

II (HVZ) The bottom of the essential spectrum of HN (ξ) is Σess,N (ξ). Eigen-
values below Σess,N (ξ) have finite multiplicity and can only accumulate at
Σess,N (ξ). See also [25, 38] for the cutoff spin-boson model.

III The ground state is non-degenerate, and in addition: If 1 ≤ ν ≤ 2 then
IN ,0 = R

ν . If 3 ≤ ν ≤ 4 then the bottom of the spectrum ΣN ,0(ξ) is an
eigenvalue if and only if ξ ∈ IN ,0. As a consequence of the non-degeneracy,
the map IN ,0 � t→ σN (t) is analytic.

IV Let n ∈ N. There exists a closed countable set T (n)
N ⊂ R, and an analytic

map R\T (n)
N � t → Θ(n)

N (t) ∈ I(n)
N ,0(t) with the property that the maps s →

σ
(n)
N (t; s), t ∈ R\T (n)

N , has a unique global minimum at the point s = Θ(n)
N (t),
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with index Ind(n)(t; Θ(n)
N (t)) = 1. In particular R\T (n)

N � t→ σ
(n)
N (t) is ana-

lytic and d
dtσ

(n)
N (t) = ∂ω(Θ(n)

N (t)), for t ∈ R\T (n)
N . Recall σ(1)

N (t) = σ
(1)
ess,N (t).

V Let t0 be a local minimum of t → σess,N (t). Then the ’spectral gap’ at t0 is
maximal, i.e., σess,N (t0) − σN−1(t0) = m, the map t → σN−1(t) has a local
minimum at t0, the map t→ σess,N (t) is analytic near t0, and

∂2σess,N (t0) =
∂2ω(0) ∂2σN−1(t0)

∂2ω(0) + ∂2σN−1(t0)
.

4.3 Comments on proofs

The key difference between the cutoff models and the full model, lies in the self-
similarity of the full model. By self-similarity we mean that after removing a num-
ber of bosons to infinity, the remaining interacting system has the same Hamilto-
nian as the original system, albeit at a different total momentum. For the cutoff
model the interacting system, after removing bosons to infinity, has a different
cutoff. This is manifested in two instances, in the extended Hamiltonian and in
the pull-through formula.

For the cutoff model(s) one should replace the extended Hamiltonian, cf.
(2.31) and (2.34), by

Hext
N (ξ) := HN (ξ) ⊕

{ ∞⊕

�=1

H
(�)
N (ξ)

}
, (4.11)

where H(�)
N (ξ) =

∫
R�ν H

(�)
N (ξ; k)d�νk and

H
(�)
N (ξ; k) = HN−�(ξ − k(�)) +

�∑

j=1

ω(kj) . (4.12)

With this choice of extended Hamiltonian, the localization estimates derived in
Subsection 3.1 applies. This is one of the inputs to the HVZ theorem.

The second manifestation of the lack of self-similarity is in the pull-through
formula which should be replaced by

a(k) (HN (ξ) − z)ψ =
(
HN−1(ξ − k) + ω(k) − z

)
a(k)ψ

+ v(k) 1l(N ≤ N − 1)ψ . (4.13)

It is now left as an exercise to the reader to verify that the proofs go through.
We just remark that when applying the Perron Frobenius argument, as in Subsec-
tion 3.3, one should work only in the sub Hilbert space ⊕N

j=0Γ
(j)(hph) of F . Any

eigenfunction will vanish in n-particle sectors with n > N , which is reflected in
the fact that the cutoff resolvents, (HN (ξ) +µ)−1, are not positivity improving in
the full Hilbert cone.
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A Mathematical tools

A.1 Almost analytic extension

In this subsect. we briefly recall the functional calculus provided by almost ana-
lytic extensions. In particular we will use a version which handles functions of a
vector of commuting operators. See the monographs by Davies [12] and Dimassi
and Sjöstrand [16] for details.

Below α will denote multi-indices. Let s ∈ R and f ∈ C∞(Rν) satisfy

∀α : ∃Cα such that |∂αf(x)| ≤ Cα 〈x〉s−|α| . (A.1)

We define an almost analytic extension f̃ ∈ C∞(Cν) of f , through a Borel con-
struction. Fix a function χ ∈ C∞

0 (R) to be equal to 1 in a neighbourhood of 0,
and a sequence {λk}k∈N0 , going sufficiently fast to infinity. The following choice
will do: λk := max{max|α|=k Cα, λk−1 + 1}, for k ≥ 1, and λ0 = C0. Here the
constants Cα are coming from (A.1). Then, writing z = u+ iv ∈ R

ν ⊕ iRν ,

f̃(z) :=
∑

α

∂αf(u)
α!

(iv)α
ν∏

j=1

χ
(λ|α|vj

〈u〉
)
. (A.2)

Note that there exists C > 0 such that

supp(f̃) ⊂ {u + iv : u ∈ supp(f), |v| ≤ C〈u〉} . (A.3)

We furthermore have the property that

∀
 ≥ 0 : ∃C� such that |∂̄f̃(z)| ≤ C� 〈z〉s−�−1 |Imz|� . (A.4)

Here ∂̄ = (∂̄1, . . . , ∂̄ν), ∂̄j := ∂uj + i∂vj , and Imz = (v1, . . . , vν).
If s < 0 we have the following representation,

f(x) = 2 |S2ν−1|−1

∫

Cν

〈
∂̄f̃(z),

(x+ z)
|x− z|2ν

〉
d2νz , (A.5)

where d2νz = Πν
j=1dujdvj is the Lebesgue measure on C

ν , and |S2ν−1| is the
volume of the unit ball in R

2ν . (Note that for s < 0 the integral is absolutely
convergent.)

For a vector of pairwise commuting self-adjoint operators A = (A1, . . . , Aν),
and a function f satisfying (A.1) with s < 0, the almost analytic extension thus
provides a functional calculus via the formula

f(A) = 2 |S2ν−1|−1
ν∑

j=1

∫

Cν

∂̄j f̃(z) (Aj + zj) |A− z|−2ν d2νz . (A.6)

In the case ν = 1 this reduces to

f(A) =
1
π

∫

C

∂̄f̃(z) (A − z)−1 du dv . (A.7)
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A.2 Invariant cones

In this subsect. we recall a result of Faris, cf. [17], which will be used to show non-
degeneracy of the ground state. It is an abstract version of the Perron-Frobenius
Theorem in L2-spaces, cf. [50, Theorem XIII.43], which together with the Q-space
representation of Fock-space, has been used frequently to show non-degeneracy of
the ground state, cf. [5, 28, 31].

Definition A.1 Let HR be a real Hilbert space. We say C ⊂ HR, C �= {0}, is a
Hilbert cone if:

i) u, v ∈ C implies u+ v ∈ C.

ii) u ∈ C, λ ≥ 0 implies λu ∈ C.

iii) C ∩ (−C) = {0}.
iv) C is closed.

v) u, v ∈ C implies 〈u, v〉 ≥ 0.

vi) For all w ∈ HR there exists u, v ∈ C s. t. w = u− v and 〈u, v〉 = 0.

An important example of a Hilbert cone is, as mentioned above, the subset
of real non-negative functions in L2(Q, dµ), where Q is a measure space.

Definition A.2 Let HR be a real Hilbert space, C ⊂ HR a Hilbert cone and A a
bounded operator on HR.

i) We say u ∈ C is strictly positive if 〈u, v〉 > 0 for any v ∈ C\{0}.
ii) A is positive preserving if AC ⊂ C.

iii) A is positivity improving if Au is strictly positive for all u ∈ C\{0}.
iv) A is ergodic if for any u, v ∈ C\{0} there exists n ≥ 0 s. t. 〈Anu, v〉 > 0.

Note that a positivity improving operator is in particular ergodic. The fol-
lowing theorem is due to Faris

Theorem A.3 (Faris) Let HR be a real Hilbert space, C ⊂ HR a Hilbert cone and
A a bounded positive self-adjoint operator on HR. Suppose furthermore that A is
positivity preserving and that ‖A‖ is an eigenvalue for A. Then A is ergodic if and
only if ‖A‖ is an eigenvalue of multiplicity one and there exists a strictly positive
u ∈ C with Au = ‖A‖u.

The lemma below follows from the identities e−s = limn→∞( s
n + 1)−n and

s−1 =
∫ ∞
0
e−tsds, for s > 0, in conjunction with the first resolvent formula.

Lemma A.4 Let A be a bounded from below self-adjoint operator on a real Hilbert
space. Assume that there exists a λ0 < inf σ(A) such that (A − λ)−1 is positivity
preserving (improving) for all λ < λ0. Then (A − λ)−1 is positivity preserving
(improving) for all λ < inf σ(A).
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2002, ETH-Diss 14203.

[12] E.B. Davies, Spectral theory and differential operators, Cambridge Studies in
Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge.
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[21] J. Fröhlich, M. Griesemer, and B. Schlein, Asymptotic completeness for
Rayleigh scattering, Ann. Henri Poincaré 3, 107–170 (2002).
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