
Ann. Henri Poincaré 6 (2005) 849 – 862
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Spin, Statistics, and Reflections
I. Rotation Invariance

Bernd Kuckert

Abstract. The universal covering of SO(3) is modelled as a reflection group GR in
a representation independent fashion. For relativistic quantum fields, the Unruh
effect of vacuum states is known to imply an intrinsic form of reflection symmetry,
which is referred to as modular P1CT-symmetry [1, 2, 11]. This symmetry is used
to construct a representation of GR by pairs of modular P1CT-operators. The
representation thus obtained satisfies Pauli’s spin-statistics relation.

1 Introduction

A vacuum state of a quantum field theory usually exhibits the Unruh effect, i.e., a
uniformly accelerated observer experiences it as a thermal state whose temperature
is proportional to his acceleration [27]. This has been shown by Bisognano and
Wichmann [1, 2] for finite-component quantum fields (in the Wightman setting).
For general quantum fields, it has recently been derived from the mere condition
that each vacuum state exhibits passivity to each inertial or uniformly accelerated
observer [18], i.e., that in the observer’s rest frame, no engine can extract energy
from the state by cyclic processes.1

By the theorem of Bisognano and Wichmann mentioned above, all familiar
quantum fields also exhibit an intrinsic form of PCT-symmetry.2 Namely, one can
assign to each Rindler wedgeW , i.e., the setW1 := {x1 ≥ |x0|} or its image under
some Poincaré transformation, an antiunitary involution JW . This assignment is
an intrinsic construction using the vacuum vector and the field operators only. It
is also basic to the so-called modular theory due to Tomita and Takesaki, where
an operator like JW is called a modular conjugation. JW then implements a P1CT-
symmetry, i.e., a linear reflection in charge and at the edge ofW . This property is
called modular P1CT-symmetry. Note as an aside that this symmetry is a typical
property of 1 + 2-dimensional quantum fields as well, whereas these fields do not
exhibit PCT-symmetry as a whole [23].

Modular P1CT-symmetry is a consequence of the Unruh effect [11], but the
converse implication does not hold: There are examples of P1CT-symmetric quan-
tum fields that do not exhibit the Unruh property [4].

1Two related uniqueness results can be found in Refs. 16 and 17.
2cf. also Refs. 11, 16, and 17.
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Guido and Longo have derived Pauli’s spin-statistics relation from the Unruh
effect for general quantum fields in 1 + 3 dimensions [11].3 Independently from
this, the present author derived the spin-statistics relation making use of modular
P1CT-symmetry only [15].

This symmetry was assumed for the field’s observables only, but since use of
a theorem due to Doplicher and Roberts [8] was made later on, the result of Ref.
15 is confined to the massive-particle excitations of the vacuum.

In Ref. 11 the Unruh effect was assumed for the whole field on the one hand.
On the other hand, no use of the Doplicher-Roberts theorem was made, so a much
larger class of fields and states was included; even fields that are covariant with re-
spect to more than one representation of the universal covering group of L↑

+, among
which there may be both representations satisfying and violating Pauli’s relation
[24]. What one did obtain was a unique representation satisfying the Unruh effect.
This representation exhibits Pauli’s spin-statistics connection. All spin-statistics
theorems obtained before did not admit this extent of generality.

This paper is the first of two that generalize the result of Ref. 15 in this spirit
as well. Assuming P1CT-symmetry with respect to all Rindler wedges whose edges
are two-dimensional planes in a given tim-zero plane, a covariant unitary repre-
sentation W̃ of the rotation group’s universal covering is constructed. This rep-
resentation satisfies Pauli’s spin-statistics relation. The argument does not make
use of the Doplicher-Roberts theorem and applies to general relativistic quantum
fields.

Like its predecessor in Ref. 15, the argument is crucially based on the fact that
each rotation in R

3 can be implemented by combining two reflections at planes.
This is, as such, well known for both SO(3) and L↑

+. A corresponding result for
the universal coverings of these groups is, however, less elementary to obtain.

In Section 2, a model GR
∼= SU(2) of the universal covering group S̃O(3) of

SO(3) will be constructed from nothing except pairs of “reflections along normal
vectors”, i.e., from the family (ja)a∈S2 , where ja is the reflection at the plane a⊥.
This representation-independent construction is set up according to the needs of

the spin-statistics theorem to be proved later on. A model GL
∼= SL(2,C) of ˜

L↑
+

will be constructed in a forthcoming paper. It is to be expected that the universal
coverings of other Lie groups could be constructed the same way.

Recently it has been shown by Buchholz, Dreyer, Florig, and Summers that
this structure has a representation theoretic consequence: unitary representations
of L↑

+ can be constructed from a system of reflections satisfying a minimum of
covariance conditions, as they are satisfied by the modular conjugations of a quan-
tum field with modular P1CT-symmetry [4, 9, 5]. This raises the question how to
generalize these results to GR and GL, the goal being a considerable generalization
of the spin-statistics analysis in Ref. 15.

In Section 3, it is shown that this can, indeed, be accomplished for GR; the
group GL will be treated in the forthcoming paper. If a quantum field exhibits

3cf. also Refs. 10, 12, and 13.
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modular P1CT-symmetry, then it is elementary to build a distinguished represen-
tation W̃ of GR from the modular conjugations that implement P1CT-symmetry.
This representation can, eventually, easily be shown to conform with Pauli’s spin-
statistics principle.

It is well known that not all GR-covariant quantum fields exhibit the spin-
statistics relation, and it should be remarked that even for Lorentz covariant fields
there are counterexamples [24]. This means that some condition specifying the
representation or field under consideration is needed for whatever spin-statistics
theorem. In the early spin-statistics theorems, this condition was that the number
of internal degrees of freedom is finite, in this paper the condition is that the
representation is constructed from modular P1CT-operators. At the moment, such
sufficient conditions are all one has in the relativistic setting; only in the setting of
nonrelativistic quantum mechanics, a both sufficient and necessary condition has
been established [19, 20].

2 S̃O(3) as a reflection group

There are many ways to model the universal covering group of the rotation group
SO(3) =: R. Among topologists, “the” universal covering group is the group S̃O(3)
of homotopy classes of curves starting at some base point, physicists are more
familiar with SU(2), but these are, of course, not the only examples of simply
connected covering groups. As a new model, a group GR will be constructed in
this section from pairs of “reflections along normal vectors”, i.e., from the family
(ja)a∈S2 , where ja is the reflection at the plane a⊥.

Let MR be the pair groupoid of S2, i.e., the set S2 × S2 endowed with the
concatenation (a, b) ◦ (b, c) := (a, c). Then the map ρ : MR → R defined by
ρ(a, b) := jajb is well known to be surjective. Namely, ρ(a, a) = 1 for all a ∈ S2.
For σ �= 1, choose τ ∈ R such that τ2 = σ; if a ∈ S2 is perpendicular to the axis
of σ, then ρ(τa, a) = σ.

Call (a, b) and (c, d) equivalent if ρ(a, b) = ρ(c, d) and if there exists a σ ∈ R
commuting with ρ(a, b) and satisfying (a, b) = (σc, σd). Let GR be the quotient
space MR/∼ associated with this equivalence relation, and let π : MR → GR

denote the corresponding canonical projection. Define ρ̃ : GR → R by ρ̃(π(m)) :=
ρ(m) for all m ∈MR. Then the diagram

MR
π−→ GR

ρ ↓ ↙ ρ̃

R

(1)

commutes by construction. All maps in this diagram are continuous: π is contin-
uous by definition, and continuity of ρ is elementary to show. The proof for ρ̃ is



852 B. Kuckert Ann. Henri Poincaré

elementary as well: given any open set M ⊂ R, the pre-image ρ̃−1(M) is open if
and only if π−1(ρ̃−1(M)) is open. This set coincides with ρ−1(M), which is open
by continuity of ρ.

Defining ±1 := π(a,±a) for arbitrary a ∈ S2, and −π(a, b) := π(a,−b) for
(a, b) ∈ MR, one verifies that ρ̃−1(σ) consists of two equivalence classes for each
σ ∈ R.

Lemma 1

(i) GR is a Hausdorff space.
(ii) ρ̃ is a two-sheeted covering map.

Before proving this lemma, we introduce some notation.

Notation. Denote the set R\{1} by Ṙ. For each σ ∈ Ṙ, let A(σ) be the rotation
axis of σ. If a ∈ A(σ) is one of the two unit vectors in A(σ), then there is a unique
α ∈ (0, 2π) such that σ is the right-handed rotation around a by the angle α. The
vector a and the angle α determine σ, and occasionally we use the notation [a, α]
for σ. Note that [a, α] = [−a, 2π − α].

Denote the set ρ−1(Ṙ) by ṀR. To each (a, b) ∈ ṀR, assign the axial unit
vector a(a, b) := a×b

|a×b| , and denote by �(a, b) ∈ (0, π) the angle between a and b.

Note that ρ(m) = [a(m), 2�(m)] for all m ∈ ṀR.
Denote the set ρ̃−1(Ṙ) by ĠR. Since m ∼ n implies

a(m) = a(n) and �(m) = �(n)

one can define
ã(π(m)) := a(m) and �̃(π(m)) := �(m).

Note that ρ̃(g) = [ã(g), 2�̃(g)] for all g ∈ ĠR.

Proof of Lemma 1.(i). Define Ḃπ := {x ∈ R
3 : |x| ∈ (0, π)}, and assign to each

x ∈ Ḃπ the rotation τ(x) := [x/|x|, |x|]. Choose any x ∈ Ḃπ and an a ∈ S2∩x⊥, and
put ξa(x) := π(τ(x)a, a) ∈ ĠR. One then obtains ξa(x) = ξb(x) for all b ∈ S2∩x⊥,
so a map ξ : Ḃπ → ĠR is well defined by ξ(x) := ξa(x), where a ∈ S2 ∩ x⊥ is
arbitrary.

ξ is inverse to the map η : ĠR → Ḃπ defined by η(g) := −�̃(g)ã(g). Namely,
since b ⊥ a× b for all (a, b) ∈ ṀR, one has

ξ(η(π(a, b))) = ξ (�(a, b) · a(a, b))
= π ( τ (−�(a, b)a(a, b)) b, b)
= π ([−a(a, b),�(a, b)] b, b)
= π(a, b).

So η is continuous, surjective, and has a continuous inverse, so η is a homeomor-
phism, and ĠR is a Hausdorff space.



Vol. 6, 2005 Spin, Statistics and Reflections I. Rotation Invariance 853

It remains to construct disjoint neighborhoods of two distinct points g, h ∈
GR for the case that g = ±1 and h ∈ GR is arbitrary.

If g = 1, then �̃(h) �= 0, so there exist disjoint open neighborhoods X and
Y of 0 and �̃(h) in the topological space [0, π], respectively. Since the map �̃ is
continuous, the sets U := �̃−1(X) and V := �̃−1(Y ) are disjoint neighborhoods
of 1 and h. If g = −1, there exist disjoint neighborhoods U ′ and V ′ of −g and −h,
so −U ′ and −V ′ are disjoint neighborhoods of g and h, respectively.
Proof of (ii). Define ρ̂ : Ḃπ → Ṙ by ρ̂(x) := [x/|x|, 2|x|]. Then the diagram

ĠR

ρ̃|ĠR
↙ ↓ η

Ṙ
ρ̂←− Ḃπ

(2)

commutes. ρ̂ is a two-sheeted covering map, and η is a homeomorphism, so ρ̃|ĠR
=

ρ̂ ◦ η is a two-sheeted covering map.
In order to prove that ρ̃ as a whole is a covering map, it remains to be shown

that ρ̃ is open not only on ĠR, but also in ±1. Since GR is Hausdorff, since ĠR

is a two-sheeted covering space of Ṙ, and since ρ̃−1(1) = {±1} contains, like all
other fibers of ρ̃, precisely two elements, it then follows that ρ̃ has continuous local
inverses everywhere.

So let (σn)n be any sequence in Ṙ converging to 1, then some sequence (gn)n

in ĠR needs to be found with ρ̃(gn) = σn for all n and gn → 1; note that (−gn)n

then satisfies ρ̃(−gn) = σn as well and converges to −1.
For each g ∈ ĠR, one has �̃(g) ≤ π/2 or �̃(−g) ≤ π/2. It follows that for

each n some gn ∈ ρ̃−1(σn) can be chosen such that �̃(gn) ≤ π/2. Since [0, π/2] is
compact, the sequence (�̃(gn))n has at least one accumulation point, and since σn

tends to 1, the only possible accumulation point in the interval [0, π/2] is zero. It
follows that �̃(gn) tends to zero and, hence, that gn tends to 1, proving that ρ̃ is
open. �

The reason why this proof is nontrivial is that ρ and π are not open. If this
were the case, GR would directly inherit the Hausdorff property from MR, and
the proof that ρ̃ is a covering map would be elementary. But neither ρ nor π is
open.

In order to see this, let (σn)n be any sequence of rotations around some
fixed a ∈ S2, and suppose this sequence to converge to 1. If ρ were open, one
would have to find, for each m ∈ π−1(1) a sequence (mn)n converging to m and
satisfying ρ(mn) = σn for all n. Now choose m = (a, a). Since a ∈ A(σn) for all
n, one knows for all (bn, cn) ∈ ρ−1(σn) that both bn and cn are perpendicular to
a. As a consequence, no sequence (mn)n with ρ(mn) = σn for all n can coverge to
m = (a, a).

π cannot be open either, since this would, by diagram 1 and the preceding
Lemma, imply that ρ is open. Only the restrictions of ρ and π to ρ−1(Ṙ) are open.
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Theorem 2
(i) GR is simply connected.
(ii) There is a unique group product � on GR such that the diagram

MR ×MR
◦−→ MR

↓ π × π ↓ π
GR ×GR

�−→ GR

↓ ρ̃× ρ̃ ↓ ρ̃
R×R ·−→ R

(3)

commutes.

Proof of (i). GR = π(MR) is pathwise connected because MR = S2 × S2 and
because π is continuous. Together with Lemma 1, this implies the statement, since
the fundamental group of R is Z2.

Proof of (ii). The outer arrows of the diagram commute, so it suffices to prove
the existence and uniqueness of a group product conforming with the lower part.
But it is well known that each simply connected covering space G̃ of an arbitrary
topological group G can be endowed with a unique group product � such that G
is a covering group.4 �

3 Spin and statistics

The preceding section has provided the basis of a general spin-statistics theorem,
which is the subject of this section. From an intrinsic form of symmetry under a
charge conjugation combined with a time inversion and the reflection in one spatial
direction, which is referred to as modular P1CT-symmetry, a strongly continuous
unitary representation W̃ of GR will be constructed using the above and related
reasoning. It is, then, elementary to show that W̃ exhibits Pauli’s spin-statistics
relation.

In order to make the notion of rotation meaningful, fix a distinguished time
direction by choosing a future-directed timelike unit vector e0. The 2-sphere of
unit vectors in the time-zero plane e⊥0 will be called S2.

Let F be an arbitrary quantum field on R
1+3 in a Hilbert space H. The

following standard properties of relativistic quantum fields will be used here.

(A) Algebra of field operators. Let C be a linear space of arbitrary dimension,5

and denote by D the space C∞
0 (R1+3) of test functions on R

1+3. The field

4See, e.g., Props. 5 and 6 in Sect. I.VIII. in Ref. 7.
5C is the “component space”, and its dimension equals the number of components, which may

be infinite in what follows.
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F is a linear function that assigns to each Φ ∈ C⊗D a linear operator F (Φ)
in a separable Hilbert space H.

(A.1) F is free from redundancies in C, i.e., if c, d ∈ C and if F (c ⊗ ϕ)) =
F (d⊗ ϕ) for all ϕ ∈ D, then c = d.

(A.2) Each field operator F (Φ) and its adjoint F (Φ)† are densely defined.
There exists a dense subspace D of H contained in the domains of
F (Φ) and F (Φ)† and satisfying F (Φ)D ⊂ D and F (Φ)†D ⊂ D for all
Φ ∈ C⊗D.

Denote by F the algebra generated by all F (Φ)|D and all F (Φ)†|D. Defining
an involution ∗ on F by A∗ := A†|D, the algebra F is endowed with the
structure of a ∗-algebra.

For each a ∈ S2, denote byWa := {x ∈ R
1+3 : xa > |xe0|} the Rindler wedge

associated with a,6 and let F(a) be the algebra generated by all F (c⊗ ϕ)|D
and all F (c ⊗ ϕ)†|D with supp(ϕ) ⊂ Wa. The algebra F(a) inherits the
structure of a ∗-algebra from F by restriction of ∗.

(A.3) F(a) is nonabelian for each a, and a �= b implies F(a) �= F(b).

(B) Cyclic vacuum vector. There exists a vector Ω ∈ H that is cyclic with respect
to each F(a).

(C) Normal commutation relations. There exists a unitary and self-adjoint op-
erator k on H with kΩ = Ω and with kF(a)k = F(a) for all a ∈ S2. Define
F± := 1

2 (F ± kFk). If c and d are arbitrary elements of C and if ϕ, ψ ∈ D
have spacelike separated supports, then

F+(c⊗ ϕ)F+(d⊗ ψ) = F+(d⊗ ψ)F+(c⊗ ϕ),
F+(c⊗ ϕ)F−(d⊗ ψ) = F−(d⊗ ψ)F+(c⊗ ϕ), and
F−(c⊗ ϕ)F−(d⊗ ψ) = −F−(d⊗ ψ)F−(c⊗ ϕ).

The involution k is the statistics operator, and F± are the bosonic and fermionic
components of F , respectively. Defining κ := (1 + ik)/(1 + i) and F t(d ⊗ ψ) :=
κF (d⊗ ψ)κ†, the normal commutation relations read

[F (c⊗ ϕ), F t(d⊗ ψ)] = 0.

This property is referred to as twisted locality. Denote F(a)t := κF(a)κ†.

These properties imply that Ω is separating with respect to each algebra F(a),
i.e., for each A ∈ F(a), the condition AΩ = 0 implies A = 0.7

6An observer who is uniformly accelerated in the direction a can interact with precisely the
events in Wa.

7If AΩ = 0 and B, C ∈ F(−a)t, then 0 = 〈BCΩ, AΩ〉 = 〈CΩ, AB∗Ω〉, so A = 0 by cyclicity
of Ω.
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As a consequence, an antilinear operator Ra : F(a)Ω→ F(a)Ω is defined by
RaAΩ := A∗Ω. This operator is closable.8 Its closed extension Sa has a unique
polar decomposition Sa = Ja∆1/2

a into an antiunitary operator Ja, which is called
the modular conjugation, and a positive operator ∆1/2

a , which is called the modular
operator. Ja is an involution.9 Sa, Ja, and ∆1/2

a are the objects of the so-called
modular theory developed by Tomita and Takesaki.10

For each a ∈ S2, let ja be the orthogonal reflection at the plane a⊥ ∩ e⊥0 ,11

and for each ϕ ∈ D, define the test function jaϕ ∈ D by jaϕ(x) := ϕ(jax).

(D) Modular P1CT-symmetry. For each a ∈ S2, there exists an antilinear invo-
lution Ca in C such that for all c ∈ C and ϕ ∈ D, one has

JaF (c⊗ ϕ)Ja = F t(Cac⊗ jaϕ).

The map a �→ Ja is strongly continuous.12

It will now be shown that pairs of modular P1CT-reflections give rise to a strongly
continuous representation of GR which exhibits Pauli’s spin-statistics connection.

Lemma 3 Let K be a unitary or antiunitary operator in H such that KD = D
and KΩ = Ω, and suppose there are a, b ∈ S2 such that KF(a)K† = F(b). Then
KJaK

† = Jb, and K∆aK
† = ∆b.

Proof. If A ∈ F(b), then KSaK
†AΩ = KSaK

†AK
︸ ︷︷ ︸

∈F(a)

Ω = A∗Ω = SbAΩ. The state-

ment now follows by the uniqueness of the polar decomposition. �

In particular, this lemma implies

kJak = Ja, whence Jaκ = κ†Ja (4)

by definition of k. Using twisted locality, the lemma also implies

κJaκ
† = κ†Jaκ = J−a (5)

8By twisted locality, the operator κR−aκ† is formally adjoint to Ra. Namely, if A ∈ κF(−a)κ†
and B ∈ F(a), then 〈AΩ, RaBΩ〉 = 〈AΩ, B∗Ω〉 = 〈BΩ, A∗Ω〉 = 〈BΩ, κR−aκ†AΩ〉. Since
κR−aκ† is densely defined, it follows that Ra is closable.

9R2
a = 1 implies S2

a = 1, so Ja∆
1/2
a = Sa = S−1

a = ∆
−1/2
a J∗

a , i.e., J2
a∆

1/2
a = Ja∆

−1/2
a J∗

a .

Since Ja∆
−1/2
a J∗

a is positive, one obtains J2
a = 1 and Ja∆−1/2Ja = ∆1/2 from the uniqueness

of the polar decomposition [3].
10The original work [26] directly applies to von-Neumann algebras, which are normed. But

also for the present setting this structure has been applied earlier, e.g., in the classical papers
of Bisognano and Wichmann [1, 2]. See, also, Ref. 14 for a monograph on the Tomita-Takesaki
theory of unbounded-operator algebras.

11i.e., the linear reflection with jaa = −a, jae0 = −e0, and jax = x for all x ∈ a⊥ ∩ e⊥0 .
12If one assumes covariance with respect to some strongly continuous representation of GR

(which may also violate the spin-statistics connection), this is straightforward to derive; cf.
Lemma 3. But covariance, as such, is not needed.
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which, in turn, implies

JaJbJa = J−jab = Jjajbb = Jρ(a,b)b (6)

by modular P1CT-symmetry.
Define a map W from MR into the unitary group of H by W (a, b) := JaJb.

Lemma 4
(i) m ∼ n implies W (m) = W (n).
(ii) W (m) = W (n) implies ρ(m) = ρ(n).

Proof of (i). The proof of Lemma 2.4 in Ref. 5 can be taken without any relevant
changes. Despite the fact that the Buchholz-Summers paper is confined to bosonic
fields, which, in particular, implies Ja = J−a, it is straightforward to translate
their proof to the present setting. This will not be spelled out here. The proof
makes use of the continuous dependence of Ja from a assumed in Assumption (D).

Proof of (ii). ρ(m) �= ρ(n) would imply that there is some b ∈ S2 such that ρ(m)b �=
ρ(n)b, so F(ρ(m)b) �= F(ρ(n)b) by Assumption (A), whence W (m)F(b)W (m)∗ �=
W (n)F(b)W (n)∗ by Assumption (D), i.e., W (m) �= W (n). �

By this lemma, a map W̃ : GR →W (MR) is defined by W̃ (π(m)) := W (m),
and another map ρW : W (MR) → R is defined by ρW (W (m)) = ρ(m). The
diagrams

(A)

MR
π−→ GR

ρ ↓
W

↘ ↓ W̃
R

ρW←− W (MR)

and (B)

MR
π−→ GR

ρ ↓
ρ̃

↙ ↓ W̃
R

ρW←− W (MR)

(7)

commute.

Theorem 5
(i) There is a unique group product �W on W (MR) with the property that the

diagram
MR ×MR

◦−→ MR

↓ π × π ↓ π
GR ×GR

�−→ GR

↓ W̃ × W̃ ↓ W̃
W (MR)×W (MR) �W−→ W (MR)

↓ ρW × ρW ↓ ρW

R×R ·−→ R

(8)

commutes, i.e., W̃ is a homomorphism.
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(ii) �W is the operator product in the algebra B(H) of bounded operators on H,
i.e., W̃ is a representation.

(iii) There is a representation D̃ of GR in C such that

W̃ (g)F (c ⊗ ϕ)W̃ (g)∗ = F (D̃(g)c⊗ ρ̃(g)ϕ) for all g, c, ϕ, (9)

where ρ̃(g)ϕ := ϕ(ρ̃(g)−1 ·).
Proof of (i). The diagram already commutes if the arrow representing �W is omit-
ted.

For each g ∈ GR and each (a, b) ∈ π−1(g) one has

W̃ (±1)W̃ (π(a, b)) = W ((±a, a) ◦ (a, b)) = W (±a, b) = W̃ (±(π(a, b))),

so W̃ (±1) ∼= Z2 if and only if W̃ (±g) ∼= Z2.
If W̃ (±1) ∼= Z2, then W̃ is a bijection, so �W is defined by

U �W V := W̃ (W̃−1(U)� W̃−1(V )).

If W̃ (±1) ∼= {1}, then ρW is a bijection, so �W is defined by

U �W V := ρ−1
W (ρW (U) · ρW (V )).

Proof of (ii). The statement is nontrivial only on ĠR. Given g, h ∈ ĠR, the planes
ã(g)⊥ and ã(h)⊥ intersect in an at least one-dimensional subspace, so one can
choose (a, b) ∈ π−1(g) and (c, d) ∈ π−1(h) such that b = c is in this intersection.
Then

W̃ (π(a, b)� π(c, d)) = W̃ (π((a, b) ◦ (b, d)))

= W̃ (π(a, d)) = W (a, d)
= JaJd = JaJbJbJd

= W (a, b)W (b, d) = W̃ (π(a, b))W̃ (π(b, d))

= W̃ (π(a, b))W̃ (π(c, d)).

Proof of (iii). Define a map D from MR into the automorphism group Aut(C) of
C by D(a, b) := CaCb. If (a, b) ∼ (c, d), then modular P1CT-symmetry implies

F (CaCbc⊗ jajbϕ) = W (a, b)F (c⊗ ϕ)W (a, b)∗

= W (c, d)F (c⊗ ϕ)W (c, d)∗

= F (CcCdc⊗ jcjdϕ)
= F (CcCdc⊗ jajbϕ)

for all c and all ϕ. Using Assumption (A.1), one obtains CaCbc = CcCdc for all c, so
D(a, b) = D(c, d), and a map D̃ : GR → Aut(C) is defined by D̃(π(m)) := D(m).
This map D̃ now inherits the representation property from W̃ . �
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Theorem 6 (Spin-statistics connection)

F±(c⊗ ϕ) =
1
2
(1± F (D̃(−1)c⊗ ϕ))

for all c and all ϕ.

Proof. For each a ∈ S2 one has

W̃ (−1) = JaJ−a = JaκJaκ
† = J2

a(κ†)2 = k,

so

F (c⊗ ϕ) = kF (c⊗ ϕ)k

= W̃ (−1)F (c⊗ ϕ)W̃ (−1)

= W̃ (−1)F (c⊗ ϕ)W̃ (−1)†

= F (D̃(−1)c ⊗ ϕ). �

If, in particular, D̃ is irreducible with spin s, then D̃(−1) = e2πis, so F− = 0
for integer s and F+ = 0 for half-integer s.

4 PCT-symmetry

In order to justify the term “modular P1CT-symmetry”, one should show that
this condition yields, at least in 1+3 dimensions, a full PCT-operator in a base-
independent fashion.

Theorem 7 (PCT-symmetry) There exists an antiunitary involution Θ with the
properties

(i) JaJbJc = Θ for each right-handed orthogonal basis (a, b, c) of e⊥0 .
(ii) There exists an antilinear involution C such that

ΘF (c⊗ ϕ)Θ = F (Cc⊗ ϕ(− ·)).
Proof. Let (a′, b′, c′) be a second right-handed orthonormal base, and define Θ′ :=
Ja′Jb′Jc′ . Then it follows from modular symmetry that

Θ′ΘF (c⊗ ϕ)Ω = Θ′ΘF (c⊗ ϕ)ΘΘ′Ω
= F (Ca′Cb′Cc′CaCbCcc⊗ ϕ)Ω

= F (D̃(1)c⊗ ϕ)Ω
= F (c⊗ ϕ)Ω.

Since Ω is cyclic, this implies the statement. �

If (a, b, c) is right-handed and (a′, b′, c′) is left-handed, then D̃(1) has to be
replaced by D̃(−1) in the above computation. Since J−aJ−bJ−c = κJaJbJcκ

†, this
is no surprise.
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Conclusion

Both the classical geometry and the fundamental quantum field theoretic represen-
tations of the rotation group SO(3) and its universal covering group are based on
reflection symmetries. At the classical level, the universal covering group GR can
be constructed from P1T-reflections. For a quantum field F with S̃O(3)-symmetry,
a class of antiunitary P1CT-operators exists that are fixed by the intrinsic struc-
ture of the respective field. Along precisely the same lines of argument used for the
construction of GR, a covariant unitary representation W̃ of GR is constructed.
W̃ exhibits Pauli’s spin-statistics connection.
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Appendix. SU(2) versus GR

The isomorphism between the models SU(2) and GR of S̃O(3) can be described
as follows.

First recall the standard representation of SU(2) on R
3. Denote by σ1, . . . , σ3

the Pauli matrices, and define x̂ :=
∑

ν xνσν , x ∈ R
3. For each ν, the map

x̂ �→ Ad(±iσν)x̂ is well known to implement the rotation [eν , π]. Since the parity
transformation P is implemented by the map x̂ �→ −x̂, one finds that for each ν,
the map x̂ �→ −Ad(±σν)x̂ implements the reflection jν . The determinants of the
Pauli matrices equal −1, and all of them are involutions.

Now one can define an isomorphism J from S2 onto the unitary matrices
with determinant −1 by J(a) := a�σ. The products of pairs of unitary matrices
with determinant −1 yield all of SU(2).
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