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The Hubbard Model at Half-Filling, Part I1I:
the Lower Bound on the Self-Energy

Stéphane Afchain, Jacques Magnen and Vincent Rivasseau

Abstract. We complete the proof that the two-dimensional Hubbard model at half-
filling is not a Fermi liquid in the mathematically precise sense of Salmhofer, by
establishing a lower bound on a second derivative in momentum of the first non-
trivial self-energy graph.

I Introduction

This paper is the third of a series ([1, 2]) devoted to the rigorous mathematical
study of the two-dimensional Hubbard model at half-filling above the transition
temperature to the expected low temperature region, which becomes Néel-ordered
at zero temperature. The goal of this series was to prove that this model does
not obey Salmhofer’s criterion for Fermi liquid behavior of interacting Fermion
systems at equilibrium ([3, 4]). In this way, this model differs sharply from those
with a Fermi surface close to the circle, which obey Salmhofer’s criterion ([5, 6, 7]).

In the first paper [1] the convergent contributions of the model were bounded
in the domain |A|log? T < K. In the second one [2], renormalization of the self-
energy was performed to complete the proof of analyticity in the coupling con-
stant of all the correlation functions in that domain. Salmhofer’s criterion requires
beyond this analyticity that the self-energy (in momentum space) is uniformly
bounded together with its first and second derivatives in a domain |A||logT| < K.
In this paper we prove that a certain second derivative of the self-energy at a par-
ticular value of the external momentum is not uniformly bounded in the domain
|\ log? T < K where we have established analyticity. This domain being smaller
than the Salmhofer’s one, it completes the proof that the two-dimensional half-
filled Hubbard model is not a Fermi liquid. In conclusion, when we move from low
filling to half-filling, the Hubbard model must undergo a cross-over from Fermi to
non-Fermi (in fact Luttinger) liquid behavior. This solves the controversy on the
nature of two-dimensional Fermionic systems in their ordinary phase [8]. We refer
to [1, 2, 4] for a more complete review and further references on mathematical
study of interacting Fermions.
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IT Recall of notations

The two-dimensional Hubbard model is defined on the lattice Z2. Fixing a tem-
perature T' > 0, the “imaginary time”, denoted xg, belongs to the real interval
[f%, % [ In the following, we shall denote § = % Indeed this interval should be
thought of as a circle of length 24, that is R/267Z. Consequently, the momentum
space, which is the dual of R/23Z x Z? in the sense of the Fourier transform, is
7TZ x [R/27Z)%. The torus [R/27Z]? will be represented by the square [, 7[?,
with periodic boundary conditions.
In Fourier variables, the expression of the propagator at half-filling reads:

1
ikg — cos ki — cos ks

if ko = (2n + 1)7T for some n € Z. If kg = 2nnT, C(ko, k1, k2) = 0 because in
the formalism of Fermionic theories at finite temperature, the propagator has an
antiperiod § with respect to the xy variable and therefore each Fourier coefficient of
even order vanishes. With a slight abuse of language, we can say that C'(ko, k1, k2)
is only defined for kg = (2n + 1)xT. This set of values is called the Matsubara
frequencies.

The expression of the propagator in real space is deduced by Fourier trans-
form:

C(ko, k1, ko) = (I1.1)

1 eik.z
C = —— [ dk dk dk 11.2
(w0, 21, 2) (2m)3 / 0/ 1/ % ko — cos ky — cos ko (1.2)

where we adopt the notations of [1], namely the integral [ dky really means the
discrete sum over the Matsubara frequencies 277 ) _,((2n + 1)7T') (with ko =
(2n+1)7T), whereas the integrals over k1 and ko are “true” integrals, for (k1, ko) €
[, 7[2. (We do not need any ultraviolet cutoff for the graph studied in this paper,
since it is ultraviolet convergent.)

For our analysis, it will be convenient to introduce another parametrization
of the spaces [—, 7[> and Z?. The idea is to “rotate” the Fermi surface of Figure
II by an angle of 7. In the kg = 0 plane, it is defined by cos k; + cos kz = 0, which
is equivalent to ko =7+ k1 or kg = —m £ kq.

k1=
ko =

(ky +k-)

, the domain
(kg — k=)

Introducing the variables ky = ¥1Zk2 {

SERSE

of integration (k1,k2) € [—, 7[? becomes the set:

D = {(k4,k_) € [-2,2]* with
—2< < < <
25k S0 or 40S ke s2 . (IL3)
_2_k+§k_§2+k+ —2+I€+§k_§2—k5+

As cosky + cosky = 2cos %k+ cos %k,, the Fermi surface in the variables ki is
simply defined by ky = +1 ,k_ = £1. The new domain of integration, with the
Fermi surface is represented on Figure 2.
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ko

Figure 1. The square [—, 7[? and the Fermi surface.

Figure 2. The domain of integration in (k4,%_) and the Fermi surface.

In a dual way, we introduce new variables in real space, x4 and z_ in such
a way that k121 + kaxo = kyaxy + k_x_. We have:

Ty =
Tr_ =

Observe that the image of the lattice Z? by this change of variable is not §Z2 but

(x1 + x2)

(21— 2) . (I1.4)

SERSE
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the subset S
S = {<§m, §n) , (m,n) €Z% m= n[2]} . (IL.5)
In other words, the integers m and n must have same parity.
As the Jacobian of the transformation (Zl> = (Z 2 ) <Z+) isJ = 7%2,
2 3 _

_z
2 2
we have:

6i(k111+k‘212) 7.‘.2 ei(k+z++k,z,)
dkydk = — [ dkydk_ .
/[ ™72 rene 1kg — cos ki — cos ks 2 /D + tko — 2 cos Sky cos Sk

(IL.6)

But the domain D is not very convenient for practical computations, and

therefore we would like the ki k_ integration domain to factorize. Since the com-

plement set [—2,2[?\D is another fundamental domain for the torus R? /2772, we
have:

dk dk ei(k+$++k7$7) dk dk 6i(k+$++k7$7)
/D T ik —2cos 5k cos Gk _/[ 2,22\ D e iko —2cos Sky cos Tk’

(IL7)

Hence:
ei(k+z++k717) 1 ei(k+x++k,x,)
dkydk_ == dk . dk_ .
/D * tkog —2cos Ghkycos Tk 2 /[2,2]2 * iko — 2 cos Ty cos Tk
(IL.8)
Recapitulating, the expression of the propagator that we take as our starting
point is:

6i(k0$0+k+:ﬂ++k7$7)

C(zo,r4,2-) = /d3k (I1.9)

for x4 satisfying the parity condition (IL.5). In I1.9 the notation | d*k means

dk dkydk_ 11.10
327T/ 0/ [—2,2]2 " ’ ( )

where we recall that [ dko means 27T )", 1((2n+1)7T)), since kg = (2n+1)nT.

Now, let us consider, in Fourier space, the amplitude of the graph G repre-
sented on Figure 3, with an incoming momentum k = (ko, k4, k_). This amplitude
is denoted A (k) and written as A (ko, k4, k_) = [d3z C(z)C(z)?e~* (where
arrows join antifields to fields).

u\\,/x

Figure 3. The first non-trivial graph contributing to the self-energy.

iko — 2 cos $ky cos Gk
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More precisely, we shall consider the second momentum derivative in the +
direction of this quantity, which up to a global inessential minus sign is:

0% Ag (k) = /d3x xiC(x)C‘(x)Qe_ik'm . (I1.11)

The quantity we are going to study is explicitly written:

eikl .z

Ot Aq(rT,1,0) = /d% xi/d%l

ik1,0 — 2cos 5k 4 cos Gk —

ikz.x
e
d*ky—
/ —ika,0 — 2cos Sko 4 cos Gka

eik‘g.x X
>k irTeoter) (1112
/ s —ikso —2cos Tks 4 cos Tks ¢ » )

where again [ d®z includes the parity condition (IL5). We state now the main
result of this paper:

Theorem II.1 There exists some strictly positive constant K such that, for T small

enough:
K

|03 Aq(nT,1,0)| > T

(I1.13)

We recall that this result, joined to the analysis of [2], leads to the result that
the self-energy of the model is not uniformly 2 in the domain |\|log®> T < K and
therefore that the two-dimensional Hubbard model at half-filling is not a Fermi
liquid.

IIT Plan of the proof

Theorem (II.1) will be proven thanks to a sequence of lemmas. But before pre-
senting these lemmas, let us give an overview of our strategy. We use the sector
decomposition introduced in [1] to write:

AT, 1,00 = Y [ dx 2% Co, (2)Co, (2)Coy (w)e " TTH04#0) | (I11.14)

01,02,03

where a sector o is a triplet (i,s4,s_) with 0 < s3 <iand sy +s_ > .

The main idea is that in the sum over sectors of equation (I111.14), the leading
contribution is given by a restricted sum corresponding to sectors close to the
“vertical part” of the Fermi surface, defined by ki = +1. To express this more
precisely, let A be an integer (whose value will be chosen later), which will play the
role of a cut-off for the sectors. We want to prove that as soon as one sector is not
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close to k1 = %1, then we have a small contribution. Let us denote Zf[\ij} (st}

the sum in which at least one sector is “far” from the vertical sides of the Fermi

surface. Precisely, this means that at least one index s;L is smaller than imax (7)) — A,

where, as in [1], M~%=x(T) ~ T This constrained sum can be written explicitly:

A inf(i1,imax (T)—A)
{ij}»{sj}»{&‘;} 11,81 ;02,03 s7=0
i1 inf(i2,imax (T)—A)
X >
1,57 402,55 ,03 S7 =imax(T)—A sf=0
i i inf(ig,imax (T) —A)
D> > X > . )
01,57 402,55 403,55 57 =imax(T)—A 53 =imax(T)—A sf=0
Defining;:
A — — .
AA (T, 1,0) = > / Bz Cy, (2)Co,y (2)Coy (x)e " ToF24)  (T11.16)
(i A 55 )
we write:
92 Ag(7T,1,0) = 02 Ag A (7T, 1,0) + 82 AX(nT, 1,0) (I11.17)

where 92 Ag A (7T, 1,0) = 02 Ag(nT,1,0) — 02 AX(wT, 1,0) is expressed as a sum
over sectors that are all close to k4 = £1, i.e., such that each sj index is greater
than imax(T) — A.

Each sector appearing in the sum expressing (’“)iAG, A(7T,1,0) will be divided
into two disjoint subsectors, according to the sign of k4. We recall that in [1], the
sectors were defined as:

ikg — 2 cos gk+ cos gk_’ ~ M, 'cos gk+' ~ M , ‘COS g |~
(IT1.18)
We shall call 0" and ¢! (“right” and “left”) the subdomains of o correspond-
ing to kx > 0 and k4 < 0 respectively. The underlying motivation is that, if a
momentum, say ki, is close to the side k4 = 1, by momentum conservation at each
vertex, the other ones are necessarily close to the other side ky = —1. Let us state
precisely this point:

Lemma III.1 In the sum expressing BiAG,A(ﬂT, 1,0), there must be one sector of
the right type, and two of the left type.

The proof is obvious by momentum conservation in the + direction. O
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This Lemma implies that:

9% A,a(xT, 1,0)

- Z d3$ wiCal (x)éaz (x)éaa ($)6_i(ﬂTJEO+I+)

{0 },ij,8] >imax(T)-A
o right

+ Z /d3LL’ !Eicgl (w)caz (.T)C—'US (ZC)e_i(ﬂ'TmO"'er)

{oj}ijsF >imax(T)—A
oo right

+ > &Pz 22.C,, (2)Cy, (2)Coy (z)e~{TTT0F ) (T11.19)
{oj}1ijsF >imax(T)—A

o3 right

Among these three contributions, the last two ones are indeed equal, and we have:

Ot A A(nT,1,0)

{oj}ij5F >imax(T)—A
o1 right

+2 Z /dgx 2% Cyy (2)Coy (2)Co, (z)e " Tzorer)  (111.20)

{oj}ijsF >imax(T)=A
oo right

In each sum, we replace the cos §k; appearing in the propagators by their
Taylor expansions in the neighborhood of 41 in a right sector, and in a neigh-
borhood of —1 in a left sector. We have cos ki ~ —Z(ky — 1) for k; in the
neighborhood of 1, in which case we put ¢ = (ky — 1) and cos Thky ~ (k4 +1)
for k4 in the neighborhood of —1, in which case we put ¢ = (k4 + 1). This
replacement gives an expression that we call 83[1@ AT, 1,0):

)eikl.LE

82 Ag (T, 1,0) = [ &z o2 /d3k uadry
-+ G,A(ﬂ- PES) ) / T Xy 1 ik1,0+7rq1,+COS%k17—

iko.x ik3.x
Pk up(g2,4)e™ Pk up(gs,4)e™ —i(nTxo+as)
2 Tik Tk 3 Tik Ty
—tR2,0 — Q2,4+ COS S h2,— —tR3,0 — Q3,4+ COS S R3,—

U eikl.z
+2/d3x xi/d?’kl __ualqrp)e”
Zkl)o — Tq1,+ COS 7]{31,,

iks.x iks.x
Py up(go,+)e™ Blis ua(gs,+)e™ o—i(nTzo+a )
—ik270 + mq2,+ cOs %k’g,_ —ik3,0 — Tq3,+ COS %k&_

)

(I11.21)
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where the ua (g4 )’s is now the smooth scaled cutoff function w(Mmex(T)=Ag,)
which expresses the former sector constraint s > imax(7) — A (u is a usual fixed
Gevrey function which is 1 on [—1,1] and 0 out of [—2,2], see [1]).

In (II1.21) we can freely change each integral over dk which ran over [—2, 2]
into an integral on dg; which runs from [—o0, co]. We still denote [ d®k the cor-
responding integrals.

We write now for each propagator in (I11.21), ua (g4 ) = 1 +u'(qy) +ud(g+)
where u'(qy) = u(qy) — 1 and uf (¢4) = ua(qy) — u(qy). In this way we generate
three terms:

e one in which all three functions u A(gq4) are replaced by 1. We call this term
01 Ag(nT,1,0)

e one in which there is at least one factor uf (g, ) and no factor u'(q.). We
call this term 03 A% | (7T, 1,0).

e finally one in which there is at least one factor u'(gy). We call this term
02 AL(xT,1,0).

At this stage, we recapitulate:
93 A(nT,1,0) = 03 Ac(nT, 1,0) + 03 A% 1 (nT,1,0) + 07 AG (T, 1,0)
+ (02 Ag A (7T, 1,0) — 93 Ag (7T, 1,0)) + 0 AL (T, 1,0) . (111.22)

This relation shows that the quantity under study, % A¢ (7T, 1,0), is equal to the
approximation (ﬁfig(ﬂ'T, 1,0), up to the four error terms

O AL (T, 1,0), 03 A% (T, 1,0),
(aiAG7A(7TT,1,O) —BiAG,A(wT,l,O)), 0% AL(xT,1,0) . (II1.23)

Now we are going to prove a lower bound similar to the one of Theorem
I1.1, but on the quantity 93 Ag(«T,1,0), and establish an upper bound on each

of the four error terms. More precisely, if we have lﬁiﬁg(ﬁT, 1,0)| > % for some
K/

constant &K' > 0 and if the modulus of each error term is smaller than T with
K’ << K, we shall conclude that:
K — 4K’
|03 Aq(nT,1,0)| > — (I11.24)

which shall prove Theorem II.1. The result that '81141@ (7T, 1, 0)’ > % is really

the most difficult to establish, and its proof is the heart of this paper. But the
control of the error terms is easier, and each one will correspond to a lemma. We
shall begin by these lemmas in the next section, and then turn to the lower bound

on aizig(ﬂT, 1,0)‘.
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IV The control of the error terms

First we state a result that is not necessary for proving Theorem II.1 but whose
proof illustrates the way the sector decomposition allows us to establish quite
easily upper bounds.

Lemma IV.1 There exists some constant K1 > 0 such that:

|03 Ac (7T, 1,0)] < % . (IV.25)

Proof: We use the decay property of C(; s, s_y(v) (see [1], Lemma 1):

[Clinr s (@)] < M+ exp (—c(do (@) ), (1V.26)

where o €]0, 1] is a fixed number, ¢ is a constant and d, () = M ~¢|zg| + M 5+
|74 | + M5 |z_|. We have:
02 Ag (k)| < .M~ 5= ~Eias)
3 . + _ «a
Z >z 2% exp —CZ (M_”|;E0| + M x|+ M™% |;1c_|)
(i1 4s Y As5} J=1
(IV.27)

Among the indices i1, i and i3, we keep the best one, i.e., the smallest one,
to perform the integration over xy. We proceed in an analogous way for the indices
(s1,s3,s7) and (s7,s5, s3 ) respectively. Thus we have:

|8iAg(k)| <3 Z M- PR IE S ANy Minf{ij}Msinf{sj}Minf{s;} '
(i} s 1ods; )
(IV.28)
To carry out our discussion, we introduce several notations. If (aj,as,as) is a
family of three (not necessarily distinct) real numbers, we denote as usual inf{a;}
the smallest number among the a;’s, but we define also

inf{a;} = inf ({al, as, a3\ {inf{a1, as, a;:,}}) (IV.29)

and:

i%f{aj} = inf ({al,ag,ag}\{inf{al,az,ag},irzlf{al,ag,ag}}> . (IV.30)
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Remark that infs{a;} is indeed sup{a;}. Finally in this paragraph we shall write
simply " a; instead of 2?21 a;, and similarly for the sj’s and the s;’s. With
these notations, it is very easy to check the following identity:

3
inf{a;} = %;aj - %[n%f{aj} - mf{aj}} - %[%f{aj} - inf{aj}} . (IV.31)
We introduce the abbreviation:
Afa;} = [igf{aj} - inf{aj}} + [i%f{aj} - inf{aj}] : (IV.32)
so that we have:

. 1 1
inf{a;} = 3 Z a; — §A{aj} . (Iv.33)
We use this identity to replace inf{i;} and inf{sji} in formula (IV.28), and we
obtain:
|03 Ac (k)|
< Z a> st=% N VERI R T SUSS VDY sij{s;r}Minf{s;} )
(i hAst s )
(IV.34)
Since inf{s; } < i s; , we can write:
2 Ack) <& Y MEXDLoEAGI AL R (1v.3s)
{ishAsT bl }
Now, we use the constraints in the sum Z{ij},{sj};{s;} to write, for each j €
{1,2,3):

s; >y — sj -2 (IV.36)
We deduce that: 1 . .
325 23D ii—3 ) 5 =2 (IV.37)
and
M-355 < M2M-3Xu+sEs) (IV.38)

Replacing in equation (IV.35), we get:
2 Ac(k)] <M S MoEAEER ST SAT R Y (1v.30)
(i3 AsT 1 0s5}
and using relation (IV.33), we have:

2 Ac(k)] < M2 ST MoEAE I RALT s R s (v 40)
{is}(sf 1057 )
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At last, let us denote x the value of the index j such that s} = inf {sj} We write
inf{s;} = ix — (ix — ). Finally we obtain:

|3iAG(k)| < AM? Z Min M5O pplin—sD =32  pr—3 2 s
i3s3 s}
(Iv.41)

Clearly the sums over s;, s; and s; can be bounded by K> = (Ml/%l)g

The decay M52} can be used to perform the sums over sj for j # K, also at
a cost Ks. In the same way, we use the decay M~32{4} to sum over the values

ij, j # Kk also at cost K per sum. It remains to sum over s!:

—est) « M
> M <1 (IV.42)
0<s? <i,.
At last, we have:
imax(T) )
) Mlmax(T)+1
03 Ac(k)| <K Y M= K—r—— (IV.43)
ie=0
and we have Mimex(T) ~ + (see [1]), which proves lemma IV.1. O

We have then the following lemma, which is a slight refinement of lemma
IV.1:

Lemma IV.2

|02 AL (=T, 1,0)|, |02 AL | (xT, 1,0)| < K1

< ST (IV.44)

where K1 is the constant of Lemma IV.1.

Proof: 1t is similar to the proof of Lemma IV.1. The case of 83Aé)1(7rT, 1,0) can
be decomposed into sectors exactly in the same way than 6‘1 Ag (7T, 1,0) because
away from the singularity and in a bounded domain in k,, the presence of mq,
instead of cos Tk does not change anything to the bounds on the propagators in
sectors. Each step is then similar to the proof of of lemma IV.1 until we arrive at
the last sum which we decompose in two pieces. The first piece corresponds to the
domain i,; < imax(T) — A and gives
imax (1)~ A Mimen (D) -A+1 _ |

> M= T (IV.45)

M Mimax(T) K’
- M-1 MA T T.MAC

(IV.46)
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and the second piece corresponds to the domain imax(T) — A < iy < imax(T). In
this case one should improve on equation (IV.42), to get

Z M lin—st) < K. M~ (n=(max(T)=A)) (IV.47)

0< s} imax(T)—A
so that this second piece is bounded by

imaX(T)
> MK MO e D=N) < g7 e (DA (IV.48)
i =imax (T)—A

hence the bound for this second piece is the same as for the first. This proves the
lemma. O

The following lemma bounds the contributions with at least one large infrared
cutoff u' on one propagator:

Lemma IV.3
|03 AL (7T, 1,0)| < K> (IV.49)

where Ko 1s some new constant.

Proof: The main idea is that a propagator bearing cutoff u' =1 —u on ¢y decays
on a length scale O(1) in ¢, so the factor 2% in 93 Af, is now harmless, and this
prevents the divergence in 1/T of the bound.

We remark first that in the amplitude 93 A, we can change the sum over z
into a sum over the non zero values of =, because of the 2% integrand. Since a
propagator bearing cutoff u' = 1 —u on ¢, is not absolutely integrable at large
q+, we first prepare all such propagators (there are between 1 and 3 of them) using
integration by parts.

For any such propagator we first split the ¢ integration into the two regions
J;% dgy and f:olo dq, and treat only the first term, the other one being identical.
Similarly we can assume that we work on a ‘right’ propagator, so that ¢, = k4 —1,
the other case being identical. The corresponding object is then:

2 o] i
. 1— i(koxot+k_z_+qyzy)
D(z) = "+ /dko/ dk_ / dq [ u<q+)]e —

9 1 iko + mqy cos Gk

Ty 9 1 [iko + mqy cos Th_]?

ul<q+)€i(kowo+k,m,+q+m+)

IV.50
iko + mq4 cos Gk ( )

The last term, having a compact support «’ is similar to the ones of the
previous lemma, and left to the reader. Let us treat the first term.
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We divide it with a partition of unity into new sectors ¢, s, s_ according to
the size of the denominator iko + mq4 cos 5k, which is M ~% the size of ¢4 which
is now of order M5+, with s, > 0, and of k_ which is of order M ~%- = M =5+,
with s_ =14 s4. The bounds are:

|Disy s (2)] < Koy | MM+ M 25 e elM w0t MU ey M )
< 2K iy M ot M M ) (IV.51)
iy

since for non zero x , on the tilted lattice |z, |~! is bounded by 2/7. Hence taking
into account that the “integral” [ dz, is really a discrete sum on 5Z:

/dw+xi|Di7S+7sf(a@)| < KM 354 g [M T Twot M~ ]%/2 (IV.52)

Finally we need to optimize the dzxy and dr_ using the best of the three other

propagators. This leads to a bound which obviously is uniform in 7'. For instance

if the three propagators have large infrared cutoffs u! = 1 — u, we get the bound
Z KMiZJ ij =22 S+, —2sup sy j+inf{i}+inf{i+sy}

i1,92,13
S+,1094,2:54,3

< Z KM~/ 6-E/3 545 < K" (IV.53)

11,42,13
S4,1054,2:54,3

and the other cases, when one or two propagators are of ordinary type, are similar
and left to the reader. O

Finally we state the lemma that allows us to control the replacement of
cos gk_ by its Taylor expansion:

Lemma IV.4 There exists a constant K3 > 0 such that:

2 A a(nT,1,0) — 92 Ag A(nT,1,0)| < K3 . (IV.54)

Proof:

92 A a(rT,1,0) — 92 Ag A(7T, 1,0)

_ T / P 22 [Co, (2)Ciry(2)Co, (2) — Cop (2) g Cog ()]

{05}, ijvst >imax(T)—A

o1 right
6—(7TT10+1+)
42 ) / 2 22 [Co ()Ci, (2)Co (1) = Cog (2) Coy Cog ()]
{oj}. ij,sj*>imax<T)fA
oo right

(IV.55)
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where
~ 3 ugr (k)etk-®
r = I .
Cor () /d K iko + m(ky — 1) cos Tk (IV:56)
N k)ezkz
— [ &k o : v.
Cot () / iko — m(ky + 1) cos Th_ (IV.57)

Observing that there exists a constant K4 such that:
'cos gm + ()2 (ky — 1)' < Ku(ks —1)? (IV.58)
'cos gk+ — ()2)(ky + 1)’ < Ku(ky +1)2 (IV.59)
uniformly in k4, we have:
’C’Um) (z) — C.rey (:17)’ < Mo (@) (IV.60)
Using the relation

Cy . CoyCoy — C Cps Oy =

(Cy = Cy )T Co + Co (Coy — Cy)Cry + Cp, Cor (T — Coy) , (IV.61)

to create differences of the type C' — C, we gain M5+ < M~ (max—2) i the power
counting with respect to a single propagator. O

V Main lower bound

Now we can state our main lower bound:
Theorem V.1 There exists a constant K5 > 0 such that:

. K
82 Ag(nT,1,0)| > ?5 . (V.62)

This theorem with the lemmas of the previous section obviously imply The-
orem II.1, hence the remaining of this paper is devoted to the proof of this Theo-
rem V.1.

V.1 Integration over ki, ko . and k3

We return to equation (III.21), in which all three cutoffs us have been replaced
by 1. Let us write in equation (IIL.21) 9% Ag (7T, 1,0) as 03 Ac1 + 207 Ag,2 and
let us consider the first term 92 Ag ;.
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The first propagator (after a change of variable to call the dummy variable
g+ again k4 ):

iky.x iz
/ d3k; - S . (V.63)
ik1,0 + mh1,4 cos (5 k1)

For cos (Zki1,—) # 0 we have:

—+o00 t?ikl’erJr
/ dkl;‘,— . s -
—0 ik1,0 + ki 4 cos (51,-)
1 +oo ik, 42
R dky o € 4 . (V.64)
— (Ek ) , ik1,0
ihi) S T b ()

The corresponding residue is exp (%) If 2z > 0, then we move the

ﬂCOS(%kL,

path of integration upwards. It is oriented in the positive direction, so we get:

k k
x(zy >0)x (% > O) 207 exp <¢) . (V.65)

T COoS (%kl,— mcos( Gk, )

If x4 < 0, then the path of integration is moved downwards, and we get a minus
sign owing to the negative direction. Hence:

e ki + ey cos (Zk1,-)  cos(Zki—) P\ 7 cos (k1)

k1,0 k10
>0 - >0 - <0 - <0
lx(m ) X ( roos (3k1) ) x(zy <0)x ( roos (Zhi) )
(V.66)

We treat analogously the integrations over ks 1 and k3 . The only difference with
the previous case is that these propagators were near the left singularity ky ~ —1,
so there are some sign changes in g2 + and g3 4 ~ —1. We obtain:

+oo ik27+$+ _2 k
€ (3 2,0L+
dk _ L Fe
/,OO 2% ikyo — ka4 cos (3ko,—)  cos(Fka—) P ( ﬂ'cos(gkz))

kQO k20
>0 —F——— <0 - <0 —F—>0
lX(x+ )X <7TCOS (%kz—) ) X(x+ )X (ﬂ'COS (%kz—) )
(V.67)
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83_/1@)1(71’71, 1, O) = 782/d317 / dkl’o dkl’, de,O dkg’, dkg,o dkg,,

k1,0 k2,0 k3,0
w2 exp ((WCOS(%]CL) + ﬂ'cos(%kg,,) + WCOS(%k‘g’)) I+)
* cos (3ky,—) cos (5 ka,—) cos(Fks, )

ei(k1,0+k2,0+k3,0+7TT)960 ei(k1,7+k2,7+k3,7)17

k1.0 k20

[X<x+ > O)x (ﬂ'COS (Zk1,—) < 0) X <7rcos (5ka,—) < O)
k‘3,0 . kl,O

X (ﬂ'COS (%kg,,) < 0) X(@s < 0)x (ﬂ'COS (%kl,,) - 0)

koo k3,0
——>0 —F >0 . (V.68
X (wcos (ko) ” ) X (wcos (Zks,—) ” )1 ( )

V.2 Integration over xy and k3

The calculation is done integrating over xg, which leads to a delta function in the
integrand, denoted with a slight abuse of notation by d(k1,0+k2,0+ks0+7T = 0).
In fact, there is a prefactor % that compensates the 71" factor of [ dkso: remember
that [ dks o means precisely: 27T Zkg,oewTusz- This yields:

63AG71(7TT, 1, O) = —8i/d$+ dr_ /dkLo dkl,_ dk270 dk27_ dkg,o dk37_

k1,0 k2,0 k3,0 -
, € meos(Zky,_) | mcos(Sky ) | meos(Zkg ) )t
X
+ T T s
cos(Gk1,—) cos(Gka ) cos(Tks )
eik o ¥hs, )= (k1 o + koo + ko + 7T = 0)
k1,0

koo k3,0
0 _n~Me 0 Ay 0 _ 0
x(zy > )X(wcos(%kl,,) )X<7TCOS(%]€2,7) = )X<ﬂ'cos(§k3,7) <0)
k10 k2,0 k3,0
_ O)yv(— S ) y(——=2 S . 0
X(ws < )X(wcos(gkL_) ~ )X(wcos(gk:z,_) ~ )X(WCOS(%k‘s,—) >0)

(V.69)

At this stage, we can use the delta function to integrate, for instance, over ks o:

9% Ag(nT,1,0) = fSi/dij dw_ /dkl,o dky, dkyo dky, dks,

k1.0 + k2.0 _k1,0tk2,0t+7T z
e ﬂcos(%kl),) Wcos(%kQ’,) Wcos(%kg,’,) +

2

" ik, — ks, +hg o
+ cos(Gky,— ) cos(Gka, ) cos(Gka )
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k1o k2,0
X\ ——mpy <0 Teos(5ka ) "0
) {X(I+ >0)x (TFCOS(%kl,—) - ) X (WCOS(%ka—) ) )

k1,0 + koo + 7T k1,0
1 moos(Shs,) )i < ’X<mos<gk1,> >0)

k k k T
N <% - 0) N (M _ 0)] (v.70)

mcos( ko, - mcos( ks, )

V.3 Simplification

This rather complicated expression can be slightly simplified. Indeed, if we perform
the change of variables:

(E+ = —LL'+
ko = —kio (V.71)
kyo = —k2o

the integral

/dI+ dr_ /dkl’o dkl’, de,O dkg’, dkg,, 173_

k1.0 k2.0 _k1,0tk2,0+7T
e ﬂcos(%kl),) ﬂcos(%kg),) ﬂcos(%kg),) +

k1,0
COS(%]CL,)COS(%]CQ’,)COS(%IC;;,,) X(@y < 0)x <7r cos(%kl,,) - 0)

k kio+k T
Y <72’0 > o) X (—170 ‘R0t o) (V.72)

7 cos(Gka, mcos(Gks,—)

becomes:

/ da’, dx_ / dk} o dky,— dk} o dko,— dks, _ '}

’ ’ / /
k1,0 k3.0 _kiotka 07T
Teos(Z k1, ) | meos(Ghp, ) meos(Bkg ) ) U+

/
>0 x [ —=2— <0
cos(5k1,—) cos(Gka, ) cos(Lks ) x(as > 0)x (wcos(gkl,_)
kéo k/10+ké077TT
— <0 — >0 . (V.73
X <7TCOS(%]€2,_) ) X ( mcos( ks, ) ~ ) ( )
Consequently the previous expression of 81/~1G, 1(7T, 1,0) can be factorized:

83_/1@)1(71’71, 1, O) == 782/d$+ dr_ /dkl’o dkl,, de,O dkg’, dkg,,

k1,0 + k2.0 _ _k10tk20
) e Wcos(%kl’,) ﬂcos(%kg,,) Wcos(%kg,’,) T+
xX
+ T (T T
cos(Gky,— ) cos(Gka, ) cos(Gka )

ik, — ko, +hg,)a—
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klO k20
0 _ ko _y 0~
X Xl@s > 0)x <7TCOS(%I€1 -) = ) X <”C°S(%k2»—) - )

)

—Tx
e E s oy (Fo Tho + Al
mcos(Gks,—)

Doy —
e (ks ) kio+ koo — 7T
mcos(Gks, )

>0>] . (V.74)

VI Integration over z_ and k3 _

We now are going to perform the integration over x_, which will provide a conser-

vation rule for the moments ki o, k2,0 and k3 o, but only modulo 2. To understand
. ey

that, remember that [ dz dz_ means more precisely: Z(m,z,)e(gZ)Q’ where the

prime in the sum means that one has to respect a parity condition between x4

and x_. By slight abuse of language, we say that x; and x_ have the same parity
/

when zy +2_ € 7Z. So Z(m,z,)e(ng does not mean: ZI+€%ZZL€%Z but

T _ us rx_eT+4rl" )
Do ent dun_ent T 2any €5 4nL 2w e 54z NOW

> eltnthas ks T = 5k ko + ks - = 0[2]) (VL75)

r_€TnL

where by §(k1,— + ko, +k3,— = 0[2]), we denote: >, d(k1,— + ko + k3 = 2n).
Then it is clear that

Z ei(k1,,+k2,,+k3,,)ac, _ ei%(h,f-&-kg,,-&-kg,,) 5(]{17_ + k27_ + k'3,— _ 0[2]) )
I,G%—Hrz
(VL76)
Indeed, the factor €2 (F1.—+k2.—Fks3.-) can take only two values: 1if ky _ + ko +
ks — = 0[4], and —1if ky,_+ko _ +ks, _ = 2[4]. Hence it is convenient to distinguish
these two cases and write:

5(]{31,7 + kQ,f + kg), = 0[2]) = 5(]{31,7 + kQ,f + kg,f = 0[4])
45k + ko + ks —2[]) (VLTT)

and

'3tk ko )5 (ky ko 4 ks = 0[2])
= 5(]{31,7 + kQ,f + kg,, = 0[4]) — 5(k1)7 + kz)f + kg), = 2[4]) . (VI78)
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At this stage, we can gather the previous remarks in the following formula :

2 Ag (7T, 1,0) = Z /dkl odkoodky,_ dko _ dks,

T4EG N~

k1,0 + k2.0 k1,0+tk2.0
e Wcos(%kl’,) WCOS(%k}Q’ ) 7TCOS( k3, ) T+

O(k1,— +ko— +ks_—=0[4
cos(Gky,—) cos(Gka, ) cos(Fks ) (k1,4 o, + K, 0l4])

k1o k2.0
X (mos@kl,) - ) X (mos(gka,) - )

—Tx
mcos(gks, )

2
Ty

et (k1o + koo — 7T
TR , ; =0
T (e 0]

Z /dklodkzodkl,de,dkg,

€ FN*
k k k1.0+k
e(7"“'05(%(’11,,)+WC05(%(’12,—)77"Cis)(()%k§))(l)>x+
S(k1— + ko _ +kg_ =2[4
cos(Gk1,—) cos(Gka, ) cos(Fks ) (k1,— + ko, + ks, [4])
k10 k2.0

- dd)x | ——7— <0 — <0

[x(z+ even) — x(z4 odd)]x (ﬂcos(%kl)) ) X (WCOS(%kQ,)
—Tx
[ecos(’g’(k;))x <M - 0)

mcos(Gks,—)

T(L‘+ —
— e (F ka0 M >0 . (VL.79)
meos(Gks,—)

2
Ty

Then we can perform the integration over k3 _. Formally, we only need to replace

cos(Gks,—) by cos(5 (k1 +ko,—)) for the first piece and with — cos(F (k1,— +k2, - ))
for the second piece. We obtain:

8 AG 1(7TT,1,0 E /dklodeOdklfde
I+€WN*
k1,0 k2.0 k1,0+tk2.0
5 e Wcos(%kl’,)-‘rwcos(%kQ’ ) 7'\'(‘05( (k1,+k2 )
Ty

k1,0
cos(Gky,—)cos(Gka ) cos(5(k1,— + ko)) X <7rcos(§k17_) < O)

kQO - Ty k10+k20+7TT
: 0) |e=F 0k n 0
X (ﬂcos(gkz) < ) {e ’ X mcos(5(k1,— + ko)) g

WTI—+ k10+1€20 — 7T
_ pcos(Z(k _FRa D) 0
e X(ﬂ'cos( Z(k1,— + ko)) g
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+8i Y /dkl,odkmdkl,, dky,

Ty E€FN*

k1,0 k2,0 k1,0t+k2,0 =
, € meos(Zky,_) | moos(Ghy ) | meos(5(ky,_tky,_)) )T

T+ cos(5ky,—) cos(Ska, ) cos(% (k1,— + ko))

k1o k2,0
b+ even) — x(z+ odd)]x (ms(% <) x (ms(% — <)
{6 cos(%(k’ff‘j#»kl,)) % ( kl,O + kQ,O + T )) O)

mcos( % (k- + ko,

—Tx
_ o E ) ( klﬁ:‘ ka0 = 7T < 0)] . (VL80)
meos(g(k1,— + ka2,-))

Now it is clear that (ﬁfig,l(wT, 1,0) is a purely imaginary number. The first piece
gives the leading behavior as T" — 0. Indeed the second piece is much smaller,
thanks to the compensation in [x(z4 even) — x(z4 odd)]. Indeed the sum

Z 2% [x(z4 even) — x(z4 odd)]... (VIL.81)

I+E%N*

can be written as a sum of two terms of the type

> / dke™2A0)n(2n)2 — (2n + 1)%2e~ A0 B(k) (V1.82)
neN*

where A and B are independent of n and A(k) > 0. Then we can decompose the
remaining integrals [ dk into two zones, according to whether A(k) > T3 or
A(k) < T'/3. In the first zone we do not need to exploit the subtraction, but we
have simply Y, . n2e=2T"*n < 0 7=2/3 << T=! and in the second zone, we use
|(2n)% — (2n +1)2e A®)| <dn4+ 14 (2n+1)2A(k) < 4n+ 14 (2n+1)2T/3. The
first term in 4n + 1 is then bounded with the same techniques than Lemma IV.1,
but the factor Minf{ij}+3inf{s;}ntinf{s;} is replaced by Minf{ij}+2 inf{s;r}qLinf{s;}
and the bound corresponding to equation (IV.40) gives now

3 MEA N IS E X s < (1) (VL.83)
{ihds hAs;

hence this piece does not diverge at all when T" — 0. Finally the piece with the
factor (2n41)2T"/3 is similar to previous pieces, except for the new factor T%/3, so
that it is bounded in the manner of Lemma IV.1 by a factor ¢.T~'T1/% = ¢ T—2/3,
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So we are left to study:

A(T)=—8i Y /dk170dk270 dk:,— dky, _x%

LE+E%N*

k1,0 + k2,0 - k1,0+k2,0 =
mcos(Zky,_) | moos(Zky ) meos(Z(ky,_tka ) )T

k1.0 )
- <0
cos(Zky,—)cos(Tka ) cos(5(k1,— + ko, )) X <7TCOS(%/€1,—)

X k2,0 <0 ews(%(’::—ftrsz))x k1,0 + koo + 7T <0
mcos(ka,—) mcos(5(ki,— + ko))

Tx
_ o E T ) ( k1,0ﬂ+ ka0 = 7T > 0)] . (VL84)
mcos(G(ki,— + k2, —))

VII Leading contribution

VII.1 Symmetry properties

Henceforward, we shall denote the integrand by F (x4, k1,0, k2,0, k1,—, k2, ) so that:

A (T) = —8i Z /dkl,o dka,o dky — dka— F(24, k10, k2,0, k1, k2,—) -

T4 € gN*

(VIL85)

The couple of variables of integration (ki,_, ko, ) describes the square [—2,2]2. To
pursue the calculation, we shall make a partition of [~2, 2]?, according to the signs
of cos(Lk1,—), cos(Gkz,—) and cos(F (k1,— + kg, )). This partition is represented in
Figure 4.

The signs of the three cosines determine eight cases we can discuss separately.
In fact, it is possible to restrict the domain of integration thanks to symmetries
of the integrand involving the variables ki — and ks _ together with the variables
k1,0 and ko o, which describe independently the set n1" + 27TZ.

It is evident, by the parity of the cosine function, that the integrand is invari-
ant under the replacement ki - — —k; _ and ky - — —Fko _, which corresponds
to the central symmetry with respect to the origin (0,0). Hence we have:

2 2
AT) =160 Y /dkmdkz,o/ dkL_/ kg F(zy, k10, ko0, k1, ko).
—2 0

€ FN*

(VIL86)
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k_
+2

(_’_’+)

(oot

-2 ( ) +2
_,+’_

(+=+)

@
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VAL

-2
Figure 4. The domain of integration in (k4,k_).

Symmetry properties of F(zy, ki 0, k2,0, k1,—,k2,—) can be exploited further. The
above integral may be separated into two pieces:

0
Ay (T) =160 | > /dkmdkg,o/ dky
2

c €EN* -

2
| dhe Flas ko ko b k)
0

2 2
b3 [dbodha [Cab [ dkas Flosbuokas by )
0 0

$+€%N*

(VIL87)

For the first integral, one can easily verify that the integrand F(z, k1.0, k2,0,
k1,—, ko _) is invariant under the change of variables:

kio = k270 , ké’o = k170 , k/177 = —k2>_ , k/Q_f = _kL— . (VH.88)
We get:
. 0 2
/ o ks / dkr / dks— F4,kr.o, koo, ki ko) =
—2 0

0 -2
2 / dkl,O de_’()/ dkL, / dk27, F(.CC+, kl’g, kQ’O, kl_’,, kQ’,) . (VIIgg)
-2 —ky,_
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We treat analogously the other integral; we set:
Kio=heo, khg=kio, ki =ko, k5 =k _. (VII.90)

Hence:

2 2
/dkl,o dkz,o/ dkl,f/ dka,— F(2+, k1,0, k2,0, k1,—, k2,—) =
0 0

2 2
2 / dkl’o de,O / dkl’, / de,, F(.’,E+, kl’o, kQ)O, kl,,, kg),) . (VIIgl)
0 ky,_
Finally, we have established owing to symmetry properties that:

Al(T) = *32i/dk1,0 de,O // dkl,, de,, F($+,kl,o,kg)o,kl),,kz,) s (V1192)

the domain of integration in (ki _, k2 ) being the triangle 7 delimited by the
lines kg), = 2, k2,7 = kl,, and k2,7 = 71€1’,.

VII.2 Discussion of the various cases
VIL.2.1 The (+,+,+) case

As we have said, it is now convenient to carry a discussion about the signs of
cos(Gky,—), cos(Tke,—) and cos(F(k1,— + k2,)), which allows us to perform ex-
plicitly the summation over kq o and kg ¢ in each case.

We first begin with the case:

cos(Gky,—) > 0
cos(Gka,—) > 0 , (VI1.93)
cos(G(k1,— +k2)) > 0

that we will denote as (4, +, +). The corresponding contribution to Ay (7T) is:

ATy = —320 Y /dkl,odkz,o // dky,_ dks,

ERNG
T+E2 Tt 4.0

k1,0 + k2.0 _ k1,0+tk20 =
e Wcos(%kl’,) Wcos(%kQ’,) ﬂcos(%(kl),+k2’,)) +
2

x
* cos(Zki,—) cos(Zka,— ) cos(Z(ki,— + ko))

X(kl,O < O) X(kQ,O < O)

7Ta:+
|:€ cos(g (k1 —+h2,—)) X(kl,O + k270 > —7TT)

Tx

—e<F®L—F R Dy (kg g+ koo > 7T)| , (VIL94)

where 7(1 1 4y denotes the subset of 7 where the signs of the cosines are (+, +, +)

respectively. Since the conditions k19 < 0, k2,0 < 0 and ki 9 + koo > £71 are

incompatible, A§+’+’+) =0.
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VIIL.2.2 The (+,+,—) case

Let us consider the case:

cos(Gk1,—) > 0
cos(Ska, ) > 0 , (VIL.95)
cos(G(ki,— +ha)) < O

corresponding to the sign configuration (4, +, —). We have:

APy = =320 Y /dkl,odkm // dky,_ dks

€T N*
rrEE Tt +,-)

k1,0 k2,0 o k1,0tk2,0
e wcos(Lky,_) | meos(Zha, )  meos(L(ky,_+ha, ) )Tt
2

x
*cos(Zki,—) cos(Zka,—) cos(Z(k1,— + k2,—))

X(k1,0 < 0) x(k2,0 <0)
—Tx
|:6 cos(g (k1,—+h2,—)) X(kl,O + kQ)O < 77TT)

Tx

— ecos(g ki, —+k2 ) X(kl,o + koo < WT)} . (VH.96)

The conditions (k1,0 + k2,0 < £7T') can obviously be omitted. We must compute
the following expression:

+o0 +o0 1 1
(27TT)2 E E e_(2n+1)<COS(%M,—)_COS(%’H,*JHQ,*))TmJr
n=0p=0
. 1 _ 1 7TI+ Tx+
e (2p+1)<cos(%k2),) cos(%kl’,+k2’7)>TlE+ [ecos(%(klyiﬁ»klf)) — eeos(F (R, Tk )
(VIL.97)
which gives:
— 1 1 _ 1
e (cos(%klyi)—‘rcos(%kzyi) cus(%k177+kzyi)>T$+
(2nT)?
_ 1 _ 1
[1 —_e 2<cos<§k1,,) uos(%klwﬁzy))Tﬂu}
2TI+
{1 _ em}
(VIL.98)
1 1
|:1 — 6_2< cos(G ko ) - cos(5 k1, _+hkz,_) > T$+j|
This is clearly a positive real number, and therefore we conclude that
y s
iATTTITy <0, (VIL.99)

Indeed, the minus sign of the prefactor —32¢ is compensated by the minus sign of
the product cos(5ky,—) cos(Fka,—) cos(Tky - + ko ).
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VIIL.2.3 The (+,—,+) case
We now cousider the (+, —, +) case. The corresponding contribution writes:

ATy = 320 Y /dkl,odkm // dky._dksy,_

o+€ 3l T4 -1

k1,0 + k2.0 - k1,0+tk2.0 =
) e Wcos(%kl’,) Wcos(%kQ’,) ﬂcos(%(kl),+k2’,)) +

T+ cos(Gky,—) cos(Gka, ) cos(G(k1,— + ka2, ))

X(kl,O < O)X(kQ,O > O)

7Ta:+
|:€ cos(g (k1 —+h2,—)) X(kl,O + k270 > —7TT)

Tx

— e E O, y (g + Koo > wT)} . (VIL.100)

Here like in all the other cases, we have to sum geometric sequences whose ratio is
explicitly strictly smaller than 1. This facilitates the discussion of the signs of the
corresponding quantities, as we shall see. If we perform the summation over ko,
Tx Tx )

. P —2 (cos(£k1 ) cos(Zky _tkg _)
we are lead to a geometric sequence whose ratio is e 20— 2L =T

which leads to a factor

[1 —e cos(%kl),) cos(%kl’,«#kg,,) :|_1

whose sign is not uniform in (k; _, ko, _).
Consequently we introduce the variable s = ki o + k2,0 and replace ko by
5 — k1,0. We must compute:

k1,0 s—k1,0 s
T oos(Z t s (TR T reos(Z )1
/dkl,o ds 6( (zF1-) (3t FE =20 (ko < 0)x(s > ko)
7T:L‘+ T:L‘+
{e“’s(g(’“l’*’“%))x(s > —7T) — e (G0 —+r2, ) v (5 > 7TT):| . (VIL101)

The variable s describes the set 2nTZ and the condition x(s > k1) can be
omitted. Thus the previous expression writes:

+oo Ty -~ Ta
(27T)? E e (2n+1)<“°5(%k1’*) COS%’C?)*))

n=0

—Tz 400 _ 1 _ 1
[e—coqg(klyﬂzy)) e 2P(cos(§<k1,,+k2,,)> cos(%k217)>Tm+
p=0

—Tx 400 _ 1 _ 1
—6“’*‘(%““’—*““2’*”2@ 2p<cos<%(h,,+k2,,)) Cos(ng,,>>T$+ (VIL.102)
p=0
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which is equal to:

_ 1 _ 1 1
<cos(gklyi) cos(%klf)+cos(%(k177+kzyi))>Tz+

1 1
|:1 _ 6_2<C05(gk1,)_cos(ng’)>Tm+:|

2Tw

|:1 _ 6605(%’62’7)}

o €

(2nT)

. (VIL.103)
72( i 1 — ﬂ-l )TI+
[1 _ o N\ F G R o) wes(FRz, ) }
This quantity is positive, thus the conclusion follows:
ATy <o, (VIL104)

VIL.2.4 The (+,—,—) case

Let us examine now the (4+, —, —) case. The contribution is:
ATy = =320 Y /dkl,odkm // dky,_dks,
v+ gh” LICHES

k1,0 k2,0 - k1,0+k2,0 =
, € mcos(Zky,_) | moos(Zky ) mcos(5(ky,_tky ) )T

T+ cos(Sky,—) cos(Ska ) cos(F(k1,— + ko, ))

X(kl,O < O)X(kQ,O > O)
—Tx
[6 cos(g (k1 —+h2,—)) X(kl,O + k270 < —7TT)

Tx

LT D y (o + koo < wT)] (VIL105)

We set k1,9 = s — ka0 and we compute:

s—k2 0 k2.0 s )
s + i - ™ T+
/dS dk2,0€<ﬂws<2kl’7) meos(Gky, )  mcos(5 (ky, _ +ky ) X(S < k270)X<k2,0 > O)

—Txy Tx

[e cos(G b, —+h2, Dy (g < —T) — e —Fh2 D) y (g < 7TT)i| . (VIL.106)
The condition x(s < k2,0) may be omitted and we must evaluate:
—+oo

1 o 1
(27TT)2 Z 6(2”+1)< cos(Z kg ) cos(%kl)7)> Txy

n=0

7Ta:+ +00 _ 1 o 1
[ecos(f(kl,,Jer’,)) E :e QP(CUS(%kL,) cos(%(kly,+k277))>Tx+
p=1
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Tay +oo 1 _ 1
Ll 2P\ Gos(F hy, ) con(§ Ok, — Fh2, ) T“} . (VIL107)
p=0

We find:

_ 1 _ 1 _ 1
e (cos(%klwf) cos(Z kg, ) cos(%(k177+k277)))Tz+
2

1 1
[1 _ 672<C05(%k1,7) cos(’z"k2))>T1+‘|

—2Tx
ecos(%klwf) —1

(2nT)

(VIIL.108)
_2< - — B )TmJr
1—e \eos(Fr) cos(F e _Fka )
This is a negative number, therefore
AP (T <o (VIL.109)

VIL.2.5 The (—,+,+) and (—,+, —) cases

There is no discussion to carry out: in fact, for (k1,—,k2_) € 7, we have never
cos(Gk1,—) <0, cos(Fke,—) > 0 and cos(F(k1,— + k2,—)) < 0 simultaneously. We
also conclude in the same way for the (—, 4, —) case.

VIL.2.6 The (—, —,+) case

AT = 320 Y /dkl,odk2,0 // dk,—dks, -

€IN-
e T~

k1,0 + k2.0 _ k1,0+tk2.0 =
e Wcos(%kl’,) Wcos(%kQ’,) ﬂcos(%(kl),+k2’,)) +
2

x
*cos(Zki,—) cos(Zka,— ) cos(Z(k1,— + k2,—))

x(Fk1,0 > 0)x(k2,0 > 0)

7TI+
[e st D (k10 + ko0 > —7T)

Tx

— e F LT N 3 (ky o+ koo > wT)| . (VIL110)

We remark that the conditions x(k1,0 + k2,0 > +7T) are superfluous, and that
there is no need to introduce the variable s.
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‘We have:

+oo 1 _ )
(27TT)2§ e(2n+1)<“°s(%k1,f) COS(%(k1,7+k2,f))>TLE+

n=0

+o0 1 1
} :6(2?’“) ( cox(Ehy, ) ws(%(kl,,mz,q)) Ty

p=0

—Ta Ta
|:BCOS(§(’€1,+IC2,)) _ eCOS(g(k1,+k2,)):| —

_ 1 _ 1 o 1
2 € (“°S<%<k1,,+kz,,>> cos(Zky,—) cos(%kz,q)h*

—2Ta
|:€COS(§(’€1,+’€2,)) _ 1:|

(2nT)

_ 1 o 1
ll e 2(cos<§<k1,,+k2,,)) cos(%kl,q)h*

(VIL.111)
—2( et - -} )Ter
1—e cos( G (k1,—+ko —)) cos(Fka )
This quantity is negative and we conclude that
AT (T <o (VIL112)

VIL.2.7 The (—,—,—) case

We finally discuss the last case:

ATTOM) = =320 Y /dkl,odkm // dky,_dksy,_

LE+E%N* 7—(7 0

k1,0 + k2.0 _ k1,0+tk2.0 =
e Wcos(%kl’,) Wcos(%kQ’,) ﬂcos(%(kl),+k2’,)) +
2

x
* cos(Zki,— ) cos(Zka,— ) cos(Z(ki,— + ko))

X (k1,0 > 0)x(k2,0 > 0)

7Ta:+
|:€ cos( g (k1,—+k2,-)) X(kl,O + k270 < —7TT)

Tx

— e F O (kg o+ koo < 7T)| . (VIL113)

But it is clear that the conditions k19 > 0, koo > 0 and k1,0 + koo < £7T are
incompatible (as in the (4, +,+) case), hence

ATy =0. (VIL114)
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Lemma VII.1 There exists a constant K > 0 such that:
_ _ _ _ K
A§+7+’ )(T) + Ag‘i‘» +) (T) + Ag‘h s )(T) + Ag ,—+) (T) > T . (V11115)
Proof: As each one of the quantities are purely imaginary, with non-negative imag-

inary part, it is sufficient to prove the inequality |A§+’+’7)(T)| > % for some
constant K7. We have:

|AHT ) (7)) = 32(27T)?

1
dky,—dks —
Z //T(+,+,—> Lo cos(Gky,—)cos(Tka ) cos(5(ky,— + ka,—))

I+€%N*

1 1 1
ei(cos%klwf toos Thy,_  cos %(klwarkzyf))Ter
2

- -2 ! - 1 T
1—e cos %kl), cos %(kl),«#kg,,) Tt

2T |
1 — eoos Fhy,_+k3 )

(VIL116)
[1 B €—2< cos gle’, ~ cos g(kl’l,MQﬁ)) Tz
As |1 e—2<cos %1k1)7 "o %(k1},+k2)7)>T;E+ <1
_ 1 _ 1
and [1 —e 2<°°S%k2’* Cosg(k1’+k2’)>Tm+] <1, we get:
A1) < 322072 Y // dky_dko,_
ey €N ST
1
cos(Gky,—) cos(Gka, ) cos(5 (k1,— + ko))
2T x
xie_(cos et ) o {1 e FE-TE | | (VILILT)

As we are seeking a lower bound, we can restrict the integration over the open
domain 7+ to a compact T ) ¢ T(++7) where € is a strictly positive
constant (for example € = %), in which we have cos (%kl,,) > €, cos (%kQ,,) > €
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and {cos (g(kl,, + k:g,,)){ > e For (k1 _, ko) € TE(+’+’_), we have:

_ 1 + 1 _ 1
0 <$2 e cos Thy,_ | cos Gka _  cos 5(ky,_+kg, )
T

Ty
__ ey
[1 - ecosg(k1’+k2,):| < 3Tt (VIL.118)

By Lebesgue domination theorem, we can invert Zr+ and [ [ o) dky - dka -
and write:

1A (7)) > 32(27TT)2/ Jdkr ks Y 22 e T [1— e

7;(+,+,* x+€%N*
(VIL.119)
or:
= 31
AT ()] 2 320072 Y e ETN (1 e T (VIL120)
n=0
Now we use the formula:
+oo —a —2a
2 _—an __ € +e
7;071 e = m (fOI' a > 0) (V11121)
to write:
gz 3= —(3z+m)T | —(3=+2m)T
AFTHI(T) > samirr | S ¢ re
(st (et
(VIL.122)
1 (24+0(T) 24 0(T)
> 32771 — . VIL123
= 0T ( (3/207  (3/2e+ 1) ( )
Hence for T small enough, we obtain the desired result:
AT (1) > KT (VIL.124)
for some explicit K and the lemma is proven.
VIII Study of the other configurations
We now are going to treat the other configuration, corresponding to:
k1)+ ~ —1 k1,+ ~ -1
kay ~ 1 and koy ~ —1 (VIIL.125)
k37+ ~ -1 k3,+ ~ 1
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which are equal and form the term called 203 Ag 2(7T,1,0). Let us concentrate
on the first case. We have to consider the propagator:

+o0 ik
/—Oo kv ik1,0 — mk1,4 cos(Sky ) -
-1 +oo k1 o4
W/m dky+ PR (VIIL126)

mcos(Fki,—)

ik1,0

Teos(Zhi ) and the corresponding residue writes

The pole of the integrand is

k1,0%4

e "°*(F1,-) Therefore we have:
e k142 —9i . Foep
/ dkl + 7 ¢ — 2Z e ﬂcos(%kl)f)
s "ikio — mky 4 cos(Tky ) cos(Gki,-)
k10 k1,0
>0 — >0 - <0 ——<0]].
{X(x+ )X (ﬂ' cos( k1) ) X(@+ )X (WCOS(%]{:L)

(VIIL127)

Now, let us consider the integration over ks . We have:

+oo eikgy+$+
dka,+— =
/—oo ’ 72]62,0 + 7Tk2,+ COS(%]{ZQ,,)

1 +oo 6ik2,+z+
/ dhs,+ . (VIIL128)

s ik
mcos(5ka ) J_ k20
(2 2, ) e’} 2,4+ WCOS(%kgwf)

In fact, the only change with the previous case is a global change of sign. We can
immediately write:

dk - 7cos(Z kg, )
> —ikg,o + mha 4 cos(Gka, ) cos(Gha ) ‘ ’

kQ,O k2,0
[x(fu > 0)x <7m08(%k27_) > 0) x(ry <0)x <mos(%k27_) < 0)}
(VIIL.129)

/+oo PSR A 2 __ k2074

— 00

For the integration over k3 y, we have cos(§kz ) ~ 5 (k2,4 + 1) and we consider:

/"FOO eik37+$+ _1 +oo 6ik3’+$+
dks. . - .

T —iks o — ks 4 cos(Zks _ mecos(Zks _ _ tkso

—oo 3,0 3,4 cos(gks,—) (3ks,-) J kst + reosta i)

(VIIL.130)
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; k3,074
In this case, the pole is 7% and the residue e™<*(2*3.—) . Therefore the
ks,

above integral writes:

+o00 ik3, 4T 9 k3,0T4

/ dkg 4 € — 2Z ewcos(fkg,’,)
El . T s
o —iks o — k3 cos(Tks )  cos(Sks )

[X(fu > 0)x (& < 0) — x(z4 < 0)x (& > 0)} .

mcos(Gks, ) mcos(Gks, )
(VIIL131)

Hence we obtain:

9% Ago(rT,1,0) = —8i / dx / dk1,0 dki,— dka,o dks,— dks o dks,— 27

- k1,0 - k2.0 + k3.0 =
e Wcos(%kl’,) ﬂcos(%kg),) ﬂcos(%kg),) +

cos(Gky,— ) cos(Gka, ) cos(Gks,—)

ei(k1,0+k2,0+k3,0+7TT)960 ei(kl,,+k2,,+k3,,)z,

kl,O k2,0
{"(“’* > Ox (m g °> X <7rcos(§k2,_) } O)

2 ’

k k
(o <0) = o <0x (st <0)

mcos(Gks, ) T cos(Gk1,-)
ka0 k3,0
P20 ) (B0 )| (vimise
X (wcos(%kl_) < )X <7rcos(%/€3,_) - )] ( )

Then we integrate over xg and perform the sum over ks g:

63AG72(7TT, 1, O) = —8i/d$+ dr_ /dkLo dkl,_ dk270 dk27_ dkg,_

- k1,0 - k2,0 ~ k1,0tk2,0+7T -
e meos(Zky,_) mcos(Zky ) mcos(Zkg _) + _
$2 61(k1,7+k2’,+k3’,)x,
+ s s s
cos(Zky,— ) cos(Tka, ) cos(Fks,—)

k1,0 k2,0
x>0 (T) ~0) x <mos<%kz,—> >0)

k‘30 klO
(rantiiy <0) e <0 (roifsiny <)

k2.0 k3.0
— <0 —— >0 . (VIIL.133
X <7rcos(§k27_) < )X <7rcos(§k‘3,_) ~ )] ( )
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Thanks to the change of variables 2/, = —x, k] o = —k10, k5 g = —k2,0, we get:

9% Ago(nT,1,0) = fSi/dij dw_ /dkl,o dky, dkyo dky, dks,

_ k1.0 + k2.0 k1,0+k2,0
ﬂcos(%kl),) ﬂcos(%kg),) ﬂcos(%kg),) T+
22 € pi(k1,—+ha —+ks )z
+ cos(Gky,— ) cos(Gka, ) cos(Gks,—)
k1,0 ka0
zye >0 — >0 ——— >0
X(@y )X (ﬂ' cos(Gki,—) X mcos(Gka,—)

—Tx
e Th 1y (R0t koo +7T
meos(Zks,—)
23, —
mcos(Tks )

>o>] . (VIIL134)

Then we perform the sum over z_ as previously and integrate over k3 —. There is a
small contribution with a compensating factor [x(x even)—x (x4 odd)] that can be
bounded as in Section VI, and we have again to study the dominant contribution:

Ap(T) = —8i Y /dk170dk270 dky,— dky, —x%

$+E%N*
k k k +k
6_( ﬂcos(%ilyi)+ﬂcos(%?@zwi)+7rcos(%1(721772:#c;czyi))) T+ 1o
- 0
cos(Sky,—) cos(Ska, ) cos(F(k1,— + ka2,—)) (wcos(%kl,) )

—Tx
N kg)o >0 emx k1,0+k2,0+7TT <0
mcos(Gka, ) meos(G(ki,— + ko))

Ty ( ho koo -l (VIIL135)
3 . .

— oo (F 1, _Fh3, )
mcos(G (k1 + ko -

Fortunately, we do not have to carry again a discussion about the signs of the three
cosines. In fact, we can remark that A;(T) = As(T). To see that, let us perform
the following change of variables in A (T'):

— /
{ Z;: - Z;f o (VIIL136)
to obtain:
Ay (T) = —8i Z /d/ﬂ,o dka o // dk/,_d/{,‘é7_1’3_
x+€%N* i~

k1.0 + k2.0 - k1,0+tk20 =
e ﬂcos(%k’l)i) ﬂcos(%ké)i) ﬂcos(%(k’l)7+ké’7)) + ( klo >
- <0

cos(Gky _)cos(Gky )cos(G (k) _ +ky ) meos(Gk]
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—Tx
< x k2,0 <0 emx k10 + kg + 7T 50
meos(Gky ) meos(g(ky _ + k5 )

Tz+
cos(G (K] _+ky ) ( kl,O + k2,0 —aT

— €

s T ) 0)] . (VIIL137)
where 7”7 is the triangle 7 translated by the vector (—2,—2). Using the invari-
ance under central symmetry and translations by vectors of the form (4n,,4n_),
(ny,n_) € Z?, we conclude that 7’ may be replaced by 7.

Hence we have proved that A;(T) = As(T). This concludes the proof of
Theorem V.1 hence of Theorem II.1.

Acknowledgments. We thank our referee for its very attentive reading and com-
ments.
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