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The Hopf Algebra of Rooted Trees
in Epstein-Glaser Renormalization

Christoph Bergbauer and Dirk Kreimer

Abstract. We show how the Hopf algebra of rooted trees encodes the combina-
torics of Epstein-Glaser renormalization and coordinate space renormalization in
general. In particular, we prove that the Epstein-Glaser time-ordered products can
be obtained from the Hopf algebra by suitable Feynman rules, mapping trees to
operator-valued distributions. Twisting the antipode with a renormalization map
formally solves the Epstein-Glaser recursion and provides local counterterms due
to the Hochschild 1-closedness of the grafting operator B+.

Introduction

The Epstein-Glaser framework [5, 16] and its modern variants [15, 2, 14] provide a
mathematically rigorous approach to perturbation theory and renormalization in
coordinate space. Let M = R

1,3 denote the Minkowski space. Epstein and Glaser
constructed, for a scalar φk field theory say, a sequence of operator-valued distribu-
tions Tn on Mn respectively, which replace the ill-defined time-ordered products
in the standard approach to perturbation theory. The result is a perturbation
theory which is a priori finite in each order – no removal of short-distance singu-
larities is needed since all expressions are well defined from the very beginning.
The appropriate notion of renormalization in the Epstein-Glaser framework is ex-
tension of distributions onto diagonals. Indeed, the objects of interest Tn are a
priori determined outside the diagonals by causality. Finite renormalizations cor-
respond to different ways of extending distributions onto diagonals. Moreover, in
this approach the S-matrix is local by construction.

On the other hand, the combinatorics of momentum space renormalization
have been most efficiently described [4, 11] in terms of the Hopf algebra and
associated Lie algebra of Feynman graphs. Renormalization and in particular the
Bogoliubov recursion boil down to twisting the antipode S of that Hopf algebra
by renormalization maps into some target ring of Laurent or formal power series.
This is possible due to a coproduct which disentangles 1PI graphs into divergent
1PI subgraphs. There is a universal object behind all Hopf algebras of this kind:
the Hopf algebra of rooted trees [9, 3] which encodes nested subdivergences in
terms of a tree and their recursive removal in terms of its coproduct and the
resulting antipode. We will show how the Hopf algebra of rooted trees works
in the realm of Epstein-Glaser renormalization in almost complete analogy to
other renormalization programs like BPHZ. In fact it is even easier to understand
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its role in Epstein-Glaser renormalization since no regularization is required and
overlapping divergences do not exist in the coordinate space language.

This paper is organized as follows: In the first section we give a short re-
view of the Epstein-Glaser construction of time-ordered products, emphasizing
the point of view of diagonals [2]. The second section recalls the powerful no-
tion of a Hochschild 1-cocycle on a connected graded bialgebra, giving rise to two
equivalent presentations of the Hopf algebra of rooted trees. A new convolution-like
product is introduced which in cooperation with the antipode allows to recursively
generate all terms needed for an Epstein-Glaser time-ordered product, as will be
proved using explicit renormalized “Feynman rules” in the final theorem which we
already state in a short version:

Theorem (Main result) There is a map Φ : H•∗ → FV such that the n-th
Epstein-Glaser time-ordered product Tn is given by

Tn =
∑

t∈Tn

Φ(SR � id)(t)

where H•∗ is a Hopf-algebra of rooted trees, FV something like the tensor algebra
of distributions on M , Tn the set of all binary trees with n leaves, SR the twisted
antipode of H•∗ and � a modified “convolution product” in H•∗.

1 Some background on Epstein-Glaser renormalization

For simplicity we restrict ourselves to a massive neutral scalar field theory with
interaction Lagrangian

LI =
λ

k!
φk, (1)

on the flat Minkowski space-time M := R
1,3. Generalizations to Quantum Elec-

trodynamics and globally hyperbolic space-times have been worked out in [16] and
[2], respectively, which though does not affect the combinatorics we are primarily
interested in.

1.1 Motivation

As a starting point for the Epstein-Glaser construction of time-ordered products
[5] we consider the symbolic Dyson series for the S-matrix

S = Tei
∫
LI(x)dx (2)

which is formally derived from the Schwinger differential equation of motion by
transforming it into an iterated integral equation and applying the time-ordering
operator T to each summand

(i)n

n!

∫

Mn

T (LI(x1) . . .LI(xn))dx1 . . . dxn
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which has the benefit that we are integrating now over Mn rather than over an
n-simplex × R

3n.

Let A,B be operator-valued functions on M. The time-ordering operator T
is usually defined by

T (A(x1)B(x2)) := Θ(x0
1 − x0

2)A(x1)B(x2) + Θ(x0
2 − x0

1)B(x2)A(x1) (3)

where Θ denotes the Heaviside characteristic function of R≥0. Analogously one
defines T on more than two factors.

Now S and LI are obviously supposed to be operator-valued distributions,
for which (3) does not make sense since distributions can not just be multiplied
by noncontinuous functions like Θ. It does make sense though outside the thick
diagonal Dn = {x ∈ Mn : xi = xj for some i �= j} where products of Θ(x0

i − x0
j)

are continuous.

In fact the mathematical origin for the appearance of short-distance singu-
larities in perturbation theory is the ill-defined notion of time-ordering reviewed
above. Epstein and Glaser proposed a way to construct well-defined time ordered
products Tn, one for each power n of the coupling constant, that satisfy a set of
suitable conditions explained below, the most prominent being that of locality or
micro-causality. The power series S constructed by (2) using the Epstein-Glaser
time-ordered product T is a priori finite in every order, and renormalization cor-
responds then to stepwise extension of distributions from Mn − Dn to Mn. In
general, distributions can not be extended uniquely onto diagonals. The resulting
degrees of freedom are in one-to-one correspondence with the degrees of freedom
(finite renormalizations) in momentum space renormalization programs like BPHZ
and dimensional regularization.

The notion of locality, crucial to the following construction of time-ordered
products, can be motivated as follows: Suppose x = (x1, . . . , xn) ∈ Mn, ∅ � I �

N := {1, . . . , n} and for each i ∈ I, the point xi is not in the past causal shadow of
any of the xj for j ∈ N−I.We denote this situation xi � xj ∀i ∈ I, j ∈ N−I. Then
our time ordered product Tn is supposed to satisfy (in the sense of operator-valued
distributions)

Tn(x1, . . . , xn) = T|I|(xi)i∈IT|N−I|(xj)j∈N−I (4)

because we think of the xi to happen after (or at least not before) the xj . If
both xi � xj and xj � xi, ∀i, j, so if all pairs (xi, xj) are spacelike, we have
[T|I|(xi)i∈I , T|N−I|(xj)j∈N−I ] = 0.

1.2 Construction of time-ordered products

In this subsection we give a short review of the mathematical core of Epstein-
Glaser renormalization in its modern variant [15, 2, 14] which emphasizes the
point of view of nested diagonals. For the proofs, the reader is referred to [2].
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The Minkowski metric on M provides a relation � on M as follows: x � y

iff x is not in the past causal shadow of y, that is x /∈ y + V
−

where V
−

:= {z ∈
M : (z)2 ≤ 0, z0 ≤ 0} is the closed past lightcone.

Now, for n ∈ N let N := {1, . . . , n} and ∅ � I � N. The set

CI := {(x1, . . . , xn) ∈Mn : xi � xj ∀i ∈ I, j ∈ N − I}

is obviously a translation invariant open subset of Mn.

Lemma 1 (Geometric lemma)

⋃

∅�I�N

CI = Mn − ∆n

where ∆n = {x ∈Mn : x1 = . . . = xn} is the “thin” diagonal in Mn.

The proof is an easy induction on n. The geometric lemma tells us that the causal-
ity condition (4) determines the time-ordered product Tn everywhere outside the
thin diagonal ∆n, once the Tk for k < n are known on whole Mk, respectively. It
is important to understand that the geometric lemma does not really constitute
a specific feature of the Minkowski space. Indeed, the lemma holds if one replaces
� by any relation such that x � y or y � x whenever y �= x, and such that � is
“weakly transitive” in the sense that x � y and ¬(z � y) imply x � z.

Definition 2 A causal partition of unity {pI,N−I}∅�I�N is a smooth partition of
unity subordinate to the cover {CI}∅�I�N of Mn − ∆n.

For simplicity, we will sometimes drop the curly brackets in the subscript, for
example p1,2 denotes p{1},{2}.

Let D(M) = C∞
0 (M) denote the space of test functions on M with the usual

topology. Let H denote the Hilbert space of the free field theory and D a suitable
dense subspace. In principle an Epstein-Glaser time-ordered product is a collection
(T r

n)n∈N (r = (r1, . . . , rn) an n-multiindex) of operator-valued distributions T r
n :

D(Mn) → End(D), such that T (r1,...,rn)
n replaces the time ordering of the n Wick

monomials : φr1 :, . . . , : φrn : .

Definition 3 A collection (T r
n) of operator-valued distributions T r

n : D(Mn) →
End(D) is called an (Epstein-Glaser) time-ordered product if

(i) T k
1 (f) = : φk : (f) where : φk : (f) denotes the Wick monomial : φk : smeared

with the test function f,

(ii) T is symmetric

T r
n(f1 ⊗ . . .⊗ fn) = T r

n(fπ(1) ⊗ . . .⊗ fπ(n))
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when π is a permutation of N := {1, . . . , n}. This allows for the notation

T (N) = T r
n(f1 ⊗ . . .⊗ fn)

when the fi and ri are clear from the context,

(iii) T splits causally: Let ∅ � I � N. Then

T (N) = T (I)T (N − I) (5)

for all test functions with support in CI ⊂Mn,

(iv) T is translation covariant

U(a, 1)T (f1, . . . , fn)U(a, 1)−1 = T (τaf1, . . . , τafn)

where U(·, 1) . . . U(·, 1)−1 is the representation of the translation part of the
Poincaré group in D, and τaf(x) = f(x− a) denotes translation by a.

(v) The Wick expansion relates time-ordered products corresponding to different
Wick-powers

T (r1...rn)
n (f1 ⊗ · · · ⊗ fn) =

∑

i1,...,in

〈
Ω, T (r1−i1,...,rn−in)

n (f1 ⊗ · · · ⊗ fn)Ω
〉

×
(
r1
i1

)
· · ·
(
rn
in

)
: φi1 . . . φin : (f1 ⊗ · · · ⊗ fn) (6)

with Ω the vacuum state in D ⊂ H.

Note that by the so-called Theorem 0 in [5] the summands in the right-hand side
of (6) as products of translation invariant numerical distributions and Wick mono-
mials are well-defined operator-valued distributions. Once a time-ordered product
T = (T r

n) is given, the S-matrix for the φk-theory is obtained as the formal power
series

S(f) =
∞∑

n=0

in

n!(k!)n
T (k,...,k)

n (f⊗n), (7)

possibly taking the adiabatic limit f → λ later on, which is a highly nontrivial
task we shall not be concerned about in the present work. The S-matrix (7) and
the relative S-matrices constructed from T are local. If one imposes additional
normalization conditions (Lorentz covariance, Hermiticity etc., see [2]) on T, the
S-matrix becomes Lorentz covariant and unitary, etc. Moreover, the interacting
field constructed from the relative S-matrices are Lorentz covariant, Hermitean
and satisfy the interacting field equation.

Theorem 4 Time-ordered products exist.
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A constructive proof is given in [2] and of course, but in a somewhat different
notation, in the original paper [5]. The idea is as follows: Provided all (Tm) for
m < n are constructed, the Geometric Lemma 1 ensures that Tn is determined on
Mn − ∆n by causality (iii). We define

TI = T (I)T (N − I) as a distribution on CI .

One easily shows that

T (I)T (N − I) = T (J)T (N − J)

on the intersection CI ∩CJ . Therefore, we can patch the TI together using a causal
partition of unity {pI,N−I}

0T (N) :=
∑

∅�I�N

pI,N−IT (I)T (N − I) (8)

which is a well-defined distribution on Mn −∆n. As usual, 0T (N) is independent
on the choice of the partition of unity. It remains to extend it to a distribution
on Mn. Using the Wick expansion (v) and translation invariance, this amounts to
an extension problem of numerical distributions 0tn from Mn−1 − {0} to Mn−1.
Having quantified the behavior of a numerical distribution at the origin by the
Steinmann scaling degree (see [2] for details), a generalization of the degree of
homogeneity, one can show that there is a unique extension tn of 0tn to Mn−1

preserving the scaling degree, provided the scaling degree sd(0tn) of 0tn is smaller
than the dimension 4(n−1). Otherwise, if it is larger or equal but still finite, there
is a finite dimensional space of extensions obtained as follows: Let f ∈ D(Mn−1).
The distribution

tn : f �→ 0tn

(
f −

∑

α

ωα∂
αf(0)

)
(9)

where the sum goes over all 4(n − 1)-multiindices α such that |α| ≤ sd(0tn) −
4(n − 1) and the ωα ∈ D(Mn−1) such that ∂βωα(0) = δα,β , has then scaling
degree sd(0tn) < 4(n− 1) and is hence uniquely extendible (preserving the scaling
degree). There is an ambiguity due to the ωα however, and it is exactly this
ambiguity which corresponds to the freedom of finite renormalizations. We call
the linear operator id− w on test functions

id− w : f �→ f −
∑

α

ωα∂
αf(0)

Taylor subtraction operator and, motivated by the fact that

tn = (id− w∗)0tn

holds on the level of numerical distributions, we write by abuse of notation the
extension of 0T (N) to the diagonal by

T (N) = (id−W ∗
1...n)0T (N) (10)
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although there is no linear operator W ∗ on the space of operator valued distribu-
tions doing this duty. Our abuse of notation is justified though because we are only
concerned with the combinatorics with respect to n in the following, and the Wick
expansion leaves n obviously unchanged. So we understand W ∗ as the symbolic
“operator” which unpacks the operator valued distributions into Wick monomials
and numerical distributions, Taylor subtracts the test function for those numer-
ical distributions and produces then a “counterterm” such that (id −W ∗) maps
a distribution on Mn − ∆n to an extension on Mn while the possible ambiguity
(depending on the scaling degrees) is fixed by a choice of the ωα. The subscript in
W ∗

1...n indicating to which coordinates it applies will be useful later on.

This constructive proof of Theorem 4 actually proves more than the theorem
demands: that in each extension step the scaling degree does not increase. If we
make this an additional condition on time-ordered products, we can state

Corollary 5 All time-ordered products are uniquely (up to the ωα, more precisely
up to the finite set of constants 0tn(ωα) in every order n) characterized by equations
(8) and (10).

Feynman graphs enter the game when one applies Wick’s theorem. It might be
instructive to have a look at the examples in [14]. We also note that the usual
notions of renormalizable theories, critical dimension etc. can be traced back to
the behavior of the scaling degrees as n and the space-time dimension vary. In
particular, the scaling degree coincides with the usual power-counting techniques
in momentum space.

2 The Hopf algebra of rooted trees in
Epstein-Glaser renormalization

The combinatorics of renormalization in coordinate space can be most easily de-
scribed in terms of rooted trees. Given some space-time points,

• • • • • •

we consider them as leaves of a tree (to be constructed). Whenever some of these
points come together on a diagonal in Mn, we connect the corresponding vertices
to a new vertex such that subdivergences (subdiagonals) correspond to subtrees,
for example

•
• •

�
�

�
�

•
• •

�
�

�
�

•
• •

�
�

�
�

•
•

�
��

�

�
�

�
�

��

So a tree represents the (partially ordered) nested or disjoint subdiagonals which
are relevant to renormalization. It is now possible to construct a suitable coproduct
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on the free algebra generated by these trees such that the Bogoliubov recursion is
essentially solved by the antipode of the resulting Hopf algebra on trees, as will be
made precise in Subsection 2.2. This remarkable property and the fact that local
counterterms result [12] are the consequence of the fact that a certain operator on
the Hopf algebra is a Hochschild 1-cocycle.

2.1 Hochschild cohomology of bialgebras

All algebras are supposed to be over some field k of characteristic zero, associative
and unital, analogously for coalgebras. The unit (and by abuse of notation also the
unit map) will be denoted by I, the counit map by ε. All algebra homomorphisms
are supposed to be unital. A bialgebra (A =

⊕∞
i=0 Ai,m, I,∆, ε) is called graded

connected if AiAj ⊂ Ai+j and ∆(Ai) ⊂
⊕

j+k=i Aj ⊗Ak, and if ∆(I) = I ⊗ I and
A0 = kI, ε(I) = I and ε = 0 on

⊕∞
i=1 Ai. We call ker ε the augmentation ideal of

A and denote P the projection A→ A onto the augmentation ideal, P = id− Iε.

Let (A,m, I,∆, ε) be a bialgebra. We think of linear maps L : A → A⊗n as
n-cochains and define a coboundary map b by

bL := (id⊗ L) ◦ ∆ +
n∑

i=1

(−1)i∆i ◦ L+ (−1)n+1L⊗ I (11)

where ∆i denotes the coproduct applied to the i-th factor in A⊗n. It is easy to
see (using essentially the coassociativity of ∆) that b2 = 0, which gives rise to a
cohomology theory called Hochschild cohomology.

It is also easy to see that, for A finite dimensional say, the cohomology theory
(11) is the dual of the usual Hochschild homology of the dual algebra A∗.

In case n = 1, (11) reduces to, for L : A→ A,

bL = (id⊗ L) ◦ ∆ − ∆ ◦ L+ L⊗ I. (12)

It is known [3] that the category of objects (A,C) consisting of a commutative
bialgebra A and a Hochschild 1-cocycle C on A with morphisms bialgebra mor-
phisms commuting with the cocycles has an initial object (H, B+), with H the
Hopf algebra of (non-planar) rooted trees and the operator B+ which grafts a
product of rooted trees together to a new root as described in the next subsection.
While the higher (n > 1) Hochschild cohomology of H vanishes [6], the closedness
of B+ will turn out to be crucial for what follows.

The next lemma will provide a convenient way to construct Hopf algebras
out of free or free commutative algebras by choosing linear endomorphisms Ci and
demanding that the Ci be Hochschild 1-cocycles.

Lemma 6 Let A =
⊕∞

n=0An be a free or free commutative graded algebra (gener-
ated by a graded vector space) such that A0 = kI, and let (Ci)i∈I be a collection
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of injective linear endomorphisms of A such that Ci(A) ∩ Cj(A) = {0} for i �= j
and such that each free generator y in degree n is the image under some Ci of an
x ∈ An−1 for n ≥ 1. Then there is a unique connected graded bialgebra structure
(∆, ε) on A such that the Ci are Hochschild closed with respect to ∆. In particular,
A is a Hopf algebra (with this property) in a unique way.

Proof. We will construct ∆ by induction on n. The Hochschild closedness of the
Ci demands that

∆ ◦Ci = (id⊗ Ci) ◦ ∆ + Ci ⊗ I. (13)

∆(I) = I⊗ I by convention, so ∆ is known on A0. Now let y be a free generator in
An+1. By assumption there is a unique x ∈ An such that y = Cix. Assume ∆ is
known on x, then by (13) it is also known on y. Hence we can uniquely extend ∆
to an algebra homomorphism on An+1. By induction, this uniquely defines ∆ as
an algebra morphism on A. From (13) it also follows inductively that ∆ respects
the grading in all orders:

∆(An) ⊂
n⊕

k=0

Ak ⊗An−k.

For the coassociativity (∆ ⊗ id)∆ = (id⊗ ∆)∆ we note that

(∆ ⊗ id)∆Ci = (∆ ⊗ id)((id⊗ Ci)∆ + Ci ⊗ I)
= (∆ ⊗ Ci)∆ + ∆Ci ⊗ I

= (∆ ⊗ Ci)∆ + (id⊗ Ci ⊗ id)(∆ ⊗ I) + Ci ⊗ I ⊗ I

= (id⊗ id⊗ Ci)(∆ ⊗ id)∆ + (id⊗ Ci ⊗ id)(∆ ⊗ I) + Ci ⊗ I ⊗ I.

On the other hand,

(id⊗ ∆)∆Ci = (id⊗ ∆)((id⊗ Ci)∆ + Ci ⊗ I)
= (id⊗ ∆Ci)∆ + Ci ⊗ I ⊗ I

= id⊗ ((id⊗ Ci)∆ + Ci ⊗ I)∆ + Ci ⊗ I ⊗ I

= (id⊗ id⊗ Ci)(id⊗ ∆)∆ + (id⊗ Ci ⊗ id)(∆ ⊗ I) + Ci ⊗ I ⊗ I

which proves the coassociativity by induction on the grading. Now setting ε(I) = I

and ε = 0 elsewhere finishes the proof. Note that any connected graded bialgebra
is a Hopf algebra in a unique way. �

2.2 The Hopf algebra of rooted trees, relation to previous work

In this section we collect well-known results [3, 4, 9, 12] on Hopf algebra methods in
momentum space renormalization which will turn out to be applicable to Epstein-
Glaser renormalization as well.
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A rooted tree is a connected contractible compact graph with a distinguished
vertex, the root. A forest is a disjoint union of rooted trees. Isomorphisms of
rooted trees or forests are isomorphisms of graphs preserving the distinguished
vertex/vertices. Let t be a rooted tree with root o. The choice of o determines an
orientation of the edges of t : we draw the root on top and let the rest of the tree
“hang down.” Vertices of t having no outgoing edges are called leaves, the other
vertices (and the root) are called internal vertices. The set of forests is graded, for
instance by the number of vertices a forest has (the weight grading).

Let H be the free commutative algebra generated by rooted trees with the
weight grading. The commutative product in H will be visualized as the disjoint
union of trees, such that monomials in H are scalar multiples of forests. We demand
that the linear operator B+ on H, defined by

B+(I) = •

B+(t1 . . . tn) =
•

• •
�
�

�
�

�
�

�
�

t1 . . . tn

is a Hochschild 1-cocycle, which makes H a Hopf algebra by virtue of Lemma 6.
It is easy to see that the resulting coproduct can be described as follows

∆(t) = I ⊗ t+ t⊗ I +
∑

adm.c

Pc(t) ⊗Rc(t) (14)

where the sum goes over all admissible cuts of the tree t. By a cut of t we mean a
nonempty set of edges of t that are to be removed. The product of subtrees which
“fall down” upon removal of those edges is called the pruned part and denoted
Pc(t), the part which remains connected with the root Rc(t). Now a cut c(t) is
admissible, if for each leaf l of t it contains at most one edge on the path from l
to the root. For instance,

∆



 •
• •

����

•

•

�
�

�
�
��



 = •
• •

����

•

•

�
�

�
�
��

⊗ I + I ⊗ •
• •

����

•

•

�
�

�
�
��

+
•

• •
�
�

�
� ⊗

•
• +

+ • ⊗
•
•
••

�
�

�
�

+ 2 • ⊗
•

• •
•

�
�

�
� +

•
• •

�
�

�
� • ⊗ • +2 • • ⊗

•
•
•

+

+ • • ⊗
•

• •
�
�

�
� + • • • ⊗

•
• .

H is obviously not cocommutative.

Let V be a unital ring with multiplication mV . Given ring homomorphisms
φ, ψ : H → V, one can define their convolution product φ � ψ : H → V, x �→
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mV (φ ⊗ ψ)∆x, which is a ring homomorphism again. In particular, the antipode
S is the inverse of id : H → H with respect to this convolution product. Let Q be
the linear endomorphism of H ⊗H such that Q(I ⊗ I) = −I ⊗ I and Q = id⊗ P
otherwise. So (up to the sign) Q is a projection onto H ⊗ ker ε ⊕ kI ⊗ kI. The
shorthand notation φ �Q ψ := mV (φ⊗ ψ)Q∆ will be useful.

Now in any Hopf-algebra approach [9, 12, 3, 4] to perturbative quantum field
theory, renormalization boils down to twisting the antipode which, (in any graded
Hopf algebra) satisfies the recursive equation

S = −m(S ⊗ id)Q∆ = −S �Q id,

by a homomorphism Φ : H → V, called “Feynman rules”, for example into a ring
V of Laurent series (dimensional regularization) or formal power series (BPHZ),
and a “renormalization scheme” R : V → V which delivers the counterterm. More
explicitly, one considers

SΦ
R := −RmV (SΦ

R ⊗ Φ)Q∆ = −R(SΦ
R �Q Φ). (15)

While Φ means application of unrenormalized Feynman rules, the renormalized
expression is then given by

SΦ
R � Φ. (16)

For details the reader is referred to [3]. In Epstein-Glaser renormalization, essen-
tially the same happens, but in an easier way because no regularization is required.
The target ring V is most suitably chosen to be something like the tensor algebra
of distributions on M, Φ will then map a given “subdivergence situation” encoded
in a rooted tree to the corresponding distribution in V. The meaning of Φ is much
easier to understand however if we give a somewhat different presentation of the
Hopf algebra and define a modified convolution product.

2.3 The cut product and the Bogoliubov recursion

We enlarge the Hopf algebra H to H•∗ by allowing for two types of vertices: • and
∗. This yields two Hochschild 1-cocycles B+• and B+∗ depending on which type
the newly adjoined root has.

B+•(I) = • B+∗(I) = ∗

B+•(t1 . . . tn) =
•

• •
�
�

�
�

�
�

�
�

t1 . . . tn
B+∗(t1 . . . tn) =

∗
• •

�
�

�
�

�
�

�
�

t1 . . . tn

It is easy to see that the coproduct ∆ which we endow H•∗ with using B+•,
B+∗ and Lemma 6 has the same form (14) as in H. Now let R be the algebra
endomorphism of H•∗ which changes the type of the root to ∗, whatever it was
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before.

R(•) = ∗, R(∗) = ∗, R




•

• •
�
�

�
�

�
�

�
�

t1 . . . tn



 =
∗

• •
�
�

�
�

�
�

�
�

t1 . . . tn
.

Once again we remark that all our algebra endomorphisms are supposed to be
unital, so we will not specify their values at I explicitly.

Our aim is now to construct a new product � called cut product of linear
endomorphisms of H•∗. The usual convolution product

(φ, ψ) �→ φ � ψ = m(φ ⊗ ψ)∆

in Endk(H) or Endk(H•∗) has the disadvantage that, applied several times with
the projection P onto the augmentation ideal, it gets rid of the structure of trees.
For example, for any tree t there is an n ∈ N such that

P �n(t) = (P � . . . � P )(t) = polynomial in • .

Our new product (φ � ψ)(t) is supposed to apply φ to Pc(t) and ψ to Rc(t) as
well, but reassemble the tree afterwards rather than taking the disjoint union of
pruned and root parts using m. For instance,

(φ� ψ)
( •
•

)
:= φ

( •
•

)
ψ(I) + φ(I)ψ

( •
•

)
+

φ(•)
ψ(•)

which should be compared to

(φ � ψ)
( •
•

)
= φ

( •
•

)
ψ(I) + φ(I)ψ

( •
•

)
+ φ(•)ψ(•).

This is however only possible for a rather small class of φ and ψ which do not
change the trees too much. For example, φ is supposed to map trees to trees while
ψ is not allowed to kill the vertices where something has been cut. We leave it to
the reader to find the most general notion of those maps, because the only ones
we need here are B+ and id, P, R, where all this is possible in a rather trivial way.

Let H̃•∗ be the Hopf algebra of trees as in H•∗ with an additional decoration of
the vertices by subsets of N. There is an obvious forgetful projection π : H̃•∗ → H•∗

and an inclusion j : H•∗ → H̃•∗ decorating all vertices by the empty set. We lift
any of the maps φ = B+, id, P,R : H•∗ → H•∗ to a map φ̃ : H̃•∗ → H̃•∗ by the
prescription that newly created vertices are to be decorated by the empty set while
the decorations of the old vertices is to be preserved.
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We consider the map ∆̃ : H̃•∗ → H̃•∗⊗H̃•∗ which does the same as ∆ in H•∗

but decorates each root in Pc and each vertex in Rc that got separated by a cut
by the same integer (by the smallest unused integer say), preserving the existing
decoration. For example,

∆̃
( •
• •

�
�

�
�

)
=

•
• •

�
�

�
� ⊗ I + I ⊗

•
• •

�
�

�
� + •1 ⊗

•1

• + •2 ⊗
•2

• + •1 •2 ⊗ •12 .

Here we do not display the empty set and set brackets for simplicity. Note that
we do not contend that ∆̃ is a coproduct. The decoration has the only purpose to
provide “glueing” information.

We define a map m̃ : H̃•∗⊗H̃•∗ → H̃•∗ which reconstructs the preimage of ∆̃
by inserting edges between vertices that have been decorated by the same integers
and discards the used decoration afterwards. So m̃ = ∆̃−1 on the image of ∆̃ and
otherwise, if no decorations match, m̃ is the free multiplication mH̃•∗ of H̃•∗. For
instance,

m̃

(
•1 •2 •3 ⊗

•1

• •2 •4

)
=

•
• •

�
�

�
�

•
• •3 •4

m̃ is obviously not an algebra homomorphism.

Definition 7 Let φ ∈ {id, P,R} and ψ ∈ {id, P,R,B+}. Then the linear endomor-
phism φ� ψ of H•∗,

(φ� ψ) = πm̃(φ̃⊗ ψ̃)∆̃j

is called the cut product of φ and ψ.

It is easy to see that if φ and ψ are algebra endomorphisms, so is φ� ψ.

As a shorthand notation, we will be using

(φ�Q ψ) := πm̃(φ̃⊗ ψ̃)Q̃∆̃j

where Q̃ is the obvious lift ofQ to (H̃•∗)⊗2. In analogy to the approach presented in
the preceding subsection, we recursively define the twisted antipode by S̃R(I) = I

and
S̃R := −R̃m̃(S̃R ⊗ id)Q̃∆̃ = −R̃m̃(−R̃m̃(. . .⊗ id)Q̃∆̃︸ ︷︷ ︸

S̃R

⊗id)Q̃∆̃. (17)

Let SR := πS̃Rj. If one is willing to ignore the fact that jπ �= id, one can view SR

as defined by
SR := −R(SR �Q id)
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which might be a helpful motivation when compared to (15). Note that these are
recursive definitions indeed since Q̃∆̃ reduces the number of edges and SR(I) = I

terminates the recursion. SR will turn out to be the counterterm map in the
Epstein-Glaser framework. Remember that R is an idempotent algebra endomor-
phism, hence in particular a Rota-Baxter operator. Therefore SR and SR � id are
algebra endomorphism as well by a general inductive argument [10].

Lemma 8 (SR � id)B+• = (id−R)B+•(SR � id).

Proof. We use the Hochschild closedness of B+•,

∆B+• = (id⊗B+•)∆ +B+• ⊗ I. (18)

Now we want to lift this equation to (H̃•∗)⊗2 in order to apply it to (SR � id) :

∆̃B̃+ = C(id⊗ B̃+•)∆̃ + B̃+• ⊗ I (19)

where C is a map H̃•∗ ⊗ H̃•∗ → H̃•∗ ⊗ H̃•∗ which decorates vertices affected by a
cut by the same integer. This is the only adjustment we have to make when going
from (18) to (19) because ∆̃j and j∆ differ only by decoration. This yields

(SR � id)B+• = πm̃(S̃R ⊗ id)∆̃jB+• = πm̃(S̃R ⊗ id)∆̃B̃+•j

= πm̃(S̃R ⊗ id)(C(id ⊗ B̃+•)∆̃ + B̃+• ⊗ I)j
= πm̃(S̃R ⊗ id)C(id⊗ B̃+•)∆̃j + πS̃RB̃+•j

= πm̃(S̃R ⊗ id)C(id⊗ B̃+•)∆̃j − πR̃m̃(S̃R ⊗ id)Q̃∆̃B̃+•j

= πm̃(S̃R ⊗ id)C(id⊗ B̃+•)∆̃j − πR̃m̃(S̃R ⊗ id)C(id⊗ B̃+•)∆̃j
= (id−R)πm̃(S̃R ⊗ id)C(id⊗ B̃+•)∆̃j
= (id−R)πm̃C(S̃R ⊗ id)(id⊗ B̃+•)∆̃j
= (id−R)πm̃C(id⊗ B̃+•)(S̃R ⊗ id)∆̃j
= (id−R)B+(SR � id),

where we have used (19), Q(id ⊗ B+•) = id ⊗ B+•, Q(B+• ⊗ I) = 0 which are
obvious, and (S̃R ⊗ id)C = C(S̃R ⊗ id) and m̃C(id ⊗B+•) = B+•m̃ which follow
from the definition of C. This finishes the proof. �

Example 9 We illustrate the action of the map

SR � id = −πRm̃(−Rm̃(. . .⊗ id)Q̃∆̃ ⊗ id)∆̃j

on the two trees
•
• and

•
• •

�
�

�
� .
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H•∗
•
•

H̃•∗ ⊗ H̃•∗

∆̃j

� •
• ⊗ I + I ⊗

•
• + •1 ⊗ •1

(H̃•∗)⊗3

Q̃∆⊗id

� (
I ⊗

•
• + •1 ⊗ •1

)
⊗ I − (I ⊗ I) ⊗

•
• + I ⊗ •1 ⊗ •1

(H̃•∗)⊗3

S̃R⊗id⊗id

� (
I ⊗

•
• − ∗1 ⊗ •1

)
⊗ I − (I ⊗ I) ⊗

•
• + I ⊗ •1 ⊗ •1

H̃•∗ ⊗ H̃•∗

−Rm̃⊗id

� (
−

∗
• +

∗
∗

)
⊗ I + I ⊗

•
• − ∗1 ⊗ •1

H•∗

πm̃

�
−
∗
• +

∗
∗ +

•
• −

•
∗ .

Note that we do not need to go into higher than the third tensor power of H̃•∗

because SR(I) = I and hence SR(•) = −∗ terminate the recursion. Now the second,
less trivial example:
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H•∗
•

• •
�
�

�
�

H̃•∗ ⊗ H̃•∗

∆̃j

� •
• •

�
�

�
� ⊗ I + I ⊗

•
• •

�
�

�
� + •1 ⊗

•1

• + •2 ⊗
•2

• + •1 •2 ⊗•12

(H̃•∗)⊗3

Q̃∆⊗id

� (
I ⊗

•
• •

�
�

�
� + •1 ⊗

•1

• + •2 ⊗
•2

• + •1 •2 ⊗•12

)
⊗ I − I ⊗ I ⊗

•
• •

�
�

�
�

+I ⊗ •1 ⊗
•1

• + I ⊗ •2 ⊗
•2

• + (I ⊗ •1 •2 + •1 ⊗ •2 + •2 ⊗•1) ⊗ •12

(H̃•∗)⊗3

S̃R⊗id⊗2

� (
I ⊗

•
• •

�
�

�
� − ∗1 ⊗

•1

• − ∗2 ⊗
•2

• + ∗1 ∗2 ⊗•12

)
⊗ I − I ⊗ I ⊗

•
• •

�
�

�
�

+I ⊗ •1 ⊗
•1

• + I ⊗ •2 ⊗
•2

• + (I ⊗ •1 •2 − ∗1 ⊗ •2 − ∗2 ⊗•1) ⊗ •12

H̃•∗ ⊗ H̃•∗

−Rm̃⊗id

� (
−

∗
• •

�
�

�
� +

∗
∗ •

�
�

�
� +

∗
• ∗

�
�

�
� −

∗
∗ ∗

�
�

�
�

)
⊗ I + I ⊗

•
• •

�
�

�
�

− ∗1 ⊗
•1

• − ∗2 ⊗
•2

• + ∗1 ∗2 ⊗•12

H•∗

πm̃

�
−

∗
• •

�
�

�
� + 2

∗
∗ •

�
�

�
� −

∗
∗ ∗

�
�

�
� +

•
• •

�
�

�
� − 2

•
∗ •

�
�

�
� +

•
∗ ∗

�
�

�
� .

2.4 An alternative presentation of the Hopf algebra

In this subsection we give a somewhat different presentation H of H which will
turn out to be more instructive for Epstein-Glaser renormalization. The basic idea
is as follows: We consider a tree t of the preceding subsections as a trunk and let
two more branches, called “hair”, grow out of each leaf and one more branch out
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of each unary vertex of the trunk. This yields a tree t in the presentation H.

t =
•
• �→ t = •

◦ ◦
����

•

◦

�
�

�
�
��

While the trunk will correspond to an abstract nest of subdivergences, the leaves
of the hairy tree actually represent (some unordered set of) space-time points to
which that particular subdivergence situation applies. For the reader’s convenience,
we visualize hair by ◦ and the trunk vertices by •. This is only to make it easier
to distinguish between the bold trees in H and the hairy trees in H, so we are not
talking about trees with “two types of vertices” here. Now in order to underline
the power of the Hochschild 1-cocycle and to illustrate Lemma 6, we will prescribe
the cocycle and see what the coproduct looks like then.

Let H be the free commutative algebra generated by rooted trees the leaves
of which descend exclusively from binary vertices. In other words each leaf must
have one and only one sibling (which is not necessarily a leaf too). For example,
the trees

•
◦ ◦

���� , •
◦ ◦

����

•

◦

�
�

�
�
��

, •
◦ ◦

����
•

◦ ◦
����

•
◦ ◦

����

•

�
�

�
�

�
�

��

are in H while

•
• ,

•
• • •

�
�

�
� ,

•
• • •

• •

�
�

�
�
�
�

�
�

are not. The tree • consisting only of the root is not in H by convention, so the
most “primitive” generator is

•
◦ ◦

���� .

Now we demand B+ to act as follows:

B+(I) =
•

◦ ◦
����

B+(
•

◦ ◦
���� ) = •

◦ ◦
����

•

◦

�
�

�
�
��

in general, for any tree t, B+(t) =
•

• ◦
����

t
, so t is grafted to a leaf of

•
• ◦

����

and for a forest, B+(t1 . . . tn) =
•

• •
�
�

�
�

�
�

�
�

t1 . . . tn
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Lemma 10 There is a unique Hopf algebra structure (∆, ε, S) on H such that B+

is Hochschild closed. ∆ is given on trees t by

∆(t) = I ⊗ t+ t⊗ I +
∑

adm′c

P c(t) ⊗Rc(t)

where the definition of admissible cuts and P c, Rc is as in the preceding subsections
with the following modifications:

(i) cuts containing external edges (hair) are not admissible here

(ii) if a vertex v of Rc(t) has no more outgoing edges due to cut edges in c, that

vertex v is to be replaced by
•

◦ ◦
���� in Rc(t).

If a vertex v of Rc(t) is left with only one outgoing edge due to cut edges in
c, an additional branch is to be adjoined to v in Rc(t).

The map β : H → H, given by removing the hair, i.e., all leaves and adjacent edges,
is an isomorphism of Hopf algebras. β−1 in turn replaces vertices with fertility 0
or 1 by binary vertices.

Sketch of proof. First of all we note that whole H − kI is the iterated image of
B+ and the multiplication. Moreover, H is graded as an algebra by the number
of internal (non-hairy) vertices. The existence and uniqueness of (∆, ε, S) is then
a consequence of Lemma 6. The remaining statements are easy to check using the
map β, in particular

β

( •
◦ ◦

����

)
= •, β



 •
◦ ◦

����

•

◦

�
�

�
�
��



 =
•
• . �

Therefore H is nothing but a somewhat different presentation of H. Using
β, we can transfer all notions developed in the preceding subsections to H (which
we denote by underlining everything). Note that in H•∗ only internal vertices can
have type ∗, in H̃•∗

only internal vertices are decorated etc. From now on, we
work only in the presentation H, H•∗, H̃•∗

.

2.5 Feynman rules and counterterms. Main result

On the Hopf algebra level, a tree represents a certain subdivergence situation.
Internal vertices of type • mean that the unrenormalized Feynman rules have
been applied to the respective subdivergence, while ∗ denotes the corresponding
counterterm. For example,

•
◦ ◦

����
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corresponds to the distribution 0T2 : f1 ⊗ f2 �→ (p1,2T1 ⊗ T1)(f1 ⊗ f2) + (p2,1(T1 ⊗
T1)(f2 ⊗ f1), defined on M2 − ∆2. Again we do not display the Wick multiindex
r for simplicity. The tree

∗
◦ ◦

����

represents the counterterm −W ∗
12

0 T2. We already know that their sum (id −
W ∗

12)0T2 = T2 is the well-defined Epstein-Glaser time-ordered product on whole
M2. In less trivial cases subtrees represent subdivergences, the root represents the
overall divergence. For example

∗
◦ ◦

����
∗

◦ ◦
����

•
◦ ◦

����

•
∗

�
�

�
�

�
�

�
�

��

yields

W ∗
123456p1234,56p12,34W

∗
12p1,2W

∗
34p3,4p5,6T

⊗6
1 + suitable perm. of indices.

Epstein-Glaser renormalization is essentially a binary operation since in each step
only products T (I)T (N − I) of two operator-valued distributions are considered.
Indeed, it is impossible to extend a distribution from Mn −Dn (for n > 2) onto
the thin diagonal in (Mn−Dn)∪∆n without extending it to the thicker diagonals,
e.g., {xi = xj for some i, j} first. So we will be needing only binary trees here.

Now let t be a binary tree in H. All of its internal vertices are of type •. We
need a map which changes the types of internal vertices of t in all possible com-
binations and sums up the resulting trees in order to take care of the Bogoliubov
recursion. This is essentially done by SR � id, as we have proved in Lemma 8.
In order to avoid overcounting, we will have to take care of the symmetry factors
which show up whenever the coproduct is applied. For instance, in the second part

of Example 9 we got 2
∗

∗ •
�
�

�
� because two cuts, one on the “left”, the other on the

“right-hand side”, yield the same result. We will compensate that by eventually
dividing by symmetry factors.

Let T 1 = {I} and for n ≥ 2 let T n be the subset of H of binary trees with
n leaves. Furthermore, let FV be the free commutative algebra generated by the
graded vector space

V :=
∞⊕

n=0

D′
op(M

n −Dn)

where D′
op(M

n − Dn) is the space of collections (T r
n) of operator-valued distri-

butions on Mn − Dn (again r is an n-multiindex referring to the Wick powers
under consideration). By Dn we continue to denote the thick diagonal in Mn.
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Thus elements of FV are formal free commutative products of operator-valued
distributions on the configuration spaces Mn − Dn carrying a Wick-multiindex.
The free commutative product is supposed to model the analogue of the disjoint
union of trees. We don’t actually need it to state the theorem, but it is instructive
to keep it in mind. The reader might wish to review the notation for Epstein-Glaser
time-ordered products in Subsection 1.2 at this point.

Theorem 11 (Main result) Let Φ : H•∗ → FV be the homomorphism of free com-
mutative algebras such that

Φ(I) = T1 where T k
1 =: φk :

and for n ≥ 2, 1 ≤ i ≤ n− 1, ti ∈ T i, tj ∈ T n−i and f1 . . . fn ∈ D(M) such that⋂n
i=1 supp fi = ∅, Φ(B+•(titj)) is the collection of distributions defined by

Φ(B+•(titj))(f1 ⊗ . . .⊗ fn) =

=
1

S(ti, tj)

∑

I⊂N,|I|=i

pI,N−IΦ(ti)(⊗k∈Ifk)Φ(tj)(⊗l∈N−Ifl)+

+pN−I,IΦ(tj)(⊗l∈N−Ifl)Φ(ti)(⊗k∈Ifk),

Φ(B+∗(titj)) = W ∗
1...nΦ(B+•(titj)).

while Φ(t′) = 0 on non-binary trees t′. The symmetry factor S(ti, tj) := 2 if the
root of ti has type • and tj = R(ti), and S(ti, tj) := 1 otherwise.
Using these renormalized Feynman rules Φ, the n-th Epstein-Glaser time-ordered
product is (the unique extension onto Mn of)

Tn :=
∑

t∈T n

Φ(SR � id)(t). (20)

Note that in an obvious abuse of notation we consider the counterterms as distri-
butions on Mn −Dn too. Recall that the extension onto Mn is only unique up to
the ωα as discussed in Corollary 5. We assume here that for each n, those ωα have
been chosen once and forever according to some renormalization scheme.

Proof. For n = 1 and n = 2 the statement is obviously true (take t1 = t2 = I).
Now for t ∈ T n it is easy to see that (ΦR)(t) = (W ∗

1...nΦ)(t) (note that W ∗ is
idempotent as well) and ΦB+• is the very sum of causal partitions times lower
order time-ordered products that shows up in the equation

Tn = (id−W ∗
1...n)

∑

∅�I�N

pI,N−IT (I)T (N − I) (21)
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which defines the time-ordered product Tn by Corollary 5. Symbolically, the dia-
grams

H•∗
Φ

� FV H•∗
Φ

� FV

H•∗

B+•

�

Φ
� FV

×
∑

pI,N−I ...

�
H•∗

R

�

Φ
� FV

W∗

�

commute. This can be seen as follows:

T n = B+(T n−1) ∪
n−2⋃

i=2

B+(T iT n−i) =
n−1⋃

i=1

B+(T iT n−i)

where we are overcounting since H is commutative. Using the Hochschild closed-
ness of B+ in the form of Lemma 8 and the fact that SR � id is an algebra homo-
morphism, we get by induction on n, using the symmetry factor S′(ti, tj) := 2 if
ti = tj and S′(ti, tj) := 1 otherwise:

Tn =
∑

t∈T n

Φ(SR � id)(t)

=
1
2

n−1∑

i=1

∑

ti∈T i

∑

tj∈T n−i

S′(ti, tj)Φ(SR � id)B+(titj)

=
1
2

n−1∑

i=1

∑

ti∈T i

∑

tj∈T n−i

S′(ti, tj)Φ(id−R)B+•(SR � id)(titj)

=
1
2
(id−W ∗

1...n)
n−1∑

i=1

ΦB+•




∑

ti∈T i

(SR � id)(ti)
∑

tj∈T n−i

(SR � id)(tj) + C





=
1
2
(id−W ∗

1...n)
n−1∑

i=1

∑

I⊂N,|I|=i

pI,N−IT (I)T (N − I) + pN−I,IT (N − I)T (I)

= (id−W ∗
1...n)

∑

∅�I�N

pI,N−IT (I)T (N − I)

where C is eventually C =
∑

t(SR � id)(t)(SR � id)(t) (for each t such that
ti = tj =: t has occurred in the sum above, thus in particular for all t ∈ T n/2

if n is even) which cancels the symmetry factor S(ti, tj) in the statement of the
theorem. This finishes the proof. �

While the preceding theorem just defines Φ inductively by pushing it forward
along B+, which is a perfectly natural way of doing so, one might also work out a
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non-recursive formula for Φ as follows: Draw the tree, scan it from the top to the
bottom and wherever you see an ∗, apply W ∗. Then symmetrize in all possible
ways.

Since H is nothing but a different presentation of H, one could also have
stated the theorem in terms of trees of H from the very beginning, which would
have required a grading on H that is isomorphic to the grading of H by the number
of external (hairy) vertices.

We encourage the reader to check that one could obtain the same result
in complete analogy to momentum space renormalization (BPHZ, dimensional
regularisation, etc.) [3, 4, 9, 12] as reviewed in Subsection 2.2 by the following
approach: Define the (unrenormalized) Feynman rules Φ : H ↪→ H•∗ → FV as in
Theorem 11, but let now R : FV → FV be the idempotent algebra endomorphism
T �→W ∗T. Note that R is a Rota-Baxter operator. Then replace the cut product
� by the usual convolution product � again, and an adaptation of Theorem 11
yields

Tn =
∑

t∈T n

(SΦ
R � Φ)(t)

which should be compared to (16). The reason why we preferred the method of
letting R act in the Hopf algebra H•∗ and using � is that like this we achieved a
complete decoupling of the combinatorics (which happen in H•∗) and the analysis
(which happens in V ), making it easier to see how the essential work is being
done on the Hopf algebra side while the renormalized Feynman rules Φ : H•∗ →
FV is a rather trivial map translating abstract subdivergence situations into the
appropriate operator valued distributions.

3 Conclusions and outlook

We have seen how Hopf algebras of rooted trees take care of the combinatorics
of Epstein-Glaser renormalization. It is the twisted antipode SR which provides a
complete set of counterterms and formally solves the Bogoliubov recursion thanks
to the Hochschild closedness of B+. The statement of Lemma 8 also amounts
to the fact that the counterterms are local. Indeed, once the subdivergences are
taken care of, it suffices to subtract the superficial divergence, i.e., to extend a
distribution onto the thin diagonal. Although we do not claim that the statement
of Theorem 11 makes actual calculations easier, it closes the gap between the
Epstein-Glaser approach and the Hopf algebra picture in momentum space.

Starting from Theorem 11, one rather easily derives Feynman rules Φ for the
vaccum expectation values of time-ordered products. One can also try to construct
a coproduct on the vacuum expectation values of time-ordered products.

Finally, we would like to mention another issue which seems to be intimately
related to the above approach to coordinate space renormalization: constructing
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an analogy between extension of distributions from Mn−Dn to Mn and compact-
ification of the configuration space Mn − Dn of n points in M. Indeed, we can
already see how this leads to rooted trees if we look at the Fulton-MacPherson
compactification of configuration spaces [7, 1, 8] defined as follows:

Let M be a smooth manifold. There is an obvious inclusion of the configura-
tion space into a product of blowups,

Mn −Dn ↪→ Mn ×
∏

I⊂N,|I|≥2

Bl(M |I|,∆|I|) (22)

where Bl(M i,∆i) is the (differential-geometric) blowup of M i along ∆i of M i, i.e.,
M i where the thin diagonal ∆i is replaced by the sphere bundle in the normal bun-
dle over ∆i. For the details, the reader is referred to [1]. The Fulton-MacPherson
compactification M [n] of Mn −Dn is then the closure of Mn −Dn upon this in-
clusion. Obviously M [n] has only a chance to be compact if M is compact. Now
a closer look at what happens in the right-hand side of (22) when a sequence ap-
proaches the thin diagonal in Mn leads to a nice description of M [n] in terms of
nested screens [7, 1]. In particular, it can be shown that there is a stratification of
the manifold with corners M [n],

M [n] =
⋃

S∈S
M(S)

where S is the set of all nests of subsets of N = {1, . . . , n} with at least 2 ele-
ments. Now nested sets are perfectly described by the forests in H. Moreover, if
we restrict our attention to M = R

k and replace Mn −Dn by the moduli space
Ḟk(n) := (Mn−Dn)/G(k) where G(k) is the subgroup (acting diagonally) of affine
transformations of R

k generated by translations by elements of R
k and dilatations

by elements of R+, there is an operad structure behind the Fulton-MacPherson
compactifications Fk(n) of the moduli spaces Ḟk(n) [8, 13]. The compactifications
M [n] of the configuration spaces still furnish a right module over the operad Fk.
Operads arise in a natural way when rooted trees are grafted to each other:
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• • •
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�
� ,

( •
• •
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�

�
� ,

•
• •

�
�

�
� ,

•
• •

�
�

�
�

))
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�

•
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�

�
�

�
�

��

It seems tempting to explore possible relations between the operad µFM of Fulton-
MacPherson compactified moduli spaces Fk(n), the operad µEG which arises when
the trees in H we used for Epstein-Glaser renormalization are grafted to each other,
and finally the operad of Feynman graph insertions µFG [13, 11]. The operad µFG

is closely related to the pre-Lie structure of Feynman graphs which is dual in a
certain sense to the coproduct in H. This might establish a true analogy between
the Fulton-MacPherson compactificationM [n] ofMn−Dn and the renormalization
of time-ordered products in the sense of Epstein-Glaser.
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