
Ann. Henri Poincaré 6 (2005) 85 – 102
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Some Connections between Dirac-Fock
and Electron-Positron Hartree-Fock

Jean-Marie Barbaroux, Maria J. Esteban and Eric Séré

Abstract. We study the ground state solutions of the Dirac-Fock model in the case
of weak electronic repulsion, using bifurcation theory. They are solutions of a min-
max problem. Then we investigate a max-min problem coming from the electron-
positron field theory of Bach-Barbaroux-Helffer-Siedentop. We show that given a
radially symmetric nuclear charge, the ground state of Dirac-Fock solves this max-
min problem for certain numbers of electrons. But we also exhibit a situation in
which the max-min level does not correspond to a solution of the Dirac-Fock equa-
tions together with its associated self-consistent projector.

1 Introduction

The electrons in heavy atoms experience important relativistic effects. In compu-
tational chemistry, the Dirac-Fock (DF) model [1], or the more accurate multicon-
figuration Dirac-Fock model [2], take these effects into account. These models are
built on a multi-particle Hamiltonian which is in principle not physically meaning-
ful, and whose essential spectrum is the whole real line. But they seem to function
very well in practice, since approximate bound state solutions are found and nu-
merical computations are done and yield results in quite good agreement with
experimental data (see, e.g., [3]). Rigorous existence results for solutions of the
DF equations can be found in [4] and [5]. An important open question is to find a
satisfactory physical justification for the DF model.

It is well known that the correct theory including quantum and relativistic ef-
fects is quantum electrodynamics (QED). However, this theory leads to divergence
problems, that are only solved in perturbative situations. But the QED equations
in heavy atoms are nonperturbative in nature, and attacking them directly seems
a formidable task. Instead, one can try to derive approximate models from QED,
that would be adapted to this case. The hope is to show that the Dirac-Fock model,
or a refined version of it, is one of them. Several attempts have been made in this
direction (see [6, 7, 8, 9] and the references therein). Mittleman [6], in particu-
lar, derived the DF equations with “self-consistent projector” from a variational
procedure applied to a QED Hamiltonian in Fock space, followed by the standard
Hartree-Fock approximation. More precisely, let Hc be the free Dirac Hamiltonian,
and Ω a perturbation. We denote Λ+(Ω) = χ(0,∞)(Hc + Ω). The electronic space
is the range H+(Ω) of this projector. If one computes the QED energy of Slater
determinants of N wave functions in this electronic space, one obtains the DF en-
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ergy functional restricted to (H+(Ω))N . Let ΨΩ be a minimizer of the DF energy
in the projected space (H+(Ω))N under normalization constraints. It satisfies the
projected DF equations, with projector Λ+(Ω). Let E(Ω) := E(ΨΩ). Mittleman
showed (by formal arguments) that the stationarity of E(Ω) with respect to Ω
implies that Λ+(Ω) coincides, on the occupied orbitals, with the self-consistent
projector associated to the mean-field Hartree-Fock Hamiltonian created by ΨΩ.
From this he infers ([6], page 1171) : “Hence, Ω is the Hartree-Fock potential when
the Hartree-Fock approximation is made for the wave function”.

Recently rigorous mathematical results have been obtained in a series of pa-
pers by Bach et al. and Barbaroux et al. [10, 11, 12] on a Hartree-Fock type model
involving electrons and positrons. This model (that we will call EP) is related to
the works of Chaix-Iracane [9] and Chaix-Iracane-Lions [13]. Note, however, that
in [10, 11, 12] the vacuum polarization is neglected, contrary to the Chaix-Iracane
approach. In [10], in the case of the vacuum, a max-min procedure in the spirit
of Mittelman’s work is introduced. In [12], in the case of N -electron atoms, it is
shown that critical pairs (γ, P+) of the electron-positron Hartree-Fock energy EEP
give solutions of the self-consistent DF equations. This result is an important step
towards a rigorous justification of Mittleman’s ideas. All this suggests, in the case
of N -electrons atoms, to maximize the minimum E(Ω) with respect to Ω. It is
natural to expect that this max-min procedure gives solutions of the DF equa-
tions, the maximizing projector being the positive projector of the self-consistent
Hartree-Fock Hamiltonian. We call this belief (expressed here in rather imprecise
terms) “Conjecture M”.

In [14] and [15], when analyzing the nonrelativistic limit of the DF equations,
Esteban and Séré derived various equivalent variational problems having as solu-
tion an “electronic” ground state for the DF equations. Among them, one can find
min-max and max-min principles. But these principles are nonlinear, and do not
solve Conjecture M.

In this paper we try to give a precise formulation of Conjecture M in the spirit
of Mittleman’s ideas and to see if it holds true or not, in the limit case of small
interactions between electrons. We prove that in this perturbative regime, given a
radially symmetric nuclear potential, Conjecture M may hold or not depending on
the number of electrons. The type of ions which are covered by our study are those
in which the number of electrons is much smaller than the number of protons in
the nucleus, with, additionally, c (the speed of light) very large.

The paper is organized as follows : in Section 2 we introduce the notations
and state our main results (Theorems 9 and 11). Sections 3 and 4 contain the
detailed proofs.

2 Notations and main results

In the whole paper we choose a system of units in which Planck’s constant, � , and
the mass of the electron are equal to 1 and Ze2 = 4πε0, where Z is the number
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of protons in the nucleus. In this system of units, the Dirac Hamiltonian can be
written as

Hc = −icα · ∇ + c2β, (1)

where c > 0 is the speed of light , β =
(

11 0
0 −11

)
, α = (α1, α2, α3), α� =(

0 σ�
σ� 0

)
and the σ�’s are the Pauli matrices. The operatorHc acts on 4-spinors,

i.e., functions from R
3 to C

4, and it is self-adjoint in L2(R3,C4), with domain
H1(R3,C4) and form-domain H1/2(R3,C4). Its spectrum is the set (−∞,−c2] ∪
[c2,+∞).

In this paper, the charge density of the nucleus will be a smooth, radial and
compactly supported nonnegative function n, with

∫
n = 1, since in our system

of units Ze2 = 4πε0. The corresponding Coulomb potential is V := −n ∗ (1/|x|).
Then V : R

3 → (−∞, 0) is a smooth negative radially symmetric potential such
that

− 1
|x| ≤ V (x) < 0 (∀x) , |x|V (x) � −1 for |x| large enough .

Note that the smoothness condition on V is only used in step 3 of the proof of
Proposition 15. Actually we believe that this condition can be removed.

It is well known that Hc + V is essentially self-adjoint and for c > 1, the
spectrum of this operator is as follows:

σ(Hc + V ) = (−∞,−c2] ∪ {λc1, λc2, . . . } ∪ [c2,+∞),

with 0 < λc1 < λc2 < · · · and lim
�→+∞

λc� = c2.

Finally define the spectral subspaces Mc
i = Ker(Hc + V − λci 11) and let N c

i

denote Mc
i ’s dimension.

Since the potential is radial, it is well known that the eigenvalues λci are de-
generate (see, e.g., [16]). For completeness, let us explain this in some detail. To
any A ∈ SU(2) is associated a unique rotation RA ∈ SO(3) such that ∀x ∈ R

3,
(RAx) · σ = A(x · σ)A−1, where σ = (σ1, σ2, σ3). This map is a morphism of Lie
groups. It is onto, and its kernel is {I,−I}. It leads to a natural unitary represen-
tation • of SU(2) in the Hilbert spaces of 2-spinors L2(S2,C2) and L2(R3,C2),
given by

(A • φ)(x) := Aφ(R−1
A x) . (2)

Then, on the space of 4-spinors L2(R3,C4) = L2(R3,C2) ⊕ L2(R3,C2), one can
define the following unitary representation (denoted again by •)

(
A •

(
φ

χ

))
(x) :=

(
(A • φ)(x)
(A • χ)(x)

)
=

(
Aφ(R−1

A x)
Aχ(R−1

A x)

)
. (3)
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The radial symmetry of V implies that Hc+V commutes with •. The eigenspaces
Mc

i are thus SU(2) invariant. Now, let Ĵ = (Ĵ1, Ĵ2, Ĵ3) be the total angular mo-
mentum operator associated to the representation •. The eigenvalues of Ĵ2 =
Ĵ2

1 + Ĵ2
2 + Ĵ2

3 are the numbers (j2 −1/4) , where j takes all positive integer values.
If φ is an eigenvector of Ĵ2 with eigenvalue (j2 − 1/4) , then the SU(2) orbit of φ
generates an SU(2) invariant complex subspace of dimension 2j ≥ 2. This implies
the following fact, which will be used repeatedly in the present paper:

Lemma 1. If φ ∈ L2(R3,C2) is not the zero function, then there is A ∈ SU(2)
such that φ and A • φ are two linearly independent functions.

Proof of the Lemma. Assume, by contradiction, that Cφ is SU(2) invariant. Then
φ is an eigenvector of J� for 
 = 1, 2, 3, hence it is eigenvector of Ĵ2. But we
have seen that in such a case, the SU(2) orbit of φ must contain at least two
independent vectors: this is absurd. �

As a consequence of the Lemma, the spaces Mc
i have complex dimension at

least 2. The degeneracy is higher in general: for each j ≥ 1 , Hc +V has infinitely
many eigenvalues of multiplicity at least 2j. Note that in the case of the Coulomb
potential, the eigenvalues are even more degenerate (see, e.g., [16]).

Now, on the Grassmannian manifold

GN (H1/2) := {W subspace of H1/2(R3,C4); dimC (W ) = N}
we define the Dirac-Fock energy Ecκ as follows

Ecκ(W ) := Ecκ(Ψ) :=
N∑
i=1

∫
R3

((Hc + V )ψi, ψi)dx

+
κ

2

∫∫
R3×R3

ρΨ(x)ρΨ(y) − |RΨ(x, y)|2
|x− y| dxdy ,

(4)

where κ > 0 is a small constant, equal to e2/4πε0 in our system of units,
{ψ1, . . . ψN} is any orthonormal basis of W , Ψ denotes the N -uple (ψ1, . . . , ψN ),
ρΨ is a scalar and RΨ is a 4 × 4 complex matrix, given by

ρΨ(x) =
N∑
�=1

(
ψ

�
(x), ψ

�
(x)

)
, RΨ(x, y) =

N∑
�=1

ψ
�
(x) ⊗ ψ∗

�
(y) . (5)

Saying that the basis {ψ1, . . . , ψN} is orthonormal is equivalent to saying
that

GramL2Ψ = 11N . (6)

We will use interchangeably the notations Ecκ(W ) or Ecκ(Ψ). The energy can
be considered as a function of W only, because if u ∈ U(N) is a unitary matrix,

Ecκ(uΨ) = Ecκ(Ψ) (7)

with the notation (uΨ)k =
∑

l uklψl.
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Note that since V is radial, the DF functional is also invariant under the
representation • defined above. Its set of critical points will thus be a union of
SU(2) orbits.

Finally let us introduce a set of projectors as follows:

Definition 2. Let P be an orthogonal projector in L2(R3,C4), whose restriction to
H

1
2 (R3,C4) is a bounded operator on H

1
2 (R3,C4). Given ε > 0, P is said to be

ε-close to Λ+
c := χ(0,+∞)(Hc) if and only if, for all ψ ∈ H

1
2 (R3,C4),

∥∥∥(
−c2∆ + c4

) 1
4
(
P − Λ+

c

)
ψ

∥∥∥
L2(R3,C4)

≤ ε
∥∥∥(

−c2∆ + c4
) 1

4
ψ

∥∥∥
L2(R3,C4)

.

In [14] the following result is proved:

Theorem 3 ([14]). Take V , N fixed. For c large and ε0, κ small enough, for all P
ε0-close to Λc+,

c(P ) := inf
W+∈GN (PH1/2)

sup
W∈GN (H1/2)

P (W )=W+

Ecκ(W )

is independent of P and we denote it by Ecκ. Moreover, Ecκ is achieved by a solution
Wκ =span{ψ1, . . . , ψN} of the Dirac-Fock equations:

{
Hc
κ,Wκ

ψi = εci ψ
c
i , 0 < εci < 1,

GramL2Ψ = 1N

(DF)

with

Hc
κ,W ϕ := (Hc + V + κ ρΨ ∗ 1

|x| )ϕ− κ

∫
R3

RΨ(x, y)ϕ(y)
|x− y| dy . (MF)

Remark. It is easy to verify that ε0 > 0 given, for c large and κ small enough,
χ(0,∞)(Hc

κ,Wκ
) is ε0-close to Λ+

c .

Corollary 4 ([14]). Take V, N fixed. Choose c large and κ small enough. If we
define the projector

P+
κ,W = χ(0,∞)(Hc

κ,W )

with Hc
κ,W given by formula (MF), then

Ecκ = min
W∈Gn(H1/2)

P
+
κ,W

W=W

Ecκ(W ) = min
W∈GN (H1/2)

W solution of (DF)

Ecκ(W ) . (8)

Another variational problem was introduced in the works of Bach et al. and
Barbaroux et al. ([10, 11, 12]): define

P̃κ = {P+

κ,W̃
= χ[0,∞)(Hc

κ,W̃
) ; W̃ ∈ GN (H1/2)}, (9)
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and

SN
κ,W̃

:= {γ ∈ S1(L2) , γ = γ∗ , Hc
κ,W̃

γ ∈ S1 ,

P+

κ,W̃
γP−

κ,W̃
= 0 , −P−

κ,W̃
≤ γ ≤ P+

κ,W̃
, tr γ = N},

with the notation P−
κ,W̃

:= 1I−P+

κ,W̃
, and S1 being the Banach space of trace-class

operators on L2(R3,C4). For all γ ∈ SN
κ,W̃

, let

Fc
κ(γ) = tr ((Hc + V )γ) +

κ

2

∫
ργ(x)ργ(y)
|x− y| dxdy − κ

2

∫ |γ(x, y)|2
|x− y| dxdy.

Here, ργ(x) :=
∑4
s=1 γs,s(x, x) =

∑
n wn|ψn(x)|2, with wn the eigenvalues of γ

and ψn the eigenspinors of γ, and γ(x, y) =
∑

n wnψn(x) ⊗ ψn(y), i.e., γ(x, y) is
the kernel of γ.

In [12] it has been proved that for every P+

κ,W̃
∈ P̃κ , the infimum of Fc

κ on

the set SN
κ,W̃

is actually equal to the infimum defined in the smaller class of Slater
determinants. More precisely, with the above notations,

Theorem 5 ([12]). For κ small enough and for all P+

κ,W̃
∈ P̃κ, one has

inf
γ∈SN

κ,W̃

Fc
κ(γ) = inf

W∈GN (P+
κ,W̃

H1/2)
Ecκ(W ) (10)

Moreover, the infimum is achieved by a solution of the projected Dirac-Fock equa-
tions, namely

γmin =
N∑
i=1

〈ψi , .〉ψi

with P+

κ,W̃
ψi = ψi (i = 1, . . . , N), and for Wmin := span(ψ1, . . . , ψN ) ,

{
P+

κ,W̃
Hc
κ,Wmin

P+

κ,W̃
ψi = εiψi, 0 < εi < 1,

GramL2Ψ = 1N

(11)

Let us now define the following sup-inf:

ecκ := sup
P+

κ,W̃
∈P̃κ

inf
W∈GN (P+

κ,W̃
H1/2)

Ecκ(W ) . (12)

Then, Theorem 5 has the following consequence:

Corollary 6. If κ is small enough,

ecκ = sup
P+

κ,W̃
∈P̃κ

inf
γ∈SN

κ,W̃

Fc
κ(γ).
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From the above definitions, Theorem 3, Corollary 4 and the remark made
after Theorem 3, we clearly see that for all κ small and c large,

Ecκ ≥ ecκ. (13)

One can hope more:

Conjecture M: The energy levels Ecκ and ecκ coincide, and there is a solution W c
κ

of the DF equations such that

Ecκ(W c
κ) = ecκ = inf

V ∈GN (P+
κ,W c

κ
H1/2)

Ecκ(V ) .

In other words, the max-min level ecκ is attained by a pair (W,P+

κ,W̃
) such that

W̃ = W .

This paper is devoted to discussing this conjecture, which, if it were true,
would allow us to interpret the Dirac-Fock model as a variational approximation
of QED.

In order to study the different cases that can appear when studying the
problems Ecκ and ecκ for κ small, we begin by discussing the case κ = 0.

Proposition 7. Conjecture M is true in the case κ = 0.

Proof. The case κ = 0 is obvious. Indeed, all projectors P+

0,W̃
coincide with the

projector χ[0,∞)(Hc + V ). The level Ec0, seen as the minimum of Corollary 2, is
achieved by any N -dimensional space Wmin spanned by N orthogonal eigenvectors
of Hc+V whose eigenvalues are the N first positive eigenvalues of Hc+V , counted
with multiplicity. Then Ec0 is the sum of these N first positive eigenvalues. Clearly,
(Wmin, χ[0,∞)(Hc + V )) realizes ec0. �

The interesting case is, of course, κ > 0 , when electronic interaction is taken
into account. For κ > 0 and small two very different situations occur, depending
on the number N of electrons.

The first situation (perturbation from the linear closed shell atom) corre-
sponds to

N =
I∑
i=1

N c
i , I ∈ Z

+ (14)

is treated in detail in Section 3.
We recall thatN c

i is the dimension of the eigenspace Mc
i = Ker(Hc+V −λci 11)

already defined. Under assumption (14), for κ = 0, there is a unique solution, W c
0 ,

to the variational problems defining Ec0 and ec0,

W c
0 =

I⊕
i=1

Mc
i .
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The “shells” of energy λci , 1 ≤ i ≤ I , are “closed”: each one is occupied by
the maximal number of electrons allowed by the Pauli exclusion principle. The
subspace W c

0 is invariant under the representation • of SU(2).
We are interested in solutions W c

κ of the Dirac-Fock equations lying in a
neighborhood Ω ⊂ GN (H1/2) of W c

0 , for κ small. Using the implicit function
theorem, we are going to show that for each κ small, W c

κ exists, is unique, and is
a smooth function of κ.

Information about the properties enjoyed by W c
κ is given by

Proposition 8. Fix c large enough. Under assumption (14), for κ small enough,

Ecκ = Ecκ(W c
κ) = inf

W∈GN (P+
κ,Wc

κ
H1/2)

Ecκ(W ), (15)

and W c
κ is the unique solution of this minimization problem.

This proposition will be proved in Section 3. Our first main result follows
from it:

Theorem 9. Under assumption (14), for c > 0 fixed and κ small enough, Ecκ = ecκ
and both variational problems are achieved by the same solution W c

κ of the self-
consistent Dirac-Fock equations. For ecκ, the optimal projector in P̃κ is P+

κ,W c
κ
.

Proof. The above proposition implies that for κ small,

ecκ ≥ inf
W∈GN (P+

κ,W c
κ
H1/2)

Ecκ(W ) = Ecκ(W c
κ) = Ecκ. (16)

Therefore, ecκ = Ecκ. Moreover, by Proposition 8, ecκ is achieved by a couple (W c
κ , P )

such that P = P+
κ,W c

κ
, W c

κ being a solution of the Dirac-Fock equations. This ends
the proof. �

The second situation (perturbation from the linear open shell case) occurs
when

N =
I∑
i=1

N c
i + k, I ∈ Z

+, 0 < k < N c
I+1 . (17)

It is treated in detail in Section 4.
When (17) holds and when κ = 0, there exists a manifold of solutions, S0,

whose elements are the spaces

I⊕
i=1

Mc
i ⊕W c

I+1,k,

for all W c
I+1,k ∈ Gk(M c

I+1). These spaces are all the solutions of the variational
problems defining Ec0 and ec0. The (I + 1)th “shell” of energy λcI+1 is “open”: it is
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occupied by k electrons, while the Pauli exclusion principle would allow N c
I+1 − k

more. Note that we use the expression “open shell” in the linear case κ = 0 only:
indeed, adapting an idea of Bach et al. [17], one can easily see that for κ positive
and small, the solutions to (DF) at the minimal level Ecκ have no unfilled shells.

For κ > 0 and small we look for solutions of the DF equations near S0 (see
Section 4). We could simply quote the existence results of [15], and show the
convergence of solutions of (DF) at level Ecκ, towards points of S0, as κ goes to 0.
But we prefer to give another existence proof, using tools from bifurcation theory.
This approach gives a more precise picture of the set of solutions to (DF) near the
level Ecκ (Theorem 12).

In particular, we obtain in this way all the solutions of (DF) with smallest
energy Ecκ (Proposition 13).

We now choose one of these minimizers, and we call it W c
κ . We have P−

κ,W c
κ

(W c
κ) = 0 . Since V is radial, W c

κ belongs to an SU(2) orbit of minimizers. We are
interested in cases where this orbit is not reduced to a point. Then the mean-field
operator Hc

κ,W c
κ

should not commute with the action • of SU(2), and one expects
the following property to hold:

(P): Given c large enough, if κ is small, then for any solution W c
κ of (DF) at level

Ecκ, there is a matrix A ∈ SU(2) such that

P−
κ,W c

κ
(A •W c

κ) �= 0 . (18)

The next proposition shows that whenever (P) holds, Conjecture M does not.
This result will imply that Conjecture M is indeed wrong.

Proposition 10. If (P) is satisfied, then for c large enough and κ small, given any
solution W c

κ of the nonlinear Dirac-Fock equations such that Ecκ(W c
κ) = Eκ, we

have
Ecκ = Ecκ(W c

κ) > inf
W∈GN (H1/2)

P
−
κ,W c

κ
W=0

Ecκ(W ). (19)

This proposition will be proved in Section 4. Moreover, we verify (see Propo-
sition 15) that (P) holds when I ≥ 1 and k = 1, i.e., when in the linear case there
is a single electron in the highest nonempty shell.

Our second main result follows directly from Propositions 10 and 15.

Theorem 11. Take

N =
I∑
i=1

N c
i + 1, I ≥ 1 .

For c large and κ > 0 small, there is no solution W∗ of the nonlinear Dirac-Fock
equations with positive Lagrange multipliers, such that the couple

(W∗, P+
κ,W∗)

realizes the max-min ecκ. So Conjecture M is wrong.
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Remark. Note that the fact that Conjecture M is wrong in the case N=
I∑
i=1

N c
i +1,

I ≥ 1, is related to nonuniqueness of the minimizer for the problem

inf
W∈GN (H1/2)

P
−
κ,W c

κ
W=0

Ecκ(W ) .

When such a situation happens, it is well known that one has to be very careful
when considering max-min (resp. min-max) problems, since even when solvable,
they do not always deliver critical points of the considered functional. A very
simple example for this fact is provided by the function f : R

2 → R defined by
f(x, y) := (1 − x2)2 + xy. It is easy to verify that

sup
y∈R

inf
x∈R

f(x, y) = 0 ,

that the unique maximizer is y = 0 and that there are exactly two minimizers of
x �→ f(x, 0), x± = ±1. But neither (−1, 0) nor (1, 0) are critical points of f .

3 Perturbation from the linear closed shells case

Let us recall that we are in the case

N =
I∑
i=1

N c
i , I ∈ Z

+ ,

N c
i being the dimension of the eigenspace Mc

i = Ker(Hc + V − λci 11). We want to
apply the implicit function theorem in a neighborhood of W c

0 , for κ small. For this
purpose, we need a local chart near W c

0 . Take an orthonormal basis (ψ1, . . . , ψN)
of W c

0 , whose elements are eigenvectors of Hc+V , the associated eigenvalues being
µ1 ≤ · · · ≤ µN (i.e., λc1, . . . , λ

c
I counted with multiplicity). Let Z be the orthogonal

space of W c
0 for the L2 scalar product, in H1/2(R3,C4). Then Z is a Hilbert space

for the H1/2 scalar product. The map

C : χ = (χ1, . . . , χN ) → span(ψ1 + χ1, . . . , ψN + χN ) ,

defined on a small neighborhood O of 0 in ZN , is the desired local chart. Denote
Gχ the N ×N matrix of scalar products (χl, χ�)L2 . Then

Ecκ ◦ C(χ) = Ecκ
(
(I +Gχ)−1/2(ψ + χ)

)
.

The differential of this functional defines a smooth map Fκ : O ⊂ ZN → (Z ′)N ,
where Z ′ ⊂ H−1/2 is the topological dual of Z for the H1/2 topology, identified
with the orthogonal space of W c

0 for the duality product in H−1/2 ×H1/2. Note
that Fκ depends smoothly on the parameter κ. A subspace C(χ) is solution of
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(DF) if and only if Fκ(χ) = 0. To apply the implicit function theorem, we just
have to check that the operator L := DχF0(0) is an isomorphism from ZN to its
dual (Z ′)N . This operator is simply the Hessian of the DF energy expressed in our
local coordinates:

Lχ =
(
(Hc + V − µ1)χ1, . . . , (Hc + V − µN )χN

)
. (20)

Under assumption (14), the scalars µk, k = 1, . . . , N , are not eigenvalues of the
restriction of Hc + V to the L2-orthogonal subspace of W c

0 . This implies that L
is an isomorphism. As a consequence, there exists a neighborhood of W c

0 × {0} in
GN (H1/2)×R, Ω× (−κ0, κ0) and a smooth function hc : (−κ0, κ0) → Ω such that
for κ ∈ (−κ0, κ0), W c

κ := hc(κ) is the unique solution of the Dirac-Fock equations
in Ω. Moreover, for all κ ∈ (−κ0, κ0), the following holds:

u(W c
κ) = W c

κ , ∀u ∈ SU(2) . (21)

Indeed, the subset A of parameters κ such that (21) holds is obviously nonempty
(it contains 0) and closed in (−κ0, κ0). Now, for κ in a small neighborhood of
A, the SU(2) orbit of W c

κ stays in Ω. But this orbit consists of solutions of the
Dirac-Fock equations, so, by uniqueness in Ω, it is reduced to a point. This shows
that A is also open. A is thus the whole interval of parameters (−κ0, κ0).

Now we are in the position to prove Proposition 8.

Proof of Proposition 8. Remember that for κ = 0, P+
0,W c

0
coincides with χ(0,∞)(Hc+

V ). Now, W c
0 is clearly the unique minimizer of Ec0 on the Grassmannian sub-

manifold G+
0 := GN (P+

0,W c
0
H1/2). More precisely, in topological terms, for any

neighborhood V of W c
0 in GN (H1/2), there is a constant δ = δ(V) > 0 such that

Ec0(W ) ≥ Ec0(W c
0 ) + δ , ∀W ∈ G+

0 ∩ (GN (H1/2) \ V) . (22)

Moreover, looking at formula (20), one easily sees that the Hessian of Ec0 on G+
0 is

positive definite at W c
0 . We now take κ > 0 small, and we consider again the chart

C constructed above. We define the submanifold G+
κ := GN (P+

κ,W c
κ
H1/2). Then

the restriction C+
κ of C to (P+

κ,W c
κ
Z)N is a local chart of G+

κ near W c
κ . For κ small

enough, there is a neighborhood U of 0 in ZN such that the second derivative of
Ecκ ◦ C+

κ is positive definite on U+
κ := U ∩ (P+

κ,W c
κ
Z)N . The functional Ecκ ◦ C+

κ is
thus strictly convex on U+

κ . Now, for κ small, there is a unique χκ ∈ U+
κ such that

C+
κ (χκ) = W c

κ. Then the derivative of Ecκ ◦ C+
κ vanishes at χκ. As a consequence

W c
κ = C+

κ (χκ) is the unique minimizer of Ecκ on V+
κ := C+

κ (U+
κ ). Now, we choose,

as neighborhood of W c
0 in GN (H1/2), the set V := C(U), and we consider the

constant δ > 0 such that (22) is satisfied. Taking κ > 0 even smaller, we can
impose

min
V+

κ

Ecκ + δ/2 ≤ inf
G+

κ \V+
κ

Ecκ.

Hence, W c
κ is the unique solution to the minimization problem (15). �
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4 Bifurcation from the linear open shell case

Recall that here we are in the case

N =
I∑
i=1

N c
i + k, I ∈ Z

+, 0 < k < N c
I+1 .

For κ = 0, there exists a manifold of solutions, S0, whose elements are the spaces

I⊕
i=1

Mc
i ⊕W c

I+1,k,

for all W c
I+1,k ∈ G�(M c

I+1). These spaces are all the solutions of the variational
problems defining Ec0 and ec0.

For κ > 0 and small we want to find solutions of the DF equations near S0,
by using tools from bifurcation theory.

If λI+1 has only multiplicity 2, then (17) implies k = 1 and by Lemma 1 of §2,
S0 is an SU(2) orbit. Then, as in Section 3, one can find, in a neighborhood of S0,
a unique SU(2) orbit Sκ of solutions of (DF). But there are also more degenerate
cases in which λI+1 has a higher multiplicity, and S0 contains a continuum of
SU(2) orbits. In such situations, κ = 0 is a bifurcation point, and one expects,
according to bifurcation theory, that the manifold of solutions S0 will break up for
κ �= 0, and that there will only remain a finite number of SU(2) orbits of solutions.
To find these orbits, one usually starts with a Lyapunov-Schmidt reduction: one
builds a suitable manifold Sκ which is diffeomorphic to S0 (see, e.g., [18]). When
S0 contains several SU(2) orbits, the points of Sκ are not necessarily solutions
of (DF), but Sκ contains all the solutions sufficiently close to S0. Moreover, all
critical points of the restriction of Ecκ to Sκ are solutions of (DF). The submanifold
Sκ is constructed thanks to the implicit function theorem. More precisely, we
consider the projector Π : L2 → ⊕I+1

i=1 Mc
i . To each point z ∈ S0 we associate

the submanifold Fz := {w ∈ GN (H1/2) : Πw = z}. For w a point of Fz , let
∆w := TwFz ⊂ TwGN (H1/2). Then the following holds:

Theorem 12. Under the above assumptions, there exist a neighborhood Ω of S0 in
GN (H1/2), a small constant κ0 > 0, and a smooth function h : S0×(−κ0, κ0) → Ω
such that

(a) h(z, 0) = z ∀z ∈ S0

(b) Denoting Sκ := h(S0, κ), Sκ is also the set of all points w in Ω such that

〈(Ecκ)′(w), ξ〉 = 0, ∀ξ ∈ ∆w (23)

(c) h(z, κ) ∈ Fz , ∀(z, κ) ∈ S0 × (−κ0, κ0).

Proof. We first fix a point z in S0. Let N be the orthogonal space of
⊕I+1

i=1 Mc
i

in H1/2 for the L2 scalar product. As in Section 3, we can define a local chart
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Cz : O ⊂ (N )N → Fz near z, by the formula C(χ) = span(ψ + χ), where
ψ = (ψ1, . . . , ψN ) is an orthonormal basis of z consisting of eigenvectors of Hc+V ,
with eigenvalues µ1 ≤ · · · ≤ µN (i.e., λc1, . . . , λcI counted with multiplicity). The
Hessian of Ec0◦Cz at χ = 0 is given once again by formula (20). It is an isomorphism
between (N )N and its dual. So, arguing as in Section 3, we find, by the implicit
function theorem, a small constant κz > 0, a neighborhood ωz of z in Fz and a
function h̃z : (−κz, κz) → Ω̃z such that:

(i) h̃z(0) = z

(ii) h̃z(κ) is the unique point w in Ω̃z such that

〈(Ecκ)′(w), ξ〉 = 0, ∀ξ ∈ ∆w (24)

Since S0 is compact and Ecκ(w) a smooth function of (w, κ), it is possible to choose
κz , Ω̃z such that κ0 := infz∈S0 κz > 0, with Ω :=

⋃
z∈S0

Ω̃z a neighborhood of S0,
and h(z, κ) := h̃z(κ) a smooth function on S0 × (−κ0, κ0) with values in Ω. This
function satisfies (a,b,c). �

From (b) any critical point of Ecκ in Ω must lie on Sκ. From (c) it follows
that Sκ is a submanifold diffeomorphic to S0, and transverse to each fiber Fz in
GN (H1/2). If z ∈ S0 is a critical point of Ecκ ◦h(·, κ), then, taking w = h(z, κ), the
derivative of Ecκ at w vanishes on TwSκ. From (b), it also vanishes on the subspace
∆w which is transverse to TwSκ in TzGN (H1/2), hence (Ecκ)′(w) = 0. This shows
that the set of critical points of Ecκ in Ω coincides with the set of critical points
of the restriction of Ecκ to Sκ. Arguing as in the proof of Proposition 8, one gets
more:

Proposition 13. For κ > 0 small, the solutions of (DF) of smallest energy Ecκ are
exactly the minimizers of Ecκ on Sκ.

We are now ready to prove Proposition 10.

Proof of Proposition 10. Since κ is small, for any matrix A ∈ SU(2) the map
P+
κ,A•W c

κ
induces a diffeomorphism between the submanifolds GN (P+

κ,W c
κ
H1/2) and

GN (P+
κ, A•W c

κ
H1/2) .

Now, we fix A ∈ SU(2) such that (18) holds. Then there exists a unique point
W+ ∈ GN (H1/2) such that

P−
κ,W c

κ
W+ = 0, P+

κ,A•W c
κ
W+ = A •W c

κ (25)

By (18), we have
W+ �= A •W c

κ .

On the other hand, in [14] it was proved that

Ecκ(A •W c
κ) = sup

W∈GN (H1/2)

P
+
κ,A•W c

κ
W=A•Wc

κ

Ecκ(W ) (26)
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and A •W c
κ is the unique solution of this maximization problem. Therefore,

Ecκ(A •W c
κ) > Ecκ(W+) .

But
Ecκ(W+) ≥ inf

W∈GN (P+
κ,W c

κ
H1/2)

Ecκ(W ) ,

hence, by invariance of Ecκ under the action of SU(2),

Ecκ = Ecκ(A •W c
κ) > inf

W∈GN (P+
κ,W c

κ
H1/2)

Ecκ(W ) ,

and the proposition is proved. �
Since there are no solutions of (DF) under level Ecκ, and ecκ ≤ Ecκ, Proposition

10 has the following consequence:

Corollary 14. If (P) is satisfied, then for c large enough and κ small, there is no
solution W∗ of the nonlinear Dirac-Fock equations with positive Lagrange multi-
pliers, such that the couple

(W∗, P+
κ,W∗)

realizes the max-min ecκ. So Conjecture M is wrong when (P) holds.

We now exhibit a case where (P) holds.

Proposition 15. Assume that N =
I∑
i=1

N c
i + 1, I ≥ 1. Then (P) is satisfied.

Proof. Step 0. Fix c large enough and take a sequence of positive parameters
(κ�)�≥0 converging to 0. Let (W c

� )�≥0 be a sequence in GN (H1/2), with W c
� a

minimizer of Ecκ�
on Sκ�

. Let ψc� ∈W c
� be an eigenvector of the mean-field Hamil-

tonian Hc
κ�,W c

�
, normalized in L2 and corresponding to the highest occupied level.

Extracting a subsequence if necessary, we may assume that ψc� → ψc ∈ Mc
I+1 =

Ker(Hc + V − λcI+1). Moreover, from Theorem 12 we have

W c
� →W c

0 =
I⊕
i=1

Mc
i ⊕ C ψc .

Step 1. Fix c ≥ 1 . Since P−
κ�,W c

�
ψc� = 0, we can write, by a classical result due to

Kato,

P−
κ�,A•W c

�
ψc� =

1
2π

∫ +∞

−∞

[
(Hc

κ�,W c
�
− iη)−1−(Hc

κ�,A•W c
�
− iη)−1

]
ψc� dη (27)

=
1
2π

∫ +∞

−∞
(Hc

κ�,W c
�
− iη)−1(Hc

κ�,A•W c
�
−Hc

κ�,W c
�
)(Hc

κ�,A•W c
�
− iη)−1ψc� dη

=
κ�
2π

∫ +∞

−∞
(Hc + V − iη)−1(ΩA•W c

0
− ΩW c

0
)(Hc + V − iη)−1ψc dη + o(κ�) ,
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where by ΩW we denote the nonlinear part of Hc
κ,W :

Hc
κ,W = Hc + V + κΩW .

But note that since the space
⊕I

i=1 Mc
i is invariant under the action of

SU(2),
ΩA•W c

0
− ΩW c

0
= ΩA•ψc − Ωψc .

So, we just have to prove that for c sufficiently large and for all ψc ∈M c
I+1 ,

there exists A ∈ SU(2) such that
∫ +∞

−∞
(Hc + V − iη)−1(ΩA•ψc − Ωψc)(Hc + V − iη)−1ψc dη �= 0 . (28)

Since
(Hc + V − iη)−1ψc =

ψc

λcI+1 − iη
and Ωψc ψc = 0 ,

what we need to prove is that for all nonzero ψc ∈M c
I+1 , there exists A ∈ SU(2)

such that Lc(ΩA•ψc ψc) �= 0, with

Lc :=
∫ +∞

−∞
(Hc + V − iη)−1 dη

λcI+1 − iη
.

Step 2. We give an asymptotic expression for Lc when c→ +∞:

Lc =
1
c2

∫ +∞

−∞

( 1
c2

(Hc + V ) − i
η

c2

)−1 d(η/c2)
λc

I+1
c2 − i ηc2

=
1
c2

(
Lc +O

( 1
c2

))
, (29)

where Lc, in the Fourier domain, is the operator of multiplication by the matrix

L̂c(p) =
∫ +∞

−∞
(−iu+ β + (α · p)/c)−1(−iu+ 1)−1 du . (30)

Here, we have used the standard fact that

λcI+1

c2
= 1 +O

( 1
c2

)
.

We have

(−iu+ β + (α · p)/c)−1 =
1

−iu+ ωc(p)
Λ̂c+(p) +

1
−iu− ωc(p)

Λ̂c−(p)

with

ωc(p) :=
√

1 + |p|2/c2 , Λ̂c±(p) =
ωc(p) ± (β + (α · p)/c)

2ωc(p)
.

Hence, by the residues theorem,

2
π
L̂c(p) = β − 1 +

(α · p)
c

+O
( |p|2
c2

)
.
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Step 3. It is well known (see [16]) that ψc can be written as

ψc =
(

φ
−i(σ·∇)φ

2c

)
+O

( 1
c2

)
,

φ ∈ L2(R3,C2) being an eigenstate of (−∆
2 + V ), with eigenvalue µ = limc→+∞

(λcI+1− c2). Since we have assumed that V is smooth, this asymptotic result holds
for the topology of the Schwartz space S(R3). So,

2c2

π
Lc(ΩA•ψc ψc) =

i

c

(
0

f(A, φ)

)
+O

( 1
c2

)
,

where

f(A, φ) :=
(
|A • φ|2 ∗ x · σ

|x|3
)
φ−

(
〈A • φ, φ〉C2 ∗ x · σ

|x|3
)
(A • φ) . (31)

What remains to prove is:

Step 4. For any eigenvector φ of the Schrödinger operator −∆
2 + V , there exists

an A ∈ SU(2) such that f(A, φ) �≡ 0 .

Proof of Step 4. We consider the integral

IA,φ(r) :=
∫
S2
〈(x · σ)φ, f(A, φ)〉C2 (r ω)dω .

Since φ has exponential fall-off at infinity, the electrostatic field |A • φ|2 ∗ x
|x|3

takes the asymptotic form
( ∫

R3 |A • φ|2
)

x
|x|3 + O

(
1

|x|3
)

when |x| is large. The
same phenomenon holds for the convolution product < A • φ, φ >C2 ∗ x

|x|3 . As a
consequence, for r large,

r IA,φ(r) =
(∫

R3
|A • φ|2

)(∫
S2

|φ|2(r ω) dω
)

−
(∫

R3
〈A • φ, φ〉C2

)(∫
S2
〈φ,A • φ〉C2(r ω) dω

)

+O
(1
r

)(∫
S2

|φ|2(r ω) dω
)
.

Since • is unitary, the Cauchy-Schwarz inequality gives
∫
S2

|φ|2(r ω) dω =
∫
S2

|A • φ|2(r ω) dω ≥
∣∣∣
∫
S2
〈A • φ, φ〉C2 (r ω) dω

∣∣∣ .
By Lemma 1 of Section 1, we can choose A such that φ and A•φ are not colinear.
Then ∫

R3
|A • φ|2 =

∫
R3

|φ|2 >
∣∣∣
∫

R3
〈A • φ, φ〉C2

∣∣∣ .
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So there is a constant δ > 0 such that, for r large enough,

|r IA,φ(r)| ≥ δ
( ∫

R3
|φ|2

)(∫
S2

|φ|2(r ω) dω
)
. (32)

Being an eigenvector of the Schrödinger operator −∆
2 + V , the function φ

cannot have compact support. So the lower estimate (32) implies that the function
IA,φ(r) is not identically 0, hence f(A, φ) �≡ 0 . Step 4 is thus proved, and (P) is
satisfied. �
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