C^{*}-Algebras of Anisotropic Schrödinger Operators on Trees

Sylvain Golénia

Abstract

We study a C^{*}-algebra generated by differential operators on a tree. We give a complete description of its quotient with respect to the compact operators. This allows us to compute the essential spectrum of self-adjoint operators affiliated to this algebra. The results cover Schrödinger operators with highly anisotropic, possibly unbounded potentials.

1 Introduction

Given a ν-fold tree Γ of origin e with its canonical metric d, we write $x \sim y$ when x and y are connected by an edge and we set $|x|=d(x, e)$. For each $x \in \Gamma \backslash\{e\}$, we denote by $x^{\prime} \equiv x^{(1)}$ the unique element $y \sim x$ such that $|y|=|x|-1$ and we set $x^{(p)}=\left(x^{(p-1)}\right)^{\prime}$ for $1 \leq p \leq|x|$. Let $x \Gamma=\left\{y \in \Gamma| | y\left|\geq|x|\right.\right.$ and $\left.y^{(|y|-|x|)}=x\right\}$, where the convention $x^{(0)}=x$ has been used.

On $\ell^{2}(\Gamma)$ we define the bounded operator ∂ given by $(\partial f)(x)=\sum_{y^{\prime}=x} f(y)$. Its adjoint is given by $\left(\partial^{*} f\right)(e)=0$ and $\left(\partial^{*} f\right)(x)=f\left(x^{\prime}\right)$ for $|x| \geq 1$. Let \mathscr{D} be the C^{*}-algebra generated by ∂.

In order to obtain our algebra of potentials, we consider the "hyperbolic" compactification $\widehat{\Gamma}=\Gamma \cup \partial \Gamma$ of Γ constructed as follows. An element x of the boundary at infinity $\partial \Gamma$ is a Γ-valued sequence $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left|x_{n}\right|=n$ and $x_{n+1} \sim x_{n}$ for all $n \in \mathbb{N}$. We set $|x|=\infty$ for $x \in \partial \Gamma$. The space $\widehat{\Gamma}$ is equipped with a natural ultrametric space structure. For $x \in \partial \Gamma$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ a sequence in Γ we have $\lim _{n \rightarrow \infty} y_{n}=x$ if for each $m \in \mathbb{N}$ there is $N \in \mathbb{N}$ such that for each $n \geq N$ we have $y_{n} \in x_{m} \Gamma$. We denote by $C(\widehat{\Gamma})$ the set of complex-valued continuous functions defined on $\widehat{\Gamma}$. Since Γ is dense in $\widehat{\Gamma}$, we can view $C(\widehat{\Gamma})$ as a C^{*}-subalgebra of $C_{b}(\Gamma)$, the algebra of bounded complex-valued functions defined on Γ. For $V \in C(\widehat{\Gamma})$, we denote by $V(Q)$ the operator of multiplication by V in $\ell^{2}(\Gamma)$.

Let us now denote by $\mathscr{C}(\widehat{\Gamma})$ the C^{*}-algebra generated by \mathscr{D} and $C(\widehat{\Gamma})$. It contains the set $\mathbb{K}(\Gamma)$ of compact operators on $\ell^{2}(\Gamma)$. Following the strategy exposed in [6], we shall first compute its quotient with respect to the ideal of compact operators. We stress that the crossed product technique introduced in [6] in order to compute quotients cannot be used in our case. Instead, we shall use the Theorem 4.5 in order to calculate the essential spectrum of self-adjoint operators related to $\mathscr{C}(\widehat{\Gamma})$. In this introduction we consider only the most important case, when $\nu>1$.

Theorem 1.1 Let $\nu>1$. There is a unique morphism $\Phi: \mathscr{C}(\widehat{\Gamma}) \rightarrow \mathscr{D} \otimes C(\partial \Gamma)$ such that $\Phi(D)=D \otimes 1$ for all $D \in \mathscr{D}$ and $\Phi(\varphi(Q))=1 \otimes\left(\left.\varphi\right|_{\partial \Gamma}\right)$. This morphism is surjective and its kernel is $\mathbb{K}(\Gamma)$.

The rest of this introduction is devoted to some applications of this theorem to spectral analysis. Let $\nu>1$ and $H=\sum_{\alpha, \beta} a_{\alpha, \beta}(Q) \partial^{* \alpha} \partial^{\beta}+K$, where K is a compact operator, $a_{\alpha, \beta} \in C(\widehat{\Gamma})$ and $a_{\alpha, \beta}=0$ for all $(\alpha, \beta) \in \mathbb{N}^{2}$ but a finite number of pairs. Clearly $H \in \mathscr{C}(\widehat{\Gamma})$. As a consequence of the Theorem 1.1, there is Φ such that $\Phi(H)=\left.\sum_{\alpha, \beta} \partial^{* \alpha} \partial^{\beta} \otimes\left(a_{\alpha, \beta}\right)\right|_{\partial \Gamma}$, and, if H self-adjoint, its essential spectrum is:

$$
\sigma_{\mathrm{ess}}(H)=\bigcup_{\gamma \in \partial \Gamma} \sigma\left(\sum_{\alpha, \beta} a_{\alpha, \beta}(\gamma) \partial^{* \alpha} \partial^{\beta}\right)
$$

This result can be made quite explicit in the particular case of a Schrödinger operator $H=\Delta+V(Q)$ with potential V in $C(\widehat{\Gamma})$. Since Δ is a bounded operator on $\ell^{2}(\Gamma)$ defined by $(\Delta f)(x)=\sum_{y \sim x}(f(y)-f(x))$, it belongs to $\mathscr{C}(\widehat{\Gamma})$. We then set $\Delta_{0}=\partial+\partial^{*}-\nu \operatorname{Id}$ (which belongs to \mathscr{D}) and notice that $\Delta-\Delta_{0}$ is compact. One then gets (see [1] for instance):

$$
\sigma_{e s s}\left(\partial+\partial^{*}\right)=\sigma_{a c}\left(\partial+\partial^{*}\right)=\sigma\left(\partial+\partial^{*}\right)=[-2 \sqrt{\nu}, 2 \sqrt{\nu}]
$$

where $\sigma_{a c}(T)$ denotes the absolute continuous part of the spectrum of a given selfadjoint operator T. On the other hand, Theorem 1.1 gives us directly $\sigma_{\text {ess }}\left(\partial^{*}+\partial\right)=$ $\sigma\left(\partial^{*}+\partial\right)$. We thus get

$$
\sigma_{e s s}(\Delta+V(Q))=\sigma\left(\Delta_{0}\right)+V(\partial \Gamma)=[-\nu-2 \sqrt{\nu},-\nu+2 \sqrt{\nu}]+V(\partial \Gamma)
$$

In fact this result holds (and is trivial) in the case of $\nu=1$, i.e., when $\Gamma=\mathbb{N}$.
Given a continuous function on $\partial \Gamma$, the Tietze theorem allows us to extend it to a continuous function on $\widehat{\Gamma}$, so one may construct a large class of Hamiltonians with given essential spectra. Nevertheless, we are able to point out a concrete class of non-trivial potentials $V \in C(\widehat{\Gamma})$ with uniform behavior at infinity which form a dense family of $C(\widehat{\Gamma})$. Namely, for each bounded function $f: \Gamma \rightarrow \mathbb{R}$ and each real $\alpha>1$ let

$$
\begin{equation*}
V(x)=\sum_{k=1}^{|x|} \frac{f\left(x_{k}\right)}{k^{\alpha}} \tag{1.1}
\end{equation*}
$$

where $x_{k}=x^{|x|-k}$ for $x \in \Gamma$ (V belongs to $C(\widehat{\Gamma})$ because of Proposition 2.3).
Concerning finer spectral features, based mainly on the Mourre estimate, we mention that in the case $H=\Delta+V(Q)$, with V as in (1.1) where $\alpha \geq 3$ and such that $V(\partial \Gamma)=0$, the results of [1] can be applied (the hypotheses of the Lemmas 6 and 7 from [1] are verified since $V(x)=O\left(|x|^{-\alpha+1}\right)$ when $\left.|x| \rightarrow \infty\right)$. The aim of our work in preparation [8] is to prove that the Mourre estimate holds for more general classes of Hamiltonians affiliated to $\mathscr{C}(\widehat{\Gamma})$ and to develop a scattering theory for them. Theorem 1.1 remains the key technical point for these purposes.

The preceding results on trees allow us to treat more general graphs. We recall that a graph is said to be connected if two of its elements can be joined by a sequence of neighbors. Let $G=\bigcup_{i=1}^{n} \Gamma_{i} \cup G_{0}$ be a finite disjoint union of Γ_{i}, each Γ_{i} being a ν_{i}-fold branching tree with $\nu_{i} \geq 1$ and of G_{0}, a compact connected graph. We endow G with a connected graph structure that respects the graph structure of each Γ_{i} and the one of G_{0}, such that Γ_{i} is connected to $\Gamma_{j}(i \neq j)$ only through G_{0} and such that Γ_{i} is connected to G_{0} only through e_{i}, the origin of Γ_{i}. The graph G is hyperbolic and its boundary at infinity ∂G is the disjoint union $\cup_{i=1}^{n} \partial \Gamma_{i}$. We now choose $V \in C(G \cup \partial G)$. One has $\left.V\right|_{\widehat{\Gamma}_{i}} \in C\left(\widehat{\Gamma}_{i}\right)$ for all $i=1, \ldots, n$ and we easily obtain:

$$
\sigma_{e s s}(\Delta+V(Q))=\bigcup_{i=1}^{n}\left(\left[-\nu_{i}-2 \sqrt{\nu_{i}},-\nu_{i}+2 \sqrt{\nu_{i}}\right]+V\left(\partial \Gamma_{i}\right)\right)
$$

This covers in particular the case of the Cayley graph of a free group with finite system of generators. We recall that the Cayley graph of a group G with a system of generators S is the graph defined on the set G with the relation $x \sim y$ if $x y^{-1} \in S$ or $y x^{-1} \in S$. Let G be a free group with a system of generators S such that $S=S^{-1}$. We denote by e its neutral element and we set $|S|=\nu+1$. One may associate the restriction of the Cayley graph to the set of words starting with a given generator with a ν-fold branching tree having as origin the generator. Hence, the Cayley graph of G will be $\cup_{i=1}^{\nu} \Gamma_{i} \cup\{e\}$ where Γ_{i} is a ν-fold branching tree with the above graph structure.

We now go further by taking $V \in C(\widehat{\Gamma}, \overline{\mathbb{R}})$ such that $V(\Gamma) \subset \mathbb{R}$ (here $\overline{\mathbb{R}}=$ $\mathbb{R} \cup\{\infty\}$ is the Alexandrov compactification of $\mathbb{R})$. More precisely, $V \in C(\widehat{\Gamma}, \overline{\mathbb{R}})$ if and only if for each $\gamma \in \partial \Gamma$ we have either $\lim _{x \rightarrow \gamma} V(x)=l$ where $l \in \mathbb{R}$ or for each $M \geq 0$ there is $N \in \mathbb{N}$ such that $|V(x)| \geq M$ for all $n \geq N$ and $x \in \gamma_{n} \Gamma$ (see Proposition 2.3). We set

$$
D(V)=\left\{f \in \ell^{2}(\Gamma) \mid\|V(Q) f\|^{2}<\infty\right\}
$$

Let $T \in \mathscr{D}$ and $T_{0}=\Phi(T)$. Since T is bounded, the operator $H=T+V(Q)$ with domain $D(V)$ is self-adjoint and it is affiliated to $\mathscr{C}(\widehat{\Gamma})$ (i.e., its resolvent belongs to $\mathscr{C}(\widehat{\Gamma}))$. Indeed, we have $(V(Q)+z)^{-1} \in C(\widehat{\Gamma})$ for each $z \in \mathbb{C} \backslash \mathbb{R}$, and for large such z,

$$
(H+z)^{-1}=(V(Q)+z)^{-1} \sum_{n \geq 0}\left(T(V(Q)+z)^{-1}\right)^{n}
$$

where the series is norm convergent. Now, with the same z, we use the Theorem 1.1 and the fact that $\mathscr{D} \otimes C(\partial \Gamma) \simeq C(\partial \Gamma, \mathscr{D})$ to obtain

$$
\Phi_{\gamma}\left((H+z)^{-1}\right) \equiv \Phi\left((H+z)^{-1}\right)(\gamma)=(V(\gamma)+z)^{-1} \sum_{n \geq 0}\left(T_{0}(V(\gamma)+z)^{-1}\right)^{n}
$$

Note that $(V(\gamma)+z)^{-1}=0$ if $V(\gamma)=\infty$. By analytic continuation we get $\Phi_{\gamma}\left((T+V(Q)+z)^{-1}\right)=\left(T_{0}+V(\gamma)+z\right)^{-1}$, for all $z \in \mathbb{C} \backslash \mathbb{R}$. We used the convention $\left(T_{0}+V(\gamma)+z\right)^{-1}=0$ if $V(\gamma)=\infty$.

We now compute the essential spectrum of H. If $V(\gamma)=\infty$ then $\sigma\left(\Phi_{\gamma}(H)\right)=$ \emptyset. Otherwise, one has $\sigma\left(\Phi_{\gamma}(H)\right)=\sigma\left(T_{0}+V(\gamma)\right)=\sigma\left(T_{0}\right)+V(\gamma)$. Hence we obtain:

$$
\sigma_{\mathrm{ess}}(T+V(Q))=\sigma\left(T_{0}\right)+V\left(\partial \Gamma_{0}\right)
$$

where $\partial \Gamma_{0}$ is the set of $\gamma \in \partial \Gamma$ such that $V(\gamma) \in \mathbb{R}$.
Remark. We mention an interesting question which has not been studied in this paper. In fact, one could replace the algebra \mathscr{D} by the (much bigger) C^{*}-algebra generated by all the right translations ρ_{a} (see Subsection 3.4 for notations) and consider the corresponding algebra $\mathscr{C}(\widehat{\Gamma})$. This is a natural object, since it contains all the "right-differential" operators acting on the tree (not only polynomials in ∂ and ∂^{*}). A combination of the techniques that we use and that of $[9,10]$ could allow one to compute the quotient in this case too. We also note that in $[9,10]$ a certain connection with the notion of crossed-product is pointed out, and this could be useful in further investigations. I would like to thank the referee for bringing to my attention the two papers of A. Nica quoted above.

2 Trees and related objects

2.1 The free monoïd Γ

Let \mathscr{A} be a finite set consisting of ν objects. Let Γ be the free monoïd over \mathscr{A}; its elements are words and those of \mathscr{A} letters. We refer to [3, Chapter I, §7] for a detailed discussion of these notions, but we recall that a word x is an \mathscr{A}-valued map defined on a set of the form ${ }^{1} \llbracket 1, n \rrbracket$ with $n \in \mathbb{N}, x(i)$ being the i th letter of the word x. The integer n (the number of letters of x) is the length of the word and will be denoted $|x|$. There is a unique word e of length 0 , its domain being the empty set. This is the neutral element of Γ. We will also identify \mathscr{A} with the set of words of length 1 .

The monoïd Γ will be endowed with the discrete topology. If $x \in \Gamma$, we denote $x \Gamma$ and Γx the right and left ideals generated by x. We have on Γ a canonical order relation which is by definition:

$$
x \leq y \Leftrightarrow y \in x \Gamma
$$

We recall some terminology from the theory of ordered sets. If Γ is an arbitrary ordered set and $x, y \in \Gamma$, then one says that y covers x if $x<y$ and if $x \leq z \leq y \Rightarrow z=x$ or $z=y$. If $x \in \Gamma$, we denote $\widetilde{x}=\{y \in \Gamma \mid y$ covers $x\}$

In our case, y covers x if $x \leq y$ and $|y|=|x|+1$. Notice that each element $x \in \Gamma \backslash\{e\}$ covers a unique element x^{\prime}, its father, and each element $x \in \Gamma$ is covered by ν elements, its sons. The set of sons of x clearly is $\widetilde{x}=\{x \varepsilon \mid \varepsilon \in \mathscr{A}\}$. Hence:

$$
y \text { covers } x \Leftrightarrow y^{\prime}=x \Leftrightarrow y \in \widetilde{x}
$$

[^0]For $|x| \geq n$, we define $x^{(n)}$ inductively by setting $x^{(0)}=x$ and $x^{(m+1)}=\left(x^{(m)}\right)^{\prime}$ for $m \leq n-1$. One may also notice that: $\left|x^{(\alpha)}\right|=|x|-\alpha$, if $\alpha \leq|x|$, and for $\alpha \leq|a b|:$

$$
(a b)^{(\alpha)}= \begin{cases}a b^{(\alpha)}, & \text { if } \alpha \leq|b| \\ a^{(\alpha-|b|)}, & \text { if } \alpha \geq|b| .\end{cases}
$$

We remark that if $\nu=1$ then $\Gamma=\mathbb{N}$ and if $\nu>1$ then Γ is the set of monoms of ν non-commutative variables.

2.2 The tree Γ and the extended tree associated to \mathscr{A}

Recall that a graph is a couple $G=(V, E)$, where V is a set (of vertices) and E is a set of pairs of elements of V (the edges). If x and y are joined by an edge, one says that they are neighbours and one abbreviates $x \sim y$. The graph structure allows one to endow V with a canonical metric d, where $d(x, y)$ is the length of the shortest path in G joining x to y.

The graph G_{Γ} associated to the free monoïd Γ is defined as follows: $V=\Gamma$ and $x \sim y$ if x covers y or y covers x. It is usual to identify Γ and G_{Γ}, the so-called ν-fold branching tree. For all $x \in \Gamma$, we have $|x|=d(e, x)$. We set $B(x, r)=\{y \in \Gamma \mid d(x, y)<r\}$ and $S^{n}=\{x \in \Gamma| | x \mid=n\}$.

We shall now define an extended tree by mimicking the definition of a free monoïd over \mathscr{A}. We choose $o \in \mathscr{A}$; this element will be fixed from now on. For each integer r, we set $\mathbb{Z}_{r}=\{i \in \mathbb{Z} \mid i \leq r\}$. The extended tree $\widetilde{\Gamma}$ associated to \mathscr{A} is the set of \mathscr{A}-valued maps x defined on sets of the form \mathbb{Z}_{r} such that $\{i \mid x(i) \neq o\}$ is finite. For $x \in \widetilde{\Gamma}$, the unique $r \in \mathbb{Z}$ such that x is a map $\mathbb{Z}_{r} \rightarrow \mathscr{A}$ will be denoted $|x|$ and will be called length of x.

We shall identify Γ with the set $\{x||x| \geq 0$ and $x(i)=o$ if $i \leq 0\}$ as follows: if $x \in \Gamma$ then we associate to it the element of $\widetilde{\Gamma}$ defined on $\mathbb{Z}_{|x|}$ by extending x with $x(i)=o$ if $i \leq 0$. The element e will be identified with the map $e \in \widetilde{\Gamma}$ such that $|e|=0$ and $e(i)=o, \forall i \leq 0$. Notice that the two notions of length are consistent on Γ.

There is a natural right action of Γ on $\widetilde{\Gamma}$ by concatenation, i.e., for $x \in \widetilde{\Gamma}$ and $y \in \Gamma, x y$ will be the function z defined on $\mathbb{Z}_{|x|+|y|}$ such that $z(i)=x(i)$, for $i \in \mathbb{Z}_{|x|}$ and $z(|x|+i)=y(i)$ for $i \in \llbracket 1,|y| \rrbracket$. Then we equip $\widetilde{\Gamma}$ with an order relation by setting:

$$
x \leq y \Leftrightarrow y \in x \Gamma
$$

As before, y covers x if and only if $x \leq y$ and $|y|=|x|+1$. Now, each $x \in \widetilde{\Gamma}$ covers a unique $x^{\prime} \in \widetilde{\Gamma}$ and each $x \in \widetilde{\Gamma}$ is covered by ν elements, namely those of $\widetilde{x}=\{x \varepsilon \mid \varepsilon \in \mathscr{A}\}$. We still have: y covers $x \Leftrightarrow y^{\prime}=x \Leftrightarrow y \in \widetilde{x}$. Observe that $x^{\prime}=\left.x\right|_{\mathbb{Z}_{|x|-1}}$. We will set $x^{(\alpha)}=\left.x\right|_{\mathbb{Z}_{|x|-\alpha}}$ for all $\alpha \in \mathbb{Z}$. As we did it for Γ, we shall identify the graph $G_{\widetilde{\Gamma}}$ with $\widetilde{\Gamma}$. This justifies the notion of extended tree used for $\widetilde{\Gamma}$.

2.3 The boundary at infinity of Γ

We shall see in the ending remark of this subsection that the boundary at infinity of Γ can be thought as the boundary of a 0 -hyperbolic space in the sense of Gromov. We prefer, however, to give a simpler presentation that is closer to the theory of p-adic numbers (see [11] for instance). In fact, if ν is prime the boundary will be the set of ν-adic integers.

Definition 2.1 The boundary at infinity of Γ is the set $\partial \Gamma=\left\{x: \mathbb{N}^{*} \rightarrow \mathscr{A}\right\}$. For $x \in \partial \Gamma$, we set $|x|=\infty$.

Let $\widehat{\Gamma}$ be $\Gamma \cup \partial \Gamma$. For $x \in \widehat{\Gamma}$, we define the sequence $\left(x_{n}\right)_{n \in \llbracket 0,|x| \rrbracket}$ with values in Γ by setting $x_{0}=e$ and $x_{n}=\left.x\right|_{\llbracket 1, n \rrbracket}$ for $n \geq 1$. Observe that the map $x \mapsto\left(x_{n}\right)_{n \in \llbracket 0,|x| \rrbracket}$ is injective. There is a natural left action of Γ on $\widehat{\Gamma}$. For $x \in \Gamma$ and $y \in \widehat{\Gamma}, x y$ will be defined on the $\operatorname{set}^{2} \llbracket 1,|x|+|y| \rrbracket$ by $x(i)$ for $i \leq|x|$ and by $y(i-|x|)$ for $i>|x|$.

We will now equip $\widehat{\Gamma}$ with a structure of ultrametric space. We define a kind of valuation v on $\widehat{\Gamma} \times \widehat{\Gamma}$ by

$$
v(x, y)=\left\{\begin{array}{lll}
\max \left\{n \mid x_{n}=y_{n}\right\} & \text { if } & x \neq y \tag{2.1}\\
\infty & \text { if } & x=y
\end{array}\right.
$$

If $x, y, z \in \widehat{\Gamma}$ it is easy to see that:

$$
\begin{equation*}
v(x, y) \geq \min (v(x, z), v(z, y)) \tag{2.2}
\end{equation*}
$$

Let us set on $\widehat{\Gamma}$:

$$
\widehat{d}(x, y)=\exp (-v(x, y))
$$

The relation (2.2) clearly implies that $(\widehat{\Gamma}, \widehat{d})$ is an ultrametric space, i.e., a metric space such that $\widehat{d}(x, y) \leq \max (\widehat{d}(x, z), \widehat{d}(z, y))$, for $x, y, z \in \widehat{\Gamma}$. We will denote, for $r>0, \widehat{B}(x, r)=\{y \in \widehat{\Gamma} \mid \widehat{d}(x, y)<r\}$. Notice that ultrametricity implies that $\widehat{B}(x, r)$ is closed for all $x \in \widehat{\Gamma}$ and $r>0$.

The topology induced by $\widehat{\Gamma}$ on Γ coincides with the initial topology of Γ, the discrete one. For $x \in \partial \Gamma$ and $n \in \mathbb{N}$,

$$
x_{n} \widehat{\Gamma}=\{y \in \widehat{\Gamma} \mid v(x, y) \geq n\}=\widehat{B}(x, \exp (-n+1))
$$

which is the closure of $x_{n} \Gamma$ in $\widehat{\Gamma}$. Hence for each $x \in \partial \Gamma,\left\{x_{n} \widehat{\Gamma}\right\}_{n \in \mathbb{N}}$ is a basis of neighborhoods of x in $\widehat{\Gamma}$. Observe that if $x \in \Gamma$ then $x \partial \Gamma=x \widehat{\Gamma} \cap \partial \Gamma$.
Proposition 2.2 $\widehat{\Gamma}$ and $\partial \Gamma$ are compact spaces. $\widehat{\Gamma}$ is a compactification of Γ.
Proof. $\partial \Gamma=\mathscr{A}^{\mathbb{N}^{*}}$, thus the set $\partial \Gamma$ endowed with the product topology is compact. This topology coincides with the one induced by the restriction of \widehat{d} on $\partial \Gamma$ (for

[^1]$x \in \partial \Gamma$, the product topology gives us the same basis of neighborhoods $\left\{x_{n} \partial \Gamma\right\}_{n \in \mathbb{N}}$ as $\left.\widehat{d}{ }_{\partial \Gamma}\right)$.

Since $\partial \Gamma$ is compact, in order to show that $\widehat{\Gamma}$ is compact, it suffices to remark that $\cup_{x \in \partial \Gamma} \widehat{B}(x, \exp (-k))=\{y \widehat{\Gamma}| | y \mid=k+1\}$ has a finite complementary in $\widehat{\Gamma}$, for all $k \in \mathbb{N}$. Since Γ is dense in $\widehat{\Gamma}, \widehat{\Gamma}$ is a compactification of Γ.

Notice also that if $\nu>1$, the topological space $\partial \Gamma$ is perfect.
The C^{*}-algebra $C(\widehat{\Gamma})$ of continuous complex-valued functions on $\widehat{\Gamma}$ plays an important rôle. The dense embedding $\Gamma \subset \widehat{\Gamma}$ gives a canonical inclusion $C(\widehat{\Gamma}) \subset$ $C_{b}(\Gamma)\left(C_{b}(\Gamma)\right.$ is the space of bounded complex-valued functions on $\left.\Gamma\right)$. Moreover, we have

$$
\begin{equation*}
C_{0}(\Gamma)=\left\{f \in C(\widehat{\Gamma})|f|_{\partial \Gamma}=0\right\} \tag{2.3}
\end{equation*}
$$

where $C_{0}(\Gamma)=\{f: \Gamma \rightarrow \mathbb{C}|\forall \varepsilon>0, \exists M>0||x|>M \Rightarrow|f(x)|<\varepsilon\}$. We shall often abbreviate $C_{0}(\Gamma)$ by C_{0}.

The following proposition gives us a better understanding of the functions in $C(\widehat{\Gamma})$.

Proposition 2.3 Let E be a metrisable topological space. A function $V: \Gamma \rightarrow E$ extends to a continuous function $\widehat{V}: \widehat{\Gamma} \rightarrow E$ if and only if for each $x \in \partial \Gamma$ the limit of $V(y)$, when $y \in \Gamma$ converges to x, exists.

Proof. Let $x \in \partial \Gamma$ and $\widehat{V}(x)$ be the above limit. Let F be a closed neighborhood of $\widehat{V}(x)$ in E; there is k such that $V\left(x_{k} \Gamma\right) \subset F$. Then $x_{k} \widehat{\Gamma}$ is a neighborhood of x in $\widehat{\Gamma}$ and, since F is closed, we have $\widehat{V}\left(x_{k} \widehat{\Gamma}\right) \subset F$.

Later on, we will need the next ultrametricity result. We will say that $\mathscr{U}=$ $\left\{x_{i} \Gamma\right\}$ is a covering of $\partial \Gamma$ if $\widehat{\mathscr{U}}=\left\{x_{i} \widehat{\Gamma}\right\}$ is a covering of $\partial \Gamma$.

Proposition 2.4 For each open covering $\left\{\mathscr{O}_{i}\right\}_{i \in I}$ of $\partial \Gamma$, there is a disjoint and finite covering $\left\{x_{j} \Gamma\right\}_{j \in J}$ of $\partial \Gamma$ such that for each $j \in J$ there is $i \in I$ such that $x_{j} \widehat{\Gamma} \subset \mathscr{O}_{i}$.

Proof. For each $x \in \partial \Gamma$ there is i such that x belongs to the open set \mathscr{O}_{i} and there is $n=n(x, i)$ such that $x_{n} \widehat{\Gamma} \subset \mathscr{O}_{i}$. Since $\partial \Gamma$ is compact, there is a finite sub-covering of $\partial \Gamma$ made by sets $\left\{y_{j} \widehat{\Gamma}\right\}_{j \in \llbracket 1, m \rrbracket}$ such that each of its elements is a subset of some \mathscr{O}_{i}. But in ultrametric spaces two balls are either disjoint or one of them is included in the other one. Since $\left\{y_{j} \widehat{\Gamma}\right\}$ are balls, we get the result. One may also choose $\left\{y \widehat{\Gamma}\left||y|=\max _{j \in \llbracket 1, m \rrbracket}\right| y_{j} \mid\right\}$ as the required covering.

Remark. As we said previously, this section could be presented from the perspective of hyperbolicity in the sense of Gromov, see [2, Chapter V] (a deeper investigation can be found in [4] and [7]). Let (M, d) be a metric space. For $x, y \in M$ and a given $O \in M$, we define the Gromov product as:

$$
\begin{equation*}
(x, y)_{O}=\frac{1}{2}(d(O, x)+d(O, y)-d(x, y)) \tag{2.4}
\end{equation*}
$$

The space (M, d) is called δ-hyperbolic if there is δ such that for all x, y, z, $O \in M$,

$$
\begin{equation*}
(x, y)_{O} \geq \min \left((x, z)_{O},(z, y)_{O}\right)-\delta \tag{2.5}
\end{equation*}
$$

A metric space is hyperbolic if it is δ-hyperbolic for a certain δ. In fact, if there is δ such that (2.5) holds for all $x, y, z \in M$ and a given O then (M, d) is 2δ hyperbolic. Classical examples of 0-hyperbolic spaces are trees (connected graphs with no cycle) and real trees (see [7] for this notion). Cartan-Hadamard manifolds, the Poincaré half-plane and, more generally, complete simply connected manifolds with sectional curvature bounded by $\kappa<0$ are δ-hyperbolic spaces with $\delta>0$.

We equip the set of sequences with values in M with an equivalence relation between $\left(u_{n}\right)$ and $\left(v_{n}\right)$ defined by the condition $\lim _{(n, m) \rightarrow \infty}\left(u_{n}, v_{m}\right)_{O}=\infty$. The boundary at infinity ∂M is the set of equivalence classes. A basis of open sets of ∂M is given by

$$
\widetilde{\mathscr{O}}=\{\gamma \in \partial M \mid \gamma \text { is not associated to any sequence of } M \backslash \mathscr{O}\}
$$

where \mathscr{O} is an open set of M. The boundary of a 0 -hyperbolic space is ultrametric.
In our context, if we drop the convention $v(x, x)=\infty$, our valuation (2.1) is exactly (2.4). Hence (2.2) implies that Γ is 0 -hyperbolic. We define a geodesic ray as being $\gamma: \mathbb{N} \rightarrow \Gamma$ such that $|\gamma(n)|=n$ and $\gamma(n+1) \sim \gamma(n)$. Geodesic rays are representative elements of the above equivalence classes. The two notions of boundary at infinity are identified by setting $x_{n}=\gamma(n)$.

3 Operators in $\ell^{2}(\Gamma)$

3.1 Bounded and compact operators

We are interested in operators acting on the Hilbert space

$$
\ell^{2}(\Gamma)=\left\{f:\left.\Gamma \rightarrow \mathbb{C}\left|\sum_{x \in \Gamma}\right| f(x)\right|^{2}<\infty\right\}
$$

endowed with the inner product: $\langle f, g\rangle=\sum_{x \in \Gamma} \overline{f(x)} g(x)$. We embed $\Gamma \subset \ell^{2}(\Gamma)$ by identifying x with $\chi_{\{x\}}$, where χ_{A} is the characteristic function of the set A. Observe that Γ is the canonical orthonormal basis in $\ell^{2}(\Gamma)$ and each $f \in \ell^{2}(\Gamma)$ writes as $f=\sum_{x \in \Gamma} f(x) x$.

We denote by $\mathbb{B}(\Gamma), \mathbb{K}(\Gamma)$ the sets of bounded, respectively compact operators in $\ell^{2}(\Gamma)$. For $T \in \mathbb{B}(\Gamma)$, we will denote by T^{*} its adjoint. Given $A \subset \Gamma$ we denote by $\mathbf{1}_{A}$ the operator of multiplication by χ_{A} in $\ell^{2}(\Gamma)$. The orthogonal projection associated to $\left\{x \in \Gamma||x| \geq r\}\right.$ is denoted by $\mathbf{1}_{\geq r}$. For $T \in \Gamma$, we have the following compacity criterion for bounded operators T in $\ell^{2}(\Gamma)$:
Proposition 3.1 $T \in \mathbb{K}(\Gamma) \Longleftrightarrow\left\|\mathbf{1}_{\geq r} T\right\| \underset{r \rightarrow \infty}{\longrightarrow} 0 \Longleftrightarrow\left\|T \mathbf{1}_{\geq r}\right\| \underset{r \rightarrow \infty}{\longrightarrow} 0$.
Proof. If one has for example $\left\|\mathbf{1}_{\geq r} T\right\| \rightarrow 0$, then T is the norm limit of the sequence of finite rank operators $\mathbf{1}_{B(e, r)} T$, hence is compact.

3.2 The operator ∂

We now extend $x \mapsto x^{\prime}$ to a map $\ell^{2}(\Gamma) \rightarrow \ell^{2}(\Gamma)$. We set $e^{\prime}=0$ and define the derivative of any $f \in \ell^{2}(\Gamma)$ as:

$$
(\partial f)(x) \equiv f^{\prime}(x)=\sum_{y \in \Gamma} f(y) y^{\prime}(x)=\sum_{y^{\prime}=x} f(y)=\sum_{y \in \tilde{x}} f(y)
$$

Thus $\partial \in \mathbb{B}(\Gamma)$. Indeed, $\left\|f^{\prime}\right\|^{2}=\sum_{x \in \Gamma}\left|f^{\prime}(x)\right|^{2} \leq \nu \sum_{x \in \Gamma} \sum_{y \in \tilde{x}}|f(y)|^{2} \leq \nu\|f\|^{2}$. The adjoint ∂^{*} acts on each $f \in \ell^{2}(\Gamma)$ as follows:

$$
\partial^{*} f(x)=\chi_{\Gamma \backslash\{e\}}(x) f\left(x^{\prime}\right)
$$

Indeed, $\langle\partial f, f\rangle=\sum_{x \in \Gamma} \sum_{y \in \tilde{x}} \overline{f(y)} f(x)=\sum_{x \in \Gamma} \overline{f(x)} \chi_{\Gamma \backslash\{e\}}(x) f\left(x^{\prime}\right)=\left\langle f, \partial^{*} f\right\rangle$. Moreover, $\left\|\partial^{*} f\right\|^{2}=\sum_{x \in \Gamma \backslash\{e\}}\left|f\left(x^{\prime}\right)\right|^{2}=\nu \sum_{x \in \Gamma}|f(x)|^{2}=\nu\|f\|^{2}$ shows that

$$
\begin{equation*}
\partial \partial^{*}=\nu \mathrm{Id} \tag{3.1}
\end{equation*}
$$

Thus $\partial^{*} / \sqrt{\nu}$ is isometric on $\ell^{2}(\Gamma)$ and $\|\partial\|=\left\|\partial^{*}\right\|=\sqrt{\nu}$.
For $\alpha \in \mathbb{N}$ we set $f^{(\alpha)}=\partial^{\alpha} f$. Thus for each $x \in \Gamma, x^{(\alpha)}$ is well defined in $\ell^{2}(\Gamma)$ and $x^{(\alpha)}=0 \Leftrightarrow \alpha>|x|$. For $|x| \geq \alpha$ the notation is consistent with our old definition.

$3.3 \quad C^{*}$-algebras of energy observables related to Γ

We first summarize the method used in [6] to study the essential spectrum of large families of operators. Let \mathscr{H} be a Hilbert space and H a bounded selfadjoint operator on \mathscr{H}. If $C(\mathscr{H})=B(\mathscr{H}) / K(\mathscr{H})$ is the Calkin C^{*}-algebra, we denote by $S \mapsto \widehat{S}$ the canonical surjection of $B(\mathscr{H})$ onto $C(\mathscr{H})$ and we recall that $\sigma_{e s s}(H)=\sigma(\widehat{H})$ (this is a version of Weyl's Theorem). If \mathfrak{C} is a C^{*}-subalgebra of $B(\mathscr{H})$ which contains the compact operators, then one has a canonical embedding $\mathfrak{C} / K(\mathscr{H}) \subset C(\mathscr{H})$. Thus, in order to determine the essential spectrum of an operator $H \in \mathfrak{C}$ it suffices to give a good description of the quotient $\mathfrak{C} / K(\mathscr{H})$ and to compute \widehat{H} as element of it. As explained in [6], we can actually go further by taking H as an unbounded operator over \mathscr{H} such that $(H+i)^{-1} \in \mathfrak{C}$. We shall apply this strategy in our context.

Let $\mathscr{D}_{\text {alg }}$ be the $*$-algebra of operators in $\ell^{2}(\Gamma)$ generated by ∂ and \mathscr{D} the C^{*}-algebra of operators in $\ell^{2}(\Gamma)$ generated by ∂. Because of (3.1), $\mathscr{D}_{\text {alg }}$ is unital. We denote by $\varphi(Q)$ the operator of multiplication by φ on $\ell^{2}(\Gamma)$. If C is a $C^{*}-$ subalgebra of $\ell^{\infty}(\Gamma)$ then we embed C in $\mathbb{B}(\Gamma)$ by $\varphi \mapsto \varphi(Q)$. Let $\langle\mathscr{D}, C\rangle$ be the C^{*}-algebra generated by $\mathscr{D} \cup C$. In this paper we shall take $\mathfrak{C}=\langle\mathscr{D}, C\rangle$. This algebra contains many Hamiltonians of physical interest, for instance Schrödinger operators with potentials in C. We recall that given a graph G the Laplace operator acts on $\ell^{2}(G)$ as follows:

$$
(\Delta f)(x)=\sum_{y \sim x}(f(y)-f(x))
$$

With our definitions $\Delta=\partial+\partial^{*}-\nu \operatorname{Id}+\chi_{\{e\}}$. Notice that if $\nu>1$ then \mathscr{D} does not contain compact operators (see below), so $\Delta \notin \mathscr{D}$. On the other hand, if $C \supset C_{0}$ and $V \in C$ then the Schrödinger operator $\Delta+V(Q)$ clearly belongs to $\langle\mathscr{D}, C\rangle$.

We now give a new description of $\mathbb{K}(\Gamma)$.
Proposition 3.2 If \mathscr{C}_{0} be the C^{*}-algebra generated by $\mathscr{D} \cdot C_{0}$ then $\mathscr{C}_{0}=\mathbb{K}(\Gamma)$.
Proof. For each $\varphi \in C_{0}$, Proposition 3.1 shows $\varphi(Q) \in \mathbb{K}(\Gamma)$. Hence $\mathscr{C}_{0} \subset \mathbb{K}(\Gamma)$. For the opposite inclusion, let $T \in \mathbb{K}(\Gamma)$ and fix $\varepsilon>0$. Proposition 3.1, shows that there is an operator T^{\prime} with compactly supported kernel such that $\left\|T-T^{\prime}\right\| \leq \varepsilon$. Define $\delta_{x, y} \in \mathbb{K}(\Gamma)$ by $\left(\delta_{x, y} f\right)(z)=f(y)$ if $z=x$ and 0 elsewhere. We have $\delta_{x, x}=\chi_{\{x\}}(Q) \in C_{0}$. As T^{\prime} is a linear combination of $\delta_{x, y}$, it suffices to show that $\delta_{x, y}$ is in \mathscr{C}_{0}. But this follows from $\delta_{x, y}=\delta_{x, x}\left(\partial^{*}\right)^{|x|} \partial^{|y|} \delta_{y, y}$.

If C is a C^{*}-subalgebra of $\ell^{\infty}(\Gamma)$ that contains C_{0}, then $\mathbb{K}(\Gamma) \subset\langle\mathscr{D}, C\rangle$. Hence, in order to apply the technique described above, we have to give a sufficiently explicit description of the quotient $\langle\mathscr{D}, C\rangle / \mathbb{K}(\Gamma)$. In this paper we concentrate on the case $C \equiv C(\widehat{\Gamma})$ which is, geometrically speaking, the most interesting one (see the last Remark in §2.3). The C^{*}-algebra generated by ∂ and $C(\widehat{\Gamma})$ will be denoted by $\mathscr{C}(\widehat{\Gamma})$ and the $*$-subalgebra generated by ∂ and $C(\widehat{\Gamma})$ will be denoted by $\mathscr{C}(\widehat{\Gamma})_{\text {alg }}$. We will need the next fundamental property.

Proposition $3.3[\partial, C(\widehat{\Gamma})] \subset \mathbb{K}(\Gamma)$.
Proof. For each $\varphi \in C(\widehat{\Gamma})$ one has $([\partial, \varphi(Q)] f)(x)=\sum_{y^{\prime}=x}(\varphi(y)-\varphi(x)) f(y)=$ $(\partial \circ \psi(Q) f)(x)$, where ψ belongs to $C(\widehat{\Gamma})$ and is defined by $\psi(y)=\varphi(y)-\varphi\left(y^{\prime}\right)$ when $|y| \geq 1$ and $\psi(e)=0$. Observe that for $\gamma \in \partial \Gamma$ we have $\psi(\gamma)=\varphi(\gamma)-\varphi(\gamma)=0$. Hence by (2.3), $\psi \in C_{0}$. Proposition 3.2 implies $\psi(Q) \in \mathbb{K}(\Gamma)$.

Remark. The algebra \mathscr{D} is the tree analogous of the algebra generated by the momentum operator on the real line. However, these algebras are rather different: \mathscr{D} is not commutative and the spectrum and the essential spectrum of the operators from \mathscr{D} are not connected sets in general. For instance, one has $\sigma\left(\partial^{*} \partial\right)=\sigma_{\text {ess }}\left(\partial^{*} \partial\right)=\{0, \nu\}$ if $\nu>1$. Indeed, we remind that if A, B are elements of a Banach algebra we have $\sigma(A B) \cup\{0\}=\sigma(B A) \cup\{0\}$ and, as noticed below, $\operatorname{dim} \operatorname{Ker} \partial$ is infinite for $\nu>1$.

3.4 Translations in $\ell^{2}(\Gamma)$

Γ acts on itself to the left and to the right: for each $a \in \Gamma$ we may define $\lambda_{a}, \rho_{a}: \Gamma \rightarrow$ Γ by $\lambda_{a}(x)=a x$ and $\rho_{a}(x)=x a$ respectively. Clearly, for $a, b \in \Gamma, \lambda_{a} \rho_{b}=\rho_{b} \lambda_{a}$ and for any $x \in a \Gamma$ we define $a^{-1} x$ as being the y for which $x=a y$. For each $x \in \Gamma a=\{y \in \Gamma \mid \exists z \in \Gamma$ s.t. $y=z a\}$, we define $y=x a^{-1}$ by $x=y a$. We extend now these translations to $\ell^{2}(\Gamma)$. The translation λ_{a} acts on each $f \in \ell^{2}(\Gamma)$
as $\sum_{x \in \Gamma} f(x) a x$, i.e., $\left(\lambda_{a} f\right)(x)=\chi_{a \Gamma}(x) f\left(a^{-1} x\right)$. In the same manner, we define $\left(\rho_{a} f\right)(x)=\chi_{\Gamma a}(x) f\left(x a^{-1}\right)$. The operators λ_{a} and ρ_{a} are isometries:

$$
\begin{equation*}
\lambda_{a}^{*} \lambda_{a}=\operatorname{Id} \text { and } \rho_{a}^{*} \rho_{a}=\operatorname{Id} \tag{3.2}
\end{equation*}
$$

It is easy to check that the adjoins act on any $f \in \ell^{2}(\Gamma)$ as $\left(\lambda_{a}^{*} f\right)(x)=f(a x)$ and $\left(\rho_{a}^{*} f\right)(x)=f(x a)$. Moreover,

$$
\begin{equation*}
\lambda_{a} \lambda_{a}^{*}=\mathbf{1}_{a \Gamma} \text { and } \rho_{a} \rho_{a}^{*}=\mathbf{1}_{\Gamma a} . \tag{3.3}
\end{equation*}
$$

Note also that $\partial^{*}=\sum_{|a|=1} \rho_{a}$ and $\partial=\sum_{|a|=1} \rho_{a}^{*}$.

3.5 Localizations at infinity

In order to study $\mathscr{C}(\widehat{\Gamma}) / \mathbb{K}(\Gamma)$ we have to define the localizations at infinity of $T \in \mathscr{C}(\widehat{\Gamma})$ by looking at the behavior of the translated operator $\lambda_{a}^{*} T \lambda_{a}$ as a converges to γ in $\widehat{\Gamma}$ (abbreviated $a \rightarrow \gamma$), for each $\gamma \in \partial \Gamma$.

If $T \in \mathbb{K}(\Gamma)$ then $u-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} T \lambda_{a}=0$, where u -lim means convergence in norm. Indeed, by (3.2), (3.3) and Proposition 3.1 we get $\left\|\lambda_{a}^{*} T \lambda_{a}\right\|=\left\|\mathbf{1}_{a \Gamma} T \mathbf{1}_{a \Gamma}\right\| \rightarrow 0$, as $a \rightarrow \gamma$. Now, we compute the uniform limit of $\lambda_{a}^{*} T \lambda_{a}$ when $T \in \mathscr{C}(\widehat{\Gamma})_{\text {alg }}$. There is P, a non-commutative complex polynomial in $m+2$ variables, and functions $\varphi_{i} \in C(\widehat{\Gamma})$ for $i=\llbracket 1, m \rrbracket$, such that $T=P\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}, \partial, \partial^{*}\right)$. We set $T(\gamma)=$ $P\left(\varphi_{1}(\gamma), \varphi_{2}(\gamma), \ldots, \varphi_{m}(\gamma), \partial, \partial^{*}\right)$.

Lemma 3.4 There is $a_{0} \in \Gamma$ such that $\mathrm{u}-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} T \lambda_{a}=\lambda_{a_{0}}^{*} T(\gamma) \lambda_{a_{0}}$.
Proof. The Proposition 3.3 and (3.1) give some $\phi_{k} \in C(\widehat{\Gamma}), K \in \mathbb{K}(\Gamma)$ and $\alpha_{k}, \beta_{k} \in$ \mathbb{N} such that $T=\sum_{k=1}^{n} \phi_{k}(Q) \partial^{* \alpha_{k}} \partial^{\beta_{k}}+K$ and $T(\gamma)=\sum_{k=1}^{n} \phi_{k}(\gamma) \partial^{* \alpha_{k}} \partial^{\beta_{k}}$. Thus, it suffices to compute a limit of the form u- $\lim _{a \rightarrow \gamma} \lambda_{a}^{*} \varphi(Q) \partial^{* \alpha} \partial^{\beta} \lambda_{a}$ with $\varphi \in C(\widehat{\Gamma})$. We suppose $|a| \geq \alpha$ and take $f \in \ell^{2}(\Gamma)$. We first show the result for $\varphi=1$. Since

$$
\begin{equation*}
\left(\lambda_{a}^{*} \partial^{* \alpha} \partial^{\beta} \lambda_{a} f\right)(x)=\sum_{\left\{y \mid y^{(\beta)}=(a x)^{(\alpha)}\right\}}\left(\lambda_{a} f\right)(y)=\sum_{\left\{y \mid(a y)^{(\beta)}=(a x)^{(\alpha)}\right\}} f(y), \tag{3.4}
\end{equation*}
$$

it suffices to show that the set $\left\{y \mid(a y)^{(\beta)}=(a x)^{(\alpha)}\right\}$ is independent of a if $|a| \geq \alpha$. But this is precisely what asserts the Lemma 3.5 below.

We now treat the general case $\varphi \in \mathbb{C}(\widehat{\Gamma})$. The identity

$$
\left(\lambda_{a}^{*} \varphi(Q) \partial^{* \alpha} \partial^{\beta} \lambda_{a} f\right)(x)=\varphi(a x)\left(\lambda_{a}^{*} \partial^{* \alpha} \partial^{\beta} \lambda_{a} f\right)(x)
$$

gives us that

$$
\left\|\lambda_{a}^{*} \varphi(Q) \partial^{* \alpha} \partial^{\beta} \lambda_{a}-\varphi(\gamma) \lambda_{a}^{*} \partial^{* \alpha} \partial^{\beta} \lambda_{a}\right\| \leq\|\varphi(a Q)-\varphi(\gamma)\| \cdot\left\|\partial^{* \alpha} \partial^{\beta}\right\| \rightarrow 0
$$

as $a \rightarrow \gamma$. On the other hand, by the Lemma 3.5, $\varphi(\gamma) \lambda_{a}^{*} \partial^{* \alpha} \partial^{\beta} \lambda_{a}$ is constant for $|a| \geq \alpha$. Thus, it suffices to choose $\left|a_{0}\right| \geq \max \left\{\alpha_{k} \mid k=1, \ldots, n\right\}$ in the statement of the lemma to end the proof.

Lemma 3.5 For $|a| \geq \alpha$ we have:

$$
\left\{y \mid(a y)^{(\beta)}=(a x)^{(\alpha)}\right\}= \begin{cases}\emptyset & \text { for }|x|+\beta-\alpha<0 \tag{3.5}\\ S^{|x|+\beta-\alpha} & \text { for }|x|<\alpha \text { and }|x|+\beta-\alpha \geq 0 \\ x^{(\alpha)} S^{\beta} & \text { for }|x| \geq \alpha \text { and }|x|+\beta-\alpha \geq 0\end{cases}
$$

Proof. Let $J_{x}=\left\{y \mid(a y)^{(\beta)}=(a x)^{(\alpha)}\right\}$. Then

$$
\begin{aligned}
a J_{x} & =\left\{a y \mid(a y)^{(\beta)}=(a x)^{(\alpha)}\right\}=\left\{y \mid y^{(\beta)}=(a x)^{(\alpha)}\right\} \cap a \Gamma \\
& =\left((a x)^{(\alpha)} S^{\beta}(\Gamma)\right) \cap a \Gamma .
\end{aligned}
$$

We first notice that $(a x)^{(\alpha)} S^{\beta} \subset S^{|a|+|x|-\alpha+\beta}$. If $|x|-\alpha+\beta<0$ then $\left((a x)^{(\alpha)} S^{\beta}\right) \cap a \Gamma=\emptyset$, so $a J_{x}=\emptyset$. This implies $J_{x}=\emptyset$. If $|x|-\alpha+\beta \geq 0$ then $\left((a x)^{(\alpha)} S^{\beta}\right) \cap a \Gamma \neq \emptyset$. If we suppose that $|x|<\alpha$, i.e., $\left|(a x)^{(\alpha)}\right|<|a|$, we have $a \in(a x)^{(\alpha)} \Gamma$. Let b such that $a=(a x)^{(\alpha)} b$. Thus

$$
\begin{aligned}
\left((a x)^{(\alpha)} S^{\beta}\right) \cap a \Gamma & =\left((a x)^{(\alpha)} S^{\beta}\right) \cap(a x)^{(\alpha)} b \Gamma=(a x)^{(\alpha)}\left(S^{\beta} \cap b \Gamma\right) \\
& =(a x)^{(\alpha)} b S^{\beta-|b|}=a S^{\beta-|b|}=a S^{\beta+|x|-\alpha},
\end{aligned}
$$

so we have $a J_{x}=a S^{\beta+|x|-\alpha}$, hence $J_{x}=S^{\beta+|x|-\alpha}$.
Finally, if $|x| \geq \alpha$, i.e., $\left|(a x)^{(\alpha)}\right| \geq|a|$, one has $(a x)^{(\alpha)} \in a \Gamma$. Thus we obtain $a J_{x}=(a x)^{(\alpha)} S^{\beta}=a x^{(\alpha)} S^{\beta}$, hence $J_{x}=x^{(\alpha)} S^{\beta}$.

Remark. As seen in the proof of Lemma 3.4, one may choose any a_{0} such that $\left|a_{0}\right| \geq \operatorname{deg}(P)$. On the other hand, we stress that the limit is not a multiplicative function of T. Indeed,

$$
\mathrm{u}-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} \partial^{*} \partial \lambda_{a} \neq\left(\mathrm{u}-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} \partial^{*} \lambda_{a}\right) \cdot\left(\mathrm{u}-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} \partial \lambda_{a}\right) .
$$

Therefore, in order to describe the morphism of the algebra $\mathscr{C}(\widehat{\Gamma})$ onto its quotient $\mathscr{C}(\widehat{\Gamma}) / \mathbb{K}(\Gamma)$ we have to improve our definition of the localizations at infinity.

3.6 Extensions to $\widetilde{\Gamma}$

The space $\ell^{2}(\widetilde{\Gamma})$ is defined similarly to $\ell^{2}(\Gamma)$. Since $\Gamma \subset \widetilde{\Gamma}$, we have $\ell^{2}(\Gamma) \hookrightarrow \ell^{2}(\widetilde{\Gamma})$. As before, we embed $\widetilde{\Gamma}$ in $\ell^{2}(\widetilde{\Gamma})$ by sending x on $\chi_{\{x\}}$ and we notice that $\widetilde{\Gamma}$ is an orthonormal basis of $\ell^{2}(\widetilde{\Gamma})$. We define $\widetilde{\partial}: \ell^{2}(\widetilde{\Gamma}) \rightarrow \ell^{2}(\widetilde{\Gamma})$ by

$$
(\widetilde{\partial} f)(x)=f^{\prime}(x)=\sum_{y^{\prime}=x} f(y) .
$$

For $\alpha \in \mathbb{N}$, we set $f^{(\alpha)}=\widetilde{\partial}^{\alpha} f$, notation which is consistent with our old definition of $x^{(\alpha)}$ as the restriction of x to $\mathbb{Z}_{|x|-\alpha}$. Obviously $\widetilde{\partial} \in \mathbb{B}(\Gamma)$, its adjoint $\widetilde{\partial}^{*}$ acts as $\left(\widetilde{\partial}^{*} f\right)(x)=f\left(x^{\prime}\right), \widetilde{\partial}^{*} / \sqrt{\nu}$ is an isometry on $\ell^{2}(\widetilde{\Gamma})$:

$$
\begin{equation*}
\widetilde{\partial} \widetilde{\partial}^{*}=\nu \mathrm{Id}, \tag{3.6}
\end{equation*}
$$

thus $\|\widetilde{\partial}\|=\left\|\widetilde{\partial}^{*}\right\|=\nu$. We denote by $\widetilde{\mathscr{D}}$ the C^{*}-algebra generated by $\widetilde{\partial}$ and by $\widetilde{\mathscr{D}}_{\text {alg }}$ the *-algebra generated by $\widetilde{\partial}$. Both of them are unital.

We now make the connection between $\mathscr{D}_{\text {alg }}$ and $\widetilde{\mathscr{D}}_{\text {alg }}$.
Lemma 3.6 For $|a| \geq \alpha$, one has: $\lambda_{a}^{*} \partial^{* \alpha} \partial^{\beta} \lambda_{a}=\mathbf{1}_{\Gamma} \widetilde{\partial}^{\alpha} \widetilde{\partial}^{\beta} \mathbf{1}_{\Gamma}$.
Proof. For any $f \in \ell^{2}(\widetilde{\Gamma})$, one has

$$
\left(\mathbf{1}_{\Gamma} \widetilde{\partial}^{*} \widetilde{\partial}^{\beta} \mathbf{1}_{\Gamma} f\right)(x)=\mathbf{1}_{\Gamma}(x) \sum_{\left\{y \mid y^{(\beta)}=x^{(\alpha)}\right\}} \mathbf{1}_{\Gamma}(y) f(y)
$$

Using the same arguments as in the proof of the Lemma 3.5, one shows that for each $x \in \Gamma$ the set $\left\{y \in \Gamma \mid y^{(\beta)}=x^{(\alpha)}\right\}$ equals the r.h.s. of (3.5). Thus the above sum is the same as that of the r.h.s. of (3.4).

We will also need a result concerning the localization of the norm on $\widetilde{\mathscr{D}}_{\text {alg }}$.
Lemma 3.7 If $\widetilde{T} \in \widetilde{\mathscr{D}}_{\text {alg }}$, then $\|\widetilde{T}\|=\left\|\mathbf{1}_{\Gamma} \widetilde{T} \mathbf{1}_{\Gamma}\right\|$.
Proof. Because of (3.6), we can suppose that $\widetilde{T}=\sum_{k=1}^{n} c_{k} \widetilde{\partial}^{\alpha_{k}} \widetilde{\partial}^{\beta_{k}}$. We denote by β the integer $\max \left\{\beta_{k} \mid k \in \llbracket 1, n \rrbracket\right\}$. For each $\varepsilon>0$, there is some $g \in \ell^{2}(\widetilde{\Gamma})$ with compact support such that $\|g\|=1$ and $\|\widetilde{T} g\| \geq\|\widetilde{T}\|-\varepsilon$. Note that if $y_{1}, y_{2}, \ldots, y_{m}$ are distinct points of $\Gamma, a_{1}, a_{2}, \ldots, a_{m}$ are complex numbers and $x_{1}, x_{2} \in \widetilde{\Gamma}$, we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{m} a_{i} x_{1} y_{i}\right\|^{2}=\sum_{i=1}^{m}\left|a_{i}\right|^{2}=\left\|\sum_{i=1}^{m} a_{i} x_{2} y_{i}\right\|^{2} \tag{3.7}
\end{equation*}
$$

Thus, since g has compact support, there are $x \in \widetilde{\Gamma}, m \in \mathbb{N}^{*}$ and $y_{i} \in \Gamma,\left|y_{i}\right| \geq \beta$, $a_{i} \in \mathbb{C}$, for all $i \in \llbracket 1, m \rrbracket$ such that $g=\sum_{k=1}^{m} a_{i} x y_{i}$. We set $f=\sum_{k=1}^{m} a_{i} e y_{i}$. Then (3.7) gives us $\|f\|=\|g\|=1$. Using $\left|y_{i}\right| \geq \beta$, we get $f \in \ell^{2}(\Gamma)$ and $\widetilde{T} f \in \ell^{2}(\Gamma)$. Also with (3.7) we obtain for $z \in \Gamma$,

$$
\begin{aligned}
& \|\widetilde{T} g\|=\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} c_{k} a_{i} \widetilde{\partial}^{\alpha_{k}} \widetilde{\partial}^{\beta_{k}} x y_{i}\right\|=\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} \sum_{|z|=\alpha_{k}} c_{k} a_{i}\left(x y_{i}\right)^{\left(\beta_{k}\right)} z\right\| \\
& =\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} \sum_{|z|=\alpha_{k}} c_{k} a_{i} x\left(y_{i}\right)^{\left(\beta_{k}\right)} z\right\|=\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} \sum_{|z|=\alpha_{k}} c_{k} a_{i} e\left(y_{i}\right)^{\left(\beta_{k}\right)} z\right\| \\
& =\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} \sum_{|z|=\alpha_{k}} c_{k} a_{i}\left(e y_{i}\right)^{\left(\beta_{k}\right)} z\right\|=\left\|\sum_{k=1}^{n} \sum_{i=1}^{m} c_{k} a_{i} \widetilde{\partial}^{\alpha_{k}} \widetilde{\partial}^{\beta_{k}} e y_{i}\right\|=\|\widetilde{T} f\| .
\end{aligned}
$$

Hence, there is $f \in \ell^{2}(\widetilde{\Gamma})$ such that $\left\|\mathbf{1}_{\Gamma} \widetilde{T} \mathbf{1}_{\Gamma} f\right\|=\|\widetilde{T} f\|=\|\widetilde{T} g\| \geq\|\widetilde{T}\|-\varepsilon$.

4 The main results

4.1 The morphism

In the sequel, a morphism will be understood as a morphism of C^{*}-algebras. To describe the quotient $\mathscr{C}(\widehat{\Gamma}) / \mathbb{K}(\Gamma)$, we need to find an adapted morphism.

Theorem 4.1 For each $\gamma \in \partial \Gamma$ there is a unique morphism $\Phi_{\gamma}: \mathscr{C}(\widehat{\Gamma}) \rightarrow \widetilde{\mathscr{D}}$ such that $\Phi_{\gamma}(\partial)=\widetilde{\partial}$ and $\Phi_{\gamma}(\varphi(Q))=\varphi(\gamma)$, for all $\varphi \in C(\widehat{\Gamma})$. One has $\mathbb{K}(\Gamma) \subset \operatorname{Ker} \Phi_{\gamma}$.

Proof. We use the notations from $\S 3.5$. If $T \in \mathscr{C}(\widehat{\Gamma})_{\text {alg }}$ then by Lemma 3.4 we have $\mathrm{u}_{-1 i m}^{a \rightarrow \gamma} \lambda_{a}^{*} T \lambda_{a}=\lambda_{a_{0}}^{*} T(\gamma) \lambda_{a_{0}}$. Let $\widetilde{T}(\gamma)$ be $P\left(\varphi_{1}(\gamma), \varphi_{2}(\gamma), \ldots, \varphi_{m}(\gamma), \widetilde{\partial}, \widetilde{\partial}^{*}\right)$. By Lemma 3.6 and (3.6) one can choose a_{0} such that $\lambda_{a_{0}}^{*} T(\gamma) \lambda_{a_{0}}=\mathbf{1}_{\Gamma} \widetilde{T}(\gamma) \mathbf{1}_{\Gamma}$. Lemma 3.7 implies

$$
\|\widetilde{T}(\gamma)\|=\left\|\mathbf{1}_{\Gamma} \widetilde{T}(\gamma) \mathbf{1}_{\Gamma}\right\|=\left\|\lambda_{a_{0}}^{*} T(\gamma) \lambda_{a_{0}}\right\|=\left\|\mathrm{u}-\lim _{a \rightarrow \gamma} \lambda_{a}^{*} T \lambda_{a}\right\| \leq\|T\|
$$

Thus there is a linear multiplicative contraction $\Phi_{\gamma}^{0}: \mathscr{C}(\widehat{\Gamma})_{\text {alg }} \rightarrow \widetilde{\mathscr{D}}, \Phi_{\gamma}^{0}(T)=T(\gamma)$. The density of $\mathscr{C}(\widehat{\Gamma})_{\text {alg }}$ in $\mathscr{C}(\widehat{\Gamma})$ allows us to extend Φ_{γ}^{0} to a morphism $\Phi_{\gamma}: \mathscr{C}(\widehat{\Gamma}) \rightarrow$ $\widetilde{\mathscr{D}}$ which clearly satisfies the conditions of the theorem. The uniqueness of Φ_{γ} is obvious and the last assertion of the theorem follows from Proposition 3.2.

4.2 The case $\nu>1$

In this case, we are able to improve Theorem 4.1. We recall first that an isometry is said to be proper if it is not unitary. The operators ∂^{*} and $\widetilde{\partial}^{*}$ are proper isometries and the dimensions of the kernels of ∂ and $\widetilde{\partial}$ are infinite: in the case of ∂, if one lets a, b be two different letters of \mathscr{A}, and one chooses $g \in \ell^{2}(\Gamma a)$ and $h \in \ell^{2}(\Gamma b)$ such that $h(x b)=g(x a)$ for all $x \in \Gamma$, then $g-h$ is in Ker ∂.

Let \mathbb{T} be the unit circle of \mathbb{R}^{2} and H^{2} the closure of the subspace spanned by $\left\{e^{i n Q}, n \in \mathbb{N}\right\}$ in $\ell^{2}(\mathbb{T})$. For $g \in L^{\infty}(\mathbb{T})$, we define the Toeplitz operator T_{g} on H^{2} by $T_{g} h=P_{H^{2}} g h$, where $P_{H^{2}}$ is the projection on H^{2}. We denote by \mathscr{T} the C^{*}-algebra generated by T_{u}, where we u is the map $u(z)=z$. The next theorem is due to Coburn (see [5] for a proof).

Theorem 4.2 If S is a proper isometry, then there is a unique isomorphism \mathscr{J} of \mathscr{T} onto \mathscr{S}, the C^{*}-algebra generated by S, such that $\mathscr{J}\left(T_{u}\right)=S$.

Thus there is a unique isomorphism \mathscr{J} of \mathscr{D} onto $\widetilde{\mathscr{D}}$ such that $\mathscr{J}(\partial)=\mathscr{J}(\widetilde{\partial})$, so in the case $\nu>1$ we can rewrite our Theorem 4.1 as follows.

Theorem 4.3 Let $\gamma \in \partial \Gamma$. There is a unique morphism $\Phi_{\gamma}: \mathscr{C}(\widehat{\Gamma}) \rightarrow \mathscr{D}$ such that $\Phi_{\gamma}(\varphi(Q))=\varphi(\gamma)$ for all $\varphi \in C(\widehat{\Gamma})$ and $\Phi_{\gamma}(D)=D$ for all $D \in \mathscr{D}$.

Remark. When $\nu=1$, there is no isomorphism $\mathscr{J}: \mathscr{D} \rightarrow \widetilde{\mathscr{D}}$ such that $\mathscr{J}(\partial)=\widetilde{\partial}$ because $\widetilde{\mathscr{D}}$ is commutative. Thus, in this case, one cannot hope in a result as above. There is an other way of proving Theorem 4.3 which uses the next proposition.
Proposition 4.4 If $\nu \geq 1$ then $\left\{\partial^{* \alpha} \partial^{\beta}\right\}_{\{\alpha, \beta \in \mathbb{N}\}}$ is a basis of the vector space $\mathscr{D}_{\mathrm{alg}}$. One has $\nu>1$ if and only if $\left\{\widetilde{\partial}^{*} \widetilde{\partial}^{\beta}\right\}_{\{\alpha, \beta \in \mathbb{N}\}}$ is a basis of space $\widetilde{\mathscr{D}}_{\text {alg }}$.
Proof. Let $\lambda_{i} \neq 0$ for all $i \in \llbracket 1, n \rrbracket$. Assume that $\sum_{i=1}^{n} \lambda_{i} \partial^{* \alpha_{i}} \partial^{\beta_{i}}=0$, where $\left(\alpha_{i}, \beta_{i}\right)$ are distinct couples. We set $\underline{\alpha}=\min \left\{\alpha_{i} \mid i \in \llbracket 1, n \rrbracket\right\}$ and $I=\left\{i \mid \alpha_{i}=\underline{\alpha}\right\}$. We take $x \in \Gamma$ such that $|x|=\underline{\alpha}$ and we obtain $\sum_{i \in I} \lambda_{i}\left(\partial^{\beta_{i}} f\right)(e)=0$. Notice that $\left\{\beta_{i}\right\}_{i \in I}$ are pairwise distinct by hypothesis. Now, by taking $i_{0} \in I$ and f the characteristic function of $S_{\beta_{i_{0}}}$, we get that $\lambda_{i_{0}}=0$ which is a contradiction. Hence $\sum_{i=1}^{n} \lambda_{i} \partial^{* \alpha_{i}} \partial^{\beta_{i}} \neq 0$, i.e., the family is free. Let now $\nu>1$ and $\lambda_{i} \neq 0$ for all $i \in \llbracket 1, n \rrbracket$. We suppose $\sum_{i=1}^{n} \lambda_{i} \widetilde{\partial}^{*} \alpha_{i} \widetilde{\partial}^{\beta_{i}}=0$, with $\left(\alpha_{i}, \beta_{i}\right)$ pairwise distinct. We fix $x \in \widetilde{\Gamma}$ and set $\bar{\alpha}=\max \left\{\alpha_{i}, i \in \llbracket 1, n \rrbracket\right\}$. One has $\left(\sum_{i=1}^{n} \lambda_{i} \widetilde{\partial}^{\alpha_{i}} \widetilde{\partial}^{\beta_{i}} f\right)(x)=$ $\sum_{i=1}^{n} \lambda_{i} \sum_{y \in x^{\left(\alpha_{i}\right)} S^{\beta_{i}}} f(y)=0$. Notice that $x^{(\alpha)} S^{\beta} \cap x^{\left(\alpha^{\prime}\right)} S^{\beta^{\prime}}=\emptyset$ if and only if $\alpha^{\prime}-\alpha \neq \beta^{\prime}-\beta$. Taking $f \in \ell^{2}\left(S^{|x|-\alpha_{1}+\beta_{1}}\right)$, we see that one can reduce oneself o the case when there is some k such that $\alpha_{i}-\beta_{i}=k$ for all $i \in \llbracket 1, n \rrbracket$. Since $x^{(\bar{\alpha}-l)} S^{\bar{\alpha}-k-l} \subset x^{(\bar{\alpha}-1)} S^{\bar{\alpha}-k-1} \subsetneq x^{(\bar{\alpha})} S^{\bar{\alpha}-k}$ for all $l \in \llbracket 1,(\bar{\alpha}-k) \rrbracket$, there is some $y_{0} \in x^{(\bar{\alpha})} S^{\bar{\alpha}-k} \backslash \cup_{\alpha_{i} \neq \bar{\alpha}} x^{\left(\alpha_{i}\right)} S^{\beta_{i}}$. Then, taking $f=\chi_{\left\{y_{0}\right\}}$ we get some i_{0} such that $\lambda_{i_{0}}=0$, which is a contradiction. Hence $\sum_{i=1}^{n} \lambda_{i} \widetilde{\partial}^{\alpha^{\alpha}} \widetilde{\partial}^{*}{ }^{\beta_{i}} \neq 0$. Finally, since when $\nu=1$ one has $\widetilde{\partial} \widetilde{\partial}^{*}=\widetilde{\partial}^{*} \widetilde{\partial}=\operatorname{Id},\left\{\widetilde{\partial}^{\alpha} \widetilde{\partial}^{\beta}\right\}_{\alpha, \beta \in \mathbb{N}}$ is obviously not a basis.

4.3 Description of $\mathscr{C}(\widehat{\Gamma}) / \mathbb{K}(\Gamma)$

Theorem 4.5 i) For any $\nu \geq 1$, there is a unique morphism $\Phi: \mathscr{C}(\widehat{\Gamma}) \rightarrow \widetilde{\mathscr{D}} \otimes C(\partial \Gamma)$ such that $\Phi(\partial)=\widetilde{\partial} \otimes 1$ and $\Phi(\varphi(Q))=1 \otimes\left(\left.\varphi\right|_{\partial г}\right)$. This morphism is surjective and its kernel is $\mathbb{K}(\Gamma)$.
ii) For $\nu>1$, there is a unique surjective morphism $\Phi: \mathscr{C}(\widehat{\Gamma}) \rightarrow \mathscr{D} \otimes C(\partial \Gamma)$ such that $\Phi(\partial)=\partial \otimes 1, \Phi(\varphi(Q))=1 \otimes\left(\left.\varphi\right|_{\partial \Gamma}\right)$ and $\operatorname{Ker} \Phi=\mathbb{K}(\Gamma)$.

Once again, as in Remark 4.2, the statement (ii) of the theorem is false if $\nu=1$. As a corollary of Theorem 4.5 we obtain the following result.
Proposition 4.6 If $\nu>1$ then $\mathscr{D} \cap \mathbb{K}(\Gamma)=\{0\}$ and if $\nu=1$ one has $\mathbb{K}(\Gamma) \subset \mathscr{D}$.
Proof. Let $\nu>1$ and $T \in \mathscr{D} \cap \mathbb{K}(\Gamma)$. Theorem 4.5 gives us both $\Phi(T)=T \otimes 1$ and $\Phi(T)=0$ (since T is compact). For $\nu=1$, as in the proof of Proposition 3.2, it suffices to prove that $\delta_{x, x}$ is in \mathscr{D}. But this is clear since $\delta_{x, x}=\partial^{*|x+1|} \partial^{|x+1|}-$ $\partial^{*|x|} \partial^{|x|}$.

We devote the rest of the section to the proof of Theorem 4.5.
$\underset{\sim}{\text { Proof. By Theorem }} 4.1$ there is a morphism $\Phi: \mathscr{C}(\widehat{\Gamma}) \rightarrow \widetilde{\mathscr{D}}^{\partial \Gamma}$ such that $(\Phi(\partial))(\gamma)=$ $\widetilde{\partial}$ and $(\Phi(\varphi(Q)))(\gamma)=\varphi(\gamma)$, for all $\gamma \in \partial \Gamma, \varphi \in C(\widehat{\Gamma})$. Since the images of
∂ and $\varphi(Q)$ through Φ belong to the C^{*}-subalgebra $C(\partial \Gamma, \widetilde{\mathscr{D}})$, and since $\mathscr{C}(\widehat{\Gamma})$ is generated by ∂ and such $\varphi(Q)$, it follows that the range of Φ is included in $C(\partial \Gamma, \widetilde{\mathscr{D}})$. We have $C(\partial \Gamma, \widetilde{\mathscr{D}}) \cong \widetilde{\mathscr{D}} \otimes C(\partial \Gamma)$, so we get the required morphism $\Phi: \mathscr{C}(\widehat{\Gamma}) \rightarrow \widetilde{\mathscr{D}} \otimes C(\partial \Gamma)$. Now since $\Phi(\partial)=\widetilde{\partial} \otimes 1$ and $\Phi(\varphi(Q))=1 \otimes\left(\left.\varphi\right|_{\partial \Gamma}\right)$, and since any function in $C(\partial \Gamma)$ is the restriction of some function from $C(\widehat{\Gamma})$, it follows that Φ is surjective. Its uniqueness is clear. It remains to compute the kernel.

As seen in Theorem 4.1, $\mathbb{K}(\Gamma) \subset \operatorname{Ker} \Phi$. In the remainder of this section we shall prove the reverse inclusion. For this we need some preliminary lemmas.
Lemma 4.7 Let $R=\varphi(Q) \partial^{* \alpha} \partial^{\beta}$ and $\mathscr{U}=\left\{a_{i} \Gamma\right\}_{i \in \llbracket 1, n \rrbracket}$ be a disjoint covering of $\partial \Gamma$. For each $\varepsilon>0$ there are $c_{1}, c_{2}, \ldots, c_{m} \in \operatorname{Ran}(\varphi)$ and there is a disjoint covering $\mathscr{U}^{\prime}=\left\{b_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ of $\partial \Gamma$ finer than \mathscr{U} such that $\left\|\mathbf{1}_{U^{\prime}} R-R^{\prime}\right\| \leq \varepsilon$, where $R^{\prime}=\sum_{j=1}^{m} \mathbf{1}_{b_{j} \Gamma} c_{j} \partial^{* \alpha} \partial^{\beta}$ and $U^{\prime}=\cup_{j=1}^{m} b_{j} \Gamma$.
Proof. Let $\varepsilon>0$ and denote $\varepsilon /\left\|\partial^{* \alpha} \partial^{\beta}\right\|$ by ε^{\prime}. Since $\varphi(\partial \Gamma)$ is compact, there are $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N} \subset \partial \Gamma$ such that $\varphi(\partial \Gamma) \subset \cup_{k=1}^{N} D\left(\varphi\left(\gamma_{k}\right), \varepsilon^{\prime}\right)$, where $D(z, r)$ is the complex open disk of center z and ray r. The open sets $\mathscr{O}_{i, k}=a_{i} \widehat{\Gamma} \cap \varphi^{-1}\left(D\left(\varphi\left(\gamma_{k}\right), \varepsilon^{\prime}\right)\right)$ cover $\partial \Gamma$. Proposition 2.4 gives us a disjoint covering $\left\{b_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ of $\partial \Gamma$ such that for each $j \in \llbracket 1, m \rrbracket$ there are i and k such that $b_{j} \widehat{\Gamma} \subset \mathscr{O}_{i, k}$. To simplify the notations, we will denote by γ_{j} those γ_{k} associated to $b_{j} \Gamma$. We set $\mathscr{U}^{\prime}=\left\{b_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ and $R^{\prime}=\sum_{j=1}^{n} \mathbf{1}_{b_{j} \Gamma} \varphi\left(\gamma_{j}\right) \partial^{* \alpha} \partial^{\beta}$. Recall that $\sup _{x \in b_{j} \Gamma}\left|\varphi\left(\gamma_{j}\right)-\varphi(x)\right| \leq \varepsilon^{\prime}$, so

$$
\begin{aligned}
\left\|\left(R^{\prime}-\mathbf{1}_{U^{\prime}} R\right) f\right\|^{2} & =\sum_{x \in \Gamma}\left|\sum_{j=1}^{m} \mathbf{1}_{b_{j} \Gamma}(x)\left(\varphi\left(\gamma_{j}\right)-\varphi(x)\right)\left(\partial^{* \alpha} \partial^{\beta} f\right)(x)\right|^{2} \\
& =\sum_{j=1}^{m} \sum_{x \in b_{j} \Gamma}\left|\left(\varphi\left(\gamma_{j}\right)-\varphi(x)\right)\left(\partial^{* \alpha} \partial^{\beta} f\right)(x)\right|^{2} \\
& \leq \sum_{j=1}^{m} \sup _{x \in b_{j} \Gamma}\left|\varphi\left(\gamma_{j}\right)-\varphi(x)\right|^{2} \sum_{x \in b_{j} \Gamma}\left|\left(\partial^{* \alpha} \partial^{\beta} f\right)(x)\right|^{2} \\
& \leq \varepsilon^{\prime 2} \sum_{j=1}^{m} \sum_{x \in b_{j} \Gamma}\left|\left(\partial^{* \alpha} \partial^{\beta} f\right)(x)\right|^{2} \\
& \leq \varepsilon^{2}\left\|\partial^{* \alpha} \partial^{\beta}\right\|^{-2} \cdot\left\|\partial^{* \alpha} \partial^{\beta}\right\|^{2} \cdot\|f\|^{2}=\varepsilon^{2}\|f\|^{2} .
\end{aligned}
$$

Denoting $\varphi\left(\gamma_{j}\right)$ by c_{j} we obtain the result.
Lemma 4.8 Let $T=\sum_{k=1}^{n} \varphi_{k}(Q) \partial^{* \alpha_{k}} \partial^{\beta_{k}}$ with $\varphi_{k} \in C(\widehat{\Gamma})$ and let $\varepsilon>0$. There are a compact operator K, a disjoint covering $\left\{a_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ of $\partial \Gamma$ and

$$
S=\sum_{k=1}^{n} \sum_{j=1}^{m} \mathbf{1}_{a_{j} \Gamma} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}}
$$

with $\min _{j \in \llbracket 1, m \rrbracket}\left|a_{j}\right| \geq \max _{k \in \llbracket 1, n \rrbracket} \alpha_{k}$ and $\gamma_{j, k} \in \partial \Gamma$ such that $\|T-S-K\| \leq \varepsilon$.

Proof. We denote by $\alpha=\max \left\{\alpha_{k} \mid k \in \llbracket 1, n \rrbracket\right\}$. Let T_{k} be $\varphi_{k}(Q) \partial^{* \alpha_{k}} \partial^{\beta_{k}}$. Setting $\mathscr{U}_{0}=\cup_{\{a| | a \mid=\alpha\}}\{a \Gamma\}$, we apply Lemma 4.7 inductively for $k \in \llbracket 1, n \rrbracket$ with ε / n instead of $\varepsilon, \mathscr{U}=\mathscr{U}_{k-1}$ and $R=T_{k}$, denoting \mathscr{U}^{\prime} by \mathscr{U}_{k} and R^{\prime} by S_{k}. Then, for $k \in \llbracket 1, n \rrbracket$ we get $\left\|\mathbf{1}_{U_{k}} T_{k}-S_{k}\right\| \leq \varepsilon / k$. Since \mathscr{U}_{k+1} is finer than \mathscr{U}_{k} for $k \in \llbracket 1, n-1 \rrbracket$, we obtain $\left\|\mathbf{1}_{U_{n}} \sum_{k=1}^{n}\left(T_{k}-S_{k}\right)\right\| \leq \varepsilon$, hence $\left\|T-\mathbf{1}_{U_{n}^{c}} T-\mathbf{1}_{U_{n}} \sum_{k=1}^{n} S_{k}\right\| \leq \varepsilon$. To finish the proof, we denote the compact operator $\mathbf{1}_{U_{n}^{c}} T$ by $K, \mathbf{1}_{U_{n}} \sum_{k=1}^{n} S_{k}$ by S and \mathscr{U}_{n} by $\left\{a_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$.

We now go back to the proof of Theorem 4.5. Let $T \in \operatorname{Ker} \Phi$. For each $\varepsilon>0$ there is $T^{\prime} \in \mathscr{C}(\widehat{\Gamma})_{\text {alg }}$ such that $\left\|T-T^{\prime}\right\| \leq \varepsilon / 4$. By relation (3.1) and Proposition 3.3, we can write $T^{\prime}=\sum_{k=1}^{n} \varphi_{k}(Q) \partial^{* \alpha_{k}} \partial^{\beta_{k}}+K$, where $K \in \mathbb{K}(\Gamma)$ and $\varphi_{k} \in C(\widehat{\Gamma})$. Thus $\left\|\Phi\left(T^{\prime}\right)\right\| \leq \varepsilon / 4$. Using Lemma 4.8, we get an operator S and a compact operator K_{1} such that $\left\|T^{\prime}-S-K_{1}\right\| \leq \varepsilon / 4$. This implies that $\|\Phi(S)\| \leq \varepsilon / 2$.
Lemma 4.9 There is $K_{2} \in \mathbb{K}(\Gamma)$ such that $\left\|S-K_{2}\right\| \leq\|\Phi(S)\|$.
Before proving the lemma, let us remark that it implies

$$
\left\|T-K_{1}-K_{2}\right\| \leq\left\|T-T^{\prime}\right\|+\left\|T^{\prime}-S-K_{1}\right\|+\left\|S-K_{2}\right\| \leq \varepsilon
$$

Hence $T \in \mathbb{K}(\Gamma)$. Thus Theorem 4.5 is proved.
Proof of Lemma 4.9. First, we remark that for each $a \in \Gamma$ and $\alpha, \beta \geq 0$, Proposition 3.3 gives us that $\mathbf{1}_{a \Gamma} \partial^{* \alpha} \partial^{\beta}-\mathbf{1}_{a \Gamma} \partial^{* \alpha} \partial^{\beta} \mathbf{1}_{a \Gamma}$ is a compact operator. We define $S^{\prime}=$ $\sum_{k=1}^{n} \sum_{j=1}^{m} \mathbf{1}_{a_{j} \Gamma} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}} \mathbf{1}_{a_{j} \Gamma}$ and we set $K_{2}=S-S^{\prime}$, which is a compact operator. Since $\left\{a_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ is a disjoint covering of $\partial \Gamma$, for any $f \in \ell^{2}(\Gamma)$:

$$
\begin{aligned}
\left\|S^{\prime} f\right\|^{2} & =\sum_{x \in \Gamma}\left|\sum_{k=1}^{n} \sum_{j=1}^{m}\left(\mathbf{1}_{a_{j} \Gamma} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}} \mathbf{1}_{a_{j} \Gamma} f\right)(x)\right|^{2} \\
& =\sum_{j=1}^{m} \sum_{x \in \Gamma}\left|\sum_{k=1}^{n}\left(\mathbf{1}_{a_{j} \Gamma} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}} \mathbf{1}_{a_{j} \Gamma} f\right)(x)\right|^{2} \\
& \leq \sum_{j=1}^{m}\left\|\sum_{k=1}^{n} \mathbf{1}_{a_{j} \Gamma} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}} \mathbf{1}_{a_{j} \Gamma}\right\|^{2} \cdot\left\|\mathbf{1}_{a_{j} \Gamma} f\right\|^{2} .
\end{aligned}
$$

Now we use (3.2) and (3.3) and get:

$$
\left\|\mathbf{1}_{a_{j} \Gamma}\left(\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}}\right) \mathbf{1}_{a_{j} \Gamma}\right\|=\left\|\lambda_{a_{j}}^{*}\left(\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}}\right) \lambda_{a_{j}}\right\| .
$$

Since $\left|a_{j}\right| \geq \max \left\{\alpha_{k} \mid k \in \llbracket 1, n \rrbracket\right\}$, Lemmas 3.6 and 3.7 give us:

$$
\begin{aligned}
\left\|\lambda_{a_{j}}^{*}\left(\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \partial^{* \alpha_{k}} \partial^{\beta_{k}}\right) \lambda_{a_{j}}\right\| & =\left\|\mathbf{1}_{\Gamma}\left(\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \widetilde{\partial}^{\alpha^{\alpha_{k}}} \widetilde{\partial}^{\beta_{k}}\right) \mathbf{1}_{\Gamma}\right\| \\
& =\left\|\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \widetilde{\partial}^{*^{\alpha_{k}}} \widetilde{\partial}^{\beta_{k}}\right\|
\end{aligned}
$$

For each j we choose $\gamma_{j} \in a_{j} \partial \Gamma$. The family $\left\{a_{j} \Gamma\right\}_{j \in \llbracket 1, m \rrbracket}$ is a disjoint covering of $\partial \Gamma$, so we have $\lim _{x \rightarrow \gamma_{j}} \chi_{a_{j} \Gamma}(x)=1$ and $\lim _{x \rightarrow \gamma_{j}} \chi_{a_{i} \Gamma}(x)=0$ for $i \neq j$. Hence $\Phi_{\gamma_{j}}\left(S^{\prime}\right)=\sum_{k=1}^{n} \varphi_{k}\left(\gamma_{j, k}\right) \widetilde{\partial}^{\alpha_{k}} \widetilde{\partial}^{\beta_{k}}$. We obtain

$$
\left\|S^{\prime} f\right\|^{2} \leq \sum_{j=1}^{m}\left\|\Phi_{\gamma_{j}}\left(S^{\prime}\right)\right\|^{2} \cdot\left\|\mathbf{1}_{a_{j} \Gamma} f\right\|^{2} \leq \sup _{\gamma \in \partial \Gamma}\left\|\Phi_{\gamma}\left(S^{\prime}\right)\right\|^{2} \cdot\|f\|^{2} .
$$

Finally, since $\mathbb{K}(\Gamma) \subset \operatorname{Ker} \Phi,\|\Phi(S)\|=\left\|\Phi\left(S^{\prime}\right)\right\|=\sup _{\gamma \in \partial \Gamma}\left\|\Phi_{\gamma}\left(S^{\prime}\right)\right\|$.
Acknowledgment. I take this opportunity to express my gratitude to Vladimir Georgescu for suggesting me the subject of this work and for helpful discussions. I am also indebted to Andrei Iftimovici for comments and suggestions.

References

[1] C. Allard, R. Froese, A Mourre estimate for a Schrödinger operator on a binary tree, Rev. Math. Phys 12, No.12, 1655-1667 (2000).
[2] A. Ancona, Théorie du potentiel sur les graphes et les variétés, Ecole d'été de Probabilités de Saint-Flour XVIII - 1988, Lecture Notes in Mathematics 1427, Springer-Verlag, Berlin, 1990, pp. 1-112.
[3] N. Bourbaki, Eléments de mathématiques, Algèbre, chapitres 1 à 3, Diffusion C.C.L.S. Paris, 1970.
[4] M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes: les groupes hyperboliques de Gromov, Lecture Notes in Mathematics 1441, Springer-Verlag, Berlin, 1990.
[5] K.R. Davidson, C^{*}-algebra by examples, American Mathematical Society (1996).
[6] V. Georgescu, A. Iftimovici, Crossed products of C^{*}-algebras and spectral analysis of quantum Hamiltonians, Commun. Math. Phys. 228, No. 3, 519560 (2002).
[7] E. Ghys, P. De la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov. Birkhäuser, 1990.
[8] S. Golénia, Mourre estimates for anisotropic operators on trees, (in preparation).
[9] A. Nica, C^{*}-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27, No. 1, 17-52 (1992).
[10] A. Nica, On a groupoid construction for actions of certain inverse semigroups, Internat. J. Math. 5, No. 3, 349-372 (1994).
[11] A.M. Robert, A Course in p-adic Analysis. Graduate Texts in Mathematics 198, Springer-Verlag, New York, 2000.

Sylvain Golénia
Département de Mathématiques
Université de Cergy-Pontoise
2, avenue Adolphe Chauvin
F-95302 Cergy-Pontoise Cedex
France
email: Sylvain.Golenia@math.u-cergy.fr
Communicated by Jean Bellissard
submitted 18/12/03, accepted 29/04/04

[^0]: ${ }^{1}$ We use the notation $\llbracket 1, n \rrbracket=[1, n] \cap \mathbb{N}$ where \mathbb{N} is the set of integers ≥ 0 and $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$.

[^1]: ${ }^{2}$ We use the convention $\llbracket 1, \infty \rrbracket=\mathbb{N}^{*} \cup\{\infty\}$.

