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C∗-Algebras of Anisotropic Schrödinger
Operators on Trees

Sylvain Golénia

Abstract. We study a C∗-algebra generated by differential operators on a tree. We
give a complete description of its quotient with respect to the compact operators.
This allows us to compute the essential spectrum of self-adjoint operators affiliated
to this algebra. The results cover Schrödinger operators with highly anisotropic,
possibly unbounded potentials.

1 Introduction

Given a ν-fold tree Γ of origin e with its canonical metric d, we write x ∼ y when
x and y are connected by an edge and we set |x| = d(x, e). For each x ∈ Γ \ {e},
we denote by x′ ≡ x(1) the unique element y ∼ x such that |y| = |x| − 1 and we
set x(p) = (x(p−1))′ for 1 ≤ p ≤ |x|. Let xΓ = {y ∈ Γ | |y| ≥ |x| and y(|y|−|x|) = x},
where the convention x(0) = x has been used.

On �2(Γ) we define the bounded operator ∂ given by (∂f)(x) =
∑

y′=x f(y).
Its adjoint is given by (∂∗f)(e) = 0 and (∂∗f)(x) = f(x′) for |x| ≥ 1. Let D be
the C∗-algebra generated by ∂.

In order to obtain our algebra of potentials, we consider the “hyperbolic”
compactification Γ̂ = Γ ∪ ∂Γ of Γ constructed as follows. An element x of the
boundary at infinity ∂Γ is a Γ-valued sequence x = (xn)n∈N such that |xn| = n

and xn+1 ∼ xn for all n ∈ N. We set |x| = ∞ for x ∈ ∂Γ. The space Γ̂ is equipped
with a natural ultrametric space structure. For x ∈ ∂Γ and (yn)n∈N a sequence
in Γ we have limn→∞ yn = x if for each m ∈ N there is N ∈ N such that for
each n ≥ N we have yn ∈ xmΓ. We denote by C(Γ̂) the set of complex-valued
continuous functions defined on Γ̂. Since Γ is dense in Γ̂, we can view C(Γ̂) as a
C∗-subalgebra of Cb(Γ), the algebra of bounded complex-valued functions defined
on Γ. For V ∈ C(Γ̂), we denote by V (Q) the operator of multiplication by V in
�2(Γ).

Let us now denote by C (Γ̂) the C∗-algebra generated by D and C(Γ̂). It con-
tains the set K(Γ) of compact operators on �2(Γ). Following the strategy exposed
in [6], we shall first compute its quotient with respect to the ideal of compact op-
erators. We stress that the crossed product technique introduced in [6] in order to
compute quotients cannot be used in our case. Instead, we shall use the Theorem
4.5 in order to calculate the essential spectrum of self-adjoint operators related to
C (Γ̂). In this introduction we consider only the most important case, when ν > 1.
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Theorem 1.1 Let ν > 1. There is a unique morphism Φ : C (Γ̂) → D ⊗C(∂Γ) such
that Φ(D) = D ⊗ 1 for all D ∈ D and Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ). This morphism is
surjective and its kernel is K(Γ).

The rest of this introduction is devoted to some applications of this theorem
to spectral analysis. Let ν > 1 and H =

∑
α,β aα,β(Q)∂∗α∂β + K, where K is

a compact operator, aα,β ∈ C(Γ̂) and aα,β = 0 for all (α, β) ∈ N
2 but a finite

number of pairs. Clearly H ∈ C (Γ̂). As a consequence of the Theorem 1.1, there
is Φ such that Φ(H) =

∑
α,β ∂

∗α∂β ⊗ (aα,β)|∂Γ, and, if H self-adjoint, its essential
spectrum is:

σess(H) =
⋃

γ∈∂Γ

σ
( ∑

α,β

aα,β(γ)∂∗α∂β
)
.

This result can be made quite explicit in the particular case of a Schrödinger
operator H = ∆+V (Q) with potential V in C(Γ̂). Since ∆ is a bounded operator
on �2(Γ) defined by (∆f)(x) =

∑
y∼x(f(y) − f(x)), it belongs to C (Γ̂). We then

set ∆0 = ∂ + ∂∗ − νId (which belongs to D) and notice that ∆ − ∆0 is compact.
One then gets (see [1] for instance):

σess(∂ + ∂∗) = σac(∂ + ∂∗) = σ(∂ + ∂∗) = [−2
√
ν, 2

√
ν ],

where σac(T ) denotes the absolute continuous part of the spectrum of a given self-
adjoint operator T . On the other hand, Theorem 1.1 gives us directly σess(∂∗+∂) =
σ(∂∗ + ∂). We thus get

σess(∆ + V (Q)) = σ(∆0) + V (∂Γ) = [−ν − 2
√
ν,−ν + 2

√
ν ] + V (∂Γ).

In fact this result holds (and is trivial) in the case of ν = 1, i.e., when Γ = N.
Given a continuous function on ∂Γ, the Tietze theorem allows us to extend it

to a continuous function on Γ̂, so one may construct a large class of Hamiltonians
with given essential spectra. Nevertheless, we are able to point out a concrete class
of non-trivial potentials V ∈ C(Γ̂) with uniform behavior at infinity which form a
dense family of C(Γ̂). Namely, for each bounded function f : Γ → R and each real
α > 1 let

V (x) =
|x|∑

k=1

f(xk)
kα

, (1.1)

where xk = x|x|−k for x ∈ Γ (V belongs to C(Γ̂) because of Proposition 2.3).
Concerning finer spectral features, based mainly on the Mourre estimate, we

mention that in the case H = ∆ +V (Q), with V as in (1.1) where α ≥ 3 and such
that V (∂Γ) = 0, the results of [1] can be applied (the hypotheses of the Lemmas 6
and 7 from [1] are verified since V (x) = O(|x|−α+1) when |x| → ∞). The aim of our
work in preparation [8] is to prove that the Mourre estimate holds for more general
classes of Hamiltonians affiliated to C (Γ̂) and to develop a scattering theory for
them. Theorem 1.1 remains the key technical point for these purposes.
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The preceding results on trees allow us to treat more general graphs. We
recall that a graph is said to be connected if two of its elements can be joined by a
sequence of neighbors. Let G =

⋃n
i=1 Γi∪G0 be a finite disjoint union of Γi, each

Γi being a νi-fold branching tree with νi ≥ 1 and of G0, a compact connected
graph. We endow G with a connected graph structure that respects the graph
structure of each Γi and the one of G0, such that Γi is connected to Γj (i �= j)
only through G0 and such that Γi is connected to G0 only through ei, the origin
of Γi. The graph G is hyperbolic and its boundary at infinity ∂G is the disjoint
union ∪n

i=1∂Γi. We now choose V ∈ C(G ∪ ∂G). One has V |Γ̂i
∈ C(Γ̂i) for all

i = 1, . . . , n and we easily obtain:

σess(∆ + V (Q)) =
n⋃

i=1

(
[−νi − 2

√
νi,−νi + 2

√
νi ] + V (∂Γi)

)
.

This covers in particular the case of the Cayley graph of a free group with
finite system of generators. We recall that the Cayley graph of a group G with a
system of generators S is the graph defined on the set G with the relation x ∼ y
if xy−1 ∈ S or yx−1 ∈ S. Let G be a free group with a system of generators S
such that S = S−1. We denote by e its neutral element and we set |S| = ν + 1.
One may associate the restriction of the Cayley graph to the set of words starting
with a given generator with a ν-fold branching tree having as origin the generator.
Hence, the Cayley graph of G will be ∪ν

i=1Γi ∪ {e} where Γi is a ν-fold branching
tree with the above graph structure.

We now go further by taking V ∈ C(Γ̂,R) such that V (Γ) ⊂ R (here R =
R ∪ {∞} is the Alexandrov compactification of R). More precisely, V ∈ C(Γ̂,R)
if and only if for each γ ∈ ∂Γ we have either limx→γ V (x) = l where l ∈ R or for
each M ≥ 0 there is N ∈ N such that |V (x)| ≥M for all n ≥ N and x ∈ γnΓ (see
Proposition 2.3). We set

D(V ) = {f ∈ �2(Γ) | ‖V (Q)f‖2 <∞}.
Let T ∈ D and T0 = Φ(T ). Since T is bounded, the operator H = T + V (Q) with
domain D(V ) is self-adjoint and it is affiliated to C (Γ̂) (i.e., its resolvent belongs
to C (Γ̂)). Indeed, we have (V (Q) + z)−1 ∈ C(Γ̂) for each z ∈ C \ R, and for large
such z,

(H + z)−1 = (V (Q) + z)−1
∑

n≥0

(T (V (Q) + z)−1)n,

where the series is norm convergent. Now, with the same z, we use the Theorem
1.1 and the fact that D ⊗ C(∂Γ) � C(∂Γ,D) to obtain

Φγ

(
(H + z)−1

) ≡ Φ
(
(H + z)−1

)
(γ) = (V (γ) + z)−1

∑

n≥0

(T0(V (γ) + z)−1)n.

Note that (V (γ) + z)−1 = 0 if V (γ) = ∞. By analytic continuation we get
Φγ((T + V (Q) + z)−1) = (T0 + V (γ) + z)−1, for all z ∈ C \ R. We used the
convention (T0 + V (γ) + z)−1 = 0 if V (γ) = ∞.
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We now compute the essential spectrum of H . If V (γ) = ∞ then σ(Φγ(H)) =
∅. Otherwise, one has σ(Φγ(H)) = σ(T0 +V (γ)) = σ(T0)+V (γ). Hence we obtain:

σess(T + V (Q)) = σ(T0) + V (∂Γ0),

where ∂Γ0 is the set of γ ∈ ∂Γ such that V (γ) ∈ R.

Remark. We mention an interesting question which has not been studied in this
paper. In fact, one could replace the algebra D by the (much bigger) C∗-algebra
generated by all the right translations ρa (see Subsection 3.4 for notations) and
consider the corresponding algebra C (Γ̂). This is a natural object, since it contains
all the “right-differential” operators acting on the tree (not only polynomials in ∂
and ∂∗). A combination of the techniques that we use and that of [9, 10] could allow
one to compute the quotient in this case too. We also note that in [9, 10] a certain
connection with the notion of crossed-product is pointed out, and this could be
useful in further investigations. I would like to thank the referee for bringing to
my attention the two papers of A. Nica quoted above.

2 Trees and related objects

2.1 The free monöıd Γ

Let A be a finite set consisting of ν objects. Let Γ be the free monöıd over A ;
its elements are words and those of A letters. We refer to [3, Chapter I, §7] for a
detailed discussion of these notions, but we recall that a word x is an A -valued
map defined on a set of the form1 �1, n� with n ∈ N, x(i) being the ith letter of
the word x. The integer n (the number of letters of x) is the length of the word
and will be denoted |x|. There is a unique word e of length 0, its domain being
the empty set. This is the neutral element of Γ. We will also identify A with the
set of words of length 1.

The monöıd Γ will be endowed with the discrete topology. If x ∈ Γ, we denote
xΓ and Γx the right and left ideals generated by x. We have on Γ a canonical order
relation which is by definition:

x ≤ y ⇔ y ∈ xΓ.

We recall some terminology from the theory of ordered sets. If Γ is an ar-
bitrary ordered set and x, y ∈ Γ, then one says that y covers x if x < y and if
x ≤ z ≤ y ⇒ z = x or z = y. If x ∈ Γ, we denote x̃ = {y ∈ Γ | y covers x}

In our case, y covers x if x ≤ y and |y| = |x| + 1. Notice that each element
x ∈ Γ\{e} covers a unique element x′, its father, and each element x ∈ Γ is covered
by ν elements, its sons. The set of sons of x clearly is x̃ = {xε | ε ∈ A }. Hence:

y covers x⇔ y′ = x⇔ y ∈ x̃.

1We use the notation �1, n� = [1, n] ∩ N where N is the set of integers ≥ 0 and N
∗ = N \ {0}.
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For |x| ≥ n, we define x(n) inductively by setting x(0) = x and x(m+1) = (x(m))′

for m ≤ n − 1. One may also notice that: |x(α)| = |x| − α, if α ≤ |x|, and for
α ≤ |ab|:

(ab)(α) =
{
ab(α), if α ≤ |b|
a(α−|b|), if α ≥ |b|.

We remark that if ν = 1 then Γ = N and if ν > 1 then Γ is the set of monoms of
ν non-commutative variables.

2.2 The tree Γ and the extended tree associated to A

Recall that a graph is a couple G = (V,E), where V is a set (of vertices) and E
is a set of pairs of elements of V (the edges). If x and y are joined by an edge,
one says that they are neighbours and one abbreviates x ∼ y. The graph structure
allows one to endow V with a canonical metric d, where d(x, y) is the length of
the shortest path in G joining x to y.

The graph GΓ associated to the free monöıd Γ is defined as follows: V = Γ
and x ∼ y if x covers y or y covers x. It is usual to identify Γ and GΓ, the
so-called ν-fold branching tree. For all x ∈ Γ, we have |x| = d(e, x). We set
B(x, r) = {y ∈ Γ | d(x, y) < r} and Sn = {x ∈ Γ | |x| = n}.

We shall now define an extended tree by mimicking the definition of a free
monöıd over A . We choose o ∈ A ; this element will be fixed from now on. For
each integer r, we set Zr = {i ∈ Z | i ≤ r}. The extended tree Γ̃ associated to A is
the set of A -valued maps x defined on sets of the form Zr such that {i | x(i) �= o}
is finite. For x ∈ Γ̃, the unique r ∈ Z such that x is a map Zr → A will be denoted
|x| and will be called length of x.

We shall identify Γ with the set {x | |x| ≥ 0 and x(i) = o if i ≤ 0} as follows:
if x ∈ Γ then we associate to it the element of Γ̃ defined on Z|x| by extending
x with x(i) = o if i ≤ 0. The element e will be identified with the map e ∈ Γ̃
such that |e| = 0 and e(i) = o, ∀i ≤ 0. Notice that the two notions of length are
consistent on Γ.

There is a natural right action of Γ on Γ̃ by concatenation, i.e., for x ∈ Γ̃
and y ∈ Γ, xy will be the function z defined on Z|x|+|y| such that z(i) = x(i),
for i ∈ Z|x| and z(|x| + i) = y(i) for i ∈ �1, |y| �. Then we equip Γ̃ with an order
relation by setting:

x ≤ y ⇔ y ∈ xΓ.

As before, y covers x if and only if x ≤ y and |y| = |x| + 1. Now, each x ∈ Γ̃
covers a unique x′ ∈ Γ̃ and each x ∈ Γ̃ is covered by ν elements, namely those
of x̃ = {xε | ε ∈ A }. We still have: y covers x ⇔ y′ = x ⇔ y ∈ x̃. Observe that
x′ = x|Z|x|−1 . We will set x(α) = x|Z|x|−α

for all α ∈ Z. As we did it for Γ, we shall
identify the graph GΓ̃ with Γ̃. This justifies the notion of extended tree used for Γ̃.
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2.3 The boundary at infinity of Γ

We shall see in the ending remark of this subsection that the boundary at infinity of
Γ can be thought as the boundary of a 0-hyperbolic space in the sense of Gromov.
We prefer, however, to give a simpler presentation that is closer to the theory of
p-adic numbers (see [11] for instance). In fact, if ν is prime the boundary will be
the set of ν-adic integers.

Definition 2.1 The boundary at infinity of Γ is the set ∂Γ = {x : N
∗ → A }. For

x ∈ ∂Γ, we set |x| = ∞ .

Let Γ̂ be Γ∪∂Γ. For x ∈ Γ̂, we define the sequence (xn)n∈�0,|x|� with values in Γ by
setting x0 = e and xn = x|�1,n� for n ≥ 1. Observe that the map x �→ (xn)n∈�0,|x|�
is injective. There is a natural left action of Γ on Γ̂. For x ∈ Γ and y ∈ Γ̂, xy will
be defined on the set2 �1, |x|+ |y|� by x(i) for i ≤ |x| and by y(i− |x|) for i > |x|.

We will now equip Γ̂ with a structure of ultrametric space. We define a kind
of valuation v on Γ̂ × Γ̂ by

v(x, y) =
{

max{n | xn = yn} if x �= y
∞ if x = y.

(2.1)

If x, y, z ∈ Γ̂ it is easy to see that:

v(x, y) ≥ min(v(x, z), v(z, y)). (2.2)

Let us set on Γ̂:
d̂(x, y) = exp(−v(x, y)).

The relation (2.2) clearly implies that (Γ̂, d̂) is an ultrametric space, i.e., a metric
space such that d̂(x, y) ≤ max(d̂(x, z), d̂(z, y)), for x, y, z ∈ Γ̂. We will denote, for
r > 0, B̂(x, r) = {y ∈ Γ̂ | d̂(x, y) < r}. Notice that ultrametricity implies that
B̂(x, r) is closed for all x ∈ Γ̂ and r > 0.

The topology induced by Γ̂ on Γ coincides with the initial topology of Γ, the
discrete one. For x ∈ ∂Γ and n ∈ N,

xnΓ̂ = {y ∈ Γ̂ | v(x, y) ≥ n} = B̂(x, exp(−n+ 1))

which is the closure of xnΓ in Γ̂. Hence for each x ∈ ∂Γ, {xnΓ̂}n∈N is a basis of
neighborhoods of x in Γ̂. Observe that if x ∈ Γ then x∂Γ = xΓ̂ ∩ ∂Γ.

Proposition 2.2 Γ̂ and ∂Γ are compact spaces. Γ̂ is a compactification of Γ.

Proof. ∂Γ = A N
∗
, thus the set ∂Γ endowed with the product topology is compact.

This topology coincides with the one induced by the restriction of d̂ on ∂Γ (for

2We use the convention �1,∞� = N
∗ ∪ {∞}.
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x ∈ ∂Γ, the product topology gives us the same basis of neighborhoods {xn∂Γ}n∈N

as d̂|∂Γ).
Since ∂Γ is compact, in order to show that Γ̂ is compact, it suffices to remark

that ∪x∈∂ΓB̂(x, exp(−k)) = {yΓ̂ | |y| = k + 1} has a finite complementary in Γ̂,
for all k ∈ N. Since Γ is dense in Γ̂, Γ̂ is a compactification of Γ. �

Notice also that if ν > 1, the topological space ∂Γ is perfect.
The C∗-algebra C(Γ̂) of continuous complex-valued functions on Γ̂ plays an

important rôle. The dense embedding Γ ⊂ Γ̂ gives a canonical inclusion C(Γ̂) ⊂
Cb(Γ) (Cb(Γ) is the space of bounded complex-valued functions on Γ). Moreover,
we have

C0(Γ) = {f ∈ C(Γ̂) | f |∂Γ = 0}, (2.3)

where C0(Γ) = {f : Γ → C | ∀ε > 0, ∃M > 0 | |x| > M ⇒ |f(x)| < ε}. We shall
often abbreviate C0(Γ) by C0.

The following proposition gives us a better understanding of the functions in
C(Γ̂).

Proposition 2.3 Let E be a metrisable topological space. A function V : Γ → E
extends to a continuous function V̂ : Γ̂ → E if and only if for each x ∈ ∂Γ the
limit of V (y), when y ∈ Γ converges to x, exists.

Proof. Let x ∈ ∂Γ and V̂ (x) be the above limit. Let F be a closed neighborhood
of V̂ (x) in E; there is k such that V (xkΓ) ⊂ F . Then xkΓ̂ is a neighborhood of x
in Γ̂ and, since F is closed, we have V̂ (xkΓ̂) ⊂ F . �

Later on, we will need the next ultrametricity result. We will say that U =
{xiΓ} is a covering of ∂Γ if Û = {xiΓ̂} is a covering of ∂Γ.

Proposition 2.4 For each open covering {Oi}i∈I of ∂Γ, there is a disjoint and finite
covering {xjΓ}j∈J of ∂Γ such that for each j ∈ J there is i ∈ I such that xj Γ̂ ⊂ Oi.

Proof. For each x ∈ ∂Γ there is i such that x belongs to the open set Oi and
there is n = n(x, i) such that xnΓ̂ ⊂ Oi. Since ∂Γ is compact, there is a finite
sub-covering of ∂Γ made by sets {yjΓ̂}j∈�1,m� such that each of its elements is a
subset of some Oi. But in ultrametric spaces two balls are either disjoint or one
of them is included in the other one. Since {yjΓ̂} are balls, we get the result. One
may also choose {yΓ̂ | |y| = maxj∈�1,m� |yj |} as the required covering. �

Remark. As we said previously, this section could be presented from the perspective
of hyperbolicity in the sense of Gromov, see [2, Chapter V] (a deeper investigation
can be found in [4] and [7]). Let (M,d) be a metric space. For x, y ∈ M and a
given O ∈M , we define the Gromov product as:

(x, y)O =
1
2
(d(O, x) + d(O, y) − d(x, y)). (2.4)
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The space (M,d) is called δ-hyperbolic if there is δ such that for all x, y, z,
O ∈M ,

(x, y)O ≥ min((x, z)O, (z, y)O) − δ. (2.5)

A metric space is hyperbolic if it is δ-hyperbolic for a certain δ. In fact, if there
is δ such that (2.5) holds for all x, y, z ∈ M and a given O then (M,d) is 2δ-
hyperbolic. Classical examples of 0-hyperbolic spaces are trees (connected graphs
with no cycle) and real trees (see [7] for this notion). Cartan-Hadamard manifolds,
the Poincaré half-plane and, more generally, complete simply connected manifolds
with sectional curvature bounded by κ < 0 are δ-hyperbolic spaces with δ > 0.

We equip the set of sequences with values in M with an equivalence relation
between (un) and (vn) defined by the condition lim(n,m)→∞(un, vm)O = ∞. The
boundary at infinity ∂M is the set of equivalence classes. A basis of open sets of
∂M is given by

Õ = {γ ∈ ∂M | γ is not associated to any sequence of M \ O},
where O is an open set of M . The boundary of a 0-hyperbolic space is ultrametric.

In our context, if we drop the convention v(x, x) = ∞, our valuation (2.1)
is exactly (2.4). Hence (2.2) implies that Γ is 0-hyperbolic. We define a geodesic
ray as being γ : N → Γ such that |γ(n)| = n and γ(n + 1) ∼ γ(n). Geodesic rays
are representative elements of the above equivalence classes. The two notions of
boundary at infinity are identified by setting xn = γ(n).

3 Operators in �2(Γ)

3.1 Bounded and compact operators

We are interested in operators acting on the Hilbert space

�2(Γ) = {f : Γ → C |
∑

x∈Γ

|f(x)|2 <∞}

endowed with the inner product: 〈f, g〉 =
∑

x∈Γ f(x)g(x). We embed Γ ⊂ �2(Γ)
by identifying x with χ{x}, where χA is the characteristic function of the set A.
Observe that Γ is the canonical orthonormal basis in �2(Γ) and each f ∈ �2(Γ)
writes as f =

∑
x∈Γ f(x)x.

We denote by B(Γ), K(Γ) the sets of bounded, respectively compact operators
in �2(Γ). For T ∈ B(Γ), we will denote by T ∗ its adjoint. Given A ⊂ Γ we denote
by 1A the operator of multiplication by χA in �2(Γ). The orthogonal projection
associated to {x ∈ Γ | |x| ≥ r} is denoted by 1≥r. For T ∈ Γ, we have the following
compacity criterion for bounded operators T in �2(Γ):

Proposition 3.1 T ∈ K(Γ) ⇐⇒ ‖1≥rT ‖ −→
r→∞ 0 ⇐⇒ ‖T1≥r‖ −→

r→∞ 0.

Proof. If one has for example ‖1≥rT ‖ → 0, then T is the norm limit of the sequence
of finite rank operators 1B(e,r)T , hence is compact. �
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3.2 The operator ∂

We now extend x �→ x′ to a map �2(Γ) → �2(Γ). We set e′ = 0 and define the
derivative of any f ∈ �2(Γ) as:

(∂f)(x) ≡ f ′(x) =
∑

y∈Γ

f(y)y′(x) =
∑

y′=x

f(y) =
∑

y∈x̃

f(y).

Thus ∂ ∈ B(Γ). Indeed, ‖f ′‖2 =
∑

x∈Γ |f ′(x)|2 ≤ ν
∑

x∈Γ

∑
y∈x̃ |f(y)|2 ≤ ν‖f‖2.

The adjoint ∂∗ acts on each f ∈ �2(Γ) as follows:

∂∗f(x) = χ
Γ\{e}(x)f(x′).

Indeed, 〈∂f, f〉 =
∑

x∈Γ

∑
y∈x̃ f(y)f(x) =

∑
x∈Γ f(x)χΓ\{e}(x)f(x′) = 〈f, ∂∗f〉.

Moreover, ‖∂∗f‖2 =
∑

x∈Γ\{e} |f(x′)|2 = ν
∑

x∈Γ |f(x)|2 = ν‖f‖2 shows that

∂∂∗ = νId. (3.1)

Thus ∂∗/
√
ν is isometric on �2(Γ) and ‖∂‖ = ‖∂∗‖ =

√
ν.

For α ∈ N we set f (α) = ∂αf . Thus for each x ∈ Γ, x(α) is well defined in
�2(Γ) and x(α) = 0 ⇔ α > |x|. For |x| ≥ α the notation is consistent with our old
definition.

3.3 C∗-algebras of energy observables related to Γ

We first summarize the method used in [6] to study the essential spectrum of
large families of operators. Let H be a Hilbert space and H a bounded self-
adjoint operator on H . If C(H ) = B(H )/K(H ) is the Calkin C∗-algebra, we
denote by S �→ Ŝ the canonical surjection of B(H ) onto C(H ) and we recall that
σess(H) = σ(Ĥ) (this is a version of Weyl’s Theorem). If C is a C∗-subalgebra of
B(H ) which contains the compact operators, then one has a canonical embedding
C/K(H ) ⊂ C(H ). Thus, in order to determine the essential spectrum of an
operator H ∈ C it suffices to give a good description of the quotient C/K(H ) and
to compute Ĥ as element of it. As explained in [6], we can actually go further by
taking H as an unbounded operator over H such that (H + i)−1 ∈ C. We shall
apply this strategy in our context.

Let Dalg be the ∗-algebra of operators in �2(Γ) generated by ∂ and D the
C∗-algebra of operators in �2(Γ) generated by ∂. Because of (3.1), Dalg is unital.
We denote by ϕ(Q) the operator of multiplication by ϕ on �2(Γ). If C is a C∗-
subalgebra of �∞(Γ) then we embed C in B(Γ) by ϕ �→ ϕ(Q). Let 〈D , C〉 be the
C∗-algebra generated by D ∪ C. In this paper we shall take C = 〈D , C〉. This
algebra contains many Hamiltonians of physical interest, for instance Schrödinger
operators with potentials in C. We recall that given a graphG the Laplace operator
acts on �2(G) as follows:

(∆f)(x) =
∑

y∼x

(f(y) − f(x)).



1106 S. Golénia Ann. Henri Poincaré

With our definitions ∆ = ∂+∂∗−νId+χ{e}. Notice that if ν > 1 then D does not
contain compact operators (see below), so ∆ /∈ D . On the other hand, if C ⊃ C0

and V ∈ C then the Schrödinger operator ∆ + V (Q) clearly belongs to 〈D , C〉.
We now give a new description of K(Γ).

Proposition 3.2 If C0 be the C∗-algebra generated by D · C0 then C0 = K(Γ).

Proof. For each ϕ ∈ C0, Proposition 3.1 shows ϕ(Q) ∈ K(Γ). Hence C0 ⊂ K(Γ).
For the opposite inclusion, let T ∈ K(Γ) and fix ε > 0. Proposition 3.1, shows that
there is an operator T ′ with compactly supported kernel such that ‖T − T ′‖ ≤ ε.
Define δx,y ∈ K(Γ) by (δx,yf)(z) = f(y) if z = x and 0 elsewhere. We have
δx,x = χ{x}(Q) ∈ C0. As T ′ is a linear combination of δx,y, it suffices to show that
δx,y is in C0. But this follows from δx,y = δx,x(∂∗)|x|∂|y|δy,y. �

If C is a C∗-subalgebra of �∞(Γ) that contains C0, then K(Γ) ⊂ 〈D , C〉.
Hence, in order to apply the technique described above, we have to give a suffi-
ciently explicit description of the quotient 〈D , C〉/K(Γ). In this paper we concen-
trate on the case C ≡ C(Γ̂) which is, geometrically speaking, the most interesting
one (see the last Remark in §2.3). The C∗-algebra generated by ∂ and C(Γ̂) will be
denoted by C (Γ̂) and the ∗-subalgebra generated by ∂ and C(Γ̂) will be denoted by
C (Γ̂)alg. We will need the next fundamental property.

Proposition 3.3 [∂,C(Γ̂)] ⊂ K(Γ).

Proof. For each ϕ ∈ C(Γ̂) one has ([∂, ϕ(Q)]f)(x) =
∑

y′=x(ϕ(y) − ϕ(x))f(y) =
(∂◦ψ(Q)f)(x), where ψ belongs to C(Γ̂) and is defined by ψ(y) = ϕ(y)−ϕ(y′) when
|y| ≥ 1 and ψ(e) = 0. Observe that for γ ∈ ∂Γ we have ψ(γ) = ϕ(γ) − ϕ(γ) = 0.
Hence by (2.3), ψ ∈ C0. Proposition 3.2 implies ψ(Q) ∈ K(Γ). �

Remark. The algebra D is the tree analogous of the algebra generated by the
momentum operator on the real line. However, these algebras are rather dif-
ferent: D is not commutative and the spectrum and the essential spectrum of
the operators from D are not connected sets in general. For instance, one has
σ(∂∗∂) = σess(∂∗∂) = {0, ν} if ν > 1. Indeed, we remind that if A, B are elements
of a Banach algebra we have σ(AB) ∪ {0} = σ(BA) ∪ {0} and, as noticed below,
dim Ker ∂ is infinite for ν > 1.

3.4 Translations in �2(Γ)

Γ acts on itself to the left and to the right: for each a ∈ Γ we may define λa, ρa : Γ →
Γ by λa(x) = ax and ρa(x) = xa respectively. Clearly, for a, b ∈ Γ, λaρb = ρbλa

and for any x ∈ aΓ we define a−1x as being the y for which x = ay. For each
x ∈ Γa = {y ∈ Γ | ∃z ∈ Γ s.t. y = za}, we define y = xa−1 by x = ya. We
extend now these translations to �2(Γ). The translation λa acts on each f ∈ �2(Γ)
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as
∑

x∈Γ f(x)ax, i.e., (λaf)(x) = χaΓ(x)f(a−1x). In the same manner, we define
(ρaf)(x) = χΓa(x)f(xa−1). The operators λa and ρa are isometries:

λ∗aλa = Id and ρ∗aρa = Id. (3.2)

It is easy to check that the adjoins act on any f ∈ �2(Γ) as (λ∗af)(x) = f(ax) and
(ρ∗af)(x) = f(xa). Moreover,

λaλ
∗
a = 1aΓ and ρaρ

∗
a = 1Γa. (3.3)

Note also that ∂∗ =
∑

|a|=1 ρa and ∂ =
∑

|a|=1 ρ
∗
a.

3.5 Localizations at infinity

In order to study C (Γ̂)/K(Γ) we have to define the localizations at infinity of
T ∈ C (Γ̂) by looking at the behavior of the translated operator λ∗aTλa as a
converges to γ in Γ̂ (abbreviated a→ γ), for each γ ∈ ∂Γ.

If T ∈ K(Γ) then u-lima→γ λ
∗
aTλa = 0, where u-lim means convergence in

norm. Indeed, by (3.2), (3.3) and Proposition 3.1 we get ‖λ∗aTλa‖=‖1aΓT1aΓ‖→0,
as a→ γ. Now, we compute the uniform limit of λ∗aTλa when T ∈ C (Γ̂)alg. There
is P , a non-commutative complex polynomial in m + 2 variables, and functions
ϕi ∈ C(Γ̂) for i = �1,m�, such that T = P (ϕ1, ϕ2, . . . , ϕm, ∂, ∂

∗). We set T (γ) =
P (ϕ1(γ), ϕ2(γ), . . . , ϕm(γ), ∂, ∂∗).

Lemma 3.4 There is a0 ∈ Γ such that u-lima→γ λ
∗
aTλa = λ∗a0

T (γ)λa0 .

Proof. The Proposition 3.3 and (3.1) give some φk ∈ C(Γ̂), K ∈ K(Γ) and αk, βk ∈
N such that T =

∑n
k=1 φk(Q)∂∗αk∂βk +K and T (γ) =

∑n
k=1 φk(γ)∂∗αk∂βk . Thus,

it suffices to compute a limit of the form u-lima→γ λ
∗
aϕ(Q)∂∗α∂βλa with ϕ ∈ C(Γ̂).

We suppose |a| ≥ α and take f ∈ �2(Γ). We first show the result for ϕ = 1. Since

(λ∗a∂
∗α∂βλaf)(x) =

∑

{y|y(β)=(ax)(α)}
(λaf)(y) =

∑

{y|(ay)(β)=(ax)(α)}
f(y), (3.4)

it suffices to show that the set {y | (ay)(β) = (ax)(α)} is independent of a if |a| ≥ α.
But this is precisely what asserts the Lemma 3.5 below.

We now treat the general case ϕ ∈ C(Γ̂). The identity

(λ∗aϕ(Q)∂∗α∂βλaf)(x) = ϕ(ax)(λ∗a∂
∗α∂βλaf)(x)

gives us that

‖λ∗aϕ(Q)∂∗α∂βλa − ϕ(γ)λ∗a∂
∗α∂βλa‖ ≤ ‖ϕ(aQ) − ϕ(γ)‖ · ‖∂∗α∂β‖ → 0

as a → γ. On the other hand, by the Lemma 3.5, ϕ(γ)λ∗a∂
∗α∂βλa is constant for

|a| ≥ α. Thus, it suffices to choose |a0| ≥ max{αk | k = 1, . . . , n} in the statement
of the lemma to end the proof. �
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Lemma 3.5 For |a| ≥ α we have:

{y | (ay)(β) = (ax)(α)} =






∅ for |x| + β − α < 0,
S|x|+β−α for |x| < α and |x| + β − α ≥ 0,
x(α)Sβ for |x| ≥ α and |x| + β − α ≥ 0.

(3.5)

Proof. Let Jx = {y | (ay)(β) = (ax)(α)}. Then

aJx = {ay | (ay)(β) = (ax)(α)} = {y | y(β) = (ax)(α)} ∩ aΓ
= ((ax)(α)Sβ(Γ)) ∩ aΓ.

We first notice that (ax)(α)Sβ ⊂ S|a|+|x|−α+β. If |x| − α + β < 0 then
((ax)(α)Sβ) ∩ aΓ = ∅, so aJx = ∅. This implies Jx = ∅. If |x| − α + β ≥ 0
then ((ax)(α)Sβ)∩aΓ �= ∅. If we suppose that |x| < α, i.e., |(ax)(α)| < |a|, we have
a ∈ (ax)(α)Γ. Let b such that a = (ax)(α)b. Thus

((ax)(α)Sβ) ∩ aΓ = ((ax)(α)Sβ) ∩ (ax)(α)bΓ = (ax)(α)(Sβ ∩ bΓ)
= (ax)(α)bSβ−|b| = aSβ−|b| = aSβ+|x|−α,

so we have aJx = aSβ+|x|−α, hence Jx = Sβ+|x|−α.
Finally, if |x| ≥ α, i.e., |(ax)(α)| ≥ |a|, one has (ax)(α) ∈ aΓ. Thus we obtain

aJx = (ax)(α)Sβ = ax(α)Sβ , hence Jx = x(α)Sβ . �
Remark. As seen in the proof of Lemma 3.4, one may choose any a0 such that
|a0| ≥ deg(P ). On the other hand, we stress that the limit is not a multiplicative
function of T . Indeed,

u- lim
a→γ

λ∗a∂
∗∂λa �= (u- lim

a→γ
λ∗a∂

∗λa) · (u- lim
a→γ

λ∗a∂λa).

Therefore, in order to describe the morphism of the algebra C (Γ̂) onto its quotient
C (Γ̂)/K(Γ) we have to improve our definition of the localizations at infinity.

3.6 Extensions to Γ̃

The space �2(Γ̃) is defined similarly to �2(Γ). Since Γ ⊂ Γ̃, we have �2(Γ) ↪→ �2(Γ̃).
As before, we embed Γ̃ in �2(Γ̃) by sending x on χ{x} and we notice that Γ̃ is an
orthonormal basis of �2(Γ̃). We define ∂̃ : �2(Γ̃) → �2(Γ̃) by

(∂̃f)(x) = f ′(x) =
∑

y′=x

f(y).

For α ∈ N, we set f (α) = ∂̃αf , notation which is consistent with our old definition
of x(α) as the restriction of x to Z|x|−α. Obviously ∂̃ ∈ B(Γ), its adjoint ∂̃∗ acts as
(∂̃∗f)(x) = f(x′), ∂̃∗/

√
ν is an isometry on �2(Γ̃):

∂̃∂̃∗ = νId, (3.6)
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thus ‖∂̃‖ = ‖∂̃∗‖ = ν. We denote by D̃ the C∗-algebra generated by ∂̃ and by D̃alg

the ∗-algebra generated by ∂̃. Both of them are unital.
We now make the connection between Dalg and D̃alg.

Lemma 3.6 For |a| ≥ α, one has: λ∗a∂∗
α∂βλa = 1Γ∂̃

∗α
∂̃β1Γ.

Proof. For any f ∈ �2(Γ̃), one has

(1Γ∂̃
∗α
∂̃β1Γf)(x) = 1Γ(x)

∑

{y|y(β)=x(α)}
1Γ(y)f(y).

Using the same arguments as in the proof of the Lemma 3.5, one shows that for
each x ∈ Γ the set {y ∈ Γ | y(β) = x(α)} equals the r.h.s. of (3.5). Thus the above
sum is the same as that of the r.h.s. of (3.4). �

We will also need a result concerning the localization of the norm on D̃alg.

Lemma 3.7 If T̃ ∈ D̃alg, then ‖T̃‖ = ‖1ΓT̃1Γ‖.

Proof. Because of (3.6), we can suppose that T̃ =
∑n

k=1 ck∂̃
∗αk

∂̃βk . We denote by
β the integer max{βk | k ∈ �1, n�}. For each ε > 0, there is some g ∈ �2(Γ̃) with
compact support such that ‖g‖ = 1 and ‖T̃ g‖ ≥ ‖T̃‖−ε. Note that if y1, y2, . . . , ym

are distinct points of Γ, a1, a2, . . . , am are complex numbers and x1, x2 ∈ Γ̃, we
have

‖
m∑

i=1

aix1yi‖2 =
m∑

i=1

|ai|2 = ‖
m∑

i=1

aix2yi‖2. (3.7)

Thus, since g has compact support, there are x ∈ Γ̃, m ∈ N
∗ and yi ∈ Γ, |yi| ≥ β,

ai ∈ C, for all i ∈ �1,m� such that g =
∑m

k=1 aixyi. We set f =
∑m

k=1 aieyi. Then
(3.7) gives us ‖f‖ = ‖g‖ = 1. Using |yi| ≥ β, we get f ∈ �2(Γ) and T̃ f ∈ �2(Γ).
Also with (3.7) we obtain for z ∈ Γ,

‖T̃ g‖ = ‖
n∑

k=1

m∑

i=1

ckai∂̃
∗αk

∂̃βkxyi‖ = ‖
n∑

k=1

m∑

i=1

∑

|z|=αk

ckai(xyi)(βk)z‖

= ‖
n∑

k=1

m∑

i=1

∑

|z|=αk

ckaix(yi)(βk)z‖ = ‖
n∑

k=1

m∑

i=1

∑

|z|=αk

ckaie(yi)(βk)z‖

= ‖
n∑

k=1

m∑

i=1

∑

|z|=αk

ckai(eyi)(βk)z‖ = ‖
n∑

k=1

m∑

i=1

ckai∂̃
∗αk

∂̃βkeyi‖ = ‖T̃ f‖.

Hence, there is f ∈ �2(Γ̃) such that ‖1ΓT̃1Γf‖ = ‖T̃ f‖ = ‖T̃ g‖ ≥ ‖T̃‖ − ε. �
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4 The main results

4.1 The morphism

In the sequel, a morphism will be understood as a morphism of C∗-algebras. To
describe the quotient C (Γ̂)/K(Γ), we need to find an adapted morphism.

Theorem 4.1 For each γ ∈ ∂Γ there is a unique morphism Φγ : C (Γ̂) → D̃ such
that Φγ(∂) = ∂̃ and Φγ(ϕ(Q)) = ϕ(γ), for all ϕ ∈ C(Γ̂). One has K(Γ) ⊂ KerΦγ .

Proof. We use the notations from §3.5. If T ∈ C (Γ̂)alg then by Lemma 3.4 we have
u-lima→γ λ

∗
aTλa = λ∗a0

T (γ)λa0 . Let T̃ (γ) be P (ϕ1(γ), ϕ2(γ), . . . , ϕm(γ), ∂̃, ∂̃∗). By
Lemma 3.6 and (3.6) one can choose a0 such that λ∗a0

T (γ)λa0 = 1ΓT̃ (γ)1Γ. Lemma
3.7 implies

‖T̃ (γ)‖ = ‖1ΓT̃ (γ)1Γ‖ = ‖λ∗a0
T (γ)λa0‖ = ‖u- lim

a→γ
λ∗aTλa‖ ≤ ‖T ‖.

Thus there is a linear multiplicative contraction Φ0
γ : C (Γ̂)alg → D̃ , Φ0

γ(T ) = T (γ).
The density of C (Γ̂)alg in C (Γ̂) allows us to extend Φ0

γ to a morphism Φγ : C (Γ̂) →
D̃ which clearly satisfies the conditions of the theorem. The uniqueness of Φγ is
obvious and the last assertion of the theorem follows from Proposition 3.2. �

4.2 The case ν > 1

In this case, we are able to improve Theorem 4.1. We recall first that an isometry is
said to be proper if it is not unitary. The operators ∂∗ and ∂̃∗ are proper isometries
and the dimensions of the kernels of ∂ and ∂̃ are infinite: in the case of ∂, if one
lets a, b be two different letters of A , and one chooses g ∈ �2(Γa) and h ∈ �2(Γb)
such that h(xb) = g(xa) for all x ∈ Γ, then g − h is in Ker ∂.

Let T be the unit circle of R
2 and H2 the closure of the subspace spanned

by {einQ, n ∈ N} in �2(T). For g ∈ L∞(T), we define the Toeplitz operator Tg on
H2 by Tgh = PH2gh, where PH2 is the projection on H2. We denote by T the
C∗-algebra generated by Tu, where we u is the map u(z) = z. The next theorem
is due to Coburn (see [5] for a proof).

Theorem 4.2 If S is a proper isometry, then there is a unique isomorphism J of
T onto S , the C∗-algebra generated by S, such that J (Tu) = S.

Thus there is a unique isomorphism J of D onto D̃ such that J (∂) = J (∂̃), so
in the case ν > 1 we can rewrite our Theorem 4.1 as follows.

Theorem 4.3 Let γ ∈ ∂Γ. There is a unique morphism Φγ : C (Γ̂) → D such that
Φγ(ϕ(Q)) = ϕ(γ) for all ϕ ∈ C(Γ̂) and Φγ(D) = D for all D ∈ D .
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Remark. When ν = 1, there is no isomorphism J : D → D̃ such that J (∂) = ∂̃

because D̃ is commutative. Thus, in this case, one cannot hope in a result as above.
There is an other way of proving Theorem 4.3 which uses the next proposition.

Proposition 4.4 If ν ≥ 1 then {∂∗α∂β}{α,β∈N} is a basis of the vector space Dalg.
One has ν > 1 if and only if {∂̃∗α

∂̃β}{α,β∈N} is a basis of space D̃alg.

Proof. Let λi �= 0 for all i ∈ �1, n�. Assume that
∑n

i=1 λi∂
∗αi∂βi = 0, where

(αi, βi) are distinct couples. We set α = min{αi | i ∈ �1, n�} and I = { i | αi = α}.
We take x ∈ Γ such that |x| = α and we obtain

∑
i∈I λi(∂βif)(e) = 0. Notice

that {βi}i∈I are pairwise distinct by hypothesis. Now, by taking i0 ∈ I and f
the characteristic function of Sβi0

, we get that λi0 = 0 which is a contradiction.
Hence

∑n
i=1 λi∂

∗αi∂βi �= 0, i.e., the family is free. Let now ν > 1 and λi �= 0
for all i ∈ �1, n�. We suppose

∑n
i=1 λi∂̃

∗αi
∂̃βi = 0, with (αi, βi) pairwise distinct.

We fix x ∈ Γ̃ and set ᾱ = max{αi, i ∈ �1, n�}. One has (
∑n

i=1 λi∂̃
∗αi

∂̃βif)(x) =
∑n

i=1 λi

∑
y∈x(αi)Sβi f(y) = 0. Notice that x(α)Sβ ∩ x(α′)Sβ′

= ∅ if and only if
α′ − α �= β′ − β. Taking f ∈ �2(S|x|−α1+β1), we see that one can reduce oneself
o the case when there is some k such that αi − βi = k for all i ∈ �1, n�. Since
x(ᾱ−l)Sᾱ−k−l ⊂ x(ᾱ−1)Sᾱ−k−1

� x(ᾱ)Sᾱ−k for all l ∈ �1, (ᾱ − k)�, there is some
y0 ∈ x(ᾱ)Sᾱ−k \ ∪αi �=ᾱx

(αi)Sβi . Then, taking f = χ{y0} we get some i0 such that

λi0 = 0, which is a contradiction. Hence
∑n

i=1 λi∂̃
∗αi

∂̃∗
βi �= 0. Finally, since when

ν = 1 one has ∂̃∂̃∗ = ∂̃∗ ∂̃ = Id, {∂̃∗α
∂̃β}α,β∈N is obviously not a basis. �

4.3 Description of C (Γ̂)/K(Γ)

Theorem 4.5 i) For any ν ≥ 1, there is a unique morphism Φ : C (Γ̂) → D̃⊗C(∂Γ)
such that Φ(∂) = ∂̃ ⊗ 1 and Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ). This morphism is surjective
and its kernel is K(Γ).
ii) For ν > 1, there is a unique surjective morphism Φ : C (Γ̂) → D ⊗ C(∂Γ) such
that Φ(∂) = ∂ ⊗ 1, Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ) and KerΦ = K(Γ).

Once again, as in Remark 4.2, the statement (ii) of the theorem is false if
ν = 1. As a corollary of Theorem 4.5 we obtain the following result.

Proposition 4.6 If ν > 1 then D ∩ K(Γ) = {0} and if ν = 1 one has K(Γ) ⊂ D .

Proof. Let ν > 1 and T ∈ D ∩ K(Γ). Theorem 4.5 gives us both Φ(T ) = T ⊗ 1
and Φ(T ) = 0 (since T is compact). For ν = 1, as in the proof of Proposition 3.2,
it suffices to prove that δx,x is in D . But this is clear since δx,x = ∂∗|x+1|∂|x+1| −
∂∗|x|∂|x|. �

We devote the rest of the section to the proof of Theorem 4.5.

Proof. By Theorem 4.1 there is a morphism Φ : C (Γ̂) → D̃∂Γ such that (Φ(∂))(γ) =
∂̃ and (Φ(ϕ(Q)))(γ) = ϕ(γ), for all γ ∈ ∂Γ, ϕ ∈ C(Γ̂). Since the images of
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∂ and ϕ(Q) through Φ belong to the C∗-subalgebra C(∂Γ, D̃), and since C (Γ̂)
is generated by ∂ and such ϕ(Q), it follows that the range of Φ is included in
C(∂Γ, D̃). We have C(∂Γ, D̃) ∼= D̃ ⊗ C(∂Γ), so we get the required morphism
Φ : C (Γ̂) → D̃ ⊗ C(∂Γ). Now since Φ(∂) = ∂̃ ⊗ 1 and Φ(ϕ(Q)) = 1 ⊗ (ϕ|∂Γ),
and since any function in C(∂Γ) is the restriction of some function from C(Γ̂),
it follows that Φ is surjective. Its uniqueness is clear. It remains to compute the
kernel.

As seen in Theorem 4.1, K(Γ) ⊂ KerΦ. In the remainder of this section we
shall prove the reverse inclusion. For this we need some preliminary lemmas.

Lemma 4.7 Let R = ϕ(Q)∂∗α∂β and U = {aiΓ}i∈�1,n� be a disjoint covering
of ∂Γ. For each ε > 0 there are c1, c2, . . . , cm ∈ Ran(ϕ) and there is a disjoint
covering U ′ = {bjΓ}j∈�1,m� of ∂Γ finer than U such that ‖1U ′R−R′‖ ≤ ε, where
R′ =

∑m
j=1 1bjΓcj∂

∗α∂β and U ′ = ∪m
j=1bjΓ.

Proof. Let ε > 0 and denote ε/‖∂∗α∂β‖ by ε′. Since ϕ(∂Γ) is compact, there are
γ1, γ2, . . . , γN ⊂ ∂Γ such that ϕ(∂Γ) ⊂ ∪N

k=1D(ϕ(γk), ε′), whereD(z, r) is the com-
plex open disk of center z and ray r. The open sets Oi,k = aiΓ̂∩ϕ−1(D(ϕ(γk), ε′))
cover ∂Γ. Proposition 2.4 gives us a disjoint covering {bjΓ}j∈�1,m� of ∂Γ such that
for each j ∈ �1,m� there are i and k such that bjΓ̂ ⊂ Oi,k. To simplify the nota-
tions, we will denote by γj those γk associated to bjΓ. We set U ′ = {bjΓ}j∈�1,m�

and R′ =
∑n

j=1 1bjΓϕ(γj)∂∗α∂β. Recall that supx∈bjΓ |ϕ(γj) − ϕ(x)| ≤ ε′, so

‖(R′ − 1U ′R)f‖2 =
∑

x∈Γ

|
m∑

j=1

1bjΓ(x)(ϕ(γj) − ϕ(x))(∂∗α∂βf)(x)|2

=
m∑

j=1

∑

x∈bjΓ

|(ϕ(γj) − ϕ(x))(∂∗α∂βf)(x)|2

≤
m∑

j=1

sup
x∈bjΓ

|ϕ(γj) − ϕ(x)|2
∑

x∈bjΓ

|(∂∗α∂βf)(x)|2

≤ ε′2
m∑

j=1

∑

x∈bjΓ

|(∂∗α∂βf)(x)|2

≤ ε2‖∂∗α∂β‖−2 · ‖∂∗α∂β‖2 · ‖f‖2 = ε2‖f‖2.

Denoting ϕ(γj) by cj we obtain the result. �

Lemma 4.8 Let T =
∑n

k=1 ϕk(Q)∂∗αk∂βk with ϕk ∈ C(Γ̂) and let ε > 0. There
are a compact operator K, a disjoint covering {ajΓ}j∈�1,m� of ∂Γ and

S =
n∑

k=1

m∑

j=1

1ajΓϕk(γj,k)∂∗αk∂βk ,

with minj∈�1,m� |aj| ≥ maxk∈�1,n� αk and γj,k ∈ ∂Γ such that ‖T − S −K‖ ≤ ε.



Vol. 5, 2004 C∗-Algebras of Anisotropic Schrödinger Operators on Trees 1113

Proof. We denote by α = max{αk | k ∈ �1, n�}. Let Tk be ϕk(Q)∂∗αk∂βk . Setting
U0 = ∪{a||a|=α}{aΓ}, we apply Lemma 4.7 inductively for k ∈ �1, n� with ε/n
instead of ε, U = Uk−1 and R = Tk, denoting U ′ by Uk and R′ by Sk. Then, for
k ∈ �1, n� we get ‖1Uk

Tk−Sk‖ ≤ ε/k. Since Uk+1 is finer than Uk for k ∈ �1, n−1�,
we obtain ‖1Un

∑n
k=1(Tk − Sk)‖ ≤ ε, hence ‖T − 1Uc

n
T − 1Un

∑n
k=1 Sk‖ ≤ ε. To

finish the proof, we denote the compact operator 1Uc
n
T by K, 1Un

∑n
k=1 Sk by S

and Un by {ajΓ}j∈�1,m�. �
We now go back to the proof of Theorem 4.5. Let T ∈ KerΦ. For each ε > 0

there is T ′ ∈ C (Γ̂)alg such that ‖T −T ′‖ ≤ ε/4. By relation (3.1) and Proposition
3.3, we can write T ′ =

∑n
k=1 ϕk(Q)∂∗αk∂βk +K, where K ∈ K(Γ) and ϕk ∈ C(Γ̂).

Thus ‖Φ(T ′)‖ ≤ ε/4. Using Lemma 4.8, we get an operator S and a compact
operator K1 such that ‖T ′ − S −K1‖ ≤ ε/4. This implies that ‖Φ(S)‖ ≤ ε/2.

Lemma 4.9 There is K2 ∈ K(Γ) such that ‖S −K2‖ ≤ ‖Φ(S)‖.
Before proving the lemma, let us remark that it implies

‖T −K1 −K2‖ ≤ ‖T − T ′‖ + ‖T ′ − S −K1‖ + ‖S −K2‖ ≤ ε.

Hence T ∈ K(Γ). Thus Theorem 4.5 is proved. �
Proof of Lemma 4.9. First, we remark that for each a ∈ Γ and α, β ≥ 0, Proposition
3.3 gives us that 1aΓ∂

∗α∂β −1aΓ∂
∗α∂β1aΓ is a compact operator. We define S′ =∑n

k=1

∑m
j=1 1ajΓϕk(γj,k)∂∗αk∂βk1ajΓ and we set K2 = S−S′, which is a compact

operator. Since {ajΓ}j∈�1,m� is a disjoint covering of ∂Γ, for any f ∈ �2(Γ):

‖S′f‖2 =
∑

x∈Γ

|
n∑

k=1

m∑

j=1

(1ajΓϕk(γj,k)∂∗αk∂βk1ajΓf)(x)|2

=
m∑

j=1

∑

x∈Γ

|
n∑

k=1

(1ajΓϕk(γj,k)∂∗αk∂βk1ajΓf)(x)|2

≤
m∑

j=1

‖
n∑

k=1

1ajΓϕk(γj,k)∂∗αk∂βk1ajΓ‖2 · ‖1ajΓf‖2.

Now we use (3.2) and (3.3) and get:

‖1ajΓ

( n∑

k=1

ϕk(γj,k)∂∗αk∂βk
)
1ajΓ‖ = ‖λ∗aj

( n∑

k=1

ϕk(γj,k)∂∗αk∂βk
)
λaj‖.

Since |aj | ≥ max{αk | k ∈ �1, n�}, Lemmas 3.6 and 3.7 give us:

‖λ∗aj

( n∑

k=1

ϕk(γj,k)∂∗αk∂βk
)
λaj‖ = ‖1Γ

( n∑

k=1

ϕk(γj,k)∂̃∗
αk
∂̃βk

)
1Γ‖

= ‖
n∑

k=1

ϕk(γj,k)∂̃∗
αk
∂̃βk‖.
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For each j we choose γj ∈ aj∂Γ. The family {ajΓ}j∈�1,m� is a disjoint covering
of ∂Γ, so we have limx→γj

χajΓ(x) = 1 and limx→γj
χaiΓ(x) = 0 for i �= j. Hence

Φγj (S′) =
∑n

k=1 ϕk(γj,k)∂̃∗
αk
∂̃βk . We obtain

‖S′f‖2 ≤
m∑

j=1

‖Φγj(S
′)‖2 · ‖1ajΓf‖2 ≤ sup

γ∈∂Γ
‖Φγ(S′)‖2 · ‖f‖2.

Finally, since K(Γ) ⊂ KerΦ, ‖Φ(S)‖ = ‖Φ(S′)‖ = supγ∈∂Γ ‖Φγ(S′)‖. �
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