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C∗-Independence, Product States and Commutation

L.J. Bunce and J. Hamhalter

Abstract. Let D be a unital C∗-algebra generated by C∗-subalgebras A and B pos-
sessing the unit of D. Motivated by the commutation problem of C∗-independent
algebras arising in quantum field theory, the interplay between commutation phe-
nomena, product type extensions of pairs of states and tensor product structure is
studied. Roos’s theorem [11] is generalized in showing that the following conditions
are equivalent: (i) every pair of states on A and B extends to an uncoupled product
state on D; (ii) there is a representation π of D such that π(A) and π(B) commute
and π is faithful on both A and B; (iii) A ⊗min B is canonically isomorphic to a
quotient of D.

The main results involve unique common extensions of pairs of states. One
consequence of a general theorem proved is that, in conjunction with the unique
product state extension property, the existence of a faithful family of product states
forces commutation. Another is that if D is simple and has the unique product
extension property across A and B then the latter C∗-algebras must commute and
D be their minimal tensor product.

1 Introduction

One approach to the concept of independence in quantum field theory, in general
terms, has that two subsystems of observables may be deemed independent if each
can be prepared in any of its states without having regard to the other. In a
formulation originating in [5], when observables are realized as hermitian elements
in a C∗-algebra this translates into the notion of C∗-independence. Commutation
of the arising observable algebras is not a precondition of C∗-independence nor
it is a mathematical necessity, as many counterexamples show (see [12, p. 205]).
The commutation question was first considered in [9, 10] and more lately in [3]
where a natural commutation conjecture involving product states was negated and
a request for appropriate sufficient conditions issued.

We investigate commutation phenomena occurring in C∗-independence. At
the same time we attempt to throw light upon the role of product states. Fore-
warned by [3, III] that faithful product states can exist alongside absence of non-
trivial commutation across C∗-independent algebras, we proceed indirectly. The
introduction of the notion of uncoupled product states allows us access to ten-
sor products as likewise (and more immediately) does a condition which we call
faithful independent commutation. Roos’s theorem [11] is generalized and mini-
mal tensor product of C∗-algebras is characterized in terms of state extension
conditions alone, without assuming mutual commutativity. Our main results are
gathered in the third and final section of the paper where we study unique common
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extension properties. Amongst other things we deduce that if a simple C∗-algebra
has the unique product state extension property across a pair of generating C∗-
subalgebras A and B, then A and B commute and D is canonically isomorphic to
the minimal tensor product of A and B. In general, the unique product state ex-
tension property together with the existence of a faithful family of product states
is sufficient to compel commutation.

We use [2] and [13] as general references for C∗-algebras, the latter for tensor
products particularly. Let A be a C∗-algebra, let S(A) be its state space and P (A)
its set of pure states. Given ϕ ∈ S(A) and a ∈ A such that ϕ(a a∗) = 1 we use ϕa

to denote the transformed state of A given by

ϕa(x) = ϕ(a x a∗) , x ∈ A .

We recall [2, 2.4.10] that if ϕ ∈ S(A) then kerπϕ is the largest ideal in kerϕ,
where πϕ is the associated GNS representation. If J is an ideal of A, J 0 denotes
its annihilator in A∗.

Let A and B be unital C∗-algebras and let β be a C∗-norm on the algebraic
tensor product A ⊗ B. The completion with respect to β is written A ⊗β B. We
may regard A and B as C∗-subalgebras of A ⊗β B. If � ∈ S(A) and τ ∈ S(B)
the tensor product �⊗ τ ∈ A∗ ⊗B∗ has unique extension to a state on A⊗min B,
and on A⊗β B via the canonical ∗-homomorphism onto A⊗min B. By custom we
continue to denote the resulting (tensor product) extension in S(A⊗βB) by �⊗ τ ,
regardless of β.

Now let A and B be C∗-subalgebras of a unital C∗-algebra D such that A
and B generate D as a C∗-algebra and both contain the identity of D.

1.1 Definition. A and B are said to be C∗-independent in D if � and τ have a
common extension in S(D) for all (�, τ) ∈ S(A) × S(B).

Thus (when identified with their canonical images) A and B are C∗-in-
dependent in A ⊗β B for any C∗-norm β on A ⊗ B. Conversely [11], in a result
referred to as Roos’s theorem, if A and B commute (i.e., a b = b a, for all a ∈ A
and b ∈ B) and are C∗-independent in D then the natural map is a ∗-isomorphism
from A⊗B onto the ∗-subalgebra of D generated by A and B.

Recent papers that discuss various forms of independence in operator alge-
bras include [3, 4] and [6, 7]. The comprehensive survey [12] is a main source of
information on both mathematical and physical aspects. For a more recent de-
velopment we refer the reader to [8, Chapter 11]. The reader is directed to the
references contained in these works for an extensive literature. The related ques-
tion of the existence and uniqueness of common extensions of a given pair of states
is investigated in [1] in the significant case of subsystems of a Fermion system, with
decisive results [1, Theorem 4, Theorem 5].
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2 Uncoupled product states

Throughout this section D denotes a unital C∗-algebra and A and B denote C∗-
subalgebras of D containing the identity of D the union of which generates D. It
is not assumed that A and B commute.

If S ⊂ S(D) we shall employ the contraction S|A = {ϕ|A | ϕ ∈ S(D)} (with
the corresponding meaning for S|B).

2.1 Definition. A state ϕ of D is said to be

(a) a product state across A, B if ϕ(a b) = ϕ(a)ϕ(b) whenever a ∈ A and b ∈ B;

(b) an uncoupled product state across A, B if

ϕ

( n∏
i=1

ai bi

)
= ϕ

( n∏
i=1

ai

)
ϕ

( n∏
i=1

bi

)
,

whenever a1, . . . , an ∈ A , b1, . . . , bn ∈ B .

The definition (a) is symmetric about A and B (states are hermitian). Since
1’s can be inserted willy-nilly without effect, the value of an uncoupled product
state at

∏n
i=1 ai bi (ai ∈ A, bi ∈ B) is the same at any rearrangement of the

product that leaves unaltered the relative order of the ai’s, and the relative order
of the bi’s.

As is clear, product states and uncoupled product states are one and the
same if A and B commute, and they coincide with the tensor product states when
D is a C∗-tensor product of A and B.

Let ∆(A,B) and ∆u(A,B), respectively, be the (possibly empty) sets of all
product states across A,B and uncoupled product states across A,B. Given � ∈
S(A) we shall write

E(�) = {ϕ ∈ S(D) | ϕ|A = �} .
Similarly, E(τ) shall denote the set of extensions of τ in S(D) whenever τ ∈ S(B).
Routine verifications show that ∆(A,B) and ∆u(A,B) are weak∗-compact and
that E(�), E(�) ∩ ∆(A,B) and E(�) ∩ ∆u(A,B) are convex and weak∗-compact.
(These facts concerning ∆u(A,B) are also visibly true from those of ∆(A,B) via
Lemma 2.5 below.)

Let � ∈ S(A) and τ ∈ S(B). If � and τ have a common extension in ∆u(A,B)
we shall denote it �∧τ (by the definition there can be at most one such extension).
Thus,

τ ∈ E(�) ∩ ∆u(A,B)|B ⇐⇒ � ∈ E(τ) ∩ ∆u(A,B)|A ⇐⇒ � ∧ τ exists.

Further, if τ =
∑n

i=1 λi τi (convex sum) where τi ∈ S(B) such that � ∧ τi exists
for each i, then � ∧ τ exists and equals

∑n
i=1 λi (� ∧ τi) .
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2.2 Lemma.

(a) Let � ∈ S(A). Then

(i) the restriction map, E(�)∩∆(A,B) → E(�) ∩∆(A,B)|B is affine and
weak∗-continuous;

(ii) the restriction map, E(�)∩∆u(A,B) → E(�)∩∆u(A,B)|B is an affine
weak∗-homeomorphism.

(b) The map ∆u(A,B)|A × ∆u(A,B)|B → ∆u(A,B), given by (�, τ) → � ∧ τ ,
is a weak∗-homeomorphism and is affine in each variable.

Proof. (a) Affineness and (weak∗-) continuity are apparent in both (i) and (ii).
Further, in (ii), the map is a bijection and so a homeomorphism by compactness.
(b) To see continuity let (�α, τα) → (�, τ) in the product weak∗-topology on the
domain. By compactness of ∆u(A,B), some subnet �β ∧ τβ of �α ∧ τα has weak∗-
limit ϕ in ∆u(A,B). Since ϕ must agree with � on A and τ on B we have �β∧τβ →
� ∧ τ , establishing continuity. The remainder is clear. �

2.3 Definition. D is said to have the C∗-product property (respectively, the C∗-
uncoupled product property) across A,B if � and τ have a common product state
extension (respectively a common uncoupled product state extension) for all (�, τ)
∈ S(A) × S(B).

The C∗-product property was introduced in [4].

2.4 Lemma. Let � and τ have common extension in ∆(A,B) (respectively, in
∆u(A,B)) for all (�, τ) ∈ P (A) × P (B). Then D has the C∗-product property
property (respectively, the C∗-uncoupled product property) across A,B.

Proof. Let � ∈ P (A). The assumption implies that E(�)∩∆(A,B)|B contains P (B)
and so contains S(B) by the Krein-Milman theorem. For any τ ∈ S(B) it follows
that E(τ) ∩∆(A,B)|B contains P (A) and therefore contains S(A) whence D has
the C∗-product property across A,B. A similar argument proves the statement in
parentheses. �

In the next result and later J(A,B) denotes the norm closed ideal of D
generated by the set of A-B commutators, {a b− b a | a ∈ A, b ∈ B}.

We shall refer to the elements of the form
∏n

i=1 ai bi, where a1, . . . , an ∈ A,
b1, . . . , bn ∈ B as the A-B generators of D.

2.5 Lemma. ∆u(A,B) = ∆(A,B) ∩ J(A,B)0.

Proof. Suppose that ϕ is a product state across A,B vanishing on J where J =
J(A,B), and let ϕ be the induced state onD/J . Let a1, . . . , an ∈ A, b1, . . . , bn ∈ B.
Since the images of A and B pairwise commute in D/J we see that

ϕ

( n∏
i=1

ai bi

)
= ϕ

( n∏
i=1

ai ·
n∏

i=1

bi + J

)
= ϕ

( n∏
i=1

ai

)
· ϕ

( n∏
i=1

bi

)
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so that ϕ is uncoupled. Conversely, suppose that ϕ is an uncoupled product state
acrossA,B. If a1, . . . , an ∈ A and b1, . . . , bn ∈ B where n ≥ 2 we have, by definition

ϕ(a1 b1 · · · ai−1 bi−1 (ai bi) ai+1 bi+1 · · · an bn)
= ϕ(a1 b1 · · · , ai−1 bi−1 (bi ai) ai+1 bi+1 · · · an bn) .

Thus, if a ∈ A, b ∈ B and x, y are A-B generators, we have

ϕ(xa b y) = ϕ(x b a y) ,

an equation that continues to hold for all x and y in D (since D is the norm closed
linear span of its A-B generators and ϕ is linear and continuous). Therefore, ϕ
vanishes on all elements of the form

x (a b− b a) y , where x, y ∈ D and a ∈ A, b ∈ B .

Since the norm closed linear span of all such elements is exactly the ideal J(A,B),
ϕ must vanish on J(A,B). �

We shall now introduce a modified form of commutation.

2.6 Definition. A and B are said to faithfully independently commute if there is
a ∗-homomorphism π on D for which the following conditions hold:

(a) π is faithful on A and B;

(b) π(A) and π(B) commute and are C∗-independent in π(D).

The above considerations combine to give the following generalized and ex-
tended form of Roos’s theorem.

2.7 Theorem. The following conditions are equivalent:

(a) � and τ have common uncoupled state extension across A,B
for all (�, τ) ∈ P (A) × P (B).

(b) D has the C∗-uncoupled product property across A,B.

(c) A and B faithfully independently commute.

(d) There is a (unique) C∗-norm β on A⊗B and a ∗-isomorphism
A⊗β B → D/J(A,B) sending a⊗ b→ a b+ J(A,B).

(e) There is a (unique) norm closed ideal J of D and a ∗-isomorphism
A⊗min B → D/J , sending a⊗ b→ a b+ J.
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Proof. (a) ⇒ (b) This was given in Lemma 2.4.

(b)⇒ (c), (d) Assume (b). Let � ∈ S(A) and τ ∈ S(B). By assumption and
Lemma 2.5 � and τ have a common extension in D vanishing on J(A,B), implying
that � and τ vanish on A∩ J(A,B) and B ∩ J(A,B), respectively. It follows that

A ∩ J(A,B) = B ∩ J(A,B) = {0} .

So the quotient map, π : D → D/J(A,B), is faithful on A and B. Since, visibly,
π(A) and π(B) are C∗-independent in π(D), this proves (c). Moreover, since π⊗π
is a ∗-algebra isomorphism from A⊗B onto π(A)⊗π(B) and the latter, by Roos’s
theorem, embeds as a ∗-subalgebra of π(D) via π(a)⊗ π(b) → π(a b), the norm on
π(D) pulls back to a C∗-norm on A⊗B giving (d).

(d)⇒ (e) This is immediate from the fact that, canonically, A ⊗min B is a
quotient of A⊗β B.

(e)⇒ (a). This is clear. �

In the sequel we shall denote by π� the GNS representation associated with
a given state �.

2.8 Lemma. Let � and τ have common extension in ∆u(A,B). Then kerπ� =
A ∩ kerπϕ and kerπτ = B ∩ kerπϕ, where ϕ = � ∧ τ .

Proof. Since ϕ extends � the ideal A∩ker πϕ is contained in ker � and so is contained
in kerπ�. On the other hand, the norm closed ideal J of D generated by kerπ� is
the norm closed linear span of all elements of the form

y = a1 b1 · · · an bn a c1 d1 · · · cm dm

where the ai and cj belong to A, the bi and dj belong to B and a lies in kerπ�.
For any such element y we have

ϕ(y) = �(a1 · · ·an a c1 · · · cm) τ(b1 · · · bn d1 · · · dm) = 0 .

Hence, J is contained in kerπϕ so that kerπ� is contained in A ∩ kerπϕ as
required. �

2.9 Proposition. There is a set S of uncoupled product states across A,B such that
{πϕ | ϕ ∈ S} is faithful on D if, and only if, there is a ∗-isomorphism A⊗minB → D
sending a⊗ b→ a b.

Proof. Suppose that {πϕ | ϕ ∈ S} is faithful on D for some subset S of ∆u(A,B).
It follows from Lemma 2.5 that J(A,B) ⊂ kerϕ for each ϕ ∈ S. Hence, A and B
pairwise commute. Now let (σ, ω) ∈ P (A) × P (B). We have

S = {� ∧ τ | � ∈ S|A , τ ∈ S|B} .
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Put

S1 = {�a | � ∈ S|A , �(a a∗) = 1, a ∈ A}

and

S2 = {τb | τ ∈ S|B , τ(b b∗) = 1, b ∈ B} .

By Lemma 2.8 {π� | � ∈ S|A} and {πτ | τ ∈ S|B} are faithful on A and B,
respectively. It follows from [2, 2.4.8 (ii) and 3.4.2 (ii)] that σ and ω lie in the
respective weak∗-closures of S1 and S2. Further, given typical elements �a and τb
of S1 and S2, we see that �a ∧ τb exists and equals (� ∧ τ)a b. Now Lemma 2.2
implies that σ ∧ ω exists. Hence, by the faithfulness assumption together with
Theorem 2.7 (a)⇒ (e) (or Roos’s theorem, itself) A ⊗min B is ∗-isomorphic to D
as claimed.

If D is isomorphic to A⊗minB in the above way, then the family {π�⊗τ | � ∈
P (A), τ ∈ P (B)} is well known to be faithful on A⊗min B. �

2.10 Corollary. Let � ∈ S(A) and τ ∈ S(B). Then � and τ have a common
extension to an uncoupled product state across A,B if, and only if, there is a ∗-
isomorphism π�(A) ⊗min πτ (B) → πϕ(D) sending π�(a) ⊗ πτ (b) → πϕ(a b), where
ϕ = � ∧ τ .

Proof. Suppose that ϕ = � ∧ τ exists. Via Lemma 2.8 there is a ∗-homomorphism
between π�(A)⊗minπτ (B) and πϕ(A)⊗minπϕ(B) sending π�(a)⊗πτ (b) to πϕ(a)⊗
πϕ(b). But the induced state ϕ on πϕ(D), given by ϕ(π(x)) = ϕ(x), is an uncoupled
product state across πϕ(A), πϕ(B) and πϕ is faithful on πϕ(D). Hence, the required
∗-isomorphism is produced by Proposition 2.9 together with the above remark. The
converse is clear. �

2.11 Remarks. (a) The C∗-uncoupled product property across A, B is imple-
mented by conditional expectations onto A and B as follows. Given � in S(A) and
τ in S(B) consider the composition, Q�,

D → D/J → A⊗min B → B

where the first map is the quotient homomorphism, the second is the inverse
of the one given by Theorem 2.7 (e) and the third is the projection that sends
a⊗b→ �(a) b [13, IV, 4.25]; and let Qτ be the corresponding composition finishing
at A. Chasing the maps, we see that Q� and Qτ are norm one projections onto B
and A, respectively, and that

τ Q� = �Qτ = � ∧ τ .

(b) If D has a faithful uncoupled product state across A,B then, as soon as it
is observed, by Lemma 2.5, that A and B must pairwise commute the conclusion
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that D � A ⊗min B is seen directly from [12, Corollary 3.5] and [3, Proposition
12]. The same conclusion cannot be drawn if it is known only that there is a
faithful product state even when D is finite-dimensional and both A and B are
abelian and C∗-independent [3, III]. Evidently, ∆u(A,B) �= ∆(A,B) in that case.
Nevertheless, if A and B are abelian and C∗-independent in D, then D always has
the C∗-uncoupled product property across A,B (see Proposition 2.13 below).
(c) The commutator ideal of D, the norm closed ideal of D generated by all
commutators x y−y x as x and y range overD, clearly contains J(A,B). If there be
any at all, the pure states of D vanishing on the commutator ideal are precisely the
multiplicative states of D. Trivially, the latter are examples of uncoupled product
states.

2.12 Lemma. Let ϕ ∈ S(D).

(a) If ϕ|A is multiplicative, then ϕ(a x) = ϕ(a)ϕ(x) for all a ∈ A and x ∈ D.

(b) If ϕ|A and ϕ|B are multiplicative then ϕ is multiplicative and is the unique
common extension of ϕ|A and ϕ|B in S(D).

Proof. (a) Let ϕ be multiplicative on A and let a and x be self-adjoint elements of
A and D, respectively. With α = ϕ(a) the Cauchy-Schwarz inequality gives

|ϕ((a − α 1)x)|2 ≤ ϕ((a− α 1)2)ϕ(x2) = (ϕ(a− α 1))2 ϕ(x2) = 0

so that ϕ(a x) = ϕ(a)ϕ(x), from which the general case follows.
(b) Let ϕ be multiplicative on both A and B and let a1, . . . , an ∈ A and

b1, . . . , bn ∈ B where n ≥ 2. Iterating part (a) (symmetrized),

ϕ

( n∏
i=1

ai bi

)
= ϕ(a1)ϕ

(
b1

n∏
i=2

ai bi

)
= ϕ(a1)ϕ(b1)ϕ

( n∏
i=2

ai bi

)

= · · · =
n∏

i=1

ϕ(ai)ϕ(bi) .

So for any A-B generators x1, . . . , xn, y1, . . . , ym we have ϕ(xi yj) = ϕ(xi)ϕ(yj)

and therefore that ϕ
(∑n

i=1 xi

∑m
j=1 yj

)
= ϕ

( ∑n
i=1 xi

)
ϕ

( ∑m
j=1 yj

)
implying

that ϕ is multiplicative on D. �

2.13 Proposition.

(a) Let A be abelian. Then A and B are C∗-independent in D if, and only if, D
has the C∗-product property across A,B.

(b) Let A and B be abelian. Then the following conditions are equivalent.

(i) A and B are C∗-independent in D.
(ii) D has the C∗-uncoupled product property across A,B.
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(iii) A and B faithfully independently commute.

(iv) There is a ∗-isomorphism A ⊗min B → D/J sending a ⊗ b → a b+ J ,
where J is the commutator ideal of D.

Proof. (a) If � ∈ P (A) and τ ∈ S(B) have common extension ϕ in S(D) then, since
� is multiplicative, ϕ is a product state across A,B by Lemma 2.12 (a). Hence, if
A and B are C∗-independent in D, then the latter has the required C∗-product
property by Lemma 2.4. The converse is clear.

(b) Since A and B are abelian, D/J(A,B) is abelian. Therefore J(A,B)
contains, and so equals, the commutator ideal of D. By Theorem 2.7 it is enough
to prove (i)⇒(ii). Assume (i) and let (�, τ) ∈ P (A) × P (B). Since � and τ are
multiplicative, the assumption together with Lemma 2.12 (b) implies that � and τ
have common extension to a multiplicative state on D, and (b) is now immediate
from Theorem 2.7. �

We remark that in the light of Remark 2.11 (b) neither of the conditions in
Proposition 2.13 (b) imply that A and B commute.

3 Unique common extensions

If K is a compact convex set let A(K) denote the continuous (real) affine functions
on K. If K is the state space of a unital C∗-algebra A the evaluation map Asa →
A(K) (a → â) is an order isomorphism and linear isometry. The same is true of
the evaluation map Wsa → Ab(S) when W is a von Neumann algebra, S is the
normal state space of W and Ab(S) denotes the bounded (real) affine functions
on S.

In all that follows D continues to denote a unital C∗-algebra and A and B
denote C∗-subalgebras the union of which generates D and such that 1 ∈ A ∩ B.
As before, we do not assume that A and B commute.

In order to formulate solutions to the the commutation problem we study two
natural unique common extension properties. The first characterizes faithful inde-
pendent commutation and determines the set of corresponding uncoupled product
states amongst likely weak∗-closed sets of states. The underlying idea of the proof
below is to employ convexity to construct implementing conditional expectations
(see Remarks 2.11 (a)).

3.1 Theorem. Let ∆ be a weak∗-closed subset of S(A)×S(B). Then the following
statements are equivalent:

(a) � and τ have unique common extension in ∆ and ∆ ∩ E(�), ∆ ∩ E(τ) are
convex, for all (�, τ) ∈ S(A) × S(B).

(b) ∆ = ∆u(A,B) and A and B faithfully independently commute.
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Proof. (b)⇒ (a) This is immediate from Theorem 2.7 and remarks following Defi-
nition 2.1.

(a)⇒ (b). Assume (a). By the uniqueness condition it is enough to show that
∆ is contained in ∆u(A,B). If � ∈ S(A) and τ ∈ S(B), let ϕ�,τ be their unique
common extension in ∆. Now fix � ∈ S(A) and consider the set

K = E(�) ∩ ∆ .

We have
K = {ϕ�,τ | τ ∈ S(B)} and K|B = S(B) .

The restriction map, r : K → S(B), is an affine homeomorphism with inverse
α : S(B) → K given by α(τ) = ϕ�,τ . Consider now the complex linear extension,
Q� : D → B, of the composition

Dsa → A(S(D))
β→ A(K) α∗→ A(S(B)) → Bsa ,

where the first and last isometries are the appropriate evaluation map and inverse,
respectively, and β is the restriction map, f → f |K. Letting x ∈ Dsa and τ ∈ S(B)
we see that Q�(x)̂ = (x̂|K) ◦ α and deduce that

τ Q� = ϕ�,τ .

In particular, for b ∈ B we have τ Q�(b) = τ(b) for all τ ∈ S(B) so that Q�(b) = b .
Hence, Q� is a norm one projection onto B. In addition, for a ∈ A we have
Q�(a) = �(a) 1, since τ Q�(a) = �(a) = τ(�(a) 1) for all τ ∈ S(B).

The upshot is that for all � ∈ S(A) there is a surjective norm one projection,
Q� : D → B, such that

τ Q� = ϕ�,τ for all τ ∈ S(B), and Q�(a) = �(a) 1 for all a ∈ A .

By symmetry, for all τ ∈ S(B) there is a surjective norm one projection, Qτ : D →
A, such that

�Qτ = ϕ�,τ for all � ∈ S(A) and Qτ (b) = τ(b) 1 for all b ∈ B .

We claim that for all � ∈ S(A) and all a1, . . . , an ∈ A and b1, . . . , bn−1 ∈ B, where
n ≥ 2, we have

Q�(a1 b1 · · · an−1 bn−1an) = �(a1 · · ·an) b1 · · · bn−1 .

Observe first that if � ∈ S(A), τ ∈ S(B) and a1, a2 ∈ A and b1 ∈ B then, since
Qτ : D → A is a conditional expectation, we have

Qτ (a1 b1 a2) = a1Qτ (b1) a2 = τ(b1) a1 a2

so that
τ Q�(a1 b1 a2) = �Qτ (a1 b1, a2) = τ [�(a1 a2) b1]
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which, being valid for all τ in S(B), proves that

Q�(a1 b1 a2) = �(a1 a2) b1 .

Now fix n ≥ 2 and suppose that for all � ∈ S(A) we have

Q�(a1 b1 · · ·ak−1 bk−1 ak) = �(a1 · · · ak) b1 · · · bk−1

whenever the ai are in A, the bj are in B and 2 ≤ k ≤ n. Take any a1, a2 . . . in A
and b1, b2 . . . in B. For � ∈ S(A), τ ∈ S(B) and n ≥ 2 we have

�Qτ(b1 a1 · · · bn−1 an−1 bn) = τ Q�(b1 a1 · · · bn−1 an−1 bn)
= τ [b1Q�(a1 b2 · · · bn−1 an−1) bn]
= τ [b1 (�(a1 · · · an−1) b2 · · · bn−1) bn]
= � [τ(b1 · · · bn) a1 · · · an−1] ,

giving
Qτ (b1 a1 · · · bn−1 an−1 bn) = τ(b1 · · · bn) a1 · · · an−1

and, in turn,

τ Q�(a1 b1 · · · an bn an+1) = �Qτ (a1 b1 · · · an bn an+1)
= � [a1Qτ (b1 a2 · · · an bn) an+1]
= � [a1 (τ(b1 · · · bn) a2 · · ·an) an+1]
= τ [�(a1 · · · an an+1) b1 · · · bn]

so that
Q�(a1 b1 · · ·an bn an+1) = �(a1 · · · an+1) b1 · · · bn ,

thereby proving the claim.
Hence, if � ∈ S(A), τ ∈ S(B) and a1, . . . , an ∈ A and b1, . . . , bn ∈ B, where

n ≥ 2, we have

Q�(a1 b1 · · · an bn) = Q�(a1 b1 · · · an) bn = �(a1 · · · an) b1 · · · bn
giving

ϕ�,τ (a1 b1 · · · an bn) = τ Q�(a1 b1 · · · an bn) = �(a1 · · · an) τ(b1 · · · bn) ,

so that ϕ�,τ is an uncoupled product state across A,B. Therefore, ∆ is contained
in ∆u(A,B), as required. �

3.2 Definition. D is said to have the unique C∗-product property across A,B if �
and τ have unique common extension in ∆(A,B), for all (�, τ) ∈ S(A) × S(B).
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3.3 Theorem. D has the unique C∗-product property across A,B if, and only if,
∆(A,B) = ∆u(A,B) and A and B faithfully independently commute.

Proof. This is immediate from Theorem 3.1 on putting ∆ = ∆(A,B). �

3.4 Theorem. The following statements are equivalent:

(a) D has the unique C∗-product property across A,B and has a faithful family
of GNS representations associated with product states across A,B.

(b) There is a ∗-isomorphism A⊗min B → D sending a⊗ b→ a b.

Proof. Combine Proposition 2.9 with Theorem 3.3. �
One immediate consequence of Theorem 3.4 is that if D has the unique C∗-

product property across A,B and has a faithful family of product states across
A,B then A ⊗min B identifies with D as in Theorem 3.4 (b). This answers a
question raised in [3, 12].

Since any ∗-representation of a simple C∗-algebra is faithful, Theorem 3.4
provides the following answer to the commutation question when D is simple.

3.5 Theorem. If D is simple and has the unique C∗-product property across A,B
then there is a ∗-isomorphism A⊗min B → D sending a⊗ b→ a b.

Identifying D with its image in D∗∗, and A∗∗ and B∗∗ with the respective
weak∗-closures of A andB inD∗∗, we have thatD∗∗ is generated as a von Neumann
algebra by A∗∗ and B∗∗. Thus, if A and B are C∗-independent in D, normal states
� on A∗∗ and τ on B∗∗ have a common extension to a normal state on B∗∗ (i.e.,
A∗∗ and B∗∗ are W ∗-independent in D∗∗). Therefore, by [3, Proposition 3], [4,
Theorem2.12], and [6, Theorem 2.5] we have the following.

3.6 Lemma. The following statements are equivalent:

(a) A and B are C∗-independent in D.

(b) ‖ a b ‖ = ‖ a ‖ ‖ b ‖ for all a ∈ A∗∗ and b ∈ B∗∗.

Given a C∗-algebra C we use zC to denote the central projection of C∗∗ such
that C∗∗ zC is the atomic part of C∗∗, and we recall that multiplication by zC is
faithful on C. The atomic states of C are those states � for which �(zC) = 1.

3.7 Theorem. The following statements are equivalent:

(a) � and τ have unique common extension in S(D) for all (�, τ) ∈ P (A)×S(B).

(b) A∗∗ zA and B∗∗ commute and A and B faithfully independently commute.

(c) A∗∗ zA and B∗∗ commute and A and B are C∗-independent in D.

(d) zA is a central projection in D∗∗ and there is a ∗-isomorphism A ⊗β B →
DzA sending a⊗ b→ a b zA, for some C∗-norm β on A⊗B.
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Proof. (a)⇒ (b) Assume (a). If � ∈ P (A) and τ ∈ S(B) let ϕ�,τ denote their
unique common extension in S(D).

Let e be a minimal projection in A∗∗. Let � ∈ P (A) such that �(e) = 1. The
weak∗-compact set (actually a face, in this case) of extensions of � in S(D) is given
by

E(�) = {ϕ�,τ | τ ∈ S(B)} = {ϕ ∈ S(D) | ϕ(e) = 1}
and is affinely homeomorphic to S(B) via the restriction map

r : E(�) → S(B)

and may be identified with the normal state space, Sn(eD∗∗ e), of eD∗∗ e. The
induced surjective positive linear isometry

Ab(S(B)) → Ab(Sn(eD∗∗ e)) (b̂→ b̂ ◦ r , b ∈ B∗∗
sa )

in turn induces a surjective positive linear isometry and hence, Jordan isomor-
phism, ψ : B∗∗

sa → (eD∗∗ e)sa, where ψ(b) = e b e for all b ∈ B∗∗
sa , the latter

equalities, for b ∈ B∗∗
sa , following from the evaluations

b̂ ◦ r (ϕ�,τ ) = τ(b) = ϕ�,τ (e b e) = (e b e)̂ (ϕ�,τ ) ,

for all τ ∈ S(B).
Since ψ is a Jordan homomorphism, for each projection f in B∗∗, e f e is

also a projection, giving e f = f e. Hence, e commutes with all elements of B∗∗.
Therefore, since A∗∗ zA is the weak∗ closed linear span of the minimal projections
of A∗∗, A∗∗ zA and B∗∗ commute.

Using Lemma 3.6 in the second equality below we have

‖(a zA)(b zA)‖ = ‖(a zA) b‖ = ‖a zA‖ · ‖b‖ = ‖a zA‖ · ‖b zA‖
giving that AzA and B zA are C∗-independent, by further use of Lemma 3.6. More-
over, the previous identity yields that ‖b‖ = ‖b zA‖ and hence zA acts faithfully
on B. In other words A and B faithfully independently commute.

(b)⇒(c) This is clear.
(c)⇒ (d) Assume (c). Then zA is a central projection of D∗∗, and A∗∗ zA

and B∗∗ zA are commuting C∗-subalgebras of DzA. As above, it follows from
Lemma 3.6 that AzA and B zA are C∗-independent in DzA and zA acts faithfully
on both A and B. Roos’s theorem now gives (d).

(d)⇒(a) Let ϕ be a common extension of � ∈ P (A) and τ ∈ S(B). Then
ϕ(zA) = 1 and the induced state ϕ on D zA, given by ϕ(x zA) = ϕ(x) pulls back
to a state ψ on A ⊗β B restricting to � on A and τ on B so that ψ = � ⊗ τ . It
follows that ϕ = � ∧ τ. �

3.8 Corollary. Let � and τ have unique common extension in S(D) for all (�, τ) ∈
P (A) × S(B). Then A and B commute if any one of the following statements is
true.
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(a) zA acts faithfully by multiplication on D.

(b) Each pure state of D restricts to an atomic state of A.

(c) All irreducible ∗-representations of D are finite-dimensional.

Proof. (a) This is immediate from Theorem 3.7 (a)⇒ (d).
(b) Given (b), for all ϕ ∈ P (D) we have ϕ(zA) = 1 so that the support projection
s(ϕ) ≤ zA and hence that zD ≤ zA. Therefore A and B commute by (a).
(c) This follows from (b) since, in case of (c), if ϕ ∈ P (D) with restriction � ∈ S(A)
then π�(A) is finite-dimensional because πϕ(D) is, implying that � is atomic. �

We close with a final observation that, in the light of Theorem 3.7 and Corol-
lary 3.8, improves Corollary 3.3 in the case when A is abelian.

3.9 Proposition. If A is abelian and D has the unique C∗-product property across
A,B then � and τ have unique common extension in S(D) for all (�, τ) ∈ P (A)×
S(B).

Proof. By Lemma 2.12 (a) if A is abelian then every extension in S(D) of a pure
state of A is a product state across A,B. �
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