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Asymptotics of Solutions of the Einstein Equations
with Positive Cosmological Constant

Alan D. Rendall

Abstract. A positive cosmological constant simplifies the asymptotics of forever ex-
panding cosmological solutions of the Einstein equations. In this paper a general
mathematical analysis on the level of formal power series is carried out for vacuum
spacetimes of any dimension and perfect fluid spacetimes with linear equation of
state in spacetime dimension four. For equations of state stiffer than radiation evi-
dence for development of large gradients, analogous to spikes in Gowdy spacetimes,
is found. It is shown that any vacuum solution satisfying minimal asymptotic con-
ditions has a full asymptotic expansion given by the formal series. In four spacetime
dimensions, and for spatially homogeneous spacetimes of any dimension, these min-
imal conditions can be derived for appropriate initial data. Using Fuchsian methods
the existence of vacuum spacetimes with the given formal asymptotics depending
on the maximal number of free functions is shown without symmetry assumptions.

1 Introduction

Spacetimes with accelerated expansion have come to play an important role in
cosmology. The accelerating phase may be in the early universe (inflation) or
at the present epoch (quintessence). The simplest way to produce a model with
accelerated expansion which solves the Einstein equations is to introduce a positive
cosmological constant. A good survey article on this topic is [19].

The fact that a positive cosmological constant leads to solutions of the Ein-
stein equations with exponential expansion is associated with the term ‘cosmic
no hair theorem’. In the following we investigate possibilities of proving theorems
related to these ideas. In the setting of formal series a satisfactory answer is ob-
tained for the Einstein equations in vacuum or in the presence of a perfect fluid
with linear equation of state. There are formal series solutions which have the
expected asymptotic behavior and which depend on the maximum number of free
functions. This also holds for vacuum spacetimes in higher dimensions. In the case
of even space dimensions it is in general necessary to allow terms with logarithmic
dependence on the expansion parameter. This throws some light on what is special
about three space dimensions. These results are proved in Section 2.

While most of the results in three space dimensions obtained in Section 2
confirm the results of [18], one new phenomenon was observed. Evidence is ob-
tained that for fluids with an equation of state stiffer than that of a radiation fluid
inhomogeneous structures can be formed. This is reminiscent of the formation of
spikes near the initial singularity in Gowdy spacetimes [17].
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In Section 3 it is shown that in the vacuum case minimal assumptions on the
asymptotics in the expanding phase imply that the spacetime has an asymptotic
expansion of the form already exhibited as formal series. Unfortunately we do not
know in general how to obtain these minimal assumptions starting from conditions
on initial data. An exception to this is the case of three space dimensions where it
is shown in Section 4 that the minimal assumptions can be deduced from results
of Friedrich [4], [5] based on the conformal method. The minimal assumptions can
also be verified in the case of certain spatially homogeneous vacuum spacetimes
of any dimension, as shown in Section 5. In particular, there are genuine solutions
of the Einstein equations whose asymptotics contain non-vanishing logarithmic
terms. In Section 6 Fuchsian methods are applied to show the existence of vacuum
spacetimes of any dimension with the asymptotics given in Section 2 and depending
on the maximum number of free functions. Finally, Section 7 shows that in a model
problem, the wave equation on de Sitter space, full information on asymptotics of
solutions with arbitrary initial data can be obtained.

2 Perturbative solutions

A perturbative treatment of four-dimensional vacuum spacetimes with positive
cosmological constant can be found in [18]. In that paper formal solutions are
written down without any mathematical derivation being given. In this section a
careful discussion of these formal power series solutions is presented. The anal-
ysis is generalized to vacuum spacetimes with positive cosmological constant in
all dimensions. The expansion for perfect fluid spacetimes given in [18] is also
revisited.

Consider the vacuum Einstein equations with cosmological constant Λ for a
spacetime of dimension n+1 with n ≥ 2. An n+1 decomposition with lapse equal
to one and vanishing shift results in the constraint equations

R− kabkab + (trk)2 = 2Λ (1)
∇ak

a
b −∇b(trk) = 0 (2)

and the evolution equation

∂tk
a

b = Ra
b + (trk)ka

b − 2Λ
n− 1

δa
b. (3)

Here gab is the spatial metric with Ricci tensor Rab and scalar curvature R, kab is
the second fundamental form and indices are raised and lowered using gab and its
inverse. Let σa

b be the trace-free part of the second fundamental form and R̃a
b

the trace-free part of the spatial Ricci tensor and define the following quantities:

Ẽa
b = ∂tσ

a
b − [R̃a

b + (trk)σa
b] (4)

E = ∂t(trk) −
[
R+ (trk)2 − 2nΛ

n− 1

]
(5)
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C = R− kabkab + (trk)2 − 2Λ (6)
Ca = ∇bk

b
a −∇a(trk). (7)

The Einstein equations are equivalent to the vanishing of the evolution quantities
Ẽa

b and E and the constraint quantities C and Ca. These quantities are linked by
the following consistency conditions

∂tC = 2(trk)C − 2∇aCa − 2σa
bẼ

b
a + 2(1 − 1/n)(trk)E (8)

∂tCa = (trk)Ca − (1/2)∇aC + ∇bẼ
b
a − (1 − 1/n)∇aE. (9)

To do a perturbative analysis of equations (1)–(3) consider the formal power
series

gab = e2Ht(g0
ab + g1

abe
−Ht + g2

abe
−2Ht + g3

abe
−3Ht + · · · ) (10)

whereH is a constant. The n+1 form of the Einstein equations are imposed on this
expression in a suitable sense. It turns out that for consistency it is necessary to
chooseH =

√
2Λ/(n(n− 1)) and so, in particular, Λ must be positive. Products of

formal series are defined in the obvious way that the terms in the individual series
are multiplied and the resulting terms with the same power of e−Ht collected.
The derivatives of a formal series with respect to the space and time variables are
defined via term by term differentiation. In order to impose the Einstein equations
it is also necessary to have a definition of the inverse gab of the formal power series
metric gab. This can be done uniquely by requiring that the relation gabg

bc = δc
a

holds. This allows the coefficient of order m in the series for gab to be expressed
in terms of the coefficients in the series for gab up to order m. Setting g0

ab = δab

and gm
ab = 0 for m > 0 gives an exact solution of the Einstein equations. In the

case n = 3 it is the de Sitter solution ([7], p. 125).
Given any tensor T , let (T )m denote the coefficient of e−mHt in the expansion

of T . With this notation (gab)m = gm+2
ab . It follows from (10) that (Ra

b)m = 0
for m = 0 and m = 1. It also follows directly from (10) that (trk)0 = −nH and
(σa

b)0 = 0. This is consistent with the vanishing of the coefficients of all evolution
and constraint quantities for m = 0. The vanishing of (E)1 and (Ẽa

b)1 implies
that (trk)1 = 0 and (σa

b)1 = 0. It follows that (C)1 = 0 and (Ca)1 = 0 and
this ensures the consistency of the series up to order m = 1. Using the relation
∂tgab = −2gack

c
b shows that g1

ab = 0 and this in turn implies that (Ra
b)3 = 0.

The relations between coefficients for m ≥ 2 will now be written down. The
summation indices p and q in the following formulae are assumed to be no less
than two. The evolution equations (3) imply the recursion relations

(n−m)(σa
b)m = H−1

[ ∑
p+q=m

(σa
b)p(trk)q + (R̃a

b)m

]
(11)

and

(2n−m)(trk)m = H−1

[ ∑
p+q=m

(trk)p(trk)q + (R)m

]
. (12)
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The Hamiltonian constraint (1) gives

(2n− 2)(trk)m = H−1

{ ∑
p+q=m

[−(ka
b)p(kb

a)q + (trk)p(trk)q] + (R)m

}
(13)

and the momentum constraint (2) gives

∇0
a(ka

b)m −∇0
b(trk)m =

∑
p+q=m

[(Γc
ab)p(ka

c)q − (Γa
ac)p(kc

b)q]. (14)

Here ∇0 is the covariant derivative associated to g0
ab. The consistency conditions

(8) and (9) relating evolution and constraint quantities imply that if (E)k, (Ẽa
b)k,

(C)k and (Ca)k all vanish for k ≤ m− 1 then

(2n−m)(C)m = −2(n− 1)(E)m (15)

(n−m)H(Ca)m = −(1/2)∇a(C)m + ∇0
b(Ẽ

b
a)m − (1 − 1/n)∇a(E)m. (16)

Consider first the case n = 3. The form (10) of the series for gab, taking
account of the vanishing of the coefficient g1

ab, is contained in [18]. The following
theorem formalizes some of the statements in [18]. Here smooth means C∞.

Theorem 1. Let Aab be a smooth three-dimensional Riemannian metric and Bab a
smooth symmetric tensor which satisfies AabBab = 0 and ∇aBab = 0, where the
covariant derivative is that associated to Aab. Then there exists a unique formal
power series solution of the vacuum Einstein equations with cosmological constant
Λ > 0 of the form (10) with g0

ab = Aab and g3
ab = Bab. The coefficients gm

ab are
smooth.

Proof. The coefficients (ka
b)m determine the coefficients (gab)m recursively. For

substituting (10) into the relation ∂tgab = −2gack
c
b gives

mHgm
ab = 2g0

ac(k
c
b)m + 2

∑
p+q=m

gp
ac(k

c
b)q (17)

and hence an equation which expresses (gab)m−2 in terms of (ka
b)m and lower

order terms for any m ≥ 2. Thus in order to prove the theorem it is enough to
show that equations (11)–(14) determine the coefficients (ka

b)m uniquely and that
when the coefficients have been fixed in this way all the equations (11)–(14) are
satisfied. The coefficient (ka

b)m is determined by (11) and (12) for allm ≥ 2 except
m = 3 and m = 6. The coefficient (ka

b)3 is determined by using the condition that
g3

ab = Bab. The coefficient (σa
b)6 is determined by (11) while (trk)6 is determined

by (13). By construction the evolution equation (12) is satisfied for all values of
m except possibly m = 3 and m = 6 while (11) is satisfied except possibly for
m = 3. The fact that Bab has zero trace ensures that (12) is satisfied while (11)
is automatic for m = 3. It will now be shown by induction that (11)–(14) hold
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for all m. Except for m = 6 only (13) and (14) need to be verified. The equations
(11)–(14) hold for m = 1. For 2 ≤ m ≤ 5 the inductive step from m− 1 to m can
be carried out as follows. When m �= 3 the consistency condition (15) shows that
(C)m = 0 and then the consistency condition (16) shows that (Ca)m = 0. That
(C)3 and (Ca)3 are zero follows from the conditions on Bab in the hypotheses of
the theorem. Knowing that the equations (11)–(14) hold for m ≤ 5 implies using
(15) that (E)6 = 0. By construction (C)6 = 0 and then it is straightforward to
obtain (Ca)6 = 0 from (16). For m ≥ 7 we can proceed as for 2 ≤ m ≤ 5. This
completes the proof.

Remark. If Pab and P denote the Ricci tensor and Ricci scalar of g0
ab respectively,

then g2
ab = H−2(Pab − (1/4)Pg0

ab), a relation given in [18].
The theorem just proved can be generalized directly to all larger odd values

of n, as will now be shown.

Theorem 2. Let Aab be a smooth n-dimensional Riemannian metric with n odd
and Bab a smooth symmetric tensor which satisfies AabBab = 0 and ∇aBab = 0,
where the covariant derivative is that associated to Aab. Then there exists a unique
formal power series solution of the vacuum Einstein equations with cosmological
constant Λ > 0 of the form (10) with g0

ab = Aab and gn
ab = Bab. The coefficients

gm
ab are smooth.

Proof. Let s be an integer such that 2s + 1 < n and (ka
b)m = 0 for all odd m

with m ≤ 2s− 1. If follows that gm
ab = 0 for all odd m with m ≤ 2s− 1 and that

(gab)m = 0 for all odd m with m ≤ 2s+ 1. Putting this information into the Ricci
tensor shows that (Ra

b)m = 0 for all odd m with m ≤ 2s+ 1. Then (11) and (12)
imply that (ka

b)2s+1 = 0. It can then be proved by induction that (ka
b)m = 0

vanishes for all odd m with m < n. From this point on the proof is very similar to
that of the previous theorem. The coefficients (ka

b)m are uniquely determined for
all values of m except m = n and m = 2n. The coefficient (ka

b)n is determined
by using the condition that gn

ab = Bab. The coefficient (σa
b)2n is determined by

(11) while (trk)2n is determined by (13). By construction the evolution equation
(12) is satisfied for all values of m except possibly m = n and m = 2n while (11)
is satisfied except possibly for m = n. The fact Bab has zero trace ensures that
(12) is satisfied while (11) is automatic for m = n. These statements make use of
the fact that the odd order coefficients of ka

b of order less than n vanish. It will
now be shown by induction that (11)–(14) hold for all m. Except for m = 2n only
(13) and (14) need to be verified. The equations (11)–(14) hold for m = 1. For
2 ≤ m ≤ 2n− 1 the inductive step from m− 1 to m can be carried out as follows.
When m �= n the consistency condition (15) shows that (C)m = 0 and then the
consistency condition (16) shows that (Ca)m = 0. That (C)n and (Ca)n are zero
follows from the conditions on Bab in the hypotheses of the theorem. Knowing that
the equations (11)–(14) hold for m ≤ 2n − 1 implies using (15) that (E)2n = 0.
By construction (C)2n = 0 and then it is straightforward to obtain (Ca)2n = 0.
For m ≥ 2n+ 1 we can proceed as for 2 ≤ m ≤ 2n− 1. This completes the proof.
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The case where n is even is more complicated. The form (10) of the metric
must be generalized to

gab = e2Htg0
ab +

∞∑
m=0

Lm∑
l=0

(gab)m,lt
le−mHt (18)

where Lm is a non-negative integer for each m and Lm = 0 for m < n. Given any
tensor T with an expansion of the above type let (T )m,l denote the coefficient of
tle−mHt. As before when manipulating series they are differentiated term by term.
The recursion relations for the expansion coefficients coming from the evolution
equations generalize as follows, where the terms not written out explicitly are lower
order in the sense that they can be expressed in terms of the coefficients of ka

b

with m smaller:

(n−m)(σa
b)m,l +H−1(l + 1)(σa

b)m,l+1 = · · · (19)
(2n−m)(trk)m,l +H−1(l + 1)(trk)m,l+1 = · · · . (20)

The terms on the right-hand side not written out are obtained from the terms
on the right-hand side of equations (11) and (12) if the indices m, p and q are
replaced by the pairs (m, l), (p, l1) and (q, l2), summing over l1 + l2 = l. The
recursion relations implied by the constraints are identical except for the addition
of an extra index l. In a similar way, the consistency conditions lead to

(2n−m)(C)m,l +H−1(l + 1)(C)m,l+1 = −2(n− 1)(E)m,l (21)
(n−m)H(Ca)m,l +H−1(l + 1)(Ca)m,l+1 = −(1/2)∇a(C)m,l

+∇0
b(Ẽ

b
a)m,l − (1 − 1/n)∇a(E)m,l (22)

assuming that (E)k,l. (Ẽa
b)k,l, (C)k,l and (Ca)k,l vanish whenever k ≤ m− 1.

By using the above relations it is possible to express gab
0 (gab)n−2,0 as a func-

tion of g0
ab and its spatial derivatives. We denote this schematically by gab

0 (gab)n−2,0

= Z(g0). Similarly, it is possible to write 0∇a(gab)n−2,0 = Z̃b(g0).

Theorem 3. Let Aab be a smooth n-dimensional Riemannian metric and Bab a
smooth symmetric tensor which satisfies AabBab = Z(A) and ∇aBab = Z̃b(A),
where the covariant derivative is that associated to Aab. Then there exists a unique
formal series solution of the vacuum Einstein equations with cosmological constant
Λ > 0 of the form (18) with g0

ab = Aab and (gab)n−2,0 = Bab. The coefficients
(gab)m,l are smooth.

Proof. As a general principle, when determining coefficients for fixed m we start
from l = Lm and proceed to successively lower values of l. If n is odd then the
existence follows from Theorem 2. Uniqueness for n odd in the wider class being
considered in this theorem in comparison with Theorem 2 is obtained by a straight-
forward extension of the argument given in the proof of the latter. Consider now
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the case where n is even. By analogy with the proof of Theorem 2 it can be shown
that (ka

b)m,l = 0 for m odd. For m < n the coefficients are uniquely determined.
The assumption that Lm = 0 in this range is thus unavoidable.The coefficients
(trk)n,l are uniquely determined by (20) and vanish for l > 0. The coefficients
(σa

b)n,l are uniquely determined for l ≥ 1 and vanish for l > 1. The choice of Bab

determines (σa
b)n,0. For n < m < 2n equations (19) and (20) determine (ka

b)m,l.
Equation (19) is used to determine (σa

b)2n,l while the analogue of (13) is used to
determine (trk)2n,l. For m > 2n (19) and (20) can be used again. That all field
equations are satisfied at all orders can be proved much as in the proof of Theorem
2, always proceeding in the direction of decreasing l for each fixed m.

A question left open by Theorem 3 is whether it can ever happen that any
of the coefficients with l > 0 are non-zero. This is equivalent to the question
whether (σa

b)n,1 is ever non-zero. It follows from the proof of the theorem that
this coefficient is uniquely determined by g0

ab. In the case n = 2 the coefficient
of interest vanishes due to the fact that the Ricci tensor of a two-dimensional
metric is automatically traceless. For all even dimensions greater than two there
are choices of g0

ab for which (σa
b)n,1 does not vanish. In fact this is the generic

case. The coefficient of interest can be written as a polynomial expression in H−1.
If there were no logarithmic terms for a given choice of g0

ab then all terms in this
polynomial would have to vanish. The coefficient of H−n+1, which is the most
negative power of H occurring, is a non-zero constant times P̃ a

b(trP )k−1, where
k = n/2 and P̃ a

b and trP are the tracefree part and trace of the Ricci tensor
of g0

ab. There are only two ways in which this coefficient can vanish. Either the
scalar curvature of g0

ab vanishes identically or g0
ab is an Einstein metric. A necessary

condition for the absence of logarithmic terms has now been given but it is unlikely
to be sufficient. The coefficients of other powers of H have to be taken into account
in order to decide this issue.

In [18] the expansions obtained for vacuum spacetimes were extended to the
case of a perfect fluid with pressure proportional to energy density. Formalizing
these considerations leads to a theorem generalizing Theorem 1 above. The no-
tation here is as follows: ρ = T 00, ja = T 0a and Sab = T ab. The proper energy
density and pressure of the fluid are denoted by µ and p respectively, so that

Tαβ = (µ+ p)uαuβ + pgαβ . (23)

The equation of state is taken to be p = (γ− 1)µ with 1 ≤ γ < 2. In the case with
matter evolution and constraint quantities can be defined by

Ẽa
b = ∂tσ

a
b − [R̃a

b + (trk)σa
b − 8πS̃a

b] (24)
E = ∂t(trk) − [R+ (trk)2 + 4πtrS − 12πρ− 3Λ] (25)
C = R− kabkab + (trk)2 − 16πρ− 2Λ (26)
Ca = ∇bk

b
a −∇a(trk) − 8πja (27)
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so that their vanishing is equivalent to the Einstein equations. These satisfy the
consistency conditions (8) and (9) as in the vacuum case. The components of
the energy-momentum tensor can be expressed in terms of the fundamental fluid
variables as follows:

ρ = µ(1 + γ|u|2) (28)
ja = γµ(1 + |u|2)1/2ua (29)
Sa

b = µ[γuaub + (γ − 1)δa
b ] (30)

where |u|2 = gabu
aub. The following relations will be useful:

∂tρ− (trk)ρ− 1
3
(trk)trS = −∇aj

a + σa
bS

b
a (31)

∂tj
a − 5

3
(trk)ja = −∇bSa

b + 2σa
bj

b. (32)

It is possible to express µ and ua in terms of ρ and ja. To see this note first
that |j| = γµ(1 + |u|2)1/2|u| and that as a consequence:

|j|2/ρ2 = γ2(1 + |u|2)|u|2/(1 + γ|u|2)2 (33)

If f(x) = γ2x2(1+x2)(1+γx2)−2 then f ′(x) = 2γ2x(1+γx2)−3(1+(2−γ)x2) > 0.
It follows that the mapping from the interval [0,∞) to the interval [0, 1) defined
by f is invertible and |u|2 can be expressed as a smooth function of |j|2/ρ2 for
ρ > 0. Since µ can be expressed as a smooth function of ρ and |u|2 it follows that
it is a smooth function of ρ and ja. Similarly the fact that ua can be expressed
as a smooth function of µ, |u|2 and ja implies that ua is a smooth function of ρ
and ja.

Next Theorem 1 will be generalized to the case with perfect fluid. The solution
is sought as a formal series where each tensor occurring is written as a sum of
exponentials. The exponents are taken from an increasing sequence of real numbers
M = {mi} which tends to infinity as i→ ∞. The solution is of the form

gab =
∑

mi∈M

(gab)mie
−miHt (34)

µ =
∑

mi∈M

(µ)mie
−miHt

ua =
∑

mi∈M

(ua)mie
−miHt.

The quantities ρ and ja have similar expansions. The sequence M occurring de-
pends on which quantity is being expanded and on the value of the parameter γ in
the equation of state of the fluid. In order to organize this information let real num-
bers k1, k2, k3 and k4 depending on γ be defined as follows. For γ ≤ 4/3 we have
k1 = 3γ, k2 = 5 − 3γ, k3 = 3γ, k4 = 5 while for γ ≥ 4/3 we have k1 = 2γ/(2− γ),
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k2 = (6 − 4γ)/(2 − γ), k3 = 4 and k4 = 5. It is also useful to define the relative
order m̃i of a coefficient of order mi in the expansion of a particular quantity. For
the quantities gab, ka

b, µ, ua, ρ and ja these are defined by m̃i = mi +2, m̃i = mi,
m̃i = mi − k1, m̃i = mi − k2, m̃i = mi − k3 and m̃i = mi − k4 respectively.

Theorem 4. Let Aab be a smooth three-dimensional Riemannian metric and Bab

a smooth symmetric tensor, µ0 a smooth positive real-valued function and ua
0 a

smooth vector field. Suppose that AabBab = −(8π/3H2)µ0 for γ = 1, AabBab = 0
for γ > 1 and ∇aBab = ∇b(AacBac) + (16πγ/3H)µ0Abcu

c
0 where the covariant

derivative is that associated to Aab. If γ > 4/3 suppose furthermore that ua is
nowhere vanishing. Then there exists a unique formal power series solution of
the Einstein-Euler equations with cosmological constant Λ > 0 and equation of
state p = (γ − 1)ρ, 1 ≤ γ < 2, of the form (34) with (gab)−2 = Aab, (gab)1 = Bab,
(µ)k1 = µ0 and (ua)k2 = ua

0. The coefficients of the series are smooth. They satisfy
(µ)mi = 0 for mi < k1, (ua)mi = 0 for mi < k2 and, except for mi = −2, the
coefficient (gab)mi vanishes for mi < 0.

Proof. Consider a formal series solution whose coefficients vanish in the ranges
indicated in the statement of the theorem. With the given values for k1 and k2 the
matter terms do not contribute to the equations for the coefficients of ka

b below
order three and thus all statements made about these coefficients in the vacuum
case can be taken over without change. This follows from the fact that ρ, Sa

b and
ja are all O(e−3Ht). The exponent in this estimate can be improved except in the
case of ρ with γ = 1 and in the case of ja with general γ.

The proof splits into several cases. Suppose first that 1 ≤ γ < 1/3. Then
|u| = o(1) and so in leading order ρ = µ, ja = γµ|u|ua and Sa

b = (γ−1)µδa
b . Thus

the following relations are obtained:

(mi − 3γ)(ρ)mi = · · · (35)
(mi − 5)(ja)mi = · · · . (36)

The terms not written out explicitly are of lower order in the sense that they
are combinations of terms of lower relative order than m̃i. There is one subtlety
involved in showing this. In the case γ = 1 the expression ∇bSa

b gives rise to a
term which, looking at the exponents, is not of lower order. However the coefficient
of this term contains a factor γ−1 and so the term vanishes for γ = 1. The Einstein
equations give:

(3 −mi)(σa
b)mi = · · · (37)

and
(6 −mi)(trk)mi = −12πH−1(ρ)mi + · · · . (38)

The terms on the right-hand side of the last two equations not written out explicitly
are lower order. The one explicit term on the right-hand side of the last equation
is also of lower order except in the case γ = 1. The energy-momentum quantities
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ρ and ja are linked to the matter quantities µ and ua by the relations

(µ)mi = ρmi + · · · (39)
(ua)mi = γ−1(ρ−1ja)mi + · · · . (40)

Fix a value of m̃i and suppose that all coefficients with lower relative order have
been determined. Consider the equations for (ρ)mi and (ua)mi . These coefficients
are determined uniquely unless m̃i = 0 and if m̃i < 0 they vanish. When m̃i = 0
they are determined by the conditions on (µ)k1 and (ua)k2 in the hypotheses of
the theorem and the equations relating ρ and ja to µ and ua. The latter relations
also fix the coefficients of µ and ua of the given relative order when m̃i > 0. Next
consider the equations for (trk)mi and (ka

b)mi . By what has been said above we
may assume that mi ≥ 3. The unique determination of the coefficients of the given
relative order can be shown using the same procedure as in the vacuum case. The
additional terms are either already of lower relative order, and hence known, or
have been determined in the preceding discussion of the matter equations. By
induction on i it can be concluded that all coefficients are uniquely determined.
The fact that all field equations are satisfied can be shown much as in the vacuum
case since the compatibility conditions are identical.

Now consider the case 4/3 < γ < 2. The assumption that ua
0 is nowhere

vanishing implies in this case that |u|−1 = o(1) and in leading order ρ = γµ|u|2,
ja = γµ|u|ua and Sa

b = γµuaub. The following relations are obtained:

(mi − 4)(ρ)mi = · · · (41)
(mi − 5)(ja)mi = · · · . (42)

The Einstein equations give the same relations as in the previous case. For 4/3 <
γ < 2 the energy-momentum quantities ρ and ja are linked to the matter quantities
µ and ua by the relations

(µ)mi = (2 − γ)−1(ρ(1 − |j|2/ρ2))mi + · · · (43)
(ua)mi = ((2 − γ)/γ)1/2(ρ−1(1 − |j|2/ρ2)−1/2ja)mi + · · · . (44)

Using these facts we can proceed as in the case 1 ≤ γ < 4/3.
Consider finally the case γ = 4/3 where |u| tends to a finite limit, in general

non-zero, as t → ∞. The difference in comparison to the cases already treated is
that the relations between ρ and ja on the one hand and µ and ua on the other hand
cannot be inverted explicitly in leading order. However the fact, shown above, that
the relevant mappings are invertible has an equivalent on the level of formal power
series. For if f is a smooth function between open subsets of Euclidean spaces then
f(x+ y) can be written formally in terms of a Taylor series about x. The resulting
expression contains the derivatives of f evaluated at x multiplied by powers of y.
If y is replaced by a formal power series without constant term then a well-defined
formal power series for f(x+y) is obtained. Thus the same method can be applied
as in the previous cases, allowing the proof of the theorem to be completed.
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A case which has been excluded in the above theorem is that where γ > 4/3
and ua may vanish somewhere. In that case the kind of series which has been
assumed in the theorem is not consistent. For if it is assumed that an expansion of
this kind is possible this leads to different rates of decay for certain quantities, for
instance µ, depending on whether |u| does or does not vanish. As a consequence
∇aµ/µ will be unbounded as t tends to infinity although µ is nowhere zero. This
contradicts the assumptions which have been made. The situation is reminiscent
of the spikes observed near the initial singularity in Gowdy spacetimes [17] and so
we may speculate that in reality inhomogeneous features develop in µ so that the
density contrast blows up as t → ∞. This behavior for γ > 4/3 is not consistent
with the usual picture in inflationary models where the density contrast remains
bounded at late times. The issue deserves to be investigated further.

It is interesting to ask whether the expansions for a fluid presented here
can be extended to the case of collisionless matter. If they can then the result
probably resembles that for dust. Limited expansions in some special cases are
already known [13], [20].

Note that the analysis of vacuum spacetimes in this section has a close ana-
logue for Riemannian (i.e., positive definite) metrics. A solution of the Einstein
equations with positive cosmological constant in the Lorentzian case corresponds
to an Einstein metric with negative Einstein constant in the Riemannian case. The
equations obtained for a positive definite metric are

−R− kabkab + (trk)2 = −(n− 1)K (45)
∇ak

a
b −∇b(trk) = 0 (46)

∂tk
a

b = −Ra
b + (trk)ka

b + 2Kδa
b (47)

where K is the Einstein constant, i.e., the n+1-dimensional metric satisfies Rαβ =
Kgαβ. Asymptotic expansions for this case have been investigated in the literature
on Riemannian geometry [3] and string theory [6].

3 From minimal to full asymptotics

In the last section consistent formal asymptotic expansions were exhibited for a
number of problems. In this section it is shown that minimal information about
the asymptotics implies the full expansions given in the last section. For simplicity
we restrict consideration to the vacuum case. The following lemma will be used:

Lemma 1. Consider an equation of the form

∂tu+ ku =
∑
m,l

vm,lt
le−mt +O(e−jt) (48)

for a vector-valued function u(t), where j �= k and m < j in the sum.
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Then there are coefficients um,l, m < j, such that

u =
∑
m,l

um,lt
le−mt +O(e−jt). (49)

If (48) may be differentiated term by term with respect to t as often as desired the
same is true of (49).

Proof. Note first that ∂t(ektu) is equal to a sum of explicit terms with a term of
order e(k−j)t. Each of the explicit terms has an explicit primitive which is a sum
of terms of the same general form and the same value of m but in general several
values of l. Thus we can absorb these terms into the time derivative and write

∂t(ekt(u−
∑
m,l

um,lt
le−mt)) = O(e(k−j)t) (50)

with m < j in the sum. If j < k we can integrate this relation directly to get the
desired result. If j > k then the expression which is differentiated with respect
to time converges to a limit as t → ∞, which can be called uk,0. This gives the
desired result in the latter case.

If the assumption on time derivatives is satisfied then ∂tu satisfies an equation
of the same form as that satisfied by u. Hence ∂tu has an asymptotic expansion

∂tu =
∑
m,l

wm,lt
le−mt +O(e−jt). (51)

Integrating this from t0 to t and using (49) gives
∑
m,l

∫ t

t0

wm,ls
le−msds = C +

∑
m,l

um,lt
le−mt +O(e−jt) (52)

for a constantC. It follows that the coefficients wm,l are obtained from um,l by term
by term differentiation. This process can be repeated for higher-order derivatives
with respect to t.

Remark. If the quantities in (48) depend smoothly on a parameter and the equation
may be differentiated term by term with respect to the parameter then the same
is true for the solution.

Theorem 5. Let a solution of the vacuum Einstein equations with cosmological
constant Λ > 0 in n + 1 dimensions be given in Gauss coordinates. Suppose that
e−2Htgab, e2Htgab, e2Htσa

b and their spatial derivatives of all orders are bounded.
Then the solution has an asymptotic expansion of the form given in Theorem 3.
The expansion remains valid when differentiated term by term to any order.

Proof. The Hamiltonian constraint can be used to express trk in terms of the scalar
curvature R, σa

b and Λ, giving

trk = −
[

n

n− 1
(−R+ σa

bσ
b
a

)
+ n2H2

]1/2

. (53)
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It follows from the assumptions of the theorem that trk = −nH + O(e−2Ht) and
that this relation may be differentiated term by term with respect to the spatial
variables. Now

∂t(e−2Htgab) = −2e−2Htgac(kc
b +Hδc

b). (54)

The right-hand side of this expression is O(e−2Ht) and so there is some g0
ab such

that
e−2Htgab = g0

ab +O(e−2Ht) (55)

and corresponding relations hold for spatial derivatives of all orders. Using the
evolution equations it can be seen that these relations can also be differentiated re-
peatedly with respect to time. The proof now proceeds by induction. The inductive
hypothesis is as follows. There exist coefficients (gab)m,l and (ka

b)m,l,0 ≤ m ≤M
such that

gab = e2Ht(
M∑

m=0

Lm∑
l=0

(gab)m−2,lt
le−mHt + ḡab) = [gab]M + e2Htḡab (56)

ka
b =

M∑
m=0

Lm∑
l=0

(ka
b)m,lt

le−mHt + k̄a
b = [ka

b]M + k̄a
b (57)

where ḡab and k̄a
b are O(e−(M+ε)Ht) and similar asymptotic expansions hold for all

derivatives of these quantities. Here ε is a constant belonging to the interval (0, 1).
The inductive hypothesis is satisfied forM = 1. If these expressions are substituted
into the Einstein equations then the expansion coefficients written explicitly satisfy
the same relations as in the analysis of formal power series solutions carried out
above. It is convenient to write the evolution equations in the following form:

∂tĝab = −2ĝacσ
c
b − (2/n)(trk + nH)ĝab (58)

∂tσ
a

b + nHσa
b = (trk + nH)σa

b + R̃a
b (59)

∂t(trk + nH) + 2nH(trk + nH) = (trk + nH)2 +R (60)

where ĝab = e−2Htgab. Using the inductive hypothesis it follows that if each quan-
tity Q in these equations is replaced by the corresponding quantity [Q]M+1 then
equality holds up to a remainder of order e−(M+1+ε)Ht in (59) and (60). Using this
information shows that the corresponding statement holds in (58) with a remain-
der of order e−(M−1+ε)Ht. Thus the quantities [Q]M+1 satisfy a system of the type
occurring in Lemma 1. It follows from that lemma that the inductive hypothesis
is satisfied with M replaced by M + 1.

In [14] results similar to those of this section were obtained using a different co-
ordinate system. The time coordinate used there satisfies the condition that that
the lapse function is proportional to the inverse of the mean curvature of its level
surfaces. This means that the foliation of level surfaces is a solution of the inverse
mean curvature flow, a fact which raises serious doubts whether such coordinates
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exist in forever expanding cosmological spacetimes, as will now be explained. The
inverse mean curvature flow for hypersurfaces is defined by the condition that a
hypersurface flows with a speed equal to the inverse of its mean curvature in the
normal direction. In the case of a Riemannian manifold it was used in the work of
Huisken and Ilmanen [10] on the Penrose inequality. For spacelike hypersurfaces in
a Lorentzian manifold it was studied in [9]. If a spacelike hypersurface with posi-
tive expansion (i.e., in the convention used here, with trk < 0) is given then there
is a local solution of the inverse mean curvature flow in the contracting direction.
Moreover, under reasonable assumptions on the nature of the singularity, there is
a global solution. In the expanding direction, in contrast, the equation is backward
parabolic and it is to be expected that there is no local solution for general initial
data, i.e., for a general starting hypersurface. This is an analogue of the fact that
the heat equation cannot be solved backwards in time.

4 Relations to conformal infinity

There is a relation between the expansions discussed in the last two sections and the
concept of conformal infinity. In this section only the Einstein vacuum equations
are considered. Define T = H−1e−Ht. Then spacetime metric corresponding to
(18) becomes

(HT )−2[−dT 2 + (g0
ab +

∞∑
m=0

Lm∑
l=0

(gab)m,l(−1)lH−l(log(HT ))l(HT )m)]. (61)

It is conformal to a metric which is non-degenerate at T = 0 and is written
in Gauss coordinates. If there are no non-vanishing coefficients with l > 0 the
conformal metric (or unphysical metric) is smooth at T = 0. This is for instance
the case when n is odd.

In the case n = 3 Friedrich [4], [5] has used conformal techniques to prove
results which, as shown in the following, imply that spacetimes evolving from
initial data close to standard initial data for de Sitter space indeed have asymptotic
expansions of the type presented in the last section. The method used, based on
the conformal method, is only known to work in the case n = 3. The occurrence
of logarithms in the expansions for even values of n cast doubt on the possibility
of implementing an analogous procedure in that case. There are also problems for
n = 3 if matter is present. For conformally invariant matter fields the method
can be used but for other types of matter, e.g. a perfect fluid with linear equation
of state, there is no straightforward way of doing this. The non-integer powers
occurring in the formal expansions for this case make the application of the method
problematic. Note, however, that a similar problem has been overcome in the study
of isotropic singularities [2].

Consider the de Sitter solution with a slicing by intrinsically flat hypersur-
faces, as described in Section 2, with the slicing being given by the hypersurfaces
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of constant t. We may assume for convenience that the solution has been iden-
tified in a way which is periodic in the spatial coordinates. Consider initial data
which is a small perturbation of the initial data induced by this model solution on
a hypersurface of constant time. The smallness can be measured in the sense of
uniform convergence of a function and its derivatives of all orders. Then, accord-
ing to Section 9 of [5], the perturbed solution has a Cauchy development which is
asymptotically simple in the future. This means that the solution gαβ is conformal
to a metric g̃αβ = Ω2gαβ with Ω > 0 in such a way that gαβ and Ω have smooth
extensions through a hypersurface where Ω vanishes. We may choose coordinates
in the unphysical metric in the following way. Set T̃ = Ω and choose the spatial
coordinates to be constant along the curves orthogonal to the hypersurfaces of
constant Ω. In these coordinates the conformal metric takes the form

−H−2α2dT̃ 2 + g̃abdX
adXb (62)

where α is a function of T̃ andXa. The condition −3∇αΩ∇αΩ = Λ (see Lemma 9.2
of [5]) implies that α = 1 for T̃ = 0. In order to compare this with the expansions
in the previous sections we need to transform to Gauss coordinates with respect
to the physical metric gαβ. As a first step let T̃ = e−HT . Then the physical metric
becomes

−α2dT 2 + gabdX
adXb (63)

with gab = e2HT g̃ab. The following lemma shows that Gauss coordinates of a suit-
able kind can be introduced. The hypotheses make use of the following inequalities

|gab| ≤ Ce2HT (64)
|α−1| + |Γa

bc| ≤ C (65)
|α− 1| + |∂Tα| + |∂aα| ≤ Ce−HT (66)

|k̃a
b| + |trk + 3H |+ |gab| ≤ Ce−2HT . (67)

The metric (63) above satisfies inequalities of this type together with corresponding
inequalities for spatial derivatives of all orders. In fact the estimates for k̃a

b and
trk +H are only obviously satisfied with the bound Ce−HT . However this can be
improved by using equations (59) and (60) at the end of the last section, or rather
their equivalents in the presence of a non-trivial lapse function.

Lemma 2. Consider a metric of the form (63) on a time interval [T0,∞) and
assume that there is a constant C > 0 such that the inequalities (64)–(67) are
satisfied, together with the corresponding inequalities for spatial derivatives of all
orders. Then for T0 sufficiently large there exists a Gaussian coordinate system
based on the hypersurface T = T0 which is global in the future. The transformed
metric satisfies the hypotheses of Theorem 5.
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Proof. To construct Gaussian coordinates it is necessary to analyse the equations
of timelike geodesics. In 3 + 1 form these are

d2T

dτ2
+ α−1∂Tα

(
dT

dτ

)2

+ 2α−1∇aα
dXa

dτ

dT

dτ
+ α−1kab

dXa

dτ

dXb

dτ
= 0(68)

d2Xa

dτ2
+ α∇aα

(
dT

dτ

)2

− 2
3
α(trk)

dXa

dτ

dT

dτ

− 2αk̃a
b
dXb

dτ

dT

dτ
+ Γa

bc

dXb

dτ

dXc

dτ
= 0. (69)

It is helpful for the following analysis to rewrite one of the terms:

−2
3
α(trk)

dXa

dτ

dT

dτ
= 2H

dXa

dτ
+ 2H

dXa

dτ

(
dT

dτ
− 1

)

− 2
3
(trk + 3H)

dXa

dτ

dT

dτ
− 2

3
(α− 1)(trk)

dXa

dτ

dT

dτ
. (70)

These equations are to be solved for functions T (τ, xb) and Xa(τ, xb) with initial
values T = T0, dT/dτ = 1, Xa = xa and dXa/dτ = 0 at τ = T0. Strictly
speaking Gaussian coordinates based on T = T0 would differ from this by a time
translation by T0 but it is convenient here to work with this slight modification.
Consider now a solution of these equations on an interval [T0, τ

∗) and suppose for
later convenience that T0 ≥ 0. There is a τ∗ > T0 for which a solution does exist.
We assume that on this interval |dXa/dτ | ≤ Ce−2Hτ and that |dT/dτ − 1| < ε for
some ε ∈ (0, 1/3). For given C and ε there exists an interval of this kind. On this
interval e−T ≤ e−ετ0e−(1−ε)τ , eT−τ ≤ eε(τ−τ0) and inequalities of the following
form hold, where C′ is a positive constant depending only on C and ε.

d2T

dτ2
= f(τ), |f(τ)| ≤ C′e−(1−ε)Hτ (71)

d2Xa

dτ2
+ 2H

dXa

dτ
= g(τ), |g(τ)| ≤ C′e−2Hτ . (72)

It follows from the first of these that

|dT/dτ − 1| ≤ C′e−(1−ε)HT0 . (73)

For T0 large enough this strictly improves on the estimate originally assumed for
dT/dτ − 1. For small ε the quantities dXa/dτ can be seen to decay exponentially
with an exponent which is as close as desired to −2. The fact that we are dealing
with timelike geodesics parametrized by proper time leads to the relation

−1 = −α2

(
dT

dτ

)2

+ gab
dXa

dτ

dXb

dτ
. (74)

This implies that |dT/dτ − 1| = O(e−HT ). Putting this back into the evolution
equation for dXa/dτ shows that it is O(e−2Hτ ). By choosing T0 large enough the



Vol. 5, 2004 Asymptotics of Solutions of the Einstein Equations 1057

decay estimate for this quantity is recovered and in fact strengthened. Considera-
tion of the longest time interval on which the original inequality holds shows that
τ∗ = ∞. The estimates we have derived up to now hold globally. The estimate for
dT/dτ obtained above implies that there are positive constants C1 and C2 such
that C1τ ≤ T ≤ C2τ . Hence in estimates we can replace e−T by e−τ if desired.

Next we would like to obtain corresponding estimates for the spatial deriva-
tives of dT/dτ and dXa/dτ of all orders. Consider the result of differentiating the
geodesic equations with respect to the spatial variables. This leads to estimates of
the form

d

dτ

(
∂2T

∂τ∂xa

)
= fa(τ), |fa(τ)| ≤ C′e−Hτ (75)

d

dτ

(
∂2Xa

∂τ∂xc

)
+ 2H

∂2Xa

∂τ∂xc
= ga

c (τ), |ga
c (τ)| ≤ C′e−2Hτ . (76)

This allows us to show that the first order spatial derivatives of the key quantities
satisfy the estimates analogous to those satisfied by the quantities themselves.
The same argument can be applied to estimate spatial derivatives of any order
inductively. Now all the desired information about existence and decay of T and
Xa has been obtained. It remains to show that they form a coordinate system. This
follows from the fact that the initial values of ∂T/∂τ , ∂Xa/∂τ and ∂Xa/∂xb are
one, zero and δa

b respectively and the exponential decay of their time derivatives
which has already been proved. This completes the proof of the lemma.

Combining Lemma 2 and Theorem 5 shows that the spacetimes constructed
by Friedrich admit global Gaussian coordinates in which they have an asymptotic
expansion of the form of (10). Hence any initial data close to that for de Sitter on
a flat hypersurface evolves into a solution having an asymptotic expansion of the
form given by Starobinsky.

5 The spatially homogeneous case

This section is concerned with spatially homogeneous solutions of the vacuum
Einstein equations in n + 1 dimensions with positive cosmological constant. It
is assumed that the spatial homogeneity is defined by a Lie group G, supposed
simply connected, which acts simply transitively. We restrict to spacetimes such
that all left invariant Riemannian metrics on G have non-positive scalar curvature.
In the case n = 3 this corresponds to Bianchi types I to VIII. Information on the
case n = 4 can be found in [8]. It will be shown that the spacetimes of the type
just specified have asymptotic expansions with all the properties of the formal
expansions in Theorem 3.

A spatially homogeneous spacetime of the type being considered can be writ-
ten in the form

−dt2 + gij(t)ei ⊗ ej (77)
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where
{
ei

}
is a left invariant frame on the Lie groupG. Basic information about the

asymptotics of these spacetimes in 3+1 dimensions are given by Wald’s theorem
[21], which provides information on the behavior of the second fundamental form as
t→ ∞. This can easily be generalized to the present situation. Using the condition
on the sign of R, the Hamiltonian constraint implies that on any interval where
a solution exists (trk)2 ≥ 2nΛ

n−1 = (nH)2. Combining the Hamiltonian constraint
with the evolution equation for trk gives

∂t(trk) ≥ 1
n

(trk)2 − 2
n− 1

Λ. (78)

In particular trk is non-decreasing. These facts together show that trk is bounded.
Now it will be shown that trk → −nH as t→ ∞. For

∂t(trk + nH) ≥ 1
n

(−trk + nH)(−trk − nH) (79)

≥ −2H(trk + nH). (80)

It follows that trk = −nH + O(e−2Ht). Using the Hamiltonian constraint then
gives σi

jσ
j
i = O(e−2Ht). This bound can be used to get information on σij as in

[15]. Then it is possible to proceed exactly as in the proof of Proposition 2 in [13]
to show that e−2Htgij , e2Htgij and eHtσi

j are bounded. Then equation (58) can be
used as in the previous section to improve the last statement to the boundedness
of e2Htσi

j . The fact that gij , gij and kij are bounded on any finite time interval
implies that the solution exists globally in time.

We are now in a situation very similar to that of Theorem 5. However the es-
timates we have are expressed in term of frame components. Choosing a coordinate
system on some subset of the Lie groupG with compact closure will give us uniform
asymptotic expansions for the components in that coordinate system. Conversely
uniform asymptotic expansions for the components in a coordinate system of this
type give corresponding asymptotic expansions for the frame components. In this
case we will say that the asymptotic expansions are locally uniform. If an expan-
sion of this type holds for a given quantity it also holds for all spatial derivatives
in the coordinate representation.

The proof of Theorem 5 uses only arguments which are pointwise in space and
so it generalizes immediately to the case of locally uniform asymptotic expansions.
It can be concluded that for a spatially homogeneous spacetime of the type under
consideration locally uniform asymptotic expansions of generalized Starobinsky
type are obtained. Restricting to a coordinate domain with compact closure uni-
form asymptotic expansions are obtained. In general these expansions will contain
logarithmic terms. Consider for instance the case of the Lie group H×R where H
is a three-dimensional Lie group of Bianchi type other than IX. Let the spacetime
be such that the spatial metric at each time is the product of a metric on H with
one on R. This is consistent with the constraint equations. For instance the initial
data can be chosen to be the product of data on H with trivial data on R. The
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data are invariant under reflection in R and this property is inherited by the solu-
tions. Suppose that H admits no metric of vanishing scalar curvature. This is the
case for every Bianchi type except I and VII0. Then the metric g0

ab corresponding
to this solution has non-vanishing scalar curvature and is not an Einstein metric.
Hence logarithmic terms are unavoidable.

6 Fuchsian analysis

Fuchsian systems are a class of singular equations which can be used to prove the
existence of solutions of certain partial differential equations with given asymp-
totics [11], [12], [16]. It will be shown that Fuchsian methods allow the construction
of solutions of the vacuum Einstein equations with positive cosmological constant
in any number of dimensions which have asymptotic expansions of the type given
in Section 2 and depend on the same number of free functions as the general
solution.

Before coming to the specific problem of interest here some general facts
about Fuchsian equations will be recalled. The form of the equations is

t∂u/∂t+N(x)u = tf(t, x, u, ux). (81)

Here x denotes the spatial coordinates collectively and ux the spatial derivatives
of the unknown u(t, x). The matrix N and the function f are required to satisfy
certain regularity conditions and N is required to satisfy a positivity condition.
There are forms of the regularity condition adapted to smooth and to analytic
functions. The version adapted to analytic functions will be used in the following
since it is the one where the most powerful theorems are available. For the precise
definition of regularity see [1], where a corresponding definition of regularity of
solutions is also given. Roughly speaking, regularity means that the functions
concerned are continuous in t and analytic in x and vanish in a suitable way as
t→ 0. Consider now an ansatz of the form

u(t, x) =
∞∑

m=0

Lm∑
l=0

um,lt
m(log t)l. (82)

By analogy with what was done in Section 2 we can ask whether the equation
(81) has a formal series solution of this kind. Suppose that this is the case. Fix
M ≥ 0. Then there exist coefficients um,l such that ū = u−∑M

0

∑Lm

0 um,lt
m(log t)l

satisfies
t∂ū/∂t+N(x)ū = tM+εfM (ū) (83)

for a regular function fM and a constant ε > 0 together with the correspond-
ing relations obtained by differentiating term by term with respect to the spatial
coordinates any number of times. Let v = t−M ū. Then

t∂v/∂t+ (N(x) +MI)v = tεg(t, x, v, vx) (84)
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for a regular function g. Introducing tε as a new time variable, we obtain an
equation of the form (81). If we assume that N(x) is bounded then by choosing
M large enough it can be ensured that the matrix N(x) +MI is positive definite.
Assuming that f and N are regular in the analytic sense the existence theorem
of [1] implies the existence of a unique regular solution v vanishing at t = 0.
Expressing u in terms of v gives a solution of the original equation which has the
given asymptotic expansion up to order M .

Consider now the slightly more general equation

t∂u/∂t+N(x)u = tf(t, x, u, ux) + h(u). (85)

In order to have a consistent formal power series solution suppose that for some
functions u0,0 and u1,0 we have Nu0,0 = h(u0,0) and

(N + I −Dh(u0,0))u1,0 = f(0, u0,0). (86)

Here Dh denotes the derivative of h as a map between Euclidean spaces. Suppose
further that the equation admits a formal power series solution with coefficients
u0,0 and u1,0 and L0 = L1 = 0. If these conditions hold then u satisfies the original
equation if v = u − u0,0 − u1,0t satisfies a Fuchsian system and vanishes at the
origin. Thus an existence theorem is obtained.

To make contact with the Einstein equations we start with the equations
(58)–(60) and set τ = e−Ht. Then an equation of the form (85) is obtained, with
u = (ĝab, σ

a
b, trk + nH). If it is assumed that the variables σa

b and (trk + nH)
vanish at τ = 0 then the consistency conditions on u0,0 and u1,0 are satisfied. The
fact that consistent formal expansions were shown to exist in Section 2 allows the
above procedure to be carried through. If the data Aab and Bab are chosen to be
analytic then this gives an existence theorem for the Einstein evolution equations
with Aab and Bab prescribed as in Theorem 3. In this context it is important to
note that if Aab and Bab are analytic all the coefficients in the formal expansions
whose existence is asserted in Theorem 3 are also analytic. In order to see that a
solution of the Einstein equations is obtained it suffices to show that the constraint
equations are satisfied. Note that it follows from the results of Section 2 that the
constraint quantities vanish to all orders at τ = 0 but since the solution is not
analytic at τ = 0 this does not suffice to conclude that the constraint quantities
vanish everywhere. To see that they do we need to write the consistency conditions
(8) and (9) in Fuchsian form. Using the fact that the Einstein evolution equations
are satisfied, and introducing C̃a = e−tHCa, these equations can be written as

∂tC + 2HC = 2(trk +H)C − 2eHt∇aCa (87)
∂tC̃a + 2HC̃a = (trk +H)C̃a − (1/2)e−Ht∇aC̃. (88)

Setting τ = e−Ht gives a system of the form (81) and since C and C̃a tend to
zero as τ → 0 both of these quantities vanish as a consequence of the uniqueness
theorem for Fuchsian systems and the constraints are satisfied. The solution of the
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Einstein equations has an asymptotic expansion of the form given in Theorem 3
truncated at any given finite order. Applying Theorem 5 shows that this solution
has an asymptotic expansion of this form to all orders. The results obtained can
be summed up as follows:

Theorem 6. Let Aab be an analytic n-dimensional Riemannian metric and Bab an
analytic symmetric tensor which satisfies AabBab = Z(A) and ∇aBab = Z̃b(A),
where the covariant derivative is that associated to A. Then there exists an an-
alytic solution of the vacuum Einstein equations with an asymptotic expansion
of the form (18) with g0

ab = Aab and (gab)n−2,0 = Bab. The expansion may be
differentiated term by term with respect to the spatial variables as often as desired.

7 The wave equation on de Sitter spacetime

In Section 4 it was shown that initial data for the vacuum Einstein equations in 3+1
dimensions close to that for de Sitter space evolve to give a spacetime with asymp-
totics of Starobinsky type. It has not yet proved possible to obtain the analogous
statement in higher dimensions. What is missing are suitable energy estimates. In
this section it will be shown how a simpler model problem can be treated. This
is the case of the wave equation ∇α∇αφ = 0 on (the higher-dimensional analogue
of) de Sitter space. The spacetime metric in this case is

ds2 = −dt2 + e2Ht((dx1)2 + · · · + (dxn)2). (89)

Written out explicitly in coordinates the wave equation takes the form:

∂2
t φ+ nH∂tφ = e−2Ht∆φ (90)

where ∆ is the Laplacian of the flat metric.
Consider the ansatz for formal solutions of the equations

∞∑
m=0

(Am(x)e−mHt +Bm(x)te−mHt). (91)

Substituting this into the equation and comparing coefficients gives

m(m− n)H2Am − (2m− n)HBm = ∆Am−2 (92)
m(m− n)H2Bm = ∆Bm−2. (93)

For any n it is true that B0 = A1 = B1 = 0. In the case that n is odd assume
that the coefficients Bm vanish. Then ∆Am−2 = H2m(m − n)Am for all m ≥ 2.
Then it follows from A1 = 0 that A2k+1 = 0 for all integers k with 2k + 1 < n.
The coefficients A2k+1 with 2k + 1 > n are determined by An. The coefficients
A2k are determined by A0. There are no further relations to be satisfied and so A0

and An parametrize the general solution. If the coefficients Bm are not assumed
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to be zero it can be shown that they must vanish for n odd. For n even we have
A2k+1 = B2k+1 = 0 for every positive integer k. If 2k < n then B2k = 0. For 2k < n
the coefficients A2k are determined successively by A0. Also Bn is determined by
A0. Then A2k and B2k are determined for all k with 2k > n in terms of the
coefficients already determined. Thus the general solution can be parametrized by
A0 and An, just as in the case n odd. The difference is that the series obtained
contains terms which are multiples of te−mHt.

Let E =
∫
(∂tφ)2+e−2Ht|∇φ|2. Differentiating with respect to t and integrat-

ing by parts gives the relation dE/dt ≤ −2HE. We can differentiate the equation
through with respect to a spatial coordinate and repeat the argument. This shows
that all Sobolev norms of eHt∂tφ and ∇φ are bounded. By the Sobolev embed-
ding theorem they and all their spatial derivatives satisfy corresponding pointwise
bounds. Thus the spatial derivatives of φ are bounded while its time derivative de-
cays like e−Ht. As a consequence φ(t, x) = φ0(x) +O(e−Ht) for some function φ0.
Comparing with the formal solutions already obtained we see that these estimates
are not likely to be sharp. The equation for φ is equivalent to the system

∂tφ = ψ (94)
∂tψ + nHψ = e−2Ht∆φ. (95)

Starting with the basic information on the asymptotic behavior of φ we already
have the method of proof of Theorem 5 can be applied to this system. The result
is that any solution has an asymptotic expansion of the type derived on a formal
level above.
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