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A Direct Proof of the Nekhoroshev Theorem for
Nearly Integrable Symplectic Maps

Massimiliano Guzzo

Abstract. We provide the direct proof of the Nekhoroshev theorem on the stability
of nearly integrable analytic symplectic maps. Specifically, we prove the stability
of the actions for a number of iterations which grows exponentially with an inverse
power of the norm of the perturbation by conjugating the generating function of
the map to suitable normal forms with exponentially small remainder.

1 Introduction

The stability of the actions of nearly integrable analytic symplectic maps for a
number of iterations which grows exponentially with an inverse power of the norm
of the perturbation was conjectured by N.N. Nekhoroshev already in his 1977
article (see [7], Section 2.2).

Up to now, direct proofs exist only for specific situations (isochronous systems
and neighborhoods of elliptic equilibrium points; see [1], [2] and [10]). For the
general situation of nearly integrable symplectic maps, with hypotheses which
extend in a natural way those of Nekhoroshev theorem, an indirect proof has been
provided by Kuksin in [5], where the exponential stability is proved by showing
the existence of a quasi-integrable non-autonomous analytic Hamiltonian system
interpolating the map (see also [4], [6]). Kuksin’s article is based essentially on a
constructive version of Grauert analytic embedding theorem, nevertheless it seems
not so straightforward to recover (even up to a small order) the interpolating
Hamiltonian of a given map, so we think that a direct proof which provides also
explicit algorithms for the construction of the normal forms would be welcome.

In this paper we provide such a direct proof, obtaining an exponential stability
result which is independent of the one obtained by Kuksin in [5] and by Kuksin–
Poschël in [6] (see points i–ii and iii below). Precisely, we consider symplectic maps
which are generated by a function:

S(I, ϕ) = I · ϕ + h(I) + εf(I, ϕ) (1)

defined for I in an open set B ⊂ Rn and ϕ ∈ Tn; h and f are analytic functions; ε
is a small parameter. The function S generates (implicitly) the map C : (I, ϕ) �→
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(I ′, ϕ′) through the equations:

I = I ′ + ε
∂f

∂ϕ
(I ′, ϕ)

ϕ′ = ϕ +
∂h

∂I
(I ′) + ε

∂f

∂I
(I ′, ϕ). (2)

For ε = 0 the map is integrable: the actions do not change, while the angles at any
iteration rotate by an angle ω(I), with ω = ∂h

∂I . For ε �= 0, in general the problem
of the stability of the actions arises. The Nekhoroshev theorem for maps then can
be stated as follows (conjectured in [7]; first proof by interpolation in [5]):

Theorem 1 If h is convex, there exist positive constants ε0, a, b, t0, d0 such that for
any ε < ε0, and for any I(0), ϕ(0) ∈ B′ × Tn, with B′ = {I ∈ B : dist(I, ∂B) >
2d0ε

a}, denoting: (I(t), ϕ(t)) = Ct(I(0), ϕ(0)), it is:

|I(t) − I(0)| ≤ d0 εa (3)

for any t ∈ Z satisfying:

|t| ≤ t0 exp
(ε0

ε

)b

. (4)

The above theorem is different from the one conjectured in [7], Section 2.2 because
the ‘P-steepness’ hypothesis on h used in Nekhoroshev’s paper is here replaced by
the stronger convexity hypothesis. Here, we refer to the convex situation which
is a non-trivial case of P-steepness sufficient to illustrate Nekhoroshev theorem
(see [3]). Nevertheless, the result extends also to the P-steepness case.

We remark however that the convexity hypothesis cannot be replaced by
the weaker quasi-convexity hypothesis, which is commonly used in the Hamilto-
nian case. Indeed, quasi-convexity of h is not allowed (for the generic steep case,
Nekhoroshev replaced the steepness condition, valid for the Hamiltonian case, with
the ‘P-steepness’ condition), as can be easily seen by the trivial counter-example
S(I, ϕ) = Iϕ + 2πI + ε cos(ϕ).

The exponential stability result which is proved in this paper is independent
from the one stated in [5] (and also in [6]) for the following reasons:

i) the critical parameter ε0 appearing in Kuksin’s result is necessarily smaller than
the critical ε∗ for which the analytic Hamiltonian interpolation can be proved to
exist. Such a problem here does not exist.

ii) within Kuksin’s technique it is necessarily: ε0 → 0 for supI∈B |ω(I)| → ∞,
because it can be shown that the analyticity radius with respect to time of the
interpolating Hamiltonian goes to 0 as a positive power of 1/ |ω(I)|. A similar
limitation (which is not natural in the Nekhoroshev theorem) is absent in our
proof.
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iii) Kuksin’s technique, using the Nekhoroshev theorem for quasi-convex Hamilto-
nian systems, allows to provide the stability exponents a = b = 1/(2(n + 1)) as
well as a = 1/4+b, b = 1/(4(n+1)) (for other possible exponents see [8], ‘Theorem
1∗’). Instead, with the direct proof, using the original geometric construction by
Nekhoroshev, we will obtain a worse stability exponent b ∼ 1/n2. More precisely,
for any n ≥ 2, we obtain:

b =
2 − 6a

3n2 + 3n − 2
, a ∈

(
0 ,

1
3

)
,

which include:
b =

1
6n2 + 6n − 4

, a =
1
4

.

The article is structured as follows: in Section 2 we illustrate the basic idea
allowing the construction of resonant normal forms for symplectic maps. In Section
3 we define the geometry of resonances in the action domain. In Sections 4, 5 and
6 we provide the technical details for the construction of the normal forms. In
Section 7 we conclude the proof.

2 Normal forms for symplectic maps via generating functions

Following [1] and [10], we look for near to the identity symplectic transformations
Φ : (I, ϕ) �→ (I ′, ϕ′) generated by a function χ̃(I, ϕ) = I ·ϕ + εχ(I, ϕ) through the
equations:

I = I ′ + ε
∂χ

∂ϕ
(I ′, ϕ)

ϕ′ = ϕ + ε
∂χ

∂I
(I ′, ϕ) , (5)

such that the conjugate map C′ = Φ−1 ◦ C ◦ Φ is ‘more integrable’ than C. This
means that C′ is generated by a function S′(I, ϕ) = I · ϕ + h(I) + εf ′(I, ϕ), with
f ′ smaller than f (except for a possible resonant term). We remark that if ε is
suitably small, then C′ can be also generated by some function S′. The specific
form of S′ is obtained by suitably choosing the function χ.

The composition of these symplectic maps satisfies the following lemma:

Lemma 1 Let S be as in (1), let χ be defined and analytic in B × Tn, and denote
by C and Φ the symplectic maps defined implicitly by (2) and (5) respectively. If ε
is small the transformation C′ = Φ−1 ◦ C ◦ Φ is generated by:

S′ = I · ϕ + h(I) + εf(I, ϕ) + ε[χ(I, ϕ) − χ(I, ϕ + ω(I))] + ε2f ′(I, ϕ) (6)

where ω(I) = ∂h
∂I (I), and the remainder f ′ is real analytic and bounded uniformly

in ε in B × Tn.

The lemma is proved, with detailed estimates, in Section 5.
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Lemma 1 concerns the composition of the symplectic map generated by S,
with any near to the identity symplectic map, written in the form (5). The normal
forms of S are instead obtained by means of specific choices of χ, depending on the
resonance properties of the domain. For example, the non-resonant normal form
is obtained when the term of order ε of S′ does not depend on the angles. This
happens if the function χ is chosen as

f(I, ϕ) + [χ(I, ϕ) − χ(I, ϕ + ω(I))] = g(I) , (7)

where g(I) is analytic in B. The above equation is the ‘homological equation’ for
symplectic maps, which can be solved by Fourier series. Denoting:

f =
∑

k∈Zn

fk(I)eik·ϕ , χ =
∑

k∈Zn

χk(I)eik·ϕ ,

χ and g satisfy eq. (7) if it is:

f0(I) = g(I)
fk(I) + χk(I)[1 − eik·ω(I)] = 0 , if k �= 0 . (8)

A formal solution is therefore given by:

g = f0 , χ = −
∑

k∈Zn\0

fk(I)
1 − eik·ω(I)

eik·ϕ . (9)

In general, as for the Hamiltonian case, the above solution is only formal, in the
sense that χ is not defined in any open subset of B, because the set of I where for
some k ∈ Zn\0 it is:

1 − eik·ω(I) = 0

is dense in B. However, an analytic solution can be found by restricting suitably
the spectrum of f and the domain of definition of χ (as it is done in the proof of
the Nekhoroshev theorem for Hamiltonian systems).

Remark. In the Hamiltonian case, an integrable Hamiltonian h(I) produces the
small denominators k ·ω(I), with k ∈ Zn\0, and therefore the resonances are given
by the equations k · ω(I) = 0, with k ∈ Z

n\0. Instead, in the case of symplectic
maps, the small denominators are: 1 − eik·ω(I), with k ∈ Zn\0, and therefore the
resonances are given by the equations:

k · ω(I) = 2k0π , (10)

with k ∈ Zn\0 and k0 ∈ Z. These kinds of denominators, which appeared already
in the proof of the isochronous case (see [1], [10]) are consistent with the represen-
tation of the n degrees of freedom integrable map generated by I ·ϕ + h(I) as the
2π-time flow of the n + 1 degrees of freedom Hamiltonian system with Hamilton
function h(I)

2π + In+1, whose resonances are given by eq. (10).
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3 The geometry of resonances

As explained in the previous section, the geometry of resonances refers to the
frequency vector Ω = (Ω0, . . . , Ωn) ∈ Rn+1 defined by Ω0 = 2π, and Ωi = ωi(I)
for any i = 1, . . . , n. We adapt to maps the original geometric construction of
the Nekhoroshev paper [7] (see also [3] for the convex case), introducing some
differences with respect to the Hamiltonian case (see the remarks below).

As it is usual, the construction of resonant domains is parameterized by a
positive number K > 0 and by n positive parameters:

0 < α1 ≤ α2 ≤ · · · ≤ αn < π . (11)

More precisely, for any choice of these parameters, we define the following struc-
tures:

• K-lattices: for any K > 0, we first consider the set of all integer lattices
Λ ⊆ Zn which are generated by d ≤ n independent integer vectors k(i),
i ≤ d, with order

∣∣k(i)
∣∣ =

∑n
j=1

∣∣∣k(i)
j

∣∣∣ ≤ K; then, among these lattices, we
do not consider those which are properly contained in other of these lattices
of the same dimension. The remaining lattices will be called K-lattices.

• resonant manifolds: for any K-lattice Λ we define its resonant manifold:

RΛ = {I ∈ B : ∀k ∈ Λ there exists k0 ∈ Z :
k · ω(I) + 2πk0 = 0} . (12)

• resonant zones: For any d-dimensional K-lattice Λ, 1 ≤ d ≤ n, its resonant
zone is

ZΛ = {I ∈ B : ∀k ∈ Λ with |k| ≤ K there exists k0 ∈ Z :
|k · ω(I) + 2πk0| ≤ ‖k‖αd} , (13)

where ‖ ‖ denotes the Euclidean norm of a vector.

• resonant blocks: for any d-dimensional K-lattice Λ, 1 ≤ d ≤ n−1, its resonant
block is

DΛ = {I ∈ ZΛ such that I /∈ ZΛ′ for any K−lattice Λ′, with dimΛ′ = d + 1}
(14)

while the non-resonant block, corresponding to Λ = {0}, is:

D0 = {I ∈ B : I /∈ ZΛ′ for any K−lattice Λ′, with dimΛ′ = 1} (15)

and the completely resonant block is:

DZn = ZZn . (16)
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• cylinders: For any I ∈ Rn and δ > 0 denote

Ξ(I, δ) = {I ∈ R
n : ‖I − I‖ ≤ δ} .

For any Λ with 1 ≤ dimΛ ≤ n, we denote by I + 〈Λ〉 the plane through
I spanned by the lattice Λ. We associate to each I ∈ DΛ the cylinder of
radius δ, which we denote by CΛ,δ(I), defined as the connected component
containing I of the set:


 ⋃

I′∈I+〈Λ〉
Ξ(I ′, δ)


 ∩ ZΛ .

The intersection of CΛ,δ(I) with the border of ZΛ gives the cylinder lateral
walls.

• the extended block is
Dext

Λ,δ =
⋃

I∈DΛ

CΛ,δ(I) .

Remarks. I) In the definition of the resonant manifolds and zones we have consid-
ered resonances k · ω(I) + 2πk0 = 0, with k0 ∈ Z and k ∈ Zn, with the norm of k
bounded by K, while in the analogous Hamiltonian construction the norm of the
complete resonant vectors (k0, k) is bounded. In the case of maps any harmonic of
the perturbation labeled by some k ∈ Z

n produces resonances of the same width
with any vector k0 ∈ Z, and therefore it is necessary to consider all these reso-
nances. Nevertheless, the restriction on the norm of vector k is sufficient to control
the density and avoid the overlapping of all these resonances.
II) Though the resonances are defined with respect to the n + 1-dimensional fre-
quency vector Ω, we need to define only n parameters αi (and not n+ 1), because
the n + 1-dimensional resonance does not exist.

The original confinement argument of the Nekhoroshev theorem resides main-
ly on two facts: first, the parameters entering the geometric construction are such
that the extended block of a given lattice Λ does not intersect the resonant zones
of any lattice of the same dimension of Λ; second, in an exponentially long time
any motion with initial action in a given cylinder can leave it only through its
lateral walls. In the rest of the section we focus our attention on the first point,
while the second will be considered in Section 7.

Through this paper, we will use the following notations. We denote by 	I , 	ϕ

the analyticity radii such that h and f are analytic in B�I ×Tn
�ϕ

; we denote by M
a Lipschitz constant of ω(I) = ∂h/∂I in the set B�I and by M0 a positive constant
such that: ∣∣∣∣

∂2h

∂I2
(I)u · u

∣∣∣∣ ≥ M0u · u (17)
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for any u ∈ Rn and any I ∈ B. The hypotheses of Theorem 1 (analyticity of h and
f and convexity of h) guarantee that such constants are strictly positive, and we
take the freedom to choose M0 and M in such a way that: M0 < M .

We now prove the following technical lemmas about the resonant domains:

Lemma 2 Let h : B → R convex, and let M, M0 be defined as above. Consider any
K-lattices Λ, Λ′ with d = dimΛ = dimΛ′. If δΛ and the αi satisfy:

δΛ ≤ 2
M

dKd−1αd , αd+1 ≥ 6K
M

M0
dKd−1αd (18)

then it is (Dext
Λ,δΛ

)δΛ ∩ (ZΛ′) = ∅, where (Dext
Λ,δΛ

)δΛ = ∪I∈Dext
Λ,δΛ

Ξ(I, δΛ).

Before proving Lemma 2 we estimate the small denominators in any resonant block
and the diameters of the cylinders.

Lemma 3 For any K-lattice Λ with dim Λ = d ∈ [1, n − 1] and for any I ∈ DΛ it
is:

|k · ω(I) + 2πk0| > ‖k‖αd+1 (19)

for any k ∈ Zn\Λ with |k| ≤ K and for any k0 ∈ Z.
For any I ∈ D0 it is:

|k · ω + 2πk0| > α1 (20)

for any k ∈ Zn\0 with |k| ≤ K and for any k0 ∈ Z.

The proof of Lemma 3 follows directly from the definition of the resonant zones
and blocks.

Lemma 4 For any K-lattice Λ with dim Λ = d ∈ [1, n] and δ ≤ 2
5M dKd−1αd, if

I ∈ DΛ and I ′ ∈ CΛ,δ(I) then it is:

‖I − I ′‖ ≤ 3
M0

dKd−1αd . (21)

Proof of Lemma 4. Let Î ∈ I + 〈Λ〉 (we recall that I + 〈Λ〉 denotes the plane
through I spanned by Λ) such that I ′ ∈ Ξ(Î , δ). The following inequalities hold:

M0‖I − I ′‖2 ≤ |(ω(I) − ω(I ′)) · (I − I ′)|
≤ |(ω(I) − ω(I ′)) · (I − Î)| + |(ω(I) − ω(I ′)) · (Î − I ′)|
≤ |PΛ(ω(I) − ω(I ′)) · (I − Î)| + M ‖I − I ′‖ δ , (22)

where we denote by PΛv the orthogonal projection of a vector v ∈ Rn over the real
space spanned by the lattice Λ. Let k(1), . . . , k(d) ∈ Zn be a K-base of Λ. Therefore,
since I, I ′ ∈ ZΛ, for any i there exist ni, n

′
i such that:

∣∣ω(I) · k(i) + 2πni

∣∣ ≤ αd and∣∣ω(I ′) · k(i) + 2πn′
i

∣∣ ≤ αd. Moreover, one can choose ni = n′
i: if we consider any arc
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I(s) ∈ CΛ,δ(I), s ∈ [0, 1], with I(0) = I, I(1) = I ′, it is
∣∣ω(I(s)) · k(i) + 2πni

∣∣ ≤ αd

for any s ∈ [0, 1]. In fact, let us suppose that there exists s0 ∈ (0, 1), and a
neighborhood U of s0 such that for any s1, s2 ∈ U with s1 ≤ s0 < s2 it is∣∣ω(I(s1)) · k(i) + 2πni

∣∣ ≤ αd and
∣∣ω(I(s2)) · k(i) + 2πni

∣∣ > αd. In such a case,
there exists also an integer n̂ �= ni such that

∣∣ω(I(s2)) · k(i) + 2πn̂
∣∣ ≤ αd. It would

be also:

αd ≥
∣∣∣ω(I(s1)) · k(i) + 2πni

∣∣∣ ≥ 2π |n̂ − ni| − KM ‖I(s1) − I(s2)‖ − αd , (23)

which is in contrast with αd < π as soon as |s1 − s2| tends to zero. Therefore, for
any k(i) it is:

∣∣ω(I ′) · k(i) + 2πni

∣∣ ≤ αd, from which it follows also:
∣∣PΛ(ω(I) − ω(I ′)) · k(i)

∣∣ =
∣∣(ω(I) − ω(I ′)) · k(i)

∣∣
=
∣∣ω(I) · k(i) + 2πni − ω(I ′) · k(i) − 2πni

∣∣ ≤ 2αd (24)

From “technical Lemma 1” of [3] it follows:

‖PΛ(ω(I) − ω(I ′))‖ ≤ 2dKd−1αd . (25)

From (22) follows also:

M0‖I − I ′‖2 ≤ 2dKd−1αd(‖I − I ′‖ + δ) + M ‖I − I ′‖ δ (26)

from which follows (21).

Proof of Lemma 2. Since I ∈ (Dext
Λ,δΛ

)δΛ , there exists I ′ ∈ DΛ with ‖I − I ′‖ ≤
3

M0
dKd−1αd +δΛ. The lattice Λ′ contains at least a vector k ∈ Zn\Λ with |k| ≤ K.

From Lemma 3, for any n ∈ Z it is

|ω(I) · k + 2πn| ≥ ‖k‖αd+1 − ‖k‖M
3

M0
dKd−1αd − ‖k‖MδΛ ≥ ‖k‖αd . (27)

This inequality implies that I /∈ ZΛ′ . In fact, if I ∈ ZΛ′ , for any k ∈ Λ′ with
|k| ≤ K there exists n such that: |ω(I) · k + 2πn| ≤ ‖k‖αd, and this is in contrast
with (27).

4 The resonant normal forms

In this section we construct the resonant normal form for any resonant domain.
The construction follows closely that of Hamiltonian systems, except that the
homological equation is replaced by equation (7), as explained in Section 2.

We first fix some notation. For any real domain D′ ⊆ Rn and σ > 0 we
denote by

D′
σ =

⋃
x∈D′

{x′ ∈ C
n : ‖x − x′‖ ≤ σ} (28)
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its complex extension of radius σ; we denote by

T
n
σ = {ϕ ∈ (C/2πZ)n : |Im ϕi| ≤ σ for any i ≤ k} (29)

the complex extension of Tn of radius σ. We will handle real domains of the form
D′ × Tn with D′ ⊆ Rn; for any function u : D′ × Tn → C, for we consider the
Fourier decomposition

u =
∑

k∈Zn

uk(I)eik·ϕ , (30)

and, for any Λ ⊆ Z
n, the Fourier projection ΠΛu =

∑
k∈Λ uk(I)eik·ϕ and for

any K > 0 we define the cut-off projection: TKu =
∑

|k|≤K uk(I)eik·ϕ. For any
‘extension vector’ σ = (σI , σϕ) (extension vectors will be always considered with
positive entries, and inequalities on extension vectors are intended as inequalities
on the entries) we denote by |u|σ the sup-norm in the domain D′

σI × Tn
σϕ

.

Lemma 5 Let K ≥ 2 be such that: K
ln K ≥ 32n

�ϕ
, and define

N =
1

32n
	ϕ

K

ln K
. (31)

Let the function
W = I ′ · ϕ + h(I ′) + εf(I ′, ϕ) (32)

be analytic in B�I × Tn
�ϕ

. Let Λ ⊆ Zn+1 be a K-lattice and let α ∈ (0, 1), rI ∈
(0, �I

2 ], and D′ ⊆ B be such that for any I ′ ∈ D′
rI

it is:
∣∣∣1 − eik·ω(I′)

∣∣∣ ≥ α

2
(33)

for any k ∈ Λ\0 and |k| ≤ K.
If r, N and K satisfy:

rϕ = �ϕ

2 , rI ≤ �ϕ

27MN

K ≥ 6
�ϕ

ln
(

22n+7nn−1

�n
ϕ

)
(34)

and it is:

εn |f |� ≤ Γ
1

22n+18

α2rIrϕ

nN
, (35)

with:

Γ ≤ min
{

1,
2	ϕ

M	In
,

2
αN

}
, (36)

there exists a symplectic map: Φ : D′
rI/2 × Tn

rϕ/2 → D′
rI

× Tn
rϕ

, which is a diffeo-
morphism on its image, such that, denoting by C the symplectic map generated by
W , its pull-back C′ = Φ−1 ◦ C ◦ Φ : D′

rI
2
× Tn

rϕ
2

→ D′
rI

× Tn
rϕ

is generated by the
function:

W ′(I ′, ϕ) = I ′ · ϕ + h(I ′) + εu(I ′, ϕ) + εR(I ′, ϕ) , (37)
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where R and u are analytic in D′
rI
2
× Tn

rϕ
2

, u = ΠΛu, |u − ΠΛTKf | r
2
≤ 2 |f |� and

|R| r
2
≤ 1

4N

|f |�
N

. (38)

Denoting (I ′, ϕ′) = Φ(I, ϕ), with (I, ϕ) ∈ D′
rI/2 × Tn

rϕ/2, it is:

|I ′i − Ii| ≤ rI

211
(39)

for any i ≤ n.

5 On the conjugation of nearly integrable symplectic maps
with near to the identity symplectic map

In this section we compute the pull-back of nearly integrable symplectic maps with
respect to near to the identity symplectic maps, so as to prove Lemma 1. Consider
the generating function:

S(I ′, ϕ) = I ′ · ϕ + k(I ′) + εw(I ′, ϕ) , (40)

where k and w are analytic in B′ × Tn, with B′ ⊆ Rn open set, ε ∈ R (in the
following it will be useful to consider both choices k = 0 and k = h). If ε is suitably
small, the following equations:

I = I ′ + ε
∂w

∂ϕ
(I ′, ϕ)

ϕ′ = ϕ +
∂k

∂I ′
(I ′) + ε

∂w

∂I
(I ′, ϕ) , (41)

define implicitly a symplectic diffeomorphism: C(I, ϕ) = (I ′, ϕ′).
We consider then a near to the identity symplectic map Φ : (I0, ϕ0) �→ (I, ϕ)

generated by χ̃(I, ϕ0) = I ·ϕ0 +εχ(I, ϕ0), where χ is analytic in a domain D′×Tn,
with D′ ⊆ B′. We want to compute the generating function for the map C′ =
Φ−1 ◦ C ◦ Φ. It is convenient to refer to the following diagram:

(I, ϕ) C−−−−→ (I ′, ϕ′)

Φ




Φ

(I0, ϕ0)
C′−−−−→ (I ′0, ϕ

′
0).

(42)

Lemma 6 Let S,χ, C, C′ and Φ as above. If ε is suitably small, the transformation
C′ is generated by:

S′ = I · ϕ0 − I · ϕ + I ′0 · ϕ′
0 − I ′ · ϕ′

0 + I ′ · ϕ+
k(I ′) + εw(I ′, ϕ) + ε[χ(I, ϕ0) − χ(I ′, ϕ′

0)] , (43)

where I, ϕ, I ′, ϕ′, I0, ϕ
′
0 are functions of the independent variables I ′0, ϕ0.
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Proof of Lemma 6. Because of equations (41) the standard Lie condition reads:

(I − I ′) · dϕ + (ϕ′ − ϕ) · dI ′ = d(k(I ′) + εw(I ′, ϕ)) , (44)

and it is defined globally on B′×Tn. Similarly, to compute the generating function
S′ it is sufficient to compute the differential form (I0 − I ′0) · dϕ0 + (ϕ′

0 − ϕ0) · dI ′0,
because it is:

dS′(I ′0, ϕ0) = d(I ′0 · ϕ0) + (I0 − I ′0) · dϕ0 + (ϕ′
0 − ϕ0) · dI ′0 . (45)

With reference to diagram (42), it is:

dS(I ′, ϕ) = d(I ′ · ϕ) + (I − I ′) · dϕ + (ϕ′ − ϕ) · dI ′

dχ̃(I, ϕ0) = d(I · ϕ0) + (I0 − I) · dϕ0 + (ϕ − ϕ0) · dI
dχ̃(I ′, ϕ′

0) = d(I ′ · ϕ′
0) + (I ′0 − I ′) · dϕ′

0 + (ϕ′ − ϕ′
0) · dI ′ , (46)

and therefore:

d(S(I ′, ϕ) + χ̃(I, ϕ0) − χ̃(I ′, ϕ′
0)) = d(I ′0 · ϕ0 + I · ϕ − I ′0 · ϕ′

0)
+(I0 − I ′0) · dϕ0 + (ϕ′

0 − ϕ0) · dI ′0 , (47)

so that the new generating function is:

S′ = I ′0 · ϕ′
0 − I · ϕ + S(I ′, ϕ) + χ̃(I, ϕ0) − χ̃(I ′, ϕ′

0)
= I ′0 · ϕ′

0 − I · ϕ + I ′ · ϕ + I · ϕ0 − I ′ · ϕ′
0 + k(I ′)

+εw(I ′, ϕ) + ε[χ(I, ϕ0) − χ(I ′, ϕ′
0)] , (48)

where I, ϕ, I ′, ϕ′, I0, ϕ
′
0 are functions of the independent variables I ′0, ϕ0.

Lemma 6 provides the analytic expression of the generating function of C′.
In the following lemma we provide estimates for C′ on convenient domains. To fix
notations, for any set V ′ ⊆ Rn and any σ = (σI , σϕ) we will denote Vσ = V ′

σI
×Tn

σϕ
.

Lemma 7 Consider the generating function:

W (I ′, ϕ) = I ′ · ϕ + k(I ′) + εw(I ′, ϕ) , (49)

where w : B′
�̃I

× Tn
�̃ϕ

→ C, and k : B′
�̃I

→ C are analytic. Let ∆I , ∆ϕ defined by:

∆I =
εn

4
max

i

∣∣∣∣
∂w

∂ϕi

∣∣∣∣
�̃

, ∆ϕ =
εn

4
max

i

∣∣∣∣
∂w

∂Ii

∣∣∣∣
�̃

(50)

satisfy the following inequalities:

∆ϕ

2
+ M	̃I < 	̃ϕ , ∆I < 	̃I (51)
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where M is a Lipschitz constant for ∂k
∂I′ on B′

�̃I
. If:

εn max
i,j

∣∣∣∣∣
∂2w

∂ϕi∂I ′j

∣∣∣∣∣
�̃

≤ 1
2

, (52)

then the equations:

I = I ′ + ε
∂w

∂ϕ
(I ′, ϕ)

ϕ′ = ϕ +
∂k

∂I ′
(I ′) + ε

∂w

∂I ′
(I ′, ϕ) (53)

define implicitly the analytic symplectic diffeomorphism: C(I, ϕ) = (I ′, ϕ′) such
that:

• for any (I, ϕ) ∈ B′
�̃I−∆I

× T
n
�̃ϕ

there exists I ′ ∈ B′
�̃I

such that:

I = I ′ + ε
∂w

∂ϕ
(I ′, ϕ) , (54)

and therefore B′
�̃I−∆I

× Tn
�̃ϕ

is in the domain of C;

• for any (I, ϕ) ∈ B′
�̃I−∆I

× Tn
�̃ϕ−∆ϕ

it is:

maxi |I ′i − Ii| ≤ ∆I

2

maxi

∣∣∣ϕ′
i − ϕi − ∂k

∂I′
i
(I ′)
∣∣∣ ≤ ∆ϕ

2

maxi |Im ϕ′
i − Im ϕi| ≤ ∆ϕ

2 + M	̃I , (55)

so that C(B�̃−∆) ⊆ B′
�̃I−∆I

2

× Tn

�̃ϕ−∆ϕ
2 +M�̃I

;

• for any (I ′, ϕ′) ∈ B′
�̃I

× Tn
�̃ϕ−∆ϕ

there exists ϕ ∈ Tn
�̃ϕ

such that:

ϕ′ = ϕ +
∂k

∂I ′
(I ′) + ε

∂w

∂I ′
(I ′, ϕ) , (56)

and therefore B′
�̃I

× Tn
�̃ϕ−∆ϕ

is in the domain of C−1;

• for any (I ′, ϕ′) ∈ B′
�̃I−∆I

× Tn
�̃ϕ−∆ϕ

, denoting (I, ϕ) = C−1(I ′, ϕ′) it is:

maxi |I ′i − Ii| ≤ ∆I

2

maxi

∣∣∣ϕ′
i − ϕi − ∂k

∂I′
i
(I ′)
∣∣∣ ≤ ∆ϕ

2

maxi |Im ϕ′
i − Im ϕi| ≤ ∆ϕ

2 + M	̃I , (57)

so that C−1(B�̃−∆) ⊆ B′
�̃I−∆I

2

× Tn

�̃ϕ−∆ϕ
2 +M�̃I

.
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Proof of Lemma 7. We first prove that equations (53) can be inverted to define C

in B′
�̃I−∆I

× Tn
�̃ϕ

. Let us fix ϕ ∈ Tn
�̃ϕ

, and denote Bϕ = ∪I′∈B′
�̃I
{I ′ + ε∂w

∂ϕ (I ′, ϕ)}.
The map:

B′
�̃I

−→ Bϕ

I ′ �−→ I = I ′ + ε
∂w

∂ϕ
(I ′, ϕ) (58)

is injective. In fact, if there exist I ′1, I
′
2 ∈ B′

�̃I
such that:

I ′1 + ε
∂w

∂ϕ
(I ′1, ϕ) = I ′2 + ε

∂w

∂ϕ
(I ′2, ϕ) , (59)

then it is trivially:

‖I ′1 − I ′2‖ ≤ εn max
i,j

∣∣∣∣∣
∂2w

∂ϕi∂I ′j

∣∣∣∣∣
�̃

‖I ′1 − I ′2‖ . (60)

If I ′1 �= I ′2, the above inequality is in contrast with eq. (52). This means that we
can define a map u : B → B′

�̃I
, where

B = {(ϕ, I) such that ϕ ∈ T
n
�̃ϕ

and I ∈ Bϕ} ,

such that:
I = u(I, ϕ) + ε

∂w

∂ϕ
(u(I, ϕ), ϕ) . (61)

The map u is analytic. To prove this we use the local inversion theorem for
holomorphic maps. Indeed, for any (I ′0, ϕ0) ∈ B′

�̃I
× Tn

�̃ϕ
, the Jacobian matrix

of I ′ + ε∂w
∂ϕ (I ′, ϕ) is:

Jik = δik + ε
∂2w

∂Ikϕi
(I ′, ϕ) , (62)

which is non-singular because by eq. (52) it follows: εn
∣∣∣ ∂2w
∂ϕi∂I′

j

∣∣∣
�̃

< 1. This proves

that u is analytic in a suitable neighborhood of (I ′0 + ε∂w
∂ϕ (I ′0, ϕ0), ϕ0), for any

(I ′0, ϕ0) ∈ B′
�̃I

× Tn
�̃ϕ

, and therefore u is analytic in B.
The second equation of (53) defines ϕ′ as a function of I ′, ϕ, and therefore

it is possible to define ϕ′ as a function of I, ϕ, analytic in B. This allows one to
define the analytic map C : B → B′

�̃I
× Tn

�̃ϕ
:

I ′ = u(I, ϕ)

ϕ′ = ϕ +
∂k

∂I ′
(u(I, ϕ)) + ε

∂w

∂I ′
(u(I, ϕ), ϕ) . (63)

Now, we prove: B′
�̃I−∆I

× Tn
�̃ϕ

⊆ B, so that B′
�̃I−∆I

× Tn
�̃ϕ

is in the domain of C.
Specifically, for any (I, ϕ) ∈ B′

�̃I−∆I
× T

n
�̃ϕ

we prove that there exists I ′ ∈ B′
�̃I
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such that: I = I ′ + ε∂w
∂ϕ (I ′, ϕ). Let us consider the map y : B′

�̃I
→ Cn such that

y(I ′) = I − ε∂w
∂ϕ (I ′, ϕ). We prove that y has a fixed point I ∈ B′

�̃I
. We consider

the sequence Ij = yj(I). Using (52) and (50) one easily proves: ‖Ij − I‖ ≤ ∆I/2
for any j ∈ N, so that all Ij are in the domain of y, and moreover Ij is a Cauchy
sequence, so that its limit I exists, it is I ∈ B′

�̃I
, and it is a fixed point of y. This

proves B′
�̃I−∆I

× Tn
�̃ϕ

⊆ B.
In a very similar way we prove that: B′

�̃I
× Tn

�̃ϕ−∆ϕ
is in the domain of C−1.

Specifically, for any (I ′, ϕ′) ∈ B′
�̃I

× Tn
�̃ϕ−∆ϕ

we prove that there exists ϕ ∈ Tn
�̃ϕ

such that: ϕ′ = ϕ + ∂k
∂I′ (I ′) + ε ∂w

∂I′ (I ′, ϕ). Let us consider the map: z : Tn
�̃ϕ

→ Cn,
such that z(ϕ) = ϕ′ − ∂k

∂I′ (I ′) − ε ∂w
∂I′ (I ′, ϕ). We prove that z has a fixed point

ϕ ∈ Tn
�̃ϕ−∆ϕ

. We consider the sequence ϕj = zj(ϕ′ − ∂k
∂I′ (I ′)). Using (52) and (50)

one proves: ‖ϕj − ϕ0‖ ≤ ∆ϕ/2 for any j ∈ N, so that all ϕj are in the domain of
z, and moreover ϕj is a Cauchy sequence, so that its limit ϕ exists, it is ϕ ∈ Tn

�̃ϕ
,

and it is a fixed point of z. eqs. (55), (57) immediately follow from eq. (50).

Lemma 8 Consider the generating functions:

W (I ′, ϕ) = I ′ · ϕ + h(I ′) + εw(I ′, ϕ)
χ̃(I ′, ϕ) = I ′ · ϕ + εχ(I ′, ϕ) (64)

where w : B′
�̃I

× Tn
�̃ϕ

→ C, χ : B′
�̃I

× Tn
�̃ϕ

→ C and h : B′
�̃I

→ C are analytic and
satisfy the estimates:

εn max
i,j

∣∣∣∣∣
∂2w

∂ϕi∂I ′j

∣∣∣∣∣
�̃

≤ 1
2

, εn max
i,j

∣∣∣∣∣
∂2χ

∂ϕi∂I ′j

∣∣∣∣∣
�̃−δ

≤ 1
2

(65)

with some δ < 	̃. Let now ∆ and ζ be defined by:

∆I =
εn

4
max

i

∣∣∣∣
∂w

∂ϕi

∣∣∣∣
�̃

, ∆ϕ =
εn

4
max

i

∣∣∣∣
∂w

∂Ii

∣∣∣∣
�̃

ζI =
εn

4
max

i

∣∣∣∣
∂χ

∂ϕi

∣∣∣∣
�̃−δ

, ζϕ =
εn

4
max

i

∣∣∣∣
∂χ

∂Ii

∣∣∣∣
�̃−δ

(66)

satisfying:

ζ < 	̃ − δ ,
∆ϕ

2
+ ζϕ + M	̃I ≤ δϕ , ∆I + ζI ≤ δI (67)

where M is a Lipschitz constant for ∂h
∂I′ on B′

�̃I
. Then, denoting by C the canonical

transformation generated by W , with Φ the canonical transformation generated by
χ̃ and with C′ = Φ−1 ◦ C ◦ Φ, the maps C and C−1 are analytic and symplectic
diffeomorphisms from B�̃−∆ on their image; Φ and Φ−1 are analytic and symplec-
tic diffeomorphisms from B�̃−δ−ζ on their image; C′ and C′−1 are analytic and
symplectic diffeomorphisms from B�̃−2δ−∆−2ζ on their image and it is:

C′(B�̃−2δ−∆−2ζ) ⊆ B�̃−δ−∆−2ζ , C′−1(B�̃−2δ−∆−2ζ) ⊆ B�̃−δ−∆−2ζ . (68)
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Let now η satisfying:

2δ + ∆ + 2ζ + 2η < 	̃ , ∆I + ζI ≤ ηI

2n
. (69)

The map C′ can be generated by the function:

W ′(I ′, ϕ) = I ′ · ϕ + h(I ′) + ε(w(I ′0, ϕ0) + χ(I ′0, ϕ0) − χ(I ′0, ϕ0 + ω(I ′0)))
+ εw′(I ′, ϕ) (70)

where w′ is analytic in B�̃−2δ−∆−2ζ−2η and satisfies the following estimate:

|w′|�̃−2δ−∆−2ζ−2η ≤ ε−1
(9

4
Mnζ2

I + 4∆Iζϕ + 4∆ϕζI + 8ζIζϕ

)
. (71)

Proof of Lemma 8. It is convenient to refer to the following diagram:

(I, ϕ) C−−−−→ (I ′, ϕ′)

Φ




Φ

(I0, ϕ0)
C′−−−−→ (I ′0, ϕ′

0) .

(72)

First, we prove that C′ can be generated by a function W ′(I ′0, ϕ0). We denote:

I ′0 = I0 + u(I0, ϕ0) . (73)

Because:
∆ϕ

2
+ ζϕ + M	̃I < δϕ ,

∆I

2
+ ζI ≤ δI , (74)

for any (I0, ϕ0) ∈ B�̃−δ−∆−2ζ it is (I, ϕ), (I ′, ϕ′), (I ′0, ϕ
′
0) ∈ B′

�̃I−δI−∆I
2 −ζI

×
T

n

�̃ϕ−δϕ−∆ϕ
2 −ζϕ+M�̃I

, and in particular the functions uj are analytic in B�̃−δ−∆−2ζ .

For Lemma 7, they satisfy the estimates:

|uj |�̃−2δ−∆−2ζ ≤ ∆I

2
+ ζI , (75)

and therefore from Cauchy estimates it follows:
∣∣∣∣
∂uj

∂I0k

∣∣∣∣
�̃−2δ−∆−2ζ−η

≤ ∆I

2ηI
+

ζI

ηI
, (76)

and because ∆I + ζI ≤ ηI

2n the inversion theorem for holomorphic functions allows
to define functions ũj such that:

I0 = I ′0 + ũ(I ′0, ϕ0) , (77)
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which are analytic in:

A =
⋃

ϕ0∈T
n
�̃ϕ−2δϕ−∆ϕ−2ζϕ−ηϕ

{
⋃

I0∈B′
�̃I−2δI−∆I−2ζI−ηI

(I0 + u(I0, ϕ0), ϕ0)} . (78)

Moreover, it is B�̃−2δ−∆−2ζ−2η ⊆ A: for any (I ′0, ϕ0) ∈ B′
�̃I−2δI−∆I−2ζI−2ηI

×
T

n
�̃ϕ−2δϕ−∆ϕ−2ζϕ−ηϕ

we prove that there exists I0 ∈ B′
�̃I−2δI−∆I−2ζI−ηI

such
that: I ′0 = I0 + εu(I0, ϕ0). Let us consider the map: y : B′

�̃I−2δI−∆I−2ζI−ηI
→

Cn, such that y(I) = I ′0 − εu(I, ϕ0). We prove that y has a fixed point I ∈
B′

�̃I−2δI−∆I−2ζI−ηI
, and consequently I0 = I ∈ B′

�̃I−2δI−∆I−2ζI−ηI
. We consider

the sequence Ij = yj(I ′0). Using the inequality:

∆I + ζI ≤ ηI

2n
, (79)

one easily proves that Ij is a Cauchy sequence and ‖Ij − I ′0‖ ≤ ηI for any j ∈ N.
Therefore, its limit I exists, it is in B′

�̃I−2δI−∆I−2ζI−ηI
and it is a fixed point of y.

Because I0 is an analytic function of I ′0, ϕ0, we can find a function W ′(I ′0, ϕ0)
satisfying:

dW ′(I ′0, ϕ0) = I0 ·dϕ0 +ϕ′
0 ·dI ′0 = d(I ′0 ·ϕ0)+ (I0− I ′0) ·dϕ0 +(ϕ′

0 −ϕ0) ·dI ′0 (80)

which defines implicitly the map C′ on a suitable domain. We work out a more
explicit expression for W ′.

For any (I ′0, ϕ0) ∈ B�̃−2δ−∆−2ζ−2η, it is I0 = I ′0 + ũ(I ′0, ϕ0) ∈ B�̃−2δ−∆−2ζ−η,
and then (I, ϕ), (I ′, ϕ′), ϕ′

0 are analytic functions of I ′0, ϕ0. Applying Lemma 6 to
the generating maps W and χ̃ we obtain the new generating function:

W ′ = I ′0 · ϕ0 + h(I ′) + ε(w(I ′, ϕ) + χ(I, ϕ0) − χ(I ′, ϕ′
0))

+(I ′0 · ϕ′
0 − I · ϕ + I ′ · ϕ + I · ϕ0 − I ′ · ϕ′

0 − I ′0 · ϕ0) , (81)

where I, ϕ, I ′, ϕ′, I0, ϕ′
0 are functions of the independent variables (I ′0, ϕ0) ∈

B�̃−2δ−∆−2ζ−2η. We need to give more explicit expression to (81). We observe
that it is:

I ′0 · ϕ′
0 − I · ϕ + I ′ · ϕ + I · ϕ0 − I ′ · ϕ′

0 − I ′0 · ϕ0 = I ′0 · (ϕ′
0 − ϕ0)

+I · (ϕ0 − ϕ) + I ′ · (ϕ − ϕ′
0) = (I ′0 − I ′) · (ϕ′

0 − ϕ) + (I ′0 − I) · (ϕ − ϕ0)
= ε ∂χ

∂ϕ (I ′, ϕ′
0) ·
(
− ε ∂χ

∂I′ (I ′, ϕ′
0) + ω(I ′) + ε ∂w

∂I′ (I ′, ϕ)
)

+
(
ε ∂χ

∂ϕ(I ′, ϕ′
0) − ε∂w

∂ϕ (I ′, ϕ)
)
· ε ∂χ

∂I′ (I, ϕ0) (82)

and therefore it is:

W ′ = I ′0 · ϕ0 + h(I ′) + ε(w(I ′, ϕ) + χ(I, ϕ0) − χ(I ′, ϕ′
0))

+εω(I ′) · ∂χ

∂ϕ
(I ′, ϕ′

0) + ε2
(∂χ

∂ϕ
(I ′, ϕ′

0) ·
(
− ∂χ

∂I ′
(I ′, ϕ′

0) +
∂w

∂I ′
(I ′, ϕ)

)

−
(
− ∂χ

∂ϕ
(I ′, ϕ′

0) +
∂w

∂ϕ
(I ′, ϕ)

)
· ∂χ

∂I ′
(I, ϕ0)

)
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= I ′0 · ϕ0 + h(I ′0) + ε[w(I ′0, ϕ0) + χ(I ′0, ϕ0) − χ(I ′0, ϕ0 + ω(I ′0))]
+ εw′(I ′0, ϕ0) , (83)

where:

w′ = ε−1

[
h(I ′) − h(I ′0) + εω(I ′) · ∂χ

∂ϕ
(I ′, ϕ′

0)
]

+ [w(I ′, ϕ) − w(I ′0, ϕ0)]

+[χ(I, ϕ0) − χ(I ′0, ϕ0)] + [χ(I ′0, ϕ0 + ω(I ′0)) − χ(I ′, ϕ′
0)]

+ε
(∂χ

∂ϕ
(I ′, ϕ′

0) ·
(
− ∂χ

∂I ′
(I ′, ϕ′

0) +
∂w

∂I ′
(I ′, ϕ)

)

−
(
− ∂χ

∂ϕ
(I ′, ϕ′

0) +
∂w

∂ϕ
(I ′, ϕ)

)
· ∂χ

∂I ′
(I, ϕ0)

)
(84)

We now provide the estimates for the different contributions to w′ on the set
I ′0, ϕ0 ∈ B�̃−2δ−∆−2ζ−2η. First of all, we recall that the functions ũj defined in
(77) are analytic in B�̃−2δ−∆−2ζ . Therefore, for any I ′0, ϕ0 ∈ B�̃−2δ−∆−2ζ−2η it
is (I0, ϕ0) ∈ B�̃−2δ−∆−2ζ−η, and then, by analyticity of C′ in B�̃−2δ−∆−2ζ−η, all
I, ϕ, I ′, ϕ′, I0, ϕ

′
0 are analytic functions of I ′0, ϕ0 ∈ B�̃−2δ−∆−2ζ−2η. Moreover, it

is:

I0, I
′, I ∈ B�̃I−δI−∆I−2ζI−ηI

ϕ0, ϕ
′, ϕ ∈ T

n
�̃ϕ−δϕ−∆ϕ−2ζϕ−ηϕ

. (85)

The estimate of the Taylor remainder of h around I ′ provides:
∣∣∣∣h(I ′) − h(I ′0) + εω(I ′) · ∂χ

∂ϕ
(I ′, ϕ′

0)
∣∣∣∣ = |h(I ′0) − h(I ′) − ω(I ′) · (I ′ − I ′0)|

≤ M ‖I ′ − I ′0‖2 ≤ 1
4
Mnζ2

I , (86)

while the other terms are estimated by:

|w(I ′, ϕ) − w(I ′0, ϕ0)| ≤ 2ε−1(∆Iζϕ + ∆ϕζI)
|χ(I, ϕ0) − χ(I ′0, ϕ0)| ≤ 2ε−1(∆I + ζI)ζϕ

|χ(I ′0, ϕ
′
0) − χ(I ′, ϕ′

0)| ≤ 2ε−1ζIζϕ∣∣∣∣χ(I ′0, ϕ
′
0) − χ(I ′0, ϕ0 +

∂h

∂I
(I ′0))

∣∣∣∣ ≤ 4ε−1(ζϕ +
∆ϕ

2
+ Mn

ζI

2
)ζI , (87)

and finally it is:

ε
∣∣∣
(

∂χ
∂ϕ(I ′, ϕ′

0) ·
(
− ∂χ

∂I′ (I ′, ϕ′
0) + ∂(u+v)

∂I′ (I ′, ϕ)
)

−
(
− ∂χ

∂ϕ (I ′, ϕ′
0) + ∂(u+v)

∂ϕ (I ′, ϕ)
)
· ∂χ

∂I′ (I, ϕ0)
)∣∣∣

≤ (εn)−1(2ζIζϕ + ζI∆ϕ + ζϕ∆I) . (88)

Therefore, collecting all estimates, w′ satisfies the following estimate:

|w′|�̃−2δ−∆−2ζ−2η ≤ ε−1
(9

4
Mnζ2

I + 4∆Iζϕ + 4∆ϕζI + 8ζIζϕ

)
. (89)
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6 Proof of Lemma 5

In this section, for any δ = (δI , δϕ) we denote Dδ = D′
δI

× Tn
δϕ

.
As usual in perturbation theory, we construct the transformation Φ as the

composition of many near to the identity symplectic maps, each of which reduces
the norm of the remainder by a suitable factor. More precisely, we construct the
canonical transformations Φ1, . . . ΦN , with N defined as in (31):

N =
1

16n
rϕ

K

ln K
, (90)

(we remark that because K > 2 it is N ≤ 1
8nrϕK) and the extension vectors:

r0, r1, . . . , rN with r0 = r and

ri =
3
4
r − (i − 1)σ , i = 1, . . . , N (91)

where:
σ =

3r

16N
, (92)

such that: Φi(Dri) ⊆ Dri−1 is a symplectic diffeomorphism on its image, and it is
also Φ−1

i (Dri) ⊆ Dri−1 ; denoting Ci = Ψ−1
i ◦ C ◦ Ψi, where Ψi = Φ1 ◦ . . .Φi, the

map:

Ci : Dri −→ Dr , (93)

is a diffeomorphism on its image and it is generated by a function Wi : Dri → C

of the form:

Wi(I ′, ϕ) = I ′ · ϕ + h(I ′) + εui(I ′, ϕ) + εvi(I ′, ϕ) (94)

where u0 = 0, v0 = f , ui = ui−1 + ΠΛTKvi−1 and vi satisfies the estimate:

∣∣vi
∣∣
ri ≤

1
4i

|f |�
N

(95)

for any i ≥ 1. If Φ1, . . . , ΦN exist, then the map Φ of Lemma 5 is Φ = Φ1◦ . . .◦ΦN .
Indeed, it is: Φ : D r

2
→ Dr; Φ is a symplectic diffeomorphism on its image;

C′ = Φ−1 ◦ C ◦ Φ is generated by W ′ of the form (37) where

u =
N∑

j=0

uj , R = vN , (96)

and therefore it is:

|u − ΠΛTKf | r
2

≤
N∑

j=1

∣∣vj
∣∣
rj ≤

N∑
j=1

|f |�
4j

≤ 2 |f |�

|R| r
2

≤ 1
4N

|f |�
N

. (97)
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6.1 Existence of Φ1

We apply Lemma 8 to the generating functions W and I ′ · ϕ + εχ1 where χ1 is
defined by the Fourier expansion:

χ1 = −
∑

k∈Zn\0,|k|≤K

fk(I ′)
1 − eik·ω(I′) e

ik·ϕ . (98)

With the notations of Lemma 8, we set 	̃ = r0 = r, and δ = η = r
32 . χ1 is analytic

in Dr because of (33), and its norm can be estimated following Rüssmann ([9]):

|χ1|r ≤ 2n+2

α
|f |r , (99)

and therefore by Cauchy estimates we get:

εn
∣∣∣ ∂2f
∂ϕi∂I′

j

∣∣∣
r
≤ 4εn

�I�ϕ
|f |�

εn
∣∣∣ ∂2χ1
∂ϕi∂I′

j

∣∣∣
r−δ

≤ εn2n+12

αrIrϕ
|f |�

∆I = εn maxi

∣∣∣ ∂f
∂ϕi

∣∣∣
r
≤ εn

2�ϕ
|f |�

∆ϕ = εn maxi

∣∣∣ ∂f
∂Ii

∣∣∣
r
≤ εn

2�I
|f |�

ζI = εn maxi

∣∣∣∂χ1
∂ϕi

∣∣∣
r−δ

≤ εn2n+5

rϕ
|f |�

ζϕ = εn maxi

∣∣∣∂χ1
∂Ii

∣∣∣
r−δ

≤ εn2n+5

rI
|f |� . (100)

The hypotheses of Lemma 5 allow to apply Lemma 8 which proves that the canon-
ical transformation Φ1 generated by I ′ ·ϕ+εχ1(I ′, ϕ) maps Dr1, with r1 = 3

4r, into
Dr, it is a symplectic diffeomorphism on its image, and it is also Φ−1

i (Dr1) ⊆ Dr0 ;
denoting C1 = Φ−1

1 ◦ C ◦ Φ1, the map:

C1 : Dr1 −→ Dr , (101)

is well defined, is a diffeomorphism on its image and it is generated by a function
W1 : Dr1 → C of the form:

W1(I ′, ϕ) = I ′ · ϕ + h(I ′) + εũ1(I ′, ϕ) + εw1(I ′, ϕ) (102)

where:
ũ1(I ′, ϕ) = f(I ′, ϕ) + χ1(I ′, ϕ) − χ1(I ′, ϕ + ω(I ′)) (103)

and: ∣∣w1
∣∣
r1 ≤ ε−1

(9
4
Mnζ2

I + 4∆Iζϕ + 4∆ϕζI + 8ζIζϕ

)
. (104)

Using the hypotheses of Lemma 5 one proves:
∣∣w1
∣∣
r1 ≤ (1/8+1/32)

|f |�
N . From the

definition of χ1 we obtain:

ũ1(I ′, ϕ) = ΠΛTKf(I ′, ϕ) + (1 − TK)f(I ′, ϕ) , (105)
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and therefore, if we define: u1 = ΠΛTKf(I ′, ϕ) and v1 = w1 +(1−TK)f(I ′, ϕ), by
estimating the term (1 − TK)f(I ′, ϕ) as in [3], also using (34), we obtain:

|(1 − TK)f |r1 ≤ |(1 − TK)f | �
2
≤ nn−122n+2

	n
ϕ

e−K
�ϕ
4 |f |� ≤ |f |�

32N
, (106)

so that:
∣∣v1
∣∣
r1 ≤ |f |�

4N
. (107)

6.2 Iteration

We now suppose that Φ1, . . . , Φi exist and apply Lemma 8 to the generating func-
tions Wi and I ′ · ϕ + εχi+1 where χi+1 is defined by the Fourier expansion:

χi+1 = −
∑

k∈Zn\0,|k|≤K

vi
k(I ′)

1 − eik·ω(I′) e
ik·ϕ . (108)

Setting ξ = r/(32N), we apply Lemma 8 with 	̃ = ri − ξ and δ = η = ξ. The
function χi+1 is analytic in Dri because of (33), and its norm can be estimated
following Rüssmann ([9]):

|χi+1|ri
≤ 2n+2

α
|vi|ri , (109)

and therefore by Cauchy estimates we get:

εn
∣∣∣ ∂2vi

∂ϕi∂I′
j

∣∣∣
ri−ξ

≤ εn
ξIξϕ

∣∣vi
∣∣
ri

εn
∣∣∣∂2χi+1
∂ϕi∂I′

j

∣∣∣
ri−2ξ

≤ εn2n

αξIξϕ

∣∣vi
∣∣
ri

∆I = εn
4 maxi

∣∣∣ ∂vi

∂ϕi

∣∣∣
ri−ξ

≤ 8εnN
rϕ

∣∣vi
∣∣
ri

∆ϕ = εn
4 maxi

∣∣∣∂vi

∂Ii

∣∣∣
ri−ξ

≤ 8εnN
rI

∣∣vi
∣∣
ri

ζI = εn maxi

∣∣∣∂χi+1
∂ϕi

∣∣∣
ri−2ξ

≤ 2n+5εnN
αrϕ

∣∣vi
∣∣
ri

ζϕ = εn maxi

∣∣∣∂χi+1
∂Ii

∣∣∣
ri−2ξ

≤ 2n+5εnN
αrI

∣∣vi
∣∣
ri . (110)

The hypotheses of Lemma 5 allow to apply Lemma 8 which proves that the canoni-
cal transformation Φi+1 generated by I ′ ·ϕ+εχi+1(I ′, ϕ) maps Dri−6ξ ⊆ Dri+1 into
Dri , it is a symplectic diffeomorphism on its image, and it is also Φ−1

i+1(Dri+1) ⊆
Dri ; denoting Ci+1 = Φ−1

i+1 ◦ Ci ◦ Φi+1, the map:

Ci+1 : Dri+1 −→ Dr , (111)
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is well defined, is a diffeomorphism on its image and it is generated by a function
Wi+1 : Dri+1 → C of the form:

Wi+1(I ′, ϕ) = I ′ · ϕ + h(I ′) + εũi+1(I ′, ϕ) + εwi+1(I ′, ϕ) (112)

where:
ũi+1(I ′, ϕ) = vi(I ′, ϕ) + χi+1(I ′, ϕ) − χi+1(I ′, ϕ + ω(I ′)) (113)

and: ∣∣wi+1
∣∣
ri+1 ≤ ε−1

(9
4
Mnζ2

I + 4∆Iζϕ + 4∆ϕζI + 8ζIζϕ

)
. (114)

Using the hypotheses of Lemma 5 one proves:
∣∣wi+1

∣∣
ri+1 ≤ |vi|

ri

8 . From the defi-
nition of χi+1 we obtain:

ũi+1(I ′, ϕ) = ΠΛTKvi(I ′, ϕ) + (1 − TK)vi(I ′, ϕ) . (115)

Therefore, if we define: ui+1 = ui + ΠΛTKvi(I ′, ϕ) and vi+1 = wi+1 + (1 −
TK)vi(I ′, ϕ), estimating the term (1 − TK)vi as in [3] and using (34), we obtain:

∣∣(1 − TK)vi
∣∣
ri+1 ≤ nn−12n+2

6nξn
ϕ

e−3Kξϕ
∣∣vi
∣∣
ri ≤

1
8

∣∣vi
∣∣
ri , (116)

so that: ∣∣vi+1
∣∣
ri+1 ≤ |f |�

4i+1N
. (117)

7 Proof of the theorem

Through this section, we complete the proof of Theorem 1 and we compute
the constants a, b, ε0, d0, t0 appearing in the statement as a function of n, 	I , 	ϕ,
M, M0, |f |� , diamB (we recall that 	I , 	ϕ denote analyticity radii such that h and
f are analytic in B�I × Tn

�ϕ
; M denotes a Lipschitz constant of ω(I) = ∂h/∂I in

the set B�I and M0 denotes a convexity constant for h in B (see equation 17)).
For any positive K and α1 we fix the parameters αj , δj , rj = (rj

I , r
j
ϕ) as

follows:

αj = j!
(
24 M

M0

)j−1

K
1
2 j(j−1)α1

δj =
1

4M
jKj−1αj

rj
I =

αj

2MK
rj
ϕ =

	ϕ

2
(118)

for any j = 1, . . . , n, and moreover:

r0
I =

α1

8MK
, rj

ϕ =
	ϕ

2
. (119)
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We consider only those K, α1 such that it is also:

αn < π , (120)

and let N be defined as in (31). With such choices, the hypotheses of Lemma 2,
Lemma 3 and Lemma 4 are satisfied, so that we deduce that for any K-lattice Λ
with dimΛ = j ∈ {1, . . . , n}, and for any I ∈ DΛ and I ′ ∈ CΛ,δj (I), it is:

‖I − I ′‖ ≤ 3
M0

jKj−1αj . (121)

In view of the construction of the normal forms described in Lemma 5 in any of the
resonant extended blocks, except for the completely resonant one, we remark that
using (120) and (121) in the case j ∈ {1, . . . , n−1} one proves that if I ∈ (Dext

Λ,δj
)rj

I
,

then it is:
∣∣1 − eik·ω(I)

∣∣ ≥ αj+1/8 for any k ∈ Zn\Λ and |k| ≤ K; if I ∈ (D0)r0
I
,

then it is:
∣∣1 − eik·ω(I)

∣∣ ≥ α1/8 for any k ∈ Zn\0 and |k| ≤ K.
Then, for any Λ with j =dimΛ ≤ n− 1 we apply Lemma 5 with D′ = Dext

Λ,δj
,

r = rj and α = αj+1/4; while we apply Lemma 5 in the non-resonant block D0

with r = r0 and α = α1/4.
It is possible to apply Lemma 5 to all these sets if the parameters satisfy the

following inequalities:

K ≥ max
{
2, K∗, 6

�ϕ
ln
(

22n+7nn−1

�n
ϕ

)}

αn ≤ min
{

4, 24+nnM2

M0
	I , 2n+1n3 M

M0

}

εn |f |� ≤ C
α3

n

K
3n2+4−3n

2

(122)

where K∗, C are defined by:

1
32n	ϕ

K∗
lnK∗

= 1

C = 1

22n+10Mn!3

(
24 M

M0

)3(n−1) min
{
1,

2�ϕ

nM�I
, 16n

�ϕαn

(
24 M

M0

)n−1

K
n2−n−2

2

}
.(123)

To compute constants, we assume n ≥ 2, so that C ≥ C0 with:

C0 =
1

22n+10Mn!3
(
24 M

M0

)3(n−1)
min

{
1,

2	ϕ

nM	I
,
4n

	ϕ

(
24 M

M0

)n−1}
. (124)

7.1 Stability of D0

We now consider a motion (It, ϕt) = Ct(I0, ϕ0), t ∈ Z, with I0 ∈ D0. Because of
Lemma 5, there exists a symplectic map

Φ : D0,r0
I/2 × Tr0

ϕ/2 −→ D0,r0
I
× Tr0

ϕ

(I, ϕ) �−→ (I ′, ϕ′) (125)
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which conjugates C to the map C′ generated by the analytic function:

W ′(I ′, ϕ) = I ′ · ϕ + h(I ′) + εu(I ′) + εR(I ′, ϕ) (126)

with |R|r0/2 ≤ 1
4N

|f |�
N . Therefore, denoting (It, ϕt) = Φ(I ′t, ϕ

′
t), it is: |It − I0| ≤

|I ′t − It| + |I ′t − I ′0| + |I ′0 − I0| with:

|I ′0 − I0| ≤ r0
I

211

|I ′t − It| ≤ r0
I

211

|I ′t − I ′0| ≤ ε |t| 2
rϕ,0

|R| r0
2
≤ ε |t| 4

	ϕ

1
4N

|f |�
N

, (127)

for those t such that I ′t ∈ D′
r0

I
2

, and therefore it is |It − I0| ≤ r0
I

4 for any t satisfying:

ε |t| 4
	ϕ

1
4N

|f |�
N

≤ r0
I

8
. (128)

7.2 Stability of DΛ

We now consider a K-lattice Λ with j =dimΛ ∈ {1, . . . , n − 1}, and a motion
(It, ϕt) = Ct(I0, ϕ0) with I0 ∈ DΛ. We set D′ = Dext

Λ,δj
. Because of Lemma 5 there

exists a symplectic map

Φ : D′
rj

I/2
× Trj

ϕ/2 −→ D′
rj

I

× Tr
ϕj

(I, ϕ) �−→ (I ′, ϕ′) (129)

which conjugates C to the map C′ generated by the analytic function:

W ′(I ′, ϕ) = I ′ · ϕ + h(I ′) + εu(I ′, ϕ) + εR(I ′, ϕ) (130)

with |u|rj/2 ≤ 2 |f |�, ΠΛu = u and |R|rj/2 ≤ 1
4N

|f |�
N .

To be definite we consider positive t (a very similar argument apply to neg-
ative t), and we prove that It satisfies one of the two following statements:

• It ∈ CΛ,δj (I0) for any t satisfying

εn |t| 4
	ϕ

1
4N

|f |�
N

≤ rj
I

16
; (131)

• there exists t0 satisfying (131) such that It ∈ CΛ,δj (I0) for any t with |t| ≤ t0,
and It0+1 ∈ DΛ′ , with Λ′ a suitable K-lattice of dimension strictly smaller
than j.
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Let t0 satisfying (131) and also It ∈ CΛ,δj (I0) for any positive t ≤ t0. Actually,
it is also: It0 ∈ CΛ,δj/4(I0). In fact, it is It0 − I0 = (I ′t0 − It0)+(I ′0− I0)+(I ′t0 − I ′0),
where

∣∣It0 − I ′t0
∣∣ ≤ rj

I/211 ≤ δj/16, |I0 − I ′0| ≤ rj
I/16 ≤ δj/16, and:

I ′t0 − I ′0 = ε
∂u

∂ϕ
+ ε

∂R

∂ϕ
= λ + x (132)

where λ = ε ∂u
∂ϕ ∈< Λ >, and satisfies:

‖λ‖ = ε

∥∥∥∥
∂u

∂ϕ

∥∥∥∥ ≤ 4εn

	ϕ
|f |� ≤ rj

I

16
(133)

while x can be in any direction but satisfies:

‖x‖ = ε

∥∥∥∥
∂R

∂ϕ

∥∥∥∥ ≤ 4εn

	ϕ
|t0|

|f |�
N4N

≤ rj
I

16
≤ δj

16
. (134)

But It0+1 is in a ball of radius rj
I/4 + δj/16 from I ′t0 , and therefore it is in

CΛ,δj (I0), otherwise, because of Lemma 2, it is not in a resonant zone related to a
j-dimensional K-lattice. Therefore, it is in a resonant block DΛ′ with dimΛ′ ≤ j−1.

7.3 Stability of all motions

From the two previous subsections, it is clear that for a generic initial condition,
which is in any of the resonant or non resonant blocks, the actions cannot move
more than n times the dimension of the completely resonant cylinder, plus the
stability radius of the non resonant domain, estimated by the quantity:

d ≤ 3
M0

n2Kn−1αn +
rI,0

4
≤ 4

M0
n2Kn−1αn , (135)

in a number of iterations t satisfying:

|t| ≤ N

εn
4N r0

I	ϕ

27 |f |�
, (136)

provided that in the meanwhile they do not leave the action domain B. But such
an escape cannot occur if the initial datum is chosen at a distance from the border
of B strictly larger than d.

7.4 Choice of the parameters

The stability arguments shown above work if the parameters K, αn are suitably
chosen. First of all, we set:

αn =
π

2
ε

1
2−γ (137)
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with 0 ≤ γ ≤ 1/2, so that αi < π for any i = 1, . . . , n, when ε < 2, and in
particular it is:

α1 =
π

2n!
(
24 M

M0

)n−1

K
n(n−1)

2

ε
1
2−γ . (138)

Then, the third estimate of (122), assuming n ≥ 2, is satisfied if:

K ≤
(

C0π
3

8n |f |�

) 2
3n2−3n+4 1

ε
6γ−1

3n2−3n+4

. (139)

Therefore, we can set:

K =
(ε∗

ε

)b

(140)

where:

b =
6γ − 1

3n2 − 3n + 4
, ε∗ =

(
C0π

3

8n |f |�

) 2
6γ−1

. (141)

The first two equations of (122) and the condition ε < 2 are therefore satisfied by
imposing ε ≤ ε̃0, with

ε̃0 = min
{

2 , ε∗

(
max

{
2, K∗,

6
	ϕ

ln
(22n+7nn−1

	n
ϕ

)}) 1
b

,

(
2
π

min
{

4, 24+nn
M2

M0
	I , 2n+1n3 M

M0

}) 2
1−2γ }

. (142)

Then, up to a number of iterations smaller than:

T∗ =
	2

ϕ

216εn2M |f |�
e

�ϕ

26n
( ε∗

ε )b

≥ 	2
ϕ

218n2M |f |�
e

�ϕ

26n
( ε∗

ε )b

(143)

the actions cannot move by a quantity larger than:

∆ =
2n2ε

b(n−1)
∗ π

M0
εa (144)

where a = 1
2 − γ − b(n− 1). The theorem is proved if we can find a γ ∈ (1/6, 1/2)

such that a, b > 0. It is sufficient to choose:

b =
2 − 6a

3n2 + 3n − 2
(145)

for any a ∈
(
0, 1

3

)
. In fact, for any choice of a in this interval it is a, b > 0 and

also:

γ =
n2(3 − 6a) + n(6a − 1) + 2 − 8a

6n2 + 6n− 4
∈
(

1
6
,
1
2

)
(146)

for any n ≥ 2.
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Therefore, for any a ∈
(
0, 1

3

)
, let b be defined as in (145), ε∗ be defined as

in (141) (in formula 141 the constants γ, C0 are as in 146,124), ε̃0 be defined as
in (142) (in formula 142 the constants γ, K∗ are are as in 146,123 first line), and
finally let d0, t0 be defined by:

d0 =
2n2ε

b(n−1)
∗ π

M0
, t0 =

	2
ϕ

218n2M |f |�
. (147)

All the constants a, b, ε∗, ε̃0, d0, t0 turn out to be defined as functions of n, 	I , 	ϕ,
M, M0, |f |�. Then, for any initial datum (I0, ϕ0) ∈ B × Tn with dist(I0, ∂B) ≥
2d0ε

a and for any ε ≤ ε̃0 it is:

|It − I0| ≤ d0ε
a (148)

up to a number of iterations t ∈ Z such that:

|t| ≤ t0e
�ϕ

26n
( ε∗

ε )b

. (149)

Therefore, if the diameter of the action domain B is large that 2d0, the theorem
is proved on a non-empty set of initial conditions setting:

ε0 = min
{

ε̃0,
( 	ϕ

26n

) 1
b

ε∗
}

,

otherwise the theorem is proved by adding the additional constraint on ε: 2d0ε ≤
diamB, so that, in any case, the theorem is proved on a non-empty set of initial
conditions setting:

ε0 = min
{diamB

2d0
, ε̃0,

( 	ϕ

26n

) 1
b

ε∗
}

.
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Université Paris VII (1982).



Vol. 5, 2004 Nekhoroshev Theorem for Nearly Integrable Symplectic Maps 1039

[5] S.B. Kuksin, On the inclusion of an almost integrable analytic symplectomor-
phism into a Hamiltonian flow, Russian journal of Mathematical Physics 1,
2, 191–207 (1993).
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