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c© Birkhäuser Verlag, Basel, 2003
1424-0637/03/02S679-3
DOI 10.1007/s00023-003-0953-7 Annales Henri Poincaré

Soap Froths and Crystal Structures

Randall D. Kamien

Abstract. We discuss the physics and mathematics of sphere packing and minimal
surfaces and use these to explain the crystal symmetries found in macromolecular
and supramolecular micellar materials and charged colloids. In the case of molecular
assemblies, we argue that the packing entropy of the hard micellar cores is frus-
trated by the entropic interaction of their brush-like coronas. The observed crystal
structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show
that these structures are stable for reasonable areal entropy densities.

Over 400 years ago, Kepler conjectured that the densest way to pack equal-sized
hard spheres was in a face-centered-cubic (FCC) or equivalent hexagonal-close-
packed (HCP) lattice. Though this conjecture was thought to be correct, it was
not until recently that a rigorous proof was presented [1]. Because a denser packing
implies a greater free volume for hard spheres, they will pack in one of these dense
lattices to maximize entropy or minimize free energy. However, a new class of
highly monodisperse dendritic polymers [2] have been characterized. Though the
monodendrons form spherical micelles, these spheres assemble into an A15 lattice
with Pm3n symmetry. This lattice has the same density as the simple cubic lattice
and is very far from dense packing.

We have proposed an explanation of the equilibrium structure by appealing
to the mathematics of minimal surfaces [3, 4]. We view the dendritic micelle as
a hard sphere of diameter σ with a soft, repulsive corona. We would then expect
our conclusions to hold for a large class of materials with similar morphology, e.g.
diblock copolymer micelles [5], nanoparticles decorated with hydrocarbon chains
[6], and charged colloids [7, 8]. If we consider a sample of dendritic micelles at a
fixed number density ρ then in a fixed volume V , there are N = ρV spheres and
so

Vcorona = V − π

6
σ3ρV = V

[
1 − πσ3

6
ρ

]
(1)

is the volume left over the soft coronas. This coronal volume shrouds the hard
spheres forming a thick surface of area A and thickness τ . Since

Aτ = Vcorona (2)

is fixed, it follows that to minimize the repulsive potential or maximize τ , A should
be minimized. The area per micelle depends on the shape of the Voronoi cell and
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scales as the volume V
2/3
M = ρ−2/3:

AM ≡ A

N
=

1
τ

[
ρ−1 − πσ3

6

]
(3)

= γV
2/3
M = γρ−2/3 (4)

This last equality allows us to write the separation τ in terms of the density and
the geometric quantity γ. We see that to maximize τ at fixed density we should
minimize γ.

The problem of minimizing the total area of equal volume cells that fill space
was first proposed by Kelvin [9]. He conjectured that the body-centered-cubic
(BCC) lattice of orthic tetrakaidecahedra (or the more modern orthic decatetra-
hedra [10]) minimized the area of the cells. However, in 1994, Weaire and Phelan
[11] discovered that the A15 lattice, composed of equal volume Goldberg decate-
trahedra and dodecahedra, had a still smaller surface area. As of this writing, it
is not known whether there is a structure with a yet smaller area. However, based
on this discovery, we see that the repulsive energy of the coronas is smaller for the
A15 lattice than the FCC or BCC lattice. Quantitatively we have γFCC = 5.345,
γBCC = 5.306, and γA15 = 5.288, while the volume fractions of close-packed FCC,
BCC and A15 lattices are ρFCC = 0.74, ρBCC = 0.68 and ρA15 = 0.52. Therefore
there is an intrinsic frustration between maximizing the free volume and minimiz-
ing the surface area or, in other words, between the entropy of the hard cores and
the interactions of the coronas.

We have found that for physical values of the interaction parameters, the
A15 lattice can be more stable than either the BCC or FCC lattice [3, 4] and
that the BCC lattice is more stable than FCC for charged colloids at low salt
concentrations [8]. This trend has been born out by experiment [5, 6, 7] and by
simulation [4, 10].

Future work will focus on the relative stability of non-cubic lattices [12].
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