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Tachyons in String Theory

Ashoke Sen

Abstract. We describe some of the recent developments in our understanding of the
tachyon in string theory.

In this talk I shall try to address the following topics:

1. What are tachyons?

2. Dealing with tachyons in quantum field theory

3. Tachyons in string theory

4. Making sense of string theory tachyons

5. Possible application to cosmology

6. Outline of the derivation of various results

7. Summary and open questions

Let us begin with the question: What are tachyons? Historically tachyons
were described as particles which travel faster than light. In modern days we think
of tachyons as particles with negative mass2, i.e. imaginary mass. Both descriptions
sound equally bizarre. On the other hand tachyons have been known to exist in
string theory almost since its birth, and hence we need to make sense of them.

Actually tachyons do appear in conventional quantum field theories as well.
Consider, for example, a classical scalar field φ with potential V (φ). In p-space
and 1-time dimension labeled by the time coordinate x0 and space coordinates xi

(1 ≤ i ≤ p) the lagrangian of the scalar field is:

L =
∫
dpx[(∂0φ)2 − ∂iφ∂iφ− V (φ)] . (1)

Normally we choose the origin of φ so that the potential V (φ) has a minimum at
φ = 0. In this case quantization of φ gives a scalar particle of mass2 = V ′′(φ)|φ=0.
This gives a positive mass2 particle. But now suppose the potential has a maximum
at φ = 0. Then V ′′(φ)|φ=0 is negative. Naive quantization will give a particle of
negative mass2. Thus we have a tachyon!

In this case however it is clear what we are doing wrong. When we identify
V ′′(0) as the mass2 of the particle, we are making an approximation. We expand
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V (φ) in a Taylor series expansion in φ, and treat the cubic and higher order
terms as small corrections to the quadratic term. This is true only if the quantum
fluctuations of φ around φ = 0 are small. But for if V (φ) has a maximum at φ = 0,
then φ = 0 is a classically unstable point. Hence we cannot expect the fluctuations
of φ to be small. The remedy to this difficulty is to find the minimum φ0 of the
potential V (φ), and quantize the system around this point. More precisely this
means that we can expand the potential around φ = φ0, and treat the cubic and
higher order terms in the expansion to be small. The mass2 of the particle now
can be identified as V ′′(φ0). This is positive since V (φ) has a minimum at φ = φ0.
Hence the theory does not have tachyons.

Note that if there had been no reason to choose the origin of φ at zero, we
could have defined a new field ψ = φ−φ0 and expressed the potential as a function
of ψ:

Ṽ (ψ) = V (ψ + φ0) . (2)

If from the beginning we worked with the field ψ then we would not have en-
countered the tachyon in the first place since V ′′(ψ = 0) is positive. But there
are often reasons why we choose the origin of field space in a specific way. For
example, φ = 0 could be a point with higher symmetry (e.g. φ → −φ). This
symmetry will be manifest in V (φ) but not so explicit in Ṽ (ψ). This leads to the
phenomenon of spontaneous symmetry breaking. In such cases instead of having a
single minimum, the potential has more than one minimum related by symmetry.
e.g. if V (φ) = V (−φ), then a minimum at φ0 also means a minimum at −φ0.

If the potential has more than one degenerate minimum, we can consider field
configurations where φ approaches different minimum in different regions of space.
An example of such a field configuration is the domain wall, where we consider a
field configuration where 1) φ depends on one spatial coordinate x1, 2) as x1 → ∞,
φ→ φ0, 3) as x1 → −∞, φ→ −φ0, and 4) the total energy is minimized subject to
these constraints. For this configuration the energy density is concentrated around
x1 � 0. This gives rise to a ‘codimension 1 defect’. For more complicated cases
we can have more complicated defects (of higher codimension). Examples of such
defects are vortices which are codimension 2 defects, t’Hooft Polyakov monopoles
which are codimension 3 defects, etc. In general for a codimension k defect the
energy density is localized around a subspace of dimension (p− k).

The lessons learned from the field theory examples may be summarized as
follows:

• Existence of tachyons in the spectrum tells us that we are expanding the
potential around its maximum rather than its minimum.

• Associated with the existence of tachyons we often have spontaneous sym-
metry breaking and existence of defects.

We now turn to the discussion of tachyons in string theory. String theory
contains infinite number of single ‘particle’ states, as if it is a field theory with
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infinite number of fields. But the conventional description of string theory is based
on ‘first quantized’ formalism rather than a field theory. We take a string (closed or
open) and quantize it maintaining Lorentz invariance. This gives infinite number
of states characterized by momentum �p and other discrete quantum numbers n.
It turns out that the energy of the nth state carrying momentum �p is given by
En =

√
�p2 +m2

n, where mn is some constant. Thus this state clearly has the
interpretation of being a particle of mass mn.

Quantization of some closed or open strings gives rise to states with negative
m2

n for some n. This corresponds to a tachyon! For example, the original bosonic
string theory formulated in (25+1) dimensions has a tachyon in the spectrum of
closed strings. This theory is thought to be inconsistent due to this reason.

Superstring theories are free from closed string tachyons. But for certain
boundary conditions, there can be tachyon in the spectrum of open strings even
in superstring theories. Thus the question is: Does the existence of tachyons make
the theory inconsistent? Or does it simply indicate that we are quantizing the
theory around the wrong point? The problem in analyzing this question stems
from the fact that unlike the example in a scalar field theory, the tachyon in string
theory does not obviously come from quantization of a scalar field. Thus in order
to understand the tachyon, we have to reconstruct the scalar field and its potential
from the known results in string theory, and then analyze if the potential has a
minimum.

It turns out that for open string tachyons we now know the answer in many
cases. On the other hand, closed string tachyons are only beginning to be explored.
Hence we shall focus mainly on open string tachyons in this talk.

There are five consistent, apparently different, superstring theories in 9-space
and 1-time dimension. We shall focus on two of them, known as type IIA and type
IIB string theories. Elementary excitations in this theory come from quantum
states of the closed strings. But besides these elementary excitations these theories
also contain ‘composite’ objects known as D-branes or more explicitly Dirichlet
p-branes.

A Dp-brane is a p-dimensional objects. Thus for example D0-brane corre-
sponds to a particle like object, a D1-brane corresponds to a string-like object, a
D2-brane corresponds to a membrane like object and so on. But unlike the kinks
and other defects in field theory which are associated with classical solutions of
the equations of motion of the fields, D-branes are defined by saying what hap-
pens in their presence rather than by saying what they are. Consider, for example,
a static flat Dp-brane in flat space-time, lying along a p-dimensional subspace.
The definition of a Dp-brane is simply that fundamental strings can end on the
p-dimensional hypersurface along which the D-brane lies. This has been illustrated
in Fig.1

Quantum states of a fundamental open string with ends on a D-brane repre-
sent quantum excitation modes of the D-brane. D-branes need to satisfy various
consistency requirements, and as a result D-branes for different p have different
properties. For type IIA string theory, these properties are summarized as follows:
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D−brane

Open string

Figure 1: Fundamental strings (shown by dashed line) ending on a D-brane (shown
by solid line).

1. For even p, Dp-branes are oriented and are known as BPS D-branes due to
some special properties which they possess. For these branes, the mass per
unit p-volume, also known as the tension Tp of the brane, is given by

Tp =
1

(2π)pgs
, (3)

in a unit in which the tension of the fundamental string is 1
2π . We shall use

this unit throughout this talk. gs is a dimensionless constant known as the
string coupling constant. We shall do all our analysis to lowest order in the
perturbation expansion in gs.

It turns out that all open string states on a BPS D-brane have mass2 ≥ 0.
Hence there are no tachyons in the spectrum.

2. For odd p, the Dp-branes are unoriented (non-BPS). The tension T̃p of a
non-BPS D-p-brane is given by,

T̃p =
√

2
(2π)pgs

. (4)

Each such D-brane has one open string mode with mass2 = − 1
2 . In other

words, there is a tachyonic mode on each of these non-BPS D-p-branes.

For type IIB string theory the situation is reversed. There are now oriented
(BPS) Dp-branes for odd p and unoriented (non-BPS) Dp-branes for even p. The
results that we shall discuss will be valid both for type IIA and type IIB string
theory. Whether we are talking about type IIA theory or type IIB theory should
be understood from the context. For example, if we are refering to a non-BPS D-
p-brane, then it should be understood that we are talking about type IIA theory
if p is odd, and type IIB theory if p is even.

For oriented D-branes we define an anti-D-brane (D̄-brane) to be a D-brane
with opposite orientation It turns out that a coincident BPS Dp-brane D̄-p-brane
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Figure 2: The tachyon on a Dp-D̄-p-brane pair comes from open strings whose two
ends lie on two different branes.

pair has two tachyonic modes, each of mass2 = − 1
2 , from the open strings with

one end on the brane and one end on the antibrane (sectors (c) and (d) in Fig.2).
Since string theory is formulated in a way that is different from a field theory,

the method of analysis in string theory is very different from that in a field theory.
Nevertheless it is useful to use the language of field theory to describe various
situations in string theory. In particular, if we use the analogy with field theory
origin of tachyons, then for a non-BPS D-p-brane, the dynamics of the single
tachyonic mode should be described by a real scalar field T with negative mass2

in p-space and one time dimensions. We shall refer to T as tachyon field. For the
D-p-D̄-p system, the dynamics of the pair of tachyonic modes should be described
by a complex scalar field T with negative mass2. The results in string theory can
be stated as if the dynamics of the tachyon T is described by an effective potential
Veff (T ) or more generally an effective action Seff (T ). This is what we shall do.

Let us begin by reviewing the properties of Seff (T ) and Veff (T ) which follow
from simple considerations. First of all it is known that Seff (T ) has simple sym-
metry properties. For example, for a non-BPS D-p-brane Seff (−T ) = Seff (T ).
On the other hand for a D-D̄ system, Seff (eiφT ) = Seff (T ). The other property
of that is obvious is that Veff (T ) has a maximum at T = 0, since the field T is
tachyonic.

The interesting questions to which we would like to know the answer are:

1. Does Veff (T ) have a minimum?

2. If it does have a minimum, then what kind of mass spectrum do we get by
quantizing the theory around the minimum?

3. Do we get topological defects involving the tachyon?

etc. It turns out that the answers to many of these questions are now known. These
results can be summarized as follows:



S36 Ashoke Sen Ann. Henri Poincaré
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Figure 3: The tachyon potential on a non-BPS D-p-brane. The tachyon potential
on a brane-antibrane system can be obtained by revolving this diagram around
the vertical axis, so that we get a mexican hat potential.

1. Veff (T ) does have a minimum at some value |T | = T0. Furthermore, at this
minimum[1, 2]

Veff (T0) + Ep = 0 , (5)

where Ep denotes the total energy density of the original system. Thus Ep

= T̃p for a non-BPS Dp brane, and Ep = 2Tp for Dp – D̄p system. Thus
at |T | = T0 the total energy density vanishes identically. This situation has
been illustrated in Fig.3.

2. |T | = T0 configuration describes the closed string vacuum without any D-
brane[1, 2]. Thus around this minimum there are no physical open string
excitations. This is natural from the point of view of string theory, since the
total energy vanishes at T = T0, and hence we can identify this configuration
as vacuum without any D-brane. Since there is no D-brane, there should be
no open strings in the spectrum. However, this result is very surprising from
the point of view of a normal field theory. Shifting the point around which we
expand the potential can make a negative mass2 state into a positive mass2

state, but we do not eliminate the state altogether. On the other hand here
expanding the action around the minimum of the potential not only gets rid
of the original tachyon state, but also gets rid of the infinite number of other
open string states which were present.

3. There are classical solutions of the equations of motion of T , representing
lower dimensional D-branes [3, 4, 5, 6, 7, 8]. For example, on a non-BPS
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Figure 4: Tachyonic kink solution representing a BPS D-(p− 1)-brane.

Dp-brane, a kink represents a D-(p− 1)-brane. For this solution the energy
density is localized around a codimension 1 subspace (xp = 0) This looks
like an ordinary kink solution in a field theory, but there is an important
difference. In a conventional field theory, a defect lives on the space in which
the field theory lives. Here, at the bottom of the potential, the object (original
D-p-brane) whose dynamics the field theory describes disappears altogether.
Nevertheless defects in the field can survive and describe non-trivial objects
in the (9+1)-dimensional space-time in which full string theory lives.

There are also other more complicated examples of ‘tachyonic defects’. For
example, a vortex solution on a Dp-D̄p pair describes a BPS D-(p−2)-brane
[4]. On the other hand, a ’t Hooft Polyakov monopole on a pair of coincident
non-BPS Dp-branes describes a non-BPS D-(p− 3)-brane [7]. In this way all
D-branes can be regarded as defects in the tachyon field living on D-branes of
maximal dimension. This gives a more conventional description of D-branes
as defects in the tachyon field. But more importantly this description gives
a way to classify Dp-branes based on a branch of mathematics known as
K-theory [5, 7]. Several new stable D-branes in various string theories have
been discovered using this general scheme.

So far we have only described the properties of static solutions of the tachyon
effective field theory. Let us now turn to dynamics, namely time dependent solu-
tions of the equations of motion. In the case of a conventional scalar field, if we
displace the field from its maximum and let it roll down the potential, the scalar
field will oscillate about its minimum. Energy-momentum tensor Tµν for this so-
lution will have the form:

T00 = E , Tij = −p(x0)δij , Ti0 = 0 . (6)
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Here E denotes the energy density, and remains constant due to energy conserva-
tion. p denotes the pressure, and will typically oscillate about an averge value (0
for a conventional scalar field) as the scalar field oscillates about its minimum. We
can now ask: What happens if we displace the tachyon field on a D-D̄ pair (or a
non-BPS D-brane) and let it roll down the hill? It turns out that in this case the
energy density remains constant as usual by energy conservation, but the pressure
goes to zero asymptotically instead of oscillating about 0. Thus the final state is
a gas of non-zero energy density and zero pressure [9, 10].

This seems a very strange result from the point of view of a conventional
scalar field theory in which the action is given by the sum of a kinetic and a
potential term. We can now ask if it is possible to write down an (unconven-
tional) scalar field theory that can describe this apparently strange dynamics of
the tachyon. It turns out that the tachyon dynamics near the minimum of the
potential is describable in terms of a non-standard action for the tachyon field T
[11]:

−
∫
dp+1xV (T )

√
1 + ηµν∂µT∂νT , (7)

where η is the diagonal matrix with eigenvalues (−1, 1, 1, . . .1), and V (T ) is the
tachyon effective potential which in this parametrization has its minima at T =
±∞ and its maximum at T = 0. For large T , V (T ) falls off as e−

√
2T . This action as

a candidate for tachyon effective field theory had been proposed earlier in [12, 13].
The classical dynamics of this system is best described in the Hamiltonian

formalism. The Hamiltonian for this system is given by [14, 11]:

H =
∫
dpx

√
Π2 + (V (T ))2

√
1 + (�∇T )2 , (8)

where Π is the momentum conjugate to T . As the tachyon rolls down the potential
hill, V (T ) → 0. Thus at late time we can ignore the V (T ) term in the Hamilto-
nian. It can be shown that in this limit the equations of motion derived from the
Hamiltonian (8) are identical to the equations of motion of a pressureless non-

interacting fluid (dust) with the identification that |Π|
√

1 + (�∇T )2 is interpreted
as the energy density ρ of the dust, and −∂µT is interpreted as the local (p+ 1)-
velocity uµ of the dust particle. Thus at late time the classical solutions in this
field theory are in one to one correspondence with the configurations of a system
of non-interacting dust. Since dust particles at rest correspond to a pressureless
fluid, this automatically explains the result as to why the solutions describing a
homogeneous rolling tachyon evolve into a system of zero pressure.

We should however add a caution that all the results quoted here are classical
and are expected to be modified due to quantum corrections. Thus, for example,
the pressureless gas obtained from the rolling tachyon may further decay into
other states of the string. But as long as the coupling constant of the theory is
small, we expect the life-time of the system to be large. This could be important
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in cosmology in the early universe, if brane-antibrane annihilation or decay of
non-BPS D-branes played any role in the history of the universe.

Let us now briefly discuss a possible application of brane-antibrane annihila-
tion process to inflationary cosmology. Typically inflation requires a (set of) scalar
field(s) with reasonably flat potential near the top and a minimum where the po-
tential vanishes. The question is: can we achieve this by a brane-antibrane pair or
some variation of this configuration? The brane-antibrane pair has large energy
near the top of the potential, but the potential is not flat near the top. Thus this
system does not seem to be suitable for inflation. One possible way to achieve a
flat potential is to separate the brane and the antibrane in space [15, 16]. To be
more specific, consider (9+1) dimensional string theory with 6 of the dimensions
wrapped into a compact space K. Take a D3-brane along the 3 non-compact direc-
tions, placed at a given point in K, and an D̄3-brane along the same direction but
placed at a different point of K. The D-D̄ system has large energy density, but for
sufficiently large separation there is no tachyon. They however have an attractive
weak gravitational potential, and under its influence the brane and the anti-brane
will slowly roll towards each other. From the point of view of a (3+1) dimensional
observer, the separation between branes is interpreted as a scalar field φ. For large
value of φ the potential is almost flat, but there is a small potential that drives φ
towards smaller value. Thus if the universe started out with a large φ which then
slowly decreased towards zero the universe will inflate during this phase. When φ
becomes smaller than a critical value the tachyon develops and since the tachyon
potential is very steep, the system quickly rolls down towards the minimum of the
potential. In this scenario the tachyon dynamics is important for understanding
end of inflation / reheating process. The details of this reheating process are still
to be explored.

So far I have only mentioned various results, but not told you how to derive
any of these results. Let me now say a few words about the various techniques
which are used to derive these results. In stating the various results we have rep-
resented the tachyon by a scalar field. But we have one major problem, – that it
is inconsistent to deal only with the tachyon and not take into accout its coupling
with other fields which should represent the massive string states. Thus in order to
study the classical dynamics of the tachyon field, we actually have to solve infinite
number of equations involving infinite number of fields.

There are various approaches to this problem, but I shall mention only two of
them. We can use an indirect approach where we use the fact that there is a one to
one correspondence between solutions of equations of motion in string theory and
two dimensional conformal field theories. In this approach we directly try to get a
solution of the equations of motion (describing the defect solutions for example)
by constructing the corresponding conformal field theory in two dimensions. This
avoids the need to find the tachyon potential or its coupling to other fields. This
procedure has been used to derive analytical results both for static and dynamical
properties. In the direct approach (based on string field theory) [17, 18, 19, 20, 21,
22, 23] we take into accout the coupling of the tachyon to all the other fields and try
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to solve the coupled equations for all the fields using some approximation scheme,
known as level truncation. In this scheme, we include only fields below a certain
fixed mass (say M). This gives a finite number of fields, and the corresponding
equations can be solved (numerically). Then we include more fields, with mass
below M ′ (M ′ > M) and repeat the procedure. If the procedure converges as we
go to larger and larger cut-off on the mass, then we are on the right track. So far
this procedure has been used to study only the static properties of the tachyon.
In these applications the results converge rapidly to the conjectured answers.

There are various other approaches all of which has been successful to various
extents in studying the properties of the tachyon. I shall only list them here without
giving any details:

1. Renormalization group flow [24]

2. Non-commutative geometry [25, 26]

3. Boundary string field theory [27, 28, 29]

etc.

I shall now summarize the talk by emphasizing once again the main points. As
we have seen, we now have a good understanding of the physics of tachyons which
arise from open strings living on unstable D-brane systems (non-BPS D-brane or
D-D̄ system). In these systems the minimum of the tachyon potential corresponds
to total disappearance of the original brane. Nevertheless defects in the tachyon
field can give rise to non-trivial D-branes which live not on the original brane but
in the full (9+1)-dimensional space-time. Classical dynamics of the tachyon field
near its minimum is represented by a non-standard field theory whose classical
solutions represent configurations of non-interacting dust.

We conclude by listing one of the main open questions. Clearly we would
like to know if we can make sense of closed string tachyon that appears in the
original bosonic string theory. Existence of the tachyon is the only thing wrong with
this theory, and hence by making sense of this tachyon we may make the theory
consistent. For this we need to 1) establish the existence of the minimum of the
potential, and 2) find an interpretation of the physics around this minimum. This is
still an unsolved problem. However some progress has been made in understanding
other kind of closed string tachyons which appear in superstring theories in non-
trivial background [30]. In each case that has been understood, the minimum of
the tachyon potential always corresponds to some kind of stable background. Thus
the tachyon reflects the instability of the original background to decay into the
new background. Success of this analysis raises hope that perhaps the tachyon
in (25+1) dimensional bosonic string theory may also be understood in a similar
manner.
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