The Heat Kernel Expansion for the Electromagnetic Field in a Cavity

F. Bernasconi, G.M. Graf and D. Hasler

Abstract

We derive the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity by relating it to the expansion for the Laplace operator acting on forms. As an application we verify that the electromagnetic Casimir energy is finite.

1 Introduction

The modes of an electromagnetic field in a cavity, taken together with their unphysical, longitudinal counterparts, can be mapped onto the eigenstates of the Laplacian acting on the de Rham complex of a 3-manifold with boundary. The electric and magnetic fields are thereby associated to forms of degree $p=1$ and $p=2$ respectively. In this correspondence transverse modes are associated with coexact, resp. exact forms, which permits to further map longitudinal modes to forms of degree $p=0$ and $p=3$. We will use this observation, which is explained in detail in Section 2 below, to compute the first six coefficients of the heat kernel expansion for the electromagnetic field in a cavity. The result is used to show in a simple way that the Casimir energy in an arbitrary cavity with smooth boundaries is finite, a conclusion which has been reached previously [3]. In an appendix the derivation of the numerical coefficients of the expansion is presented.

We shall present a Hilbert space formulation of the classical Maxwell equations in a cavity $\Omega \subset \mathbb{R}^{3}$. In a preliminary Hilbert space $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ we define the dense subspaces

$$
\begin{aligned}
\mathcal{R} & =\left\{\mathbf{V} \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \operatorname{rot} \mathbf{V} \in L^{2}\left(\Omega, \mathbb{R}^{3}\right)\right\}, \\
\mathcal{R}_{0} & =\{\mathbf{V} \in \mathcal{R} \mid\langle\mathbf{U}, \operatorname{rot} \mathbf{V}\rangle=\langle\operatorname{rot} \mathbf{U}, \mathbf{V}\rangle, \forall \mathbf{U} \in \mathcal{R}\}
\end{aligned}
$$

and the (closed) operator

$$
R=\text { rot } \quad \text { with domain } \mathcal{D}(R)=\mathcal{R}_{0} .
$$

Its adjoint is then given as $R^{*}=\operatorname{rot}$ with $\mathcal{D}\left(R^{*}\right)=\mathcal{R}$. We remark that R, resp. R^{*}, is also the closure of rot defined on smooth vector fields \mathbf{V} with boundary condition $\mathbf{V}_{\|}=0$ on the smooth boundary $\partial \Omega$, resp. without boundary conditions. This is what is meant when we later simply say that a differential operator is defined with (or without) a certain boundary condition.

The subspace

$$
\begin{equation*}
\mathcal{H}=\left\{\mathbf{V} \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \operatorname{div} \mathbf{V}=0\right\} \tag{1}
\end{equation*}
$$

and its orthogonal complement in $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ are preserved by R and, therefore, by R^{*}. We will thus view them as operators on the physical Hilbert space \mathcal{H}. The Maxwell equations with boundary condition $\mathbf{E}_{\|}=0$ on the ideally conducting shell $\partial \Omega$ can now be written as

$$
\begin{equation*}
\mathrm{i} \frac{\partial}{\partial t}\binom{\mathbf{E}}{\mathbf{B}}=M\binom{\mathbf{E}}{\mathbf{B}} \tag{2}
\end{equation*}
$$

with

$$
M=\left(\begin{array}{cc}
0 & \mathrm{i} R^{*} \\
-\mathrm{i} R & 0
\end{array}\right)=M^{*} \quad \text { on } \mathcal{H} \oplus \mathcal{H}
$$

cf. [12]. Since no boundary condition has been imposed on \mathbf{B}, we have $M(0, \mathbf{B})=0$ for all $\mathbf{B}=\nabla \psi$ with ψ harmonic, and hence

$$
\begin{equation*}
\operatorname{dim} \operatorname{Ker} M=\infty \tag{3}
\end{equation*}
$$

We shall compute the heat kernel trace

$$
\operatorname{Tr}_{\mathcal{H} \oplus \mathcal{H}}^{\prime}\left(\mathrm{e}^{-t M^{2}}\right)=\sum_{k}^{\prime} \mathrm{e}^{-t \omega_{k}^{2}}
$$

where ' means that the contributions of zero-modes, i.e., of eigenvalues $\omega_{k}=0$ of M, have been omitted. This is necessary in view of (3), but a more physical justification, tied to the application to the Casimir effect to be discussed later, is that zero-modes are not subject to quantization.

The square of M is

$$
M^{2}=\left(\begin{array}{cc}
R^{*} R & 0 \tag{4}\\
0 & R R^{*}
\end{array}\right)=\left(\begin{array}{cc}
-\Delta_{\mathbf{E}} & 0 \\
0 & -\Delta_{\mathbf{B}}
\end{array}\right)
$$

where $\Delta_{\mathbf{E}}$, resp. $\Delta_{\mathbf{B}}$, is the Laplacian on \mathcal{H} with boundary conditions

$$
\begin{equation*}
\mathbf{E}_{\|}=0, \quad \text { resp. } \quad(\operatorname{rot} \mathbf{B})_{\|}=0 \tag{5}
\end{equation*}
$$

The operators $R R^{*}$ and $R^{*} R$ have the same spectrum, including multiplicity, except for zero-modes. Incidentally, we note that eigenfunctions (\mathbf{E}, \mathbf{B}) corresponding to $\omega_{k} \neq 0$ satisfy $\mathbf{B}=-\mathrm{i} \omega_{k}^{-1} \operatorname{rot} \mathbf{E}$ and hence, by Stokes' theorem, the boundary condition $\mathbf{B}_{\perp}=0$, which we did not impose, but which is usually also associated with ideally conducting shells. Since $\partial_{t}^{2}+M^{2}=\left(\mathrm{i} \partial_{t}-M\right)\left(-\mathrm{i} \partial_{t}-M\right)$, each pair of non-zero eigenvalues of $R^{*} R$ and $R R^{*}$ corresponds to a single oscillator mode
for (2). We will thus discuss the heat kernel asymptotics for

$$
\begin{align*}
\frac{1}{2} \operatorname{Tr}_{\mathcal{H} \oplus \mathcal{H}}^{\prime}\left(\mathrm{e}^{-t M^{2}}\right) & =\left\{\begin{array}{l}
\operatorname{Tr}_{\mathcal{H}}^{\prime} \mathrm{e}^{t \Delta_{\mathrm{E}}} \\
\operatorname{Tr}_{\mathcal{H}}^{\prime} \mathrm{e}^{t \Delta_{\mathrm{B}}}
\end{array}\right. \tag{6}\\
& \cong \sum_{n=0}^{\infty} a_{n} t^{\frac{n-3}{2}}, \quad(t \downarrow 0) . \tag{7}
\end{align*}
$$

The coefficients a_{n} are known, see, e.g., [5], for general operators of Laplace type. The direct application of such results is prevented by the divergence constraint in \mathcal{H}, see (1). In the next section we indicate how to remove it. First however we present the main result.

Let

$$
L_{a b}=\left(\nabla_{\mathbf{e}_{a}} \mathbf{e}_{b}, \mathbf{n}\right), \quad(a, b=1,2),
$$

be the second fundamental form on the boundary $\partial \Omega$ with inward normal \mathbf{n} and local orthonormal frame $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{n}\right\}$. We denote by $|\Omega|$ the volume of Ω and set

$$
f[\partial \Omega]=\int_{\partial \Omega} f(y) \mathrm{d} y
$$

where $\mathrm{d} y$ is the (induced) Euclidean surface element on $\partial \Omega$. The corresponding Laplacian on $\partial \Omega$ is denoted by ∇^{2}.
Theorem 1 Let $\Omega \subset \mathbb{R}^{3}$ an open, connected domain with compact closure and smooth boundary $\partial \Omega$ consisting of n components of genera $g_{1}, g_{2}, \ldots, g_{n}$. Then

$$
\begin{align*}
& a_{0}= 2(4 \pi)^{-\frac{3}{2}}|\Omega| \\
& a_{1}= 0, \\
& a_{2}=-\frac{4}{3}(4 \pi)^{-\frac{3}{2}}(\operatorname{tr} L)[\partial \Omega], \\
& a_{3}= \frac{1}{64}(4 \pi)^{-1}\left(3(\operatorname{tr} L)^{2}-4 \operatorname{det} L\right)[\partial \Omega]-\frac{1}{2} \sum_{i=1}^{n}\left(1+g_{i}\right)+1 \tag{9}\\
& a_{4}=\frac{16}{315}(4 \pi)^{-\frac{3}{2}}\left(2(\operatorname{tr} L)^{3}-9 \operatorname{tr} L \cdot \operatorname{det} L\right)[\partial \Omega] \\
& a_{5}=\frac{1}{122880}(4 \pi)^{-1}\left(2295(\operatorname{tr} L)^{4}-12440(\operatorname{tr} L)^{2} \operatorname{det} L+\right. \\
&\left.\quad+13424(\operatorname{det} L)^{2}+1200 \operatorname{tr} L \cdot \nabla^{2} \operatorname{tr} L\right)[\partial \Omega]
\end{align*}
$$

We will give two partially independent proofs, based on (6), resp. (7). Their agreement is related to the index theorem, as it may be seen from (4). A further, partial check of these coefficients has been made on the basis of general cylindrical domains and of the sphere, where a separation into TE and TM modes is possible.

The coefficient a_{0} was computed in [13] (except for the factor 2 replaced by 3 , as the divergence condition (1) was ignored), a_{1}, a_{2} in [1]. The coefficient a_{3} is closely related to a result of [3], as discussed in Section 3.

2 Proofs

We consider the space of (square integrable) forms, $\Lambda(\Omega)=\bigoplus_{p=0}^{n} \Lambda_{p}(\Omega)$, on the manifold Ω with boundary, together with the exterior derivative $d_{p+1}: \Lambda_{p}(\Omega) \rightarrow$ $\Lambda_{p+1}(\Omega)$ defined with relative boundary condition ([11], Section 2.7.1)

$$
\left.\omega\right|_{\partial \Omega}=0
$$

as a form $\left.\omega\right|_{\partial \Omega} \in \Lambda_{p}(\partial \Omega)$. For later use we recall that by the de Rahm theorem for manifolds with boundary ([9] or [11], Thm. 2.7.3) we have

$$
\begin{equation*}
H_{r}^{p}(\Omega) \cong H_{n-p}(\Omega) \cong H_{p}(\Omega, \partial \Omega) \tag{10}
\end{equation*}
$$

where $H_{r}^{p}(\Omega)=\operatorname{Ker} d_{p+1} / \operatorname{Im} d_{p}$ is the p-th relative cohomology group, $H_{p}(\Omega)$ is the p-th homology group, and $H_{p}(\Omega, \partial \Omega)$ is the p-th relative homology group, i.e., the homology based on chains mod $\partial \Omega$.

We shall henceforth restrict to $\Omega \subset \mathbb{R}^{3}$ as in Theorem 1. Using either homology (10), the dimension of $H_{r}^{p}(\Omega)$ is seen to be

$$
\begin{align*}
0 & (p=0), \\
n-1 & (p=1), \\
\sum_{i=1}^{n} g_{i} & (p=2), \tag{11}\\
1 & (p=3) .
\end{align*}
$$

These are also the dimensions of the spaces of harmonic p-forms.
The space $\Lambda(\Omega)=\bigoplus_{p=0}^{3} \Lambda_{p}(\Omega)$ may be identified as

$$
\Lambda(\Omega)=L^{2}(\Omega) \oplus L^{2}\left(\Omega, \mathbb{R}^{3}\right) \oplus L^{2}\left(\Omega, \mathbb{R}^{3}\right) \oplus L^{2}(\Omega) \ni(\phi, \mathbf{E}, \mathbf{B}, \psi)
$$

where $d: \Lambda(\Omega) \rightarrow \Lambda(\Omega)$ acts as

$$
d: L^{2}(\Omega) \underset{\operatorname{grad}}{\longrightarrow} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \underset{\operatorname{rot}}{\longrightarrow} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \underset{\operatorname{div}}{\longrightarrow} L^{2}(\Omega) \longrightarrow 0
$$

with boundary conditions $\phi=0, \mathbf{E}_{\|}=0, \mathbf{B}_{\perp}=0$ on $\partial \Omega$. Then

$$
d^{*}: 0 \longleftarrow L^{2}(\Omega) \underset{- \text { div }}{\leftrightarrows} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \overleftarrow{\operatorname{rot}} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \underset{-\operatorname{grad}}{\leftrightarrows} L^{2}(\Omega)
$$

without any boundary conditions. The Laplace-Beltrami operator on forms,

$$
-\Delta=\bigoplus_{p=0}^{3}\left(-\Delta_{p}\right)=d d^{*}+d^{*} d
$$

is seen to correspond to the Euclidean Laplacian with boundary conditions

$$
\begin{array}{ll}
\phi=0 & (p=0), \\
\mathbf{E}_{\|}=0, \quad \operatorname{div} \mathbf{E}=0 & (p=1), \\
\mathbf{B}_{\perp}=0, \quad(\operatorname{rot} \mathbf{B})_{\|}=0 & (p=2), \\
(\operatorname{grad} \psi)_{\perp}=0 & (p=3) .
\end{array}
$$

Each of the four problems admits a heat kernel expansion,

$$
\begin{equation*}
\operatorname{Tr}_{\Lambda_{p}(\Omega)} \mathrm{e}^{\Delta_{p} t} \cong \sum_{n=0}^{\infty} a_{n}^{(p)} t^{\frac{n-3}{2}} \tag{13}
\end{equation*}
$$

whose coefficients have been computed $(n=0, \ldots, 3)[4]$ or can be computed using existing results $(n=4,5)[5]$. To this end we note that the boundary conditions for $p=1,2$ can be formulated equivalently as

$$
\begin{array}{ll}
\mathbf{E}_{\|}=0, \quad \frac{\partial \mathbf{E}_{\perp}}{\partial n}-(\operatorname{tr} L) \mathbf{E}_{\perp}=0 & (p=1), \\
\mathbf{B}_{\perp}=0, \quad \frac{\partial \mathbf{B}_{\|}}{\partial n}-L \mathbf{B}_{\|}=0 & (p=2) . \tag{14}
\end{array}
$$

First approach. We will compute (6). We observe that $-\Delta_{\mathbf{E}}$ is just the restriction of $-\Delta_{1}$ to its invariant subspace

$$
\mathcal{H}=\left\{\mathbf{E} \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \operatorname{div} \mathbf{E}=0\right\}=\operatorname{Ker} d_{1}^{*} .
$$

Hence

$$
\operatorname{Tr}_{\mathcal{H}}^{\prime} e^{t \Delta_{\mathrm{E}}}=\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)}^{\prime} \mathrm{e}^{t \Delta_{1}}-\operatorname{Tr}_{\mathcal{H}^{\perp}}^{\prime} e^{t \Delta_{1}}
$$

where the orthogonal complement of \mathcal{H} in $L^{2}\left(\Omega, \mathbb{R}^{3}\right)$ is

$$
\mathcal{H}^{\perp}=\overline{\operatorname{Ran} d_{1}}=\operatorname{Ran} d_{1}=\left\{\nabla \phi \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \phi=0 \text { on } \partial \Omega\right\},
$$

(Ran d is closed by the Hodge decomposition, see, e.g., $[8,11]$). By $d \Delta=\Delta d$, the operators $\left(-\Delta_{1}\right) \upharpoonright_{\mathcal{H}^{\perp}}$ and $-\Delta_{0}$ have the same spectrum (in fact $\nabla \phi=0$ implies $\phi=0$ by the boundary condition). Thus, using also (11), we find

$$
\begin{aligned}
\operatorname{Tr}_{\mathcal{H}}^{\prime} \mathrm{e}^{t \Delta_{\mathrm{E}}} & =\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)}^{\prime} \mathrm{e}^{t \Delta_{1}}-\operatorname{Tr}_{L^{2}(\Omega)}^{\prime} \mathrm{e}^{t \Delta_{0}} \\
& =\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)} \mathrm{e}^{t \Delta_{1}}-\operatorname{Tr}_{L^{2}(\Omega)} \mathrm{e}^{t \Delta_{0}}-(n-1),
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& a_{k}=a_{k}^{(1)}-a_{k}^{(0)}, \quad(k \neq 3), \\
& a_{3}=a_{3}^{(1)}-a_{3}^{(0)}-n+1 .
\end{aligned}
$$

These relations, together with the values of $a_{k}^{(p)}$ computed in the appendix, yield the values of the coefficients stated in the Theorem 1. In particular, we will obtain

$$
a_{3}^{(1)}-a_{3}^{(0)}=\frac{1}{64}(4 \pi)^{-1}\left(3(\operatorname{tr} L)^{2}+28 \operatorname{det} L\right)[\partial \Omega]
$$

This matches the stated value of a_{3} because of

$$
n=\frac{1}{2} \sum_{i=1}^{n}\left(1+g_{i}\right)+\frac{1}{2} \sum_{i=1}^{n}\left(1-g_{i}\right)
$$

and of the Gauss-Bonnet theorem,

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{n}\left(1-g_{i}\right)=\frac{1}{2}(4 \pi)^{-1}(\operatorname{det} L)[\partial \Omega] \tag{15}
\end{equation*}
$$

Second approach. We now compute (7). As it has been noted in the introduction, eigenmodes of $-\Delta_{\mathbf{B}}$, except for zero-modes, satisfy the boundary condition $\mathbf{B}_{\perp}=0$, and are thus eigenmodes of $-\Delta_{2}$ belonging to its invariant subspace \mathcal{H}, cf. $(5,12)$. The converse is obvious. We conclude that

$$
\operatorname{Tr}_{\mathcal{H}}^{\prime} \mathrm{e}^{t \Delta_{\mathrm{B}}}=\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)}^{\prime} \mathrm{e}^{t \Delta_{2}}-\operatorname{Tr}_{\mathcal{H}^{\perp}}^{\prime} \mathrm{e}^{t \Delta_{2}}
$$

Since

$$
\mathcal{H}=\left\{\mathbf{B} \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \operatorname{div} \mathbf{B}=0\right\}=\operatorname{Ker} d_{3}
$$

we have

$$
\mathcal{H}^{\perp}=\overline{\operatorname{Ran} d_{3}^{*}}=\operatorname{Ran} d_{3}^{*}=\left\{-\nabla \psi \in L^{2}\left(\Omega, \mathbb{R}^{3}\right) \mid \psi \in L^{2}(\Omega)\right\}
$$

Using $d^{*} \Delta=\Delta d^{*}$, we see that $\left(-\Delta_{2}\right) \upharpoonright_{\mathcal{H}^{\perp}}$ and $-\Delta_{3}$ have the same spectrum, except for a single zero-mode (in fact, $-\nabla \psi=0$ implies $\psi=$ const). We thus find, using (11),

$$
\begin{aligned}
\operatorname{Tr}_{\mathcal{H}}^{\prime} \mathrm{e}^{t \Delta_{\mathrm{B}}} & =\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)}^{\prime} \mathrm{e}^{t \Delta_{2}}-\operatorname{Tr}_{L^{2}(\Omega)}^{\prime} \mathrm{e}^{t \Delta_{3}} \\
& =\operatorname{Tr}_{L^{2}\left(\Omega, \mathbb{R}^{3}\right)} \mathrm{e}^{t \Delta_{2}}-\operatorname{Tr}_{L^{2}(\Omega)} \mathrm{e}^{t \Delta_{3}}-\left(\sum_{i=1}^{n} g_{i}-1\right),
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& a_{k}=a_{k}^{(2)}-a_{k}^{(3)}, \quad(k \neq 3) \\
& a_{3}=a_{3}^{(2)}-a_{3}^{(3)}-\sum_{i=1}^{n} g_{i}+1
\end{aligned}
$$

From these relations and from the results of the appendix we again recover Theorem 1. In particular,

$$
a_{3}^{(2)}-a_{3}^{(3)}=\frac{1}{64}(4 \pi)^{-1}\left(3(\operatorname{tr} L)^{2}-36 \operatorname{det} L\right)[\partial \Omega]
$$

leads to the claim for a_{3}, because of

$$
\sum_{i=1}^{n} g_{i}=\frac{1}{2} \sum_{i=1}^{n}\left(1+g_{i}\right)-\frac{1}{2} \sum_{i=1}^{n}\left(1-g_{i}\right)
$$

and of (15).

3 Application to the Casimir effect

For the purpose of this discussion we simply define the Casimir energy by the mode summation method, see, e.g., [3]. In particular, we do not address the issue [6] of whether it is the most appropriate physically. We shall however observe that the Casimir energy is finite - a conclusion obtained in [3], but questioned in [10].

Consider the cavity $\Omega \subset \mathbb{R}^{3}$ enclosed in a large ball Ω_{0}. As usual we compare the vacuum energy of the electromagnetic field in the domains $\Omega \cup\left(\Omega_{0} \backslash \bar{\Omega}\right)$ with that of the reference domain Ω_{0}. Each eigenmode of either domain contributes a zeropoint energy $\omega_{k} / 2$, resp. $\omega_{k}^{0} / 2$. As a regulator for the eigenfrequencies $\omega_{k}=\lambda_{k}^{1 / 2}$, we choose $\mathrm{e}^{-\gamma \lambda_{k}},(\gamma>0)$. The corresponding definition of the Casimir energy is

$$
E_{C}=\frac{1}{2} \lim _{\Omega_{0} \rightarrow \infty} \lim _{\gamma \downarrow 0}\left(\sum_{k} \lambda_{k}^{\frac{1}{2}} \mathrm{e}^{-\gamma \lambda_{k}}-\sum_{k}\left(\lambda_{k}^{0}\right)^{\frac{1}{2}} \mathrm{e}^{-\gamma \lambda_{k}^{0}}\right) .
$$

We shall prove that the limit $\gamma \downarrow 0$ is finite. It will also be clear that the subsequent limit $\Omega_{0} \rightarrow \infty$ exists, though we shall not make the effort to prove that (see however, e.g., [8], Section 12.7 for the necessary tools). Using

$$
\lambda_{k}^{\frac{1}{2}}=-\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{d} t t^{-\frac{1}{2}} \frac{d}{d t} \mathrm{e}^{-t \lambda_{k}}
$$

and (8) we find for the regularized sum of the eigenfrequencies

$$
\sum_{k} \lambda_{k}^{\frac{1}{2}} \mathrm{e}^{-\gamma \lambda_{k}} \approx-\sum_{n=0}^{4} \frac{n-3}{2 \sqrt{\pi}} a_{n} \int_{0}^{\delta} \mathrm{d} t t^{-\frac{1}{2}}(t+\gamma)^{\frac{n-5}{2}}
$$

as $\gamma \downarrow 0$. Here $\delta>0$ is arbitrary, but fixed, and " \approx " means up to terms $O(1)$. Using

$$
\int_{0}^{\delta} \mathrm{d} t t^{-\frac{1}{2}}(t+\gamma)^{\frac{n-5}{2}} \approx \begin{cases}\frac{4}{3} \gamma^{-2} & (n=0) \\ \frac{\pi}{2} \gamma^{-\frac{3}{2}} & (n=1) \\ 2 \gamma^{-1} & (n=2) \\ \pi \gamma^{-\frac{1}{2}} & (n=3) \\ -\log \gamma & (n=4)\end{cases}
$$

we find

$$
\sum_{k} \lambda_{k}^{\frac{1}{2}} \mathrm{e}^{-\gamma \lambda_{k}} \approx \frac{2}{\sqrt{\pi}} a_{0} \gamma^{-2}+\frac{\sqrt{\pi}}{2} a_{1} \gamma^{-\frac{3}{2}}+\frac{1}{\sqrt{\pi}} a_{2} \gamma^{-1}+0 \cdot a_{3} \gamma^{-\frac{1}{2}}+\frac{1}{2 \sqrt{\pi}} a_{4} \log \gamma
$$

Hence a finite Casimir energy requires (cf. [7]) that $a_{0}, a_{1}, a_{2}, a_{4}$ (but not necessarily a_{3} !) agree for $\Omega \cup\left(\Omega_{0} \backslash \bar{\Omega}\right)$ and for the reference domain Ω_{0}. This is indeed so for $a_{0}=2(4 \pi)^{-\frac{3}{2}}\left|\Omega_{0}\right|$ and for $a_{1}=0$, but also for a_{2}, a_{4} as the contributions from the two sides of $\partial \Omega$ cancel. The same conclusion is obtained if the regulator $\mathrm{e}^{-\gamma \lambda_{k}}$ is replaced by $\mathrm{e}^{-\left(\gamma \lambda_{k}\right)^{1 / 2}}$ (see [7], Eq. (27)):

$$
\sum_{k} \lambda_{k}^{\frac{1}{2}} \mathrm{e}^{-\left(\gamma \lambda_{k}\right)^{1 / 2}} \approx \frac{24}{\sqrt{\pi}} a_{0} \gamma^{-2}+4 a_{1} \gamma^{-\frac{3}{2}}+\frac{2}{\sqrt{\pi}} a_{2} \gamma^{-1}+0 \cdot a_{3} \gamma^{-\frac{1}{2}}+\frac{1}{\sqrt{\pi}} a_{4} \log \gamma
$$

Since no renormalization is necessary, the value of E_{C} agrees with that obtained by means of the zeta function.

In the rest of this section we compare our results with those of [2, 3]. To the extent the comparison is done we will find agreement. An important tool there is the mode generating function, Eq. (4.5) in [2],

$$
\begin{align*}
\Phi(k) & \doteq \frac{1}{2} \operatorname{Tr}\left(\frac{-\Delta_{\mathbf{E}}}{-\Delta_{\mathbf{E}}-k^{2}}+\frac{-\Delta_{\mathbf{B}}}{-\Delta_{\mathbf{B}}-k^{2}}\right) \tag{16}\\
& \doteq \frac{k^{2}}{2} \operatorname{Tr}^{\prime}\left(\left(-\Delta_{\mathbf{E}}-k^{2}\right)^{-1}+\left(-\Delta_{\mathbf{B}}-k^{2}\right)^{-1}\right), \quad(k \in \mathbb{C} \backslash \mathbb{R})
\end{align*}
$$

where " $=$ " means equality "within addition of some polynomial in k^{2} ". Since the resolvents in (16) are not trace class, but their squares are, we first consider that replacement. Using $(A+\mu)^{-2}=\int_{0}^{\infty} \mathrm{d} t t \mathrm{e}^{-t(A+\mu)}$ we obtain, as $\mu \rightarrow \infty$,

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr}^{\prime}\left(\left(-\Delta_{\mathbf{E}}+\mu\right)^{-2}+\left(-\Delta_{\mathbf{B}}+\mu\right)^{-2}\right) \cong \sum_{n=0}^{\infty} a_{n} \int_{0}^{\infty} \mathrm{d} t & \cdot t^{\frac{n-3}{2}} \mathrm{e}^{-t \mu} \\
& =\sum_{n=0}^{\infty} \Gamma\left(\frac{n+1}{2}\right) a_{n} \mu^{-\frac{n+1}{2}}
\end{aligned}
$$

with coefficients a_{n} given in Theorem 1. Integrating w.r.t. μ we find

$$
\frac{1}{2} \operatorname{Tr}^{\prime}\left(\left(-\Delta_{\mathbf{E}}+\mu\right)^{-1}+\left(-\Delta_{\mathbf{B}}+\mu\right)^{-1}\right) \doteq \sum_{\substack{n=0 \\ n \neq 1}}^{\infty} \Gamma\left(\frac{n-1}{2}\right) a_{n} \mu^{-\frac{n-1}{2}}-a_{1} \log \mu
$$

and hence, with $\mu^{1 / 2}=-\mathrm{i} k$,

$$
\Phi(k) \doteq 2 \sqrt{\pi} a_{0} \mathrm{i} k^{3}-\sqrt{\pi} a_{1} k^{2} \ln \left(-k^{2}\right)+\mathrm{i} \sqrt{\pi} a_{2} k-a_{3}+O\left(k^{-1}\right)
$$

Upon insertion of the mentioned values for a_{0}, \ldots, a_{3} this agrees with Eq. (4.40) in [2], except for a_{3} which is there replaced by its local part, see (9),

$$
\begin{aligned}
\tilde{a}_{3} & =\frac{1}{64}(4 \pi)^{-1}\left(3(\operatorname{tr} L)^{2}-4 \operatorname{det} L\right)[\partial \Omega] \\
& =\frac{1}{64} \int_{\partial \Omega} \mathrm{d} \sigma\left(\frac{3}{4}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)-\kappa_{1} \kappa_{2}\right),
\end{aligned}
$$

where κ_{1}, κ_{2} are the principal curvatures. Note however that this discrepancy is implicit in the definition of "三". It is resolved in [3] by first considering $\delta \Phi(k)$, i.e., the difference of the mode generating functions corresponding to the configurations $\Omega \cup\left(\Omega_{0} \backslash \bar{\Omega}\right)$ and Ω_{0}. Thus

$$
\delta \Phi(k)=-2 \tilde{a}_{3}+O\left(k^{-1}\right),
$$

since the contributions to a_{0}, a_{2} cancel, and those to \tilde{a}_{3} double the value. Not ambiguous then is "the number of additional modes of finite frequency created by introducing the conducting surface $\partial \Omega$ ":

$$
\mathcal{C}=\psi(0+)-\psi(\infty),
$$

where $\psi(y)=\delta \Phi(\mathrm{i} y)$. For a connected boundary $\partial \Omega$ of genus g the value of $\psi(0+)$ has been established as $\psi(0+)=-g$ (see [3], Eq. (5.8)), resulting in

$$
\begin{equation*}
\mathcal{C}=2 \tilde{a}_{3}-g . \tag{17}
\end{equation*}
$$

This result agrees with Theorem 1: the non-local terms in (9) take the values $-\frac{1}{2}(g-1),-\frac{1}{2} g, \frac{1}{2}$ for $\Omega, \Omega_{0} \backslash \bar{\Omega}$ and Ω_{0} respectively. Thus,

$$
\delta a_{3}=2 \tilde{a}_{3}-g,
$$

in agreement with (17).

A Appendix

In this appendix we compute the heat kernel coefficients in (13) for $p=0, \ldots, 3$ and $n=0, \ldots, 5$ on the basis of Theorems 1 and 4 in [5]. We use the same notation, together with $P=\mathbf{n} \otimes \mathbf{n}$ denoting the normal projection at the boundary. The vector bundle is $V=\Omega \times \mathbb{R}$ for $p=0,3$, resp. $V=T \Omega$ for $p=1,2$, equipped with the Euclidean connection. The decompositions of $\left.V\right|_{\partial \Omega}=V_{N} \oplus V_{D} \ni\left(\phi^{N}, \phi^{D}\right)$ (with projections Π_{+}, resp. Π_{-}) and boundary conditions $\phi_{; n}^{N}+S \phi^{N}=0$, resp.
$\phi^{D}=0$, are specified as follows, cf. (14) and [5]:

$$
\left.\left.\begin{array}{ll}
p=0: & \left\{\begin{array}{l}
\Pi_{+}=0, \\
\Pi_{-}=1,
\end{array}\right. \\
p=1: & \left\{\begin{array}{l}
\Pi_{+}=P, \\
\Pi_{-}=1-P,
\end{array} \quad S=-L_{a a} P,\right.
\end{array}\right\} \begin{array}{l}
p=2: \tag{18}\\
p=3:
\end{array} \begin{array}{l}
\Pi_{+}=1-P, \quad S=-L, \\
\Pi_{-}=P,
\end{array}\right\} \begin{aligned}
& \Pi_{+}=1, \quad S=0, \\
& \Pi_{-}=0 .
\end{aligned}
$$

The result is

$$
\begin{aligned}
a_{0}^{(p)} & =(4 \pi)^{-\frac{3}{2}} c_{0}^{(p)}|\Omega|, \\
a_{1}^{(p)} & =\frac{1}{4}(4 \pi)^{-1} c_{1}^{(p)}|\partial \Omega|, \\
a_{2}^{(p)} & =\frac{1}{3}(4 \pi)^{-\frac{3}{2}} c_{2}^{(p)}(\operatorname{tr} L)[\partial \Omega], \\
a_{3}^{(p)} & =\frac{1}{384}(4 \pi)^{-1}\left(c_{31}^{(p)}(\operatorname{tr} L)^{2}+c_{32}^{(p)}(\operatorname{det} L)\right)[\partial \Omega], \\
a_{4}^{(p)} & =\frac{1}{315}(4 \pi)^{-\frac{3}{2}}\left(c_{41}^{(p)}(\operatorname{tr} L)^{3}+c_{42}^{(p)} \operatorname{tr} L \cdot \operatorname{det} L\right)[\partial \Omega], \\
a_{5}^{(p)}= & \frac{1}{245760}(4 \pi)^{-1}\left(c_{51}^{(p)}(\operatorname{tr} L)^{4}+c_{52}^{(p)}(\operatorname{tr} L)^{2} \operatorname{det} L+c_{53}^{(p)}(\operatorname{det} L)^{2}\right. \\
& \left.\quad+c_{54}^{(p)} \operatorname{tr} L \cdot \nabla^{2} \operatorname{tr} L\right)[\partial \Omega]
\end{aligned}
$$

with coefficients given in Table 1.
The computation of the table is based on the general result of [5], which has been applied to (18) using the following identities:

$$
\begin{aligned}
\operatorname{Tr}\left(P_{: a} P_{: b}\right) & =2\left(L^{2}\right)_{a b}, \\
\operatorname{Tr}\left(P_{: a} P_{: a} P_{: b} P_{: b}\right) & =\left(L^{4}\right)_{a a}+\left(L^{2}\right)_{a a}\left(L^{2}\right)_{b b}, \\
\operatorname{Tr}\left(P_{: a} P_{: b} P_{: a} P_{: b}\right) & =2\left(L^{4}\right)_{a a}, \\
\operatorname{Tr}\left(P_{: a a} P_{: b b}\right) & =2 L_{a c: a} L_{b c: b}+4\left(L^{4}\right)_{a a}+4\left(L^{2}\right)_{a a}\left(L^{2}\right)_{b b}, \\
\operatorname{Tr}\left(P_{: a b} P_{: a b}\right) & =2 L_{a b: c} L_{a b: c}+6\left(L^{4}\right)_{a a}+2\left(L^{2}\right)_{a a}\left(L^{2}\right)_{b b} .
\end{aligned}
$$

They can be derived by using $\nabla_{\mathbf{e}_{a}} \mathbf{n}=-L_{a b} \mathbf{e}_{b}$, so that

$$
P_{: a}=-L_{a c}\left(\mathbf{e}_{c} \otimes \mathbf{n}+\mathbf{n} \otimes \mathbf{e}_{c}\right),
$$

	$p=0$	$p=1$	$p=2$	$p=3$
$c_{0}^{(p)}$	1	3	3	1
$c_{1}^{(p)}$	-1	-1	1	1
$c_{2}^{(p)}$	1	-3	-3	1
$c_{31}^{(p)}$	3	21	33	15
$c_{32}^{(p)}$	-20	148	-220	-4
$c_{41}^{(p)}$	4	36	60	28
$c_{42}^{(p)}$	-18	-162	-186	-42
$c_{51}^{(p)}$	555	5145	8625	4035
$c_{52}^{(p)}$	-2840	-27720	-35720	-10840
$c_{53}^{(p)}$	2224	29072	29712	2864
$c_{54}^{(p)}$	120	2520	4680	2280

Table 1: These values imply Theorem 1, as explained in its proof.
and by assuming without loss that $\nabla_{\mathbf{e}_{a}} \mathbf{e}_{b}$ has no component parallel to $T_{p} \partial \Omega$ at the point p of evaluation, i.e., $\nabla_{\mathbf{e}_{a}} \mathbf{e}_{b}=L_{a b} \mathbf{n}$. Then

$$
P_{: a b}=-L_{a c: b}\left(\mathbf{e}_{c} \otimes \mathbf{n}+\mathbf{n} \otimes \mathbf{e}_{c}\right)-2\left(L^{2}\right)_{a b} P+\left(L_{a c} L_{b d}+L_{a d} L_{b c}\right) \mathbf{e}_{c} \otimes \mathbf{e}_{d},
$$

from which the above traces follow. In turn they allow the computation of similar traces with P replaced by $\chi=\Pi_{+}-\Pi_{-}$, i.e., by $\chi= \pm(2 P-1)$ in the cases $p=1,2$. In these two cases we also have

$$
\begin{aligned}
\operatorname{Tr} S_{: a} & =-L_{b b: a}, \\
\operatorname{Tr} S_{: a b} & =-L_{c c: a b},
\end{aligned}
$$

and, moreover, for $p=1$,

$$
\begin{aligned}
\operatorname{Tr}\left(S_{: a} S_{: a}\right) & =L_{b b: a} L_{c c: a}+2 L_{b b} L_{c c}\left(L^{2}\right)_{a a}, \\
\operatorname{Tr}\left(P_{: a} S_{: b}\right) & =-2\left(L^{2}\right)_{a b} L_{c c}, \\
\operatorname{Tr}\left(P S_{: a} S_{: a}\right) & =L_{b b: a} L_{c c: a}+L_{b b} L_{c c}\left(L^{2}\right)_{a a},
\end{aligned}
$$

resp. for $p=2$,

$$
\begin{aligned}
\operatorname{Tr}\left(S_{: a} S_{: a}\right) & =L_{a b: c} L_{a b: c}+2\left(L^{4}\right)_{a a} \\
\operatorname{Tr}(P: a & \\
\operatorname{Tr}(P S: a & =2\left(L^{3}\right)_{a a} \\
\left.S_{: a}\right) & =\left(L^{4}\right)_{a a}
\end{aligned}
$$

Furthermore, traces of $L^{k},(k \geq 2)$, were reduced to $\operatorname{tr} L$, $\operatorname{det} L$ by means of $L^{2}-$ $(\operatorname{tr} L) L+\operatorname{det} L=0$. Finally, we used the Codazzi equation, $L_{a b: c}=L_{a c: b}$, as well as

$$
L_{a b: c a}-L_{a b: a c}=L_{a a}\left(L^{2}\right)_{b c}-\left(L^{2}\right)_{a a} L_{b c}
$$

which follows from the Gauss equation.

Acknowledgment

We thank M. Levitin and G. Scharf for discussions. The research of D. Hasler was supported in part under the EU-network contract HPRN-CT-2002-00277.

References

[1] R. Balian, C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces, Ann. Phys. (N.Y.) 64, 271 (1971); Errata, ibid. 84, 559 (1974).
[2] R. Balian, B. Duplantier, Electromagnetic waves near perfect conductors, I. Multiple scattering expansions. Distribution of modes, Ann. Phys. (N.Y.) 104, 300 (1977).
[3] R. Balian, B. Duplantier, Electromagnetic waves near perfect conductors, II. Casimir effect, Ann. Phys. (N.Y.) 112, 165 (1978).
[4] N. Blažić, N. Bokan, P.B. Gilkey, Spectral geometry of the form valued Laplacian for manifolds with boundary, Indian J. Pure Appl. Math. 23, 103 (1992).
[5] T.P. Branson, P.B. Gilkey, K. Kirsten, D.V. Vassilevich, Heat kernel asymptotics with mixed boundary conditions, Nucl. Phys. B 563, 603 (1999).
[6] P. Candelas, Vacuum energy in the presence of dielectric and conducting surfaces, Ann. Phys. (N.Y.) 143, 241 (1982).
[7] G. Cognola, L. Vanzo, S. Zerbini, Regularization dependence of vacuum energy in arbitrarily shaped cavities, J. Math. Phys. 33, 222 (1992).
[8] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger operators, Springer (1987).
[9] G.F.G. Duff, Differential forms in manifolds with boundary, Ann. Math. 56, 115 (1952).
[10] D. Deutsch, P. Candelas, Boundary effects in quantum field theory, Phys. Rev. D 20, 895 (1978).
[11] P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, CRC (1995).
[12] R. Leis, Initial boundary value problems in mathematical physics, Teubner/Wiley (1986).
[13] H. Weyl, Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgesetzte, J. f. reine u. angew. Math. 143, 177 (1913).
F. Bernasconi

Department of Mathematics
ETH-Zentrum
CH-8092 Zürich
Switzerland
email: fabrizio.bernasconi@math.ethz.ch
G.M. Graf

Theoretische Physik
ETH-Hönggerberg
CH-8093 Zürich
Switzerland
email: gmgraf@itp.phys.ethz.ch
D. Hasler

Department of Mathematics
University of Copenhagen
DK-2100 Copenhagen
Denmark
email: hasler@math.ku.dk
Communicated by Vincent Rivasseau
submitted $17 / 02 / 03$, accepted 04/07/03

