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Long Range Scattering and Modified Wave Operators
for the Wave-Schrödinger System II∗

J. Ginibre and G. Velo

Abstract. We continue the study of scattering theory for the system consisting
of a Schrödinger equation and a wave equation with a Yukawa type coupling in
space dimension 3. In a previous paper, we proved the existence of modified wave
operators for that system with no size restriction on the data and we determined the
asymptotic behaviour in time of solutions in the range of the wave operators, under
a support condition on the asymptotic state required by the different propagation
properties of the wave and Schrödinger equations. Here we eliminate that condition
by using an improved asymptotic form for the solutions.

1 Introduction

This paper is a sequel to a previous paper with the same title ([1], hereafter referred
to as I) where we studied the theory of scattering and proved the existence of
modified wave operators for the Wave-Schrödinger (WS) system{

i∂tu = −(1/2)∆u−Au (1.1)

�A = |u|2 (1.2)

where u and A are respectively a complex-valued and a real-valued function defined
in space time R

3+1. We refer to the introduction of I for general background and
references and we give here only a general overview of the problem.

The main result of I was the construction of modified wave operators for the
WS system, with no size restriction on the solutions. That construction basically
consists in solving the Cauchy problem for the WS system with infinite initial time,
namely in constructing solutions with prescribed asymptotic behaviour at infinity
in time. That asymptotic behaviour is imposed in the form of suitable approximate
solutions of the WS system. One then looks for exact solutions, the difference of
which with the given approximate ones tends to zero at infinity in time in a suitable
sense, more precisely in suitable norms. The approximate solutions are obtained
as low order iterates in an iterative resolution scheme of the WS system. In I we
used second order iterates. They are parametrized by data (u+, A+, Ȧ+) which
play the role of (actually are in simpler cases) initial data at time zero. Those data
constitute the asymptotic state for the actual solution.
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An inherent difficulty of the WS system is the difference of propagation prop-
erties of the wave equation and of the Schrödinger equation. Because of that diffi-
culty, we had to impose in I a support condition on the Fourier transform Fu+ of
the Schrödinger asymptotic state u+, saying in effect that Fu+ vanishes in a neigh-
borhood of the unit sphere, so that u+ generates a solution of the free Schrödinger
equation which is asymptotically small in a neighborhood of the light cone. Such a
support condition is unpleasant because it cannot be satisfied on a dense subspace
of any reasonable space where one hopes to solve the problem, typically with u in
FHk for k > 1/2 (Hk is the standard L2 based Sobolev space).

The theory of scattering and the existence of modified wave operators can
also be studied for various equations and systems including the WS system by a
method simpler than that of I, proposed earlier by Ozawa [5]. Contrary to that of I,
that method is restricted to the case of small data and small solutions. It has been
applied to various systems, in particular to the Klein-Gordon-Schrödinger (KGS)
system in dimension 2, which is fairly similar to the WS system in dimension 3 from
the point of view of scattering [6]. Similar propagation difficulties also appear for
that system, thereby again requiring a support condition on Fu+ in the treatment
given in [6].

A progress on that problem was made recently by Shimomura [7], [8] who was
able to remove the previous support condition in the construction of the modified
wave operators by the Ozawa method in the case of the KGS system in dimension
2 [7] and of the WS system in dimension 3 [8]. The key of that progress consists
in using an improved asymptotic form for the Schrödinger function, obtained by
adding a term depending on (A+, Ȧ+) which partly cancels the contribution of the
asymptotic field for A in the Schrödinger equation.

Although the method used in I is more complicated than the Ozawa method
(so as to accommodate arbitrarily large data and solutions), it turns out that the
improved asymptotic form of u used in [8] can be transposed into the framework
of the method of I, thereby allowing to remove the support condition on Fu+

assumed in I, at least in a restricted interval of values of the parameters defining
the regularity of the solutions. The purpose of the present paper is to implement
that improvement, namely to rederive the main results of I without assuming the
support condition used in I, by using the improved asymptotic form of the solution
inspired by that of [8].

In the remaining part of this introduction, we shall briefly review the method
used in I in the modified form used in the present paper. We refer to Section 2 of
I for a more detailed exposition. The main result of this paper will be stated in
semi-heuristic terms at the end of this introduction. The first step in that method
consists in eliminating the wave equation (1.2) by solving it for A and substitut-
ing the result into the Schrödinger equation, which then becomes both non-linear
and non-local in time. One then parametrizes the Schrödinger function u in terms
of an amplitude w and a phase ϕ and one replaces the Schrödinger equation by
an auxiliary system consisting of a transport equation for the amplitude and a
Hamilton-Jacobi equation for the phase. One solves the Cauchy problem at infin-
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ity, namely with prescribed asymptotic behaviour, for the auxiliary system, and
one finally reconstructs the solution of the original WS system from that of the
auxiliary system. We now proceed to the technical details. We restrict our attention
to positive time, actually to t ≥ 1.

We first eliminate the wave equation. We define

ω = (−∆)1/2 , K(t) = ω−1 sinωt , K̇(t) = cosωt

and we replace (1.2) by
A = A0 +A1(|u|2) (1.3)

where
A0 = K̇(t)A+ +K(t)Ȧ+ , (1.4)

A1(|u|2) = −
∫ ∞

t

dt′ K(t− t′)|u(t′)|2 . (1.5)

Here A0 is a solution of the free wave equation with initial data (A+, Ȧ+) at time
t = 0. The pair (A+, Ȧ+) is the asymptotic state for A.

We next perform the change of variables mentioned above on u. The unitary
group

U(t) = exp(i(t/2)∆) (1.6)

which solves the free Schrödinger equation can be written as

U(t) = M(t) D(t) F M(t) (1.7)

where M(t) is the operator of multiplication by the function

M(t) = exp
(
ix2/2t

)
, (1.8)

F is the Fourier transform and D(t) is the dilation operator

D(t) = (it)−n/2 D0(t) (1.9)

where
(D0(t)f) (x) = f(x/t) . (1.10)

We parametrize u in terms of an amplitude w and of a real phase ϕ as

u(t) = M(t) D(t) exp[−iϕ(t)]w(t) . (1.11)

Substituting (1.11) into (1.1) yields an evolution equation for (w,ϕ), namely{
i∂t + (2t2)−1∆ − i(2t2)−1(2∇ϕ · ∇ + ∆ϕ) + t−1B + ∂tϕ− (2t2)−1|∇ϕ|2}w = 0

(1.12)
where we have expressed A in terms of a new function B by

A = t−1 D0 B . (1.13)
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Corresponding to the decomposition (1.3) of A, we decompose

B = B0 +B1(w,w) (1.14)

where A0 = t−1D0B0 and A1 = t−1D0B1. One computes easily

B1(w1, w2) =
∫ ∞

1

dν ν−3 ω−1 sin((ν − 1)ω)D0(ν)(Re w̄1w2)(νt) . (1.15)

At this point, we have only one evolution equation (1.12) for two functions
(w,ϕ). We arbitrarily impose a second equation, namely a Hamilton-Jacobi (or
eikonal) equation for the phase ϕ, thereby splitting the equation (1.12) into a
system of two equations, the other one of which being a transport type equation
for the amplitude w. For that purpose, we split B0 and B1 into long range and
short range parts as follows. Let χ ∈ C∞(R3,R), 0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| ≤ 1,
χ(ξ) = 0 for |ξ| ≥ 2 and let 0 < β0, β < 1. We define

B0 = B0L +B0S , B1 = BL +BS (1.16)

where {
FB0L(t, ξ) = χ(ξt−β0)FB0(t, ξ) ,

FBL(t, ξ) = χ(ξt−β)FB1(t, ξ) .
(1.17)

The splitting (1.16), (1.17) differs from that made in I in two respects. First and
more important is the fact that we perform that splitting both on B0 and on
B1, whereas in I it was done only on B1. Second, we use here a smooth cut-off
χ instead of a sharp one. The smooth cut-off is actually needed only for B0. For
β = β0, the splitting is the same for B0 and B1 and can therefore be performed
on B without any reference to the asymptotic state (A+, Ȧ+). The parameters β0

and β will have to satisfy various conditions which will appear later, all of them
compatible with β = β0 = 1/3.

We split the equation (1.12) into the following system of two equations.{
∂tw = i(2t2)−1∆w + t−2Q(∇ϕ,w) + it−1(B0S +BS(w,w))w

∂tϕ = (2t2)−1|∇ϕ|2 − t−1 B0L − t−1 BL(w,w)
(1.18)

where we have defined

Q(s, w) = s · ∇w + (1/2)(∇ · s)w (1.19)

for any vector field s. The first equation of (1.18) is the transport type equation
for the amplitude w, while the second one is the Hamilton-Jacobi type equation
for the phase ϕ. Since the right-hand sides of (1.18) contain ϕ only through its
gradient, we can obtain from (1.18) a closed system for w and s = ∇ϕ by taking
the gradient of the second equation, namely{

∂tw = i(2t2)−1∆w + t−2Q(s, w) + it−1(B0S +BS(w,w))w

∂ts = t−2s · ∇s− t−1∇B0L − t−1∇BL(w,w) .
(1.20)
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Once the system (1.20) is solved for (w, s), one recovers ϕ easily by integrating
the second equation of (1.18) over time. The system (1.20) will be referred to as
the auxiliary system.

The construction of the modified wave operators follows the same pattern as
in I. The first task is to construct solutions of the auxiliary system (1.20) with
suitably prescribed asymptotic behaviour at infinity, and in particular with w(t)
tending to a limit w+ = Fu+ as t→ ∞. That asymptotic behaviour is imposed in
the form of a suitably chosen pair (W,φ) and therefore (W,S) with S = ∇φ with
W (t) tending to w+ as t→ ∞. For fixed (W,S), we make a change of variables in
the system (1.18) from (w,ϕ) to (q, ψ) defined by

(q, ψ) = (w,ϕ) − (W,φ) (1.21)

or equivalently a change of variables in the system (1.20) from (w, s) to (q, σ)
defined by

(q, σ) = (w, s) − (W,S) , (1.22)

and instead of looking for a solution (w, s) of the system (1.20) with (w, s) be-
having asymptotically as (W,S), we look for a solution (q, σ) of the transformed
system with (q, σ) (and also ψ) tending to zero as t→ ∞. Performing the change
of variables (1.22) in the auxiliary system (1.20) yields the following modified
auxiliary system for the new variables (q, σ)


∂tq = i(2t2)−1∆q + t−2(Q(s, q) +Q(σ,W )) + it−1B0S q

+it−1BS(w,w)q + it−1 (2BS(W, q) +BS(q, q))W −R1(W,S)

∂tσ = t−2(s · ∇σ + σ · ∇S) − t−1∇ (2BL(W, q) +BL(q, q)) −R2(W,S) ,
(1.23)

where the remainders R1(W,S) and R2(W,S) are defined by

R1(W,S) = ∂tW − i(2t2)−1∆W − t−2Q(S,W )− it−1(B0S +BS(W,W ))W (1.24)

R2(W,S) = ∂tS − t−2S · ∇S + t−1∇B0L + t−1∇BL(W,W ) (1.25)

and the dependence of the remainders on B0 has been omitted in the notation.
For technical reasons, it is useful to consider also a partly linearized version of the
system (1.23), namely


∂tq

′ = i(2t2)−1∆q′ + t−2(Q(s, q′) +Q(σ,W )) + it−1B0S q′

+it−1BS(w,w)q′ + it−1 (2BS(W, q) +BS(q, q))W −R1(W,S)

∂tσ
′ = t−2(s · ∇σ′ + σ · ∇S) − t−1∇ (2BL(W, q) +BL(q, q)) −R2(W,S) .

(1.26)
The construction of solutions (w, s) of the auxiliary system (1.20) defined

for large time and with prescribed asymptotic behaviour (W,S) proceeds in two
steps. The first step consists in solving the system (1.23) for (q, σ) tending to zero at
infinity under suitable boundedness properties of B0 and (W,S) and suitable time
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decay properties of the remainders R1(W,S) and R2(W,S), by a minor variation
of the method used in I. That method consists in first solving the linearized system
(1.26) for (q′, σ′) with given (q, σ), and then showing that the map (q, σ) → (q′, σ′)
thereby defined has a fixed point, by the use of a contraction method. The second
step consists in constructing (W,S) with W (t) tending to w+ as t → ∞ and
satisfying the required boundedness and decay properties. This is done by solving
the auxiliary system (1.20) by iteration to second order as in I and then adding to
W an additional term of the same form as that used in [8]. The detailed form of
(W,S) thereby obtained is too complicated to be given here and will be given in
Section 3 below (see (3.25)–(3.29) and (3.31)).

Once the system (1.20) is solved for (w, s), one can proceed therefrom to
the construction of a solution (u,A) of the original WS system. One first defines
the phases ϕ and φ such that s = ∇ϕ and S = ∇φ and one reconstructs (u,A)
from (w,ϕ) by (1.11), (1.3), (1.5), thereby obtaining a solution of the WS system
defined for large time and with prescribed asymptotic behaviour. The modified
wave operator for the WS system is then defined as the map Ω : (u+, A+, Ȧ+) →
(u,A).

The main result of this paper is the construction of (u,A) from (u+, A+, Ȧ+)
as described above, together with the asymptotic properties of (u,A) that fol-
low from that construction. It will be stated below in full mathematical detail in
Proposition 4.1. We give here a heuristic preview of that result, stripped from most
technicalities. We set β = β0 = 1/3 for definiteness.

Proposition 1.1. Let β0 = β = 1/3. Let (u+, A+, Ȧ+) be such that w+ = Fu+ ∈
Hk+ for sufficiently large k+, that (A+, Ȧ+) be sufficiently regular, and that
(FA+, F Ȧ+) be sufficiently small near ξ = 0. Let (W,S) be the approximate solu-
tion of the system (1.20) defined by (3.25)–(3.29), (3.31). Then

(1) There exists T = T (u+, A+, Ȧ+), 1 ≤ T <∞, such that the auxiliary system
(1.20) has a unique solution (w, s) in a suitable space, defined for t ≥ T and
such that (w −W, s− S) tends to zero in suitable norms when t→ ∞.

(2) There exists ϕ and φ such that s = ∇ϕ, S = ∇φ, φ(1) = 0 and such that ϕ−φ
tends to zero in suitable norms when t → ∞. Define (u,A) by (1.11), (1.3),
(1.5). Then (u,A) solves the system (1.1), (1.2) for t ≥ T and (u,A) behaves
asymptotically as (MD exp(−iφ)W , A0 + A1(|DW |2)) in the sense that the
difference tends to zero in suitable norms (for which each term separately is
O(1)) when t→ ∞.

The unspecified condition that (FA+, F Ȧ+) be sufficiently small near ξ = 0
can be shown to follow from more intuitive conditions in x-space, consisting of de-
cay conditions at infinity in space, and, depending on the values of the parameters
defining the relevant function spaces, of some moment conditions on (A+, Ȧ+).

This paper relies on a large amount of material from I. In order to bring out
the structure while keeping duplication to a minimum, we give without proof a
shortened logically self-sufficient sequence of those intermediate results from I that
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are needed, and we provide a full exposition only for the parts that are new as
compared with I. When quoting I, we shall use the notation (I.p.q) for equation
(p.q) of I and Item I.p.q for Item p.q of I, such as Lemma, Proposition, etc.

The remaining part of this paper is organized as follows. In Section 2 we
collect notation and some estimates of a general nature. In Section 3, we study the
Cauchy problem at infinity for the auxiliary system (1.20). We recall from I the
existence results of solutions under suitable boundedness properties of (W,S) and
suitable decay properties of the remainders, with the appropriate modifications
(Proposition 3.1). We then define (W,S) and prove that they satisfy the previous
properties, concentrating on the terms in the remainders that are new as compared
with I (Proposition 3.2). We then discuss the assumptions on (FA+, F Ȧ+) at ξ = 0
mentioned above. Finally in Section 4, we construct the wave operators for the WS
system (1.1) (1.2) and we derive the asymptotic properties of the solution (u,A)
in their range that follow from the previous estimates (Proposition 4.1).

2 Notation and preliminary estimates

In this section we introduce some notation and we collect a number of estimates
which will be used throughout this paper. We denote by ‖ · ‖r the norm in Lr ≡
Lr(R3) and we define δ(r) = 3/2 − 3/r. For any interval I and any Banach space
X we denote by C(I,X) the space of strongly continuous functions from I to
X and by L∞(I,X) the space of measurable essentially bounded functions from
I to X . For real numbers a and b we use the notation a ∨ b = Max(a, b) and
a ∧ b = Min(a, b). In the estimates of solutions of the relevant equations we shall
use the letter C to denote constants, possibly different from an estimate to the
next, depending on various parameters but not on the solutions themselves or on
their initial data. We shall use the notation C(a1, a2, · · · ) for estimating functions,
also possibly different from an estimate to the next, depending on suitable norms
a1, a2, · · · of the solutions or of their initial data.

We shall use the Sobolev spaces Ḣk
r and Hk

r defined for −∞ < k < +∞,
1 ≤ r ≤ ∞ by

Ḣk
r =

{
u :‖ u; Ḣk

r ‖ ≡ ‖ ωku ‖r <∞
}

and
Hk

r =
{
u :‖ u;Hk

r ‖ ≡ ‖< ω >k u ‖r <∞}
where ω = (−∆)1/2 and 〈·〉 = (1 + | · |2)1/2. The subscript r will be omitted if
r = 2.

We shall look for solutions of the auxiliary system (1.20) in spaces of the type
C(I,Xk,�) where I is an interval and

Xk,� = Hk ⊕ ω−1 H�

namely
Xk,� =

{
(w, s) : w ∈ Hk , ∇s ∈ H�

}
(2.1)
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where it is understood that ∇s ∈ L2 includes the fact that s ∈ L6, and we shall
use the notation

‖ w;Hk ‖ = |w|k . (2.2)

We shall use extensively the following Sobolev inequalities, stated here in R
n,

but to be used only for n = 3.

Lemma 2.1 Let 1 < q, r < ∞, 1 < p ≤ ∞ and 0 ≤ j < k. If p = ∞, assume that
k − j > n/r. Let σ satisfy j/k ≤ σ ≤ 1 and

n/p− j = (1 − σ)n/q + σ(n/r − k) .

Then the following inequality holds

‖ ωju ‖p ≤ C ‖ u ‖1−σ
q ‖ ωku ‖σ

r . (2.3)

The proof follows from the Hardy-Littlewood-Sobolev (HLS) inequality ([2],
p. 117) (from the Young inequality if p = ∞), from Paley-Littlewood theory and
interpolation.

We shall also use extensively the following Leibnitz and commutator esti-
mates.

Lemma 2.2 Let 1 < r, r1, r3 <∞ and

1/r = 1/r1 + 1/r2 = 1/r3 + 1/r4 .

Then the following estimates hold

‖ ωm(uv) ‖r ≤ C (‖ ωmu ‖r1 ‖ v ‖r2 + ‖ ωmv ‖r3 ‖ u ‖r4) (2.4)

for m ≥ 0, and

‖ [ωm, u]v ‖r ≤ C
(‖ ωmu ‖r1 ‖ v ‖r2 + ‖ ωm−1v ‖r3 ‖ ∇u ‖r4

)
(2.5)

for m ≥ 1, where [ , ] denotes the commutator.

The proof of those estimates is given in [3], [4] with ω replaced by 〈ω〉 and
follows therefrom by a scaling argument.

We next give some estimates of B0L, B0S , BL and BS defined by (1.16)
(1.17). It follows immediately from (1.16) (1.17) that

‖ ωmB0L ‖2 ≤ (
2tβ0

)m−p ‖ ωpB0L ‖2 ≤ (
2tβ0

)m−p ‖ ωpB0 ‖2 (2.6)

for m ≥ p and

‖ ωmB0S ‖2 ≤ tβ0(m−p) ‖ ωpB0S ‖2 ≤ tβ0(m−p) ‖ ωpB0 ‖2 (2.7)
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for m ≤ p. Similar estimates hold for BL, BS with β0 replaced by β. On the other
hand it follows from (1.15) that

‖ ωm+1B1(w1, w2) ‖2 ≤ Im (‖ ωm(w̄1w2) ‖2) (2.8)

where Im is defined by

(Im(f)) (t) =
∫ ∞

1

dν ν−m−3/2f(νt) . (2.9)

We finally collect some estimates of the solutions of the free wave equation
�A0 = 0 with initial data (A+, Ȧ+) at time zero, given by (1.4).

Lemma 2.3 Let k ≥ 0. Let A+ and Ȧ+ satisfy the conditions

A+, ω
−1Ȧ+ ∈ Hk , ∇2A+,∇Ȧ+ ∈ Hk

1 . (2.10)

Then the following estimate holds:

‖ ωmA0 ‖r ≤ b0 t
−1+2/r for 2 ≤ r ≤ ∞ , (2.11)

for 0 ≤ m ≤ k and for all t > 0, where b0 depends on (A+, Ȧ+) through the norms
associated with (2.10).

The estimate (2.11) can be expressed in an equivalent form in terms of B0

defined by (1.13), namely

‖ ωmB0 ‖r ≤ b0 t
m−1/r for 2 ≤ r ≤ ∞ . (2.12)

Furthermore, it follows from (1.17) and (2.12) that

‖ ωmB0L ‖r ≤‖ F−1χ ‖1 ‖ ωmB0 ‖r ≤ Cb0 t
m−1/r (2.13)

where we have used the Young inequality and the fact that the L1-norm of F−1χ
is invariant under the rescaling of ξ by tβ0 which occurs in (1.17). From (2.12)
(2.13) and (1.16) it follows that also

‖ ωmB0S ‖r ≤ Cb0 t
m−1/r . (2.14)

In the applications, the estimate (2.12) will be used mostly through its consequence
(2.14).

3 Cauchy problem at infinity for the auxiliary system

In this section, we solve the Cauchy problem at infinity for the auxiliary system
(1.20) in the difference form (1.23). We first solve the system (1.23) for (q, σ)
tending to zero at infinity under suitable boundedness properties of (B0,W, S)
and suitable time decay properties of the remainders R1(W,S) and R2(W,S). We
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then construct (W,S) with W (t) tending to w+ = Fu+ as t → ∞ and satisfying
the required boundedness and decay properties. The method closely follows that
of Sections 6 and 7 of I.

We first estimate a single solution of the linearized auxiliary system (1.26)
at the level of regularity where we shall eventually solve the auxiliary system
(1.20). The following lemma is basically Lemma I.6.1, restricted to the case where
1 < k < 3/2, and sharpened in order to take into account the fact that the W
used in this paper is less regular than that used in I (compare (3.1) below with
(I.6.1)).

Lemma 3.1 Let 1 < k < 3/2 < � and β > 0. Let T ≥ 1 and I = [T,∞). Let B0

satisfy the estimate (2.12) for 0 ≤ m ≤ k. Let (U(1/t))W,S) ∈ C(I,Xk+1,�+1) ∩
C1(I,Xk,�) and let W satisfy

Sup
t∈I

{
‖W ‖∞ ∨ ‖W ;H3/2 ‖ ∨ t1/2−k ‖W ; Ḣk+1 ‖

}
≤ a <∞ . (3.1)

Let (q, σ), (q′, σ′) ∈ C(I,Xk,�) with q ∈ L∞(I,Hk)∩L2(I, L2) and let (q′, σ′) be a
solution of the system (1.26) in I. Then the following estimates hold for all t ∈ I :

|∂t ‖ q′ ‖2| ≤ C
{
t−2a ‖ ∇σ ‖2 +t−1−β a2 I0 (‖ q ‖2)

+t−1 a I−1 (‖ q ‖2 ‖ q ‖3)
}

+ ‖ R1(W,S) ‖2 , (3.2)

∣∣∂t ‖ ωkq′ ‖2

∣∣ ≤ C
{
b0

(
‖ ωk−1q′ ‖2 +tk−1−δ/3 ‖ q′ ‖r

)
+t−2 a

(
‖ ωk∇σ ‖2 +tk−1/2 ‖ σ ‖∞

)
+t−2

(
‖ ∇s ‖∞ + ‖ ω3/2∇s ‖2

)
‖ ωkq′ ‖2

+t−1 a2
(
Ik−1

(‖ ωk−1q ‖2

)
+ ‖ ω1/2q′ ‖2

)
+t−1 a

(
Ik−1(‖ ωkq ‖2 ‖ q ‖3) + I1/2 (‖ ω1/2q ‖2) ‖ ωkq′ ‖2

)
+t−1I1/2

(‖ ∇q ‖2
2

) ‖ ωkq′ ‖2

}
+ ‖ ωkR1(W,S) ‖2 (3.3)

where s = S + σ and 0 < δ = δ(r) ≤ k.

|∂t ‖ ωm∇σ′ ‖2| ≤ C t−2
{
‖ ∇s ‖∞ ‖ ωm∇σ′ ‖2 + ‖ ωm∇s ‖2 ‖ ∇σ′ ‖∞

+ ‖ ωm∇σ ‖2 ‖ ∇S ‖∞ + ‖ σ ‖∞ ‖ ωm∇2S ‖2

}
+C

{
t−1+β(m+1)a I0 (‖ q ‖2) + t−1+β(m+5/2) I−3/2

(‖ q ‖2
2

) }
+ ‖ ωm∇R2(W,S) ‖2 (3.4)
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for 0 ≤ m ≤ �,

|∂t ‖ ∇σ′ ‖2| ≤ C t−2
{
‖ ∇s ‖∞‖ ∇σ′ ‖2 + ‖ ∇σ ‖2

(
‖ ∇S ‖∞ + ‖ ω3/2∇S ‖2

) }

+C
{
t−1+βaI0 (‖ q ‖2) + t−1+5β/2I−3/2

(‖ q ‖2
2

) }
+ ‖ ∇R2(W,S) ‖2 . (3.4)0

Proof. (3.2) is identical with (I.6.2) and is proved in the same way. In order to
prove (3.3), we start from (cf. I.6.9))∣∣∂t ‖ ωkq′ ‖2

∣∣ ≤ t−1 ‖ [ωk, B0S ]q′ ‖2 + t−2
(‖ [ωk, s] · ∇q′ ‖2

+ ‖ (∇ · s)ωkq′ ‖2 + ‖ ωk ((∇ · s)q′) ‖2 + ‖ ωkQ(σ,W ) ‖2

)
t−1

(‖ [ωk, BS(w,w)]q′ ‖2 + ‖ ωk (2BS(W, q) +BS(q, q))W ‖2

)
+ ‖ ωk R1(W,S) ‖2 (3.5)

and we estimate the various terms in the RHS successively.
The contribution of B0 is estimated exactly as in I and yields

‖ [ωk, B0S ]q′ ‖2 ≤ C b0

(
t ‖ ωk−1q′ ‖2 +tk−δ/3 ‖ q′ ‖r

)
. (3.6)

The contribution of Q(s, q′) is estimated by Lemmas 2.1 and 2.2 as

‖ [ωk, s] · ∇q′ ‖2 + ‖ (∇ · s)ωkq′ ‖2 + ‖ ωk ((∇ · s)q′) ‖2

≤ C
(
‖ ∇s ‖∞ + ‖ ω3/2∇s ‖2

)
‖ ωkq′ ‖2 (3.7)

in the same way as in I, in the case k < 3/2.
The contribution of Q(σ,W ) is estimated by Lemmas 2.1 and 2.2 as

‖ ωkQ(σ,W ) ‖2 ≤ C
(‖ σ ‖∞ ‖ ωk∇W ‖2 + ‖ ωkσ ‖6 ‖ ∇W ‖3

+ ‖ ωk∇σ ‖2 ‖W ‖∞ + ‖ ∇σ ‖r ‖ ωkW ‖3/k

)
with δ(r) = k,

· · · ≤ C
(‖ σ ‖∞ ‖ ωk∇W ‖2 + ‖ ωk∇σ ‖2

(‖W ‖∞ + ‖ ωkW ‖3/k

))
≤ C a

(
tk−1/2 ‖ σ ‖∞ + ‖ ωk∇σ ‖2

)
(3.8)

by (3.1).
The contribution of BS with w = W + q yields a number of terms which we

order by increasing powers of q, q′. We first expand

BS(w,w) = BS(W,W ) + 2BS(W, q) +BS(q, q) . (3.9)
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By Lemmas 2.1 and 2.2, we estimate

‖ [ωk, BS(W,W )]q′ ‖2 ≤ C
(‖ ∇BS(W,W ) ‖3/ε + ‖ ωkBS(W,W ) ‖3/(k−1+ε)

)
× ‖ ωk−1+εq′ ‖2

for ε > 0. Taking ε = 3/2 − k yields

· · · ≤ C ‖ ωk+1B1(W,W ) ‖2 ‖ ω1/2q′ ‖2

≤ C Ik
(‖ ωkW ‖2 ‖W ‖∞

) ‖ ω1/2q′ ‖2

≤ C a2 ‖ ω1/2q′ ‖2 (3.10)

by Lemma 2.2 again and by (2.8) (3.1).
In a similar way, we estimate by Lemmas 2.1, 2.2 and by (2.8)

‖ [ωk, BS(W, q)]q′ ‖2

≤ C
(‖ ∇BS(W, q) ‖3 ‖ ωk−1q′ ‖6 + ‖ ωkBS(W, q) ‖3/k‖ q′ ‖r

)
with δ(r) = k,

· · · ≤ C ‖ ω3/2B1(W, q) ‖2 ‖ ωkq′ ‖2

≤ C I1/2

(
‖W ‖∞ ‖ ω1/2q ‖2 + ‖ ω1/2W ‖6‖ q ‖3

)
‖ ωkq′ ‖2

≤ C a I1/2

(
‖ ω1/2q ‖2

)
‖ ωkq′ ‖2 . (3.11)

In a similar way, we estimate

‖ [ωk, BS(q, q)]q′ ‖2 ≤ C
(‖ ∇BS(q, q) ‖3 + ‖ ωkBS(q, q) ‖3/k

) ‖ ωkq′ ‖2

≤ C ‖ ω3/2B1(q, q) ‖2 ‖ ωkq′ ‖2

≤ C I1/2

(
‖ ω1/2q ‖3 ‖ q ‖6

)
‖ ωkq′ ‖2

≤ C I1/2

(‖ ∇q ‖2
2

) ‖ ωkq′ ‖2 . (3.12)

We next estimate in a similar way

‖ ωk(BS(W, q)W ) ‖2 ≤ C ‖ ωkB1(W, q) ‖2

(‖W ‖∞ + ‖ ωkW ‖3/k

)
≤ C a ‖ ωkB1(W, q) ‖2

≤ C a Ik−1

((‖W ‖∞ + ‖ ωk−1W ‖3/(k−1)

) ‖ ωk−1q ‖2

)
≤ C a2 Ik−1

(‖ ωk−1q ‖2

)
. (3.13)

Finally, we estimate in a similar way

‖ ωk(BS(q, q)W ) ‖2 ≤ C ‖ ωkB1(q, q) ‖2

(‖W ‖∞ + ‖ ωkW ‖3/k

)
≤ C a Ik−1

(‖ ωk−1|q|2 ‖2

)
≤ C a Ik−1

(‖ ωkq ‖2 ‖ q ‖3

)
. (3.14)

Substituting (3.6)–(3.8) and (3.10)–(3.14) into (3.5) yields (3.3).
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The estimates (3.4) and (3.4)0 of σ′ are identical with (I.6.4) and (I.6.4)0 and
have exactly the same proof. The additional term with B0L in the equation for σ′

is included in R2(W,S) and does not appear explicitly at this stage. �
From there on, the treatment of the Cauchy problem at infinity for the aux-

iliary system follows that given in I verbatim. We need to estimate the difference
of two solutions of the linearized auxiliary system (1.26), and that estimate, given
by Lemma I.6.2, requires no modification because it uses regularity properties of
W which are weaker than (3.1). We then solve the Cauchy problem first for the
linearized auxiliary system (1.26) with finite initial time by Proposition I.6.1, then
at infinity by Proposition I.6.2, and then for the auxiliary system (1.20) or (1.23)
by a contraction method, by Proposition I.6.3, part (2). The only difference in the
proof of Propositions I.6.2 and I.6.3 is due to the term

t−2a tk−1/2 ‖ σ ‖∞
in (3.3), which did not appear in Lemma I.6.1, and which is due to the fact that
the assumption (3.1) is weaker than (I.6.1). That term generates an additional
term

a Z t−1−λ−3(1−β)/2

in the RHS of (I.6.59), with time decay strictly better than t−1−λ and therefore
harmless.

We now state the first main result of this section, which corresponds to Propo-
sition I.6.3, part (2).

Proposition 3.1 Let 1 < k < 3/2 < �. Let λ0, λ and β satisfy the conditions

λ > 0 , (1 <)λ+ k < λ0 , (3.15)

0 < β < 2/3 , β(�+ 1) < λ0 . (3.16)

Let (A+, Ȧ+) satisfy the conditions (2.10). Let (U(1/t)W,S) ∈ C([1,∞), Xk+1,�+1)
∩ C1([1,∞), Xk,�) and let (W,S) satisfy the estimates

Sup
t≥1

{
‖W ‖∞ ∨ ‖W ;H3/2 ‖ ∨ t1/2−k ‖W ; Ḣk+1 ‖

}
≤ a <∞ , (3.17)

‖ ωm∇S ‖2 ≤ b t1−η+β(m−3/2) (3.18)

for some η > 0 and for 0 ≤ m ≤ �+ 1,

‖ R1(W,S) ‖2 ≤ c0 t
−1−λ0 , (3.19)

‖ ωkR1(W,S) ‖2 ≤ c1 t
−1−λ , (3.20)

‖ ωm∇R2(W,S) ‖2 ≤ c2 t
−1−λ0+β(m+1) for 0 ≤ m ≤ � . (3.21)

Then there exists T , 1 ≤ T < ∞ and positive constants Y0, Y and Z, depending
on (A+, Ȧ+) through the norms in (2.10) and depending on k, �, β, λ0, λ, a, b,
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c0, c1 and c2 such that the auxiliary system (1.20) has a unique solution (w, s) ∈
C(I,Xk,�), where I = [T,∞), satisfying the estimates

‖ w −W ‖2 ≤ Y0 t
−λ0 , (3.22)

‖ ωk(w −W ) ‖2 ≤ Y t−λ , (3.23)

‖ ωm∇(s− S) ‖2 ≤ Z t−λ0+β(m+1) for 0 ≤ m ≤ � , (3.24)

for all t ∈ I.

We now turn to the construction of approximate solutions (W,S) of the
system (1.20) satisfying the assumptions of Proposition 3.1 and in particular the
estimates (3.17), (3.18) of (W,S) and the estimates (3.19)–(3.21) of the remainders.
In I we took for (W,S) the second order approximate solution of the system (1.20)
in an iterative scheme not taking into account the terms containing B0, thereby
ending with an explicit B0W term in the remainder R1(W,S). Here, following [8],
we improve that asymptotic form by adding one more term in W , so as to partly
cancel the B0SW term in R1(W,S). Thus we define

W = w0 + w1 + w2 ≡W1 + w2 , S = s0 + s1 (3.25)

where w0, s0, w1, s1 are the same as in I, namely

w0 = U∗(1/t)w+ , (3.26)

s0(t) = −
∫ t

1

dt′ t′−1∇BL(w0(t′), w0(t′)) , (3.27)

w1(t) = −U∗(1/t)
∫ ∞

t

dt′ t′−2U(1/t′)Q(s0(t′), w0(t′)) , (3.28)

s1(t) = −
∫ ∞

t

dt′ t′−2s0(t′) · ∇s0(t′) + 2
∫ ∞

t

dt′ t′−1∇BL(w0(t′), w1(t′)) . (3.29)

In order to partly cancel B0SW in R1(W,S), we take w2 = hw0, thereby obtaining
a linear contribution of w2 to R1(W,S)(

∂t − i(2t2)−1∆
)
w2 = h

(
∂t − i(2t2)−1∆

)
w0 − it−2∇h · ∇w0 + (∂th)w0

−i(2t2)−1(∆h)w0 . (3.30)

The first term in the RHS is small, actually zero, by the choice of w0. We use the
last term in the RHS to cancel the main contribution B0Sw0 of B0SW by making
the choice

w2 = hw0 , h = −2t∆−1B0S . (3.31)

Note that because of the short range cut-off in B0S , h is well defined, actually
h ∈ C([1,∞), Hk+2). With that choice, the remainders become

Ri(W,S) = Ri0(W,S) +Riν(W,S) i = 1, 2 , (3.32)
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where Ri0(W, s) are the parts not containing w2 or B0L, namely

R10(W,S) = −t−2 (Q(S,w1) +Q(s1, w0))
−it−1 (B0Sw1 +BS(W1,W1)W1) (3.33)

R20(W,S) = −t−2 (s0 · ∇s1 + s1 · ∇s0 + s1 · ∇s1) + t−1∇BL(w1, w1) , (3.34)

while Riν(W,S) are the parts containing w2 or B0L, namely

R1ν(W,S) = −t−2Q(S,w2) − it−1B0Sw2 + (∂th)w0 − it−2∇h · ∇w0

−it−1 (BS(W,W )w2 +BS(W +W1, w2)W1) , (3.35)

R2ν(W,S) = t−1∇B0L + t−1∇BL(W +W1, w2) . (3.36)

The parts Ri0 of the remainders are the remainders occurring in I, up to the
replacement of B0 by B0S and the disappearance of the term B0Sw0, precisely the
term which was responsible for the support condition in I. Up to a minor point
(see below), (W1, S) and Ri0(W,S) have been estimated in I as follows (see Lemma
I.7.1).

Lemma 3.2 Let 0 < β < 1, k+ ≥ 3, w+ ∈ Hk+ and a+ = |w+|k+ . Then the
following estimates hold for all t ≥ 1:

|w0|k+ ≤ a+ , (3.37)

‖ ωm s0 ‖2 ≤
{
C a2

+ �n t for 0 ≤ m ≤ k+

C a2
+ tβ(m−k+) for m > k+ ,

(3.38)

|w1|k+−1 ≤ C a3
+ t−1(1 + �n t) , (3.39)

‖ ωm s1 ‖2 ≤




C a4
+ t−1(1 + �n t)2 for 0 ≤ m ≤ k+ − 1

C a4
+ t−1+β(m+1−k+)(1 + �n t)
for k+ − 1 < m < k+ − 1 + β−1 ,

(3.40)

‖ ωm R20(W,S) ‖2 ≤




C(a+) t−3(1 + �n t)3 for 0 ≤ m ≤ k+ − 2

C(a+) t−3+β(m+2−k+)(1 + �n t)2

for k+ − 2 < m < k+ − 2 + β−1 ,
(3.41)

Let in addition 0 ≤ k ≤ k+−1 and let B0 satisfy the estimate (2.12) for 0 ≤ m ≤ k.
Then

‖ ωmR10(W,S) ‖2 ≤ C(a+)
{
t−3(1 + �n t)2 + t−1−β(k+−m+1)

}
+ C b0 a

3
+ tm−5/2(1 + �n t) for 0 ≤ m ≤ k . (3.42)
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Proof. The estimates (3.37)–(3.42) are those of Lemma I.7.1 except for the estimate
of the term t−1B0Sw1 in R10(W,S) which is responsible for the last term in (3.42).
We estimate that term by Lemmas 2.1 and 2.2 and by (2.12) (3.39) as

‖ ωmB0Sw1 ‖2

≤
{
C

(‖ ωmB0 ‖2 ‖ w1 ‖∞ + ‖ B0S ‖r ‖ ωmw1 ‖1/m

)
for m ≤ 1/2

C (‖ ωmB0 ‖2 ‖ w1 ‖∞ + ‖ B0S ‖∞ ‖ ωmw1 ‖2) for m > 1/2

≤ C b0 a
3
+ tm−3/2(1 + �n t) (3.43)

for 0 ≤ m ≤ k, and 1/r = 1/2 − m for m ≤ 1/2, which completes the proof of
(3.42). �

We now turn to estimating Riν(W,S), i = 1, 2. We first reduce that question
to that of estimating h and B0L, assuming for the moment a boundedness property
of w2 which is part of (3.17) and which we shall prove later. We define the auxiliary
space

Y = L∞
(
[1,∞), L∞ ∩H3/2

)
(3.44)

and we remark that for k+ > 5/2, it follows from (3.37), (3.39) that W1 = w0 +w1

∈ Y . We can now state the estimates of Riν(W,S).

Lemma 3.3 Let 1 < k < 3/2 and k+ ≥ 3, let w+ ∈ Hk+ and let a+ = |w+|k+ .
Assume that w2 ∈ Y and let

‖W1 ‖Y ∨ ‖W ‖Y ≤ a <∞ . (3.45)

Let B0 satisfy the estimate (2.12) for 0 ≤ m ≤ k. Then the following estimates
hold for all t ≥ 1:

‖ R1ν(W,S) ‖2 ≤ C(a+)t−2�n t ‖ ∇h ‖2 +C a+

{
b0 t

−1 ‖ h ‖2

+ ‖ ∂th ‖2 +a2 t−1 (‖ h ‖2 +I0(‖ h ‖2))
}
, (3.46)

‖ ωkR1ν(W,S) ‖2 ≤ C(a+)t−2�n t
(‖ ωk∇h ‖2 + ‖ ωδ∇h ‖2

)
+C a+

{
b0

(
tk−1−δ/3 ‖ ωδh ‖2 +t−1 ‖ ωkh ‖2

)
+ ‖ ωk∂th ‖2 + ‖ ωδ∂th ‖2

+t−2
(‖ ωk+1h ‖2 + ‖ ω2h ‖2

)
+ t−1 a2

(‖ ωkh ‖2 +Ik−1

(‖ ωk−1h ‖2

))}
(3.47)

for 0 < δ < 1/2,

‖ ωmR2ν(W,S) ‖2 ≤ t−1 ‖ ωm+1B0L ‖2 +C a a+ t−1+βmI0 (‖ h ‖2) (3.48)

for all m ≥ 0.
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Proof. We first consider ‖ R1ν(W,S) ‖2. We estimate successively

‖ Q(S,w2) ‖2 ≤ ‖ S ‖∞ (‖ w0 ‖∞ ‖ ∇h ‖2 + ‖ ∇w0 ‖3 ‖ h ‖6)
+ ‖ ∇S ‖3 ‖ w0 ‖∞ ‖ h ‖6 ≤ C(a+)�n t ‖ ∇h ‖2 (3.49)

by (3.37), (3.38), (3.40) and Lemma 2.1,

‖ B0Sw2 ‖2 ≤ ‖ B0S ‖∞ ‖ w0 ‖∞ ‖ h ‖2 ≤ C b0 a+ ‖ h ‖2 , (3.50)

by (2.14) and (3.37),

‖ (∂th)w0 ‖2 ≤ ‖ w0 ‖∞ ‖ ∂th ‖2 ≤ C a+ ‖ ∂th ‖2 , (3.51)

‖ ∇h · ∇w0 ‖2 ≤ ‖ ∇w0 ‖∞ ‖ ∇h ‖2 ≤ C a+ ‖ ∇h ‖2 , (3.52)

‖ BS(W,W )w2 ‖2 ≤ ‖ BS(W,W ) ‖∞ ‖ w0 ‖∞ ‖ h ‖2 ≤ C a+ a2 ‖ h ‖2 , (3.53)

by estimating BS(W,W ) in a way similar to that in Lemma 3.1,

‖ BS(W +W1, w2)W1 ‖2 ≤ C ‖W1 ‖3 ‖ ωB1(W +W1, w2) ‖2

≤ C ‖W1 ‖3 ‖W +W1 ‖∞ ‖ w0 ‖∞ I0(‖ h ‖2) ≤ Ca+a
2 I0(‖ h ‖2) (3.54)

by Lemma 2.1 and by (2.8). Collecting (3.49)–(3.54) yields (3.46).
We next consider ωkR1ν(W,S). We estimate successively

‖ ωkQ(S,w2) ‖2≤ C
{
‖ w0 ‖∗ ‖ S ‖∗ ‖ ωk+1h ‖2

+
(
‖ w0 ‖∗ ‖ ωk+1S ‖3/(1+δ) + ‖ ωk+1w0 ‖3/(1+δ) ‖ S ‖∗

)
‖ ωδ∇h ‖2

}
≤ C(a+)�nt

(‖ ωk∇h ‖2 + ‖ ωδ∇h ‖2

)
(3.55)

by (3.37), (3.38), (3.40) and Lemmas 2.1 and 2.2, with

‖ f ‖∗ = ‖ f ‖∞ + ‖ ∇f ‖3 ,

‖ ωk(B0Sw2) ‖2 ≤ C
{
‖ B0 ‖∞ ‖ w0 ‖∞ ‖ ωkh ‖2 +

(
‖ ωkB0 ‖3/δ ‖ w0 ‖∞

+ ‖ B0 ‖∞ ‖ ωkw0 ‖3/δ

)
‖ ωδh ‖2

}
≤ C b0 a+

(
‖ ωkh ‖2 +tk−δ/3 ‖ ωδh ‖2

)
(3.56)

by Lemmas 2.1 and 2.2 and by (2.14), (3.37),

‖ ωk((∂th)w0) ‖2 ≤ C
(‖ w0 ‖∞ ‖ ωk∂th ‖2 + ‖ ωkw0 ‖3/δ ‖ ωδ∂th ‖2

)
≤ C a+

(‖ ωk∂th ‖2 + ‖ ωδ∂th ‖2

)
(3.57)
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Lemmas 2.1 and 2.2 and by (3.37),

‖ ωk(∇h · ∇w0) ‖2 ≤ C
(‖ ∇w0 ‖∞ ‖ ωk+1h ‖2 + ‖ ωk+1w0 ‖3 ‖ ∇h ‖6

)
≤ C a+

(‖ ωk+1h ‖2 + ‖ ω2h ‖2

)
(3.58)

by Lemmas 2.1 and 2.2 and by (3.37). We next estimate

‖ ωk(BS(W,W )w2) ‖2 ≤ C
(‖ BSw0 ‖∞ + ‖ ωk(BSw0) ‖3/k

) ‖ ωkh ‖2

≤ C
(‖ BS ‖∞ + ‖ ωkBS ‖3/k

) (‖ w0 ‖∞ + ‖ ωkw0 ‖3/k

) ‖ ωkh ‖2

≤ C a+ a2 ‖ ωkh ‖2 (3.59)

where we have omitted the arguments in BS , by Lemmas 2.1 and 2.2 and by (3.37),
(3.45), and after estimating BS in a way similar to that in Lemma 3.1. In the same
way

‖ ωk(BS(W +W1, w2)W1) ‖2

≤ C
(‖W1 ‖∞ + ‖ ωkW1 ‖3/k

) ‖ ωkB1(W +W1, w2) ‖2

≤ CaIk−1

(‖ ωk−1h ‖2

(‖ w0(W +W1) ‖∞ + ‖ ωk−1(W +W1)w0 ‖3/(k−1)

))
≤ Ca+a

2Ik−1

(‖ ωk−1h ‖2

)
. (3.60)

Collecting (3.55)–(3.60) yields (3.47).
We finally estimate R2ν . From (2.6), (2.8) we obtain

‖ ωmR2ν(W,S) ‖2 ≤ t−1 ‖ ωm+1B0L ‖2

+C t−1+βm I0 (‖W +W1 ‖∞ ‖ w0 ‖∞ ‖ h ‖2)

which yields (3.48) by using (3.37), (3.45). �

In order to complete the estimate of the parts Riν(W,S), i = 1, 2, of the
remainders, we now estimate h and B0L. Those estimates require some restrictions
on the behaviour of (FA+, F Ȧ+) at ξ = 0. Those restrictions are imposed in a
dilation homogeneous way through the use of a parameter µ ∈ (−1, 1) in terms
of quantities which have the same scaling properties as ‖ A+; Ḣ−3/2−µ ‖ and
‖ Ȧ+; Ḣ−5/2−µ ‖. They will be further discussed at the end of this section.

Lemma 3.4 Let 1 < k < 3/2 and −1 < µ < 1. Let (A+, Ȧ+) satisfy the conditions

A+ ∈ Hk−1 , Ȧ+ ∈ L2 , (3.61)

xA+ ∈ Hk−1 , xȦ+ ∈ L3/2 , (3.62)

xA+ ∈ Ḣ−1/2−µ , A+ , xȦ+ ∈ Ḣ−3/2−µ , Ȧ+ ∈ Ḣ−5/2−µ . (3.63)µ

Let B0L and h be defined by (1.17) and (3.31).
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Then the following estimates hold :

‖ ωmB0L ‖2≤ Ctm−1/2+(β0−1)(m+3/2+µ)
(
‖ A+; Ḣ−3/2−µ ‖ + ‖ Ȧ+; Ḣ−5/2−µ ‖

)
(3.64)

for all m ≥ 0,

‖ ωmh ‖2 ≤ 2tm−3/2
(
1 ∨ t(β0−1)(m−1/2+µ)

)(
‖ A+; Ḣρ ‖ + ‖ Ȧ+; Ḣρ−1 ‖

)
(3.65)

for all m ≤ k + 1, where

ρ = (m− 2) ∨ (−3/2 − µ) = −3/2− µ+ (m− 1/2 + µ) ∨ 0 , (3.66)

‖ ωm∂th ‖2 ≤ C tm−5/2
(
1 ∨ t(β0−1)(m−1/2+µ)

)(
‖ xA+; Ḣρ+1 ‖

+ ‖ xȦ+; Ḣρ ‖ + ‖ A+; Ḣρ ‖ + ‖ Ȧ+; Ḣρ−1 ‖
)

(3.67)

for all m ≤ k and ρ given by (3.66),

‖ h ‖∞ ≤ C(A+, Ȧ+) (3.68)

where the constant depends on (A+, Ȧ+) through the norms in (3.61), (3.63)µ.

Proof. (3.64) follows immediately from the definitions (1.4), (1.13) and (1.17) of
A0 and B0L, from (2.6) and from (3.63)µ.

In order to derive the estimates of h, it is convenient to come back to the
variable A0. The definition (3.31) of h can be rewritten as

h = 2t2ω−2D−1
0 A0S = D−1

0 f (3.69)

where
f = 2ω−2A0S , (3.70)

A0S is defined by

A0S = t−1 D−1
0 B0S = χS A0 ≡ F−1

(
1 − χ(ξt1−β0)

)
FA0 (3.71)

and χ is defined before (1.16).
(3.65). We estimate

‖ ωmh ‖2 = tm−3/2 ‖ ωmf ‖2 = 2tm−3/2 ‖ ωm−2A0S ‖2

≤ 2tm−3/2
(
1 ∨ t(β0−1)(m−1/2+µ)

)
‖ ωρA0 ‖2 (3.72)

and the result follows from the assumptions (3.61) (3.63)µ.
(3.67). We use in addition the commutation relations

t∂t = D−1
0 PD0 , Pω−j = ω−j(P + j) , [P, eiωt] = 0 (3.73)
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where P is the dilation generator

P = t∂t + x · ∇ .

In particular
∂th = t−1 t ∂t D

−1
0 f = t−1D−1

0 Pf . (3.74)

Using the commutation relations (3.73), we compute

(1/2)Pf = ω−2(P + 2)A0S

= ω−2 cosωt (P + 2)χSA+ + ω−3 sinωt (P + 3)χSȦ+ .

Using the fact that P + 3 = t∂t + ∇ · x and the commutation relation

[P, χS ] = −βF−1ξt1−β0 · ∇χ(ξt1−β0)F ≡ χ̃

we obtain

(1/2)Pf = ω−2 cosωt ∇ · χSxA+ + ω−3 sinωt ∇ · χSxȦ+

+ω−2 cosωt (χ̃− χS)A+ + ω−3 sinωt χ̃Ȧ+ .
(3.75)

We then estimate
‖ ωm∂th ‖2= tm−5/2 ‖ ωmPf ‖2 (3.76)

and we estimate the contribution of the various terms of (3.75) exactly as in the
proof of (3.65), with (m,A+, Ȧ+) replaced by (m − 1, xA+, xȦ+) in the first two
terms, and with χS replaced by χ̃− χS or by χ̃ in the last two terms. This yields
(3.67).

(3.68). By Lemma 2.1,

‖ h ‖∞ ≤ C ‖ ω3/2−εh ‖1/2
2 ‖ ω3/2+εh ‖1/2

2 (3.77)

and (3.68) follows from (3.65) with 0 < ε ≤ (k − 1/2) ∧ (µ+ 1). �
We now collect the results of Lemmas 3.2, 3.3 and 3.4 in order to exhibit a

set of assumptions which imply those of Proposition 3.1

Proposition 3.2. Let 1 < k < 3/2 < �. Let µ, λ0, λ, β0, β and k+ satisfy the
conditions

−1/4 < µ ≤ 1/2 (3.78)

λ > 0 , (1 <)λ+ k < λ0 < 7/6 + 2µ/3(≤ 3/2) (3.79)

0 < β0 ≤ β < 2/3 , β(�+ 1) < λ0 (3.80)

β0(1/2 − µ) > λ0 − 1 − µ (3.81)

β0(µ+ 5/2) < 2 + µ− λ0 (3.82)

k+ ≥ k + 2 , β(k+ + 1) ≥ λ0 , β(�+ 3 − k+) < 1 . (3.83)
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Let w+ ∈ Hk+ and let (A+, Ȧ+) satisfy (2.10), (3.62), (3.63)µ. Let (W,S) be
defined by (3.25)–(3.29), (3.31).

Then (W,S) satisfy the estimates (3.17), (3.18), (3.19), (3.20), (3.21) (with
0 < η < 1−3β/2, in (3.18)) and all the assumptions of Proposition 3.1 are satisfied.

Proof. The contribution of the terms not containing w2 or B0L in (W,S) and in the
remainders are estimated by Lemma 3.2 in the same way as in I. We concentrate
on the remaining terms. The terms containing w2 are estimated by Lemma 3.3 in
terms of h, and h and B0L are estimated by Lemma 3.4.

The condition (3.17) restricted to w2 = hw0 follows from the fact that it
holds for h by (3.65), (3.68) and trivially for w0, and that it is multiplicative.
Together with (3.45) for W1, it implies (3.45) for W .

We next consider R1ν(W,S). Its L2 norm is estimated by (3.46). By Lemma
3.4, it satisfies the estimate (3.19) provided

(1 − β0) ((1/2 − µ) ∨ 0) < 3/2 − λ0 (3.84)

which reduces to (3.81) for µ ≤ 1/2.
Similarly, R1ν(W,S) is estimated in Ḣk norm by (3.47) and satisfies the

estimate (3.20) for δ sufficiently small under the condition (3.84) because the time
decay of (3.47) is worse than that of (3.46) at worst by a factor tk+2δ/3 which is
better than the allowed tλ0−λ for 0 < 2δ/3 ≤ λ0 − λ− k.

We now turn to R2ν(W, s). The contribution of B0L is estimated by (3.64)
and satisfies the estimate (3.21) provided

m+ 1/2 + (β0 − 1)(m+ 7/2 + µ) ≤ −1 − λ0 + β(m+ 1) (3.85)

which is implied by (3.82) for β0 ≤ β.
The term containing w2 is estimated by (3.48) and satisfies the estimate

(3.21) by (3.65) under the condition (3.84).
We remark here that the upper bound on λ0 in (3.79) is the compatibility

condition of (3.81), (3.82). The remaining conditions in (3.78)–(3.83) come from I.
�

We now comment briefly on the various parameters that occur in Proposition
3.2 and on the conditions (3.78)–(3.83) that they have to satisfy. The parameters
k and � characterize the regularity of the spaces of resolution for (w, s). As a
consequence, k also characterizes the regularity of (A+, Ȧ+) as given by (2.10).

The parameter µ characterizes the behaviour of (Â+,
̂̇A+) = (FA+, F Ȧ+) at ξ =

0 through the condition (3.63)µ. The parameters λ0 and λ are the time decay
exponents of the norms of q in L2 and in Ḣk. The µ dependent upper bound
on λ0 in (3.79) ranges over (1, 3/2] when µ ranges over (−1/4, 1/2]. Since the
condition (3.84) saturates at λ0 < 3/2 for µ ≥ 1/2, there is no point in considering
values of µ > 1/2. The parameters β0 and β characterize the splitting of B0 and
B1 respectively into short range and long range parts, and therefore the splitting
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of the Schrödinger equation into transport and Hamilton-Jacobi equations. The
parameter β should not be too large and can be taken equal to β0. The parameter
β0 satisfies two inequalities (3.81) and (3.82) in opposite directions, depending
on λ0 and µ, and expressing the fact that B0S and B0L are not too large. The
upper bound on λ0 in (3.79) is the compatibility condition of those inequalities.
Whenever it is satisfied, the value β0 = 1/3 is allowed. Actually both (3.81) and
(3.82) reduce to that upper bound for β0 = 1/3. Finally k+ characterizes the
regularity of w+ and should be sufficiently large, depending on k, �, λ0 and β.

Remark 3.1. For µ = 1/2 the short range restriction is no longer needed in the
estimates of h and ∂th in Lemma 3.4, and therefore the splitting of B0 into short
range and long range parts is no longer needed, namely B0 can be kept entirely in
the equation for w.

We finally discuss the condition (3.63)µ of Lemma 3.4. That condition re-
stricts the behaviour of the relevant functions for small |ξ| in Fourier transformed
variables. Let A be any of the functions A+, Ȧ+, xA+, xȦ+ and define A< by
Â<(ξ) = χ(ξ)Â(ξ). Then the conditions on A< contained in (3.63)µ all take the
form

A< ∈ Ḣ−3/2−ν (3.86)

for ν = µ, µ±1. We first remark that in the proof of Lemma 3.4, all such conditions
can be replaced by

|ξ|−νÂ< ∈ L∞ (3.87)

at the expense of inserting an additional factor (�n t)1/2 in (3.65) in the case of
equality, namely for m = 1/2 − µ. This follows from the fact that

‖ |ξ|m−3/2 ÂS< ‖2 ≤
{

C ‖ |ξ|−ν Â< ‖∞
(
1 ∨ t(β0−1)(m+ν)

)
for m �= −ν

C ‖ |ξ|−ν Â< ‖∞ (�n t)1/2 for m = −ν .
(3.88)

The occurrence of the factor (�n t)1/2 is harmless for the applications. The condi-
tion (3.86) is weaker than (3.87) as regards the behaviour of Â< away from zero,
since it requires only Â< ∈ L2

loc instead of Â< ∈ L∞
loc. Furthermore (3.86) almost

follows from (3.87), up to a change of ν into ν + ε. In fact

‖ |ξ|−3/2−ν Â< ‖2 ≤ C ε−1/2 ‖ |ξ|−ν−ε Â< ‖∞ (3.89)

for ε > 0. In addition, under the short range condition

‖ |ξ|−3/2−ν ÂS< ‖2 ≤ C(�n t)1/2 ‖ |ξ|−ν Â< ‖∞ (3.90)

which is the special case m = −ν of (3.88).

The restrictions on (Â+,
̂̇A+) at ξ = 0 expressed by (3.86) have the unpleasant

feature that for ν ≥ 0 they cannot be ensured by imposing decay of (A+, Ȧ+) at
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infinity in space and that they require in addition some moment conditions. For
instance even for A ∈ S one has

ω−3/2−ν A< = C|x|−3/2+ν ∗ A<

for |ν| < 3/2 [9], which behaves as

|x|−3/2+ν

∫
A dx

as |x| → ∞ and therefore cannot be in L2 for ν ≥ 0 unless
∫
A dx = 0. More

generally when ν increases, vanishing of the n-th moment of A is necessary as
soon as ν ≥ n. Actually the parameter µ in (3.63)µ has been introduced in order
to minimize the number of such conditions by taking µ small.

We now give sufficient conditions on (A+, Ȧ+) in terms of space decay and
vanishing of suitable moments so as to ensure the low frequency part of (3.63)µ.

Lemma 3.5 Let −1 < µ < 1. Let (A+, Ȧ+) satisfy (3.61), (3.62) and in addition

x A+ ∈ L3/(2+µ)∨2 ,

∫
Ȧ+ dx = 0 , 〈x〉1+µ+ε

Ȧ+ ∈ L1 , (3.91)

A+, xȦ+ ∈ L3/(3+µ) for µ < 0 , (3.92)∫
A+ dx =

∫
x Ȧ+ dx = 0 , 〈x〉µ+ε

A+ ∈ L1 for µ ≥ 0 . (3.93)

Then (3.63)µ holds.

Proof. The high frequency part of (A+, Ȧ+) is controlled by (3.61), (3.62) and it
is sufficient to consider (A+<, Ȧ+<), although in some cases the high frequency
parts are also controlled by (3.91), (3.92).

We first consider xA+. For −1/2 ≤ µ < 1, we estimate

‖ ω−1/2−µ x A+ ‖2 ≤ C ‖ x A+ ‖3/(2+µ) (3.94)

by Lemma 2.1. For µ ≤ −1/2, we estimate simply

‖ ω−1/2−µ x A+< ‖2 ≤ C ‖ x A+ ‖2 . (3.95)

We next consider A+ and xȦ+ together and we use A to denote either of them.
For −1 < µ < 0, we estimate

‖ ω−3/2−µA ‖2 ≤ C ‖ A ‖3/(3+µ) (3.96)

by Lemma 2.1. For µ ≥ 0, we estimate

|ξ|−µ−ε|Â(ξ)| = (2π)−3/2 |ξ|−µ−ε

∣∣∣∣
∫
dx (exp(−ixξ) − 1)A(x)

∣∣∣∣
≤ C ‖ |x|µ+ε A ‖1 (3.97)
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for 0 ≤ µ + ε ≤ 1. The required estimate then follows from (3.61), (3.62), (3.91)
and (3.93).

We finally consider Ȧ+. For µ < 0, we apply the previous result with A
replaced by Ȧ+ and µ replaced by µ− 1. For µ ≥ 0, we estimate

|ξ|−1−µ−ε| ̂̇A(ξ)| = (2π)−3/2 |ξ|−1−µ−ε

∫
dx (exp(−ixξ) − 1 − ixξ) Ȧ+(x)

≤ C ‖ |x|1+µ+ε Ȧ+ ‖1 (3.98)

for 0 ≤ µ + ε ≤ 1. The required estimate then follows from (3.61), (3.91), (3.93).
�

4 Wave operators and asymptotics for (u, A)

In this section we complete the construction of the wave operators for the system
(1.1), (1.2) and we derive asymptotic properties of solutions in their range. The
construction relies in an essential way on Propositions 3.1 and 3.2. So far we have
worked with the system (1.20) for (w, s) and the first task is to reconstruct the
phase ϕ. Corresponding to S = s0 + s1, we define φ = ϕ0 + ϕ1 where

ϕ0 = −
∫ t

1

dt′ t′−1 BL (w0(t′), w0(t′)) , (4.1)

ϕ1 = −
∫ ∞

t

dt′(2t′2)−1|s0(t′)|2 + 2
∫ ∞

t

dt′ t′−1 BL (w0(t′), w1(t′)) , (4.2)

so that s0 = ∇ϕ0 and s1 = ∇ϕ1.
Let now (w, s) be the solution of the system (1.20) constructed in Proposition

3.1 and let (q, σ) = (w, s) − (W,S). We define

ψ = −
∫ ∞

t

dt′(2t′2)−1 (σ · (σ + 2S) + s1 · (s1 + 2s0)) (t′)

+
∫ ∞

t

dt′ t′−1 (BL(q, q) + 2BL(W, q) +BL(w1, w1)) (t′) (4.3)

which is taylored to ensure that ∇ψ = σ, given the fact that s0, s1 and σ are
gradients. The integral is easily seen to converge in Ḣ1 (see I.8.4), and to satisfy

‖ ∇ψ ‖2 = ‖ σ ‖2 ≤ C t−λ0 . (4.4)

Finally we define ϕ = φ+ ψ so that ∇ϕ = s, and (w,ϕ) solves the system (1.18).
For more details on the reconstruction of ϕ from s, we refer to Section 8 of I.

We can now define the wave operators for the system (1.1), (1.2) as follows.
We start from the asymptotic state (u+, A+, Ȧ+) for (u,A). We define w+ = Fu+,
we define B0 by (1.4) (1.13), namely

A0 = K̇(t) A+ +K(t) Ȧ+ = t−1 D0 B0 ,

and we define (W,S) by (3.25)–(3.29), (3.31).
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We next solve the system (1.20) with infinite initial time by Propositions 3.1
and 3.2 and we reconstruct ϕ from s as explained above, namely ϕ = ϕ0 +ϕ1 +ψ
with ϕ0, ϕ1 and ψ defined by (4.1), (4.2), (4.3) with (q, σ) = (w, s) − (W,S). We
finally substitute (w,ϕ) thereby obtained into (1.11), (1.3) thereby obtaining a
solution (u,A) of the system (1.1), (1.2). The wave operator is defined as the map
Ω : (u+, A+, Ȧ+) → (u,A).

In order to state the regularity properties of u that follow in a natural way
from the previous construction, we introduce appropriate function spaces. In addi-
tion to the operatorsM = M(t) andD = D(t) defined by (1.8), (1.9), we introduce
the operator

J = J(t) = x+ it ∇ , (4.5)

the generator of Galilei transformations. The operators M , D, J satisfy the com-
mutation relation

i M D ∇ = J M D . (4.6)

For any interval I ⊂ [1,∞) and any k ≥ 0, we define the space

X k(I) =
{
u : D∗M∗u ∈ C(I,Hk)

}
=

{
u :< J(t) >k u ∈ C(I, L2)

}
(4.7)

where 〈λ〉 = (1 + λ2)1/2 for any real number or self-adjoint operator λ and where
the second equality follows from (4.6).

We now collect the information obtained for the solutions of the system (1.1),
(1.2) and state the main result of this paper as follows.

Proposition 4.1. Let 1 < k < 3/2 < �. Let µ, λ0, λ, β0, β and k+ satisfy the
conditions (3.78)–(3.83).

Let u+ ∈ FHk+ , let w+ = Fu+ and a+ = |w+|k+ . Let (A+, Ȧ+) satisfy
(2.10), (3.62), (3.63)µ. Let (W,S) be defined by (3.25)–(3.29), (3.31). Then

(1) There exists T , 1 ≤ T <∞ such that the auxiliary system (1.20) has a unique
solution (w, s) ∈ C([T,∞), Xk,�) satisfying

‖ w(t) −W (t) ‖2 ≤ C
(
a+, A+, Ȧ+

)
t−λ0 , (4.8)

‖ ωk(w(t) −W (t)) ‖2 ≤ C
(
a+, A+, Ȧ+

)
t−λ , (4.9)

‖ ωm(s(t)−S(t)) ‖2 ≤ C
(
a+, A+, Ȧ+

)
t−λ0+βm for 0 ≤ m ≤ �+ 1 , (4.10)

for all t ≥ T , where the constants C(a+, A+, Ȧ+) depend on (A+, Ȧ+) through
the norms associated with (2.10), (3.62), (3.63)µ.

(2) Let φ = ϕ0 + ϕ1 be defined by (4.1), (4.2), let ϕ = φ + ψ with ψ defined by
(4.3) and (q, σ) = (w, s) − (W,S). Let

u = MD exp(−iϕ)w (1.11) ≡ (4.11)
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and define A by (1.3), (1.4), (1.5). Then u∈X k([T,∞)), (A,∂tA)∈C([T,∞),
Hk ⊕ Hk−1), (u,A) solves the system (1.1), (1.2) and u behaves asymptot-
ically in time as MD exp(−iφ)W in the sense that it satisfies the following
estimates:

‖ u(t) −M(t) D(t) exp(−iφ(t))W (t) ‖2 ≤ C(a+, A+, Ȧ+)t−λ0 , (4.12)

‖ |J(t)|k (exp(iφ(t, x/t))u(t) −M(t) D(t) W (t)) ‖2 ≤ C(a+, A+, Ȧ+)t−λ ,
(4.13)

‖ u(t) −M(t) D(t) exp(−iφ(t)) W (t) ‖r ≤ C(a+, A+, Ȧ+)t−λ0+(λ0−λ)δ(r)/k

(4.14)
for 0 ≤ δ(r) = (3/2 − 3/r) ≤ k, for all t ≥ T .
Define in addition

A2 = A−A0 −A1(|DW |2) . (4.15)

Then A behaves asymptotically in time as A0 +A1(|DW |2) in the sense that
A2 satisfies the following estimates:

‖ A2(t) ‖2 ≤ C(a+, A+, Ȧ+) t−λ0+1/2 (4.16)

‖ ∇A2(t) ‖2 ≤ C(a+, A+, Ȧ+) t−2λ0−1/2+(λ0−λ)3/2k (4.17)

‖ ω2k−1/2 A2(t) ‖2 ≤ C(a+, A+, Ȧ+) t−2λ−2k+1 (4.18)

for all t ≥ T .

(3) The solution (u,A) also behaves asymptotically as (MD exp(−iφ)W1, A0 +
A1(|DW1|)2 in the sense that the estimates (4.12)–(4.14) and (4.16)–(4.18)
also hold with W replaced by W1 (see (3.25)).

Sketch of proof. Part (1) is a restatement of the conclusions of Proposition 3.1
supplemented by (4.4) and follows from Propositions 3.1 and 3.2.

Part (2) follows from Part (1) and is proved in exactly the same way as Part
(2) of Proposition I.8.1.

Part (3) is proved in the same way as Part (2). It follows from the fact that
the only estimates of W and q = w−W that are used in the proof of Part (2) are
(3.45) which also holds for W1 and (4.8) (4.9) which also hold for w2. In fact, the
latter estimates hold for h by Lemma 3.4, especially (3.65), under the assumptions
of Proposition 3.2 and follow therefrom for w2 in a trivial way. �
Remark 4.1. It may seem surprising that the improved asymptotic form W for w
does not give rise to better asymptotic estimates than the simpler form W1 in the
norms (4.12)–(4.14) and (4.16)–(4.18). The reason is that the additional term w2

is small and gives rise to small contributions in terms of those norms. This does
not prevent that term to give a large contribution to the time derivative ∂tw in
(1.20) through the derivative term t−2∆w2. That contribution is essential to allow
for the solution of the system (1.20) without assuming the support condition. The
same phenomenon appears in [8].
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