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Surface Tension and Wulff Shape
for a Lattice Model without Spin Flip Symmetry

T. Bodineau and E. Presutti

Abstract. We propose a new definition of surface tension and check it in a spin
model of the Pirogov-Sinai class without symmetry. We study the model at low
temperatures on the phase transitions line and prove: (i) existence of the surface
tension in the thermodynamic limit, for any orientation of the surface and in all
dimensions d ≥ 2; (ii) the Wulff shape constructed with such a surface tension
coincides with the equilibrium shape of the cluster which appears when fixing the
total spin magnetization (Wulff problem).

1 Introduction

During the past decade, progress was made in the understanding of the phase seg-
regation starting from microscopic models. To summarize, two approaches prevail
to derive the Wulff construction for Ising type models. The first one enables to de-
scribe the phenomenon of phase coexistence in two dimensions with an extremely
high accuracy, in particular it provides a sharp control of the phase boundaries
w.r.t. the Hausdorff distance (see, e.g., [DKS, I1, I2, ISc, Pf, PV2]). The second
strategy is much less precise and gives only L1 estimates; however it can be also
implemented in higher dimensions (see, e.g., [ABCP, BCP, BBBP, BBP, Ce, B1,
CePi1, BIV1, CePi2]).

Phase segregation occurs in a wide range of physical systems, but the two
strategies mentioned above have been mainly implemented in models with sym-
metry among phases and in some cases, the specific microscopic structure of the
interactions has been at the heart of the proofs (duality, FK representation, ferro-
magnetic inequalities . . . ).

The goal of this paper is to extend the L1-approach to a class of systems with-
out symmetry, which can be studied by the Pirogov-Sinai Theory. The L

1-theory
is at first sight not model dependent, it is based on a coarse grained description
of the system and provides a general framework to relate the surface tension to
L1-estimates. Nevertheless, its concrete implementation has been restricted to a
specific class of models: Bernoulli percolation [Ce], Ising model [B1, BIV1, CePi1]
and Potts model [CePi2]. These three instances have a common structure which
arises in the FK representation. The coarse graining developed by Pisztora [Pi]
played a key role in the derivation of the L1-approach for the three models above.
This hinders the generalization to a broader class of models, since parts of the
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proof relied on Pisztora’s coarse graining and thus on the FK representation. No-
tice also that the proofs were based on the symmetry of the model and on the
ferromagnetic inequalities. In particular the analysis of the surface tension was
completely model dependent.

There are some works which deal with surface tension in non-symmetric mod-
els [BKL, HKZ1, HKZ2, MMRS], but a general theory of surface tension (including
the thermodynamic limit for all slopes) seems still to be missing. In this paper we
propose a new definition of surface tension. The advantage is that its existence in
the thermodynamic limit for arbitrary slopes of the surface and in all dimensions
d � 2, does not rely on the symmetry of the pure phases nor on ferromagnetic
inequalities, at least when the Pirogov-Sinai theory can be applied. The validity
of the definition is then confirmed by the proof that the Wulff construction using
this surface tension actually determines the equilibrium shape of a droplet in the
system. The surface tension is characterized by two specific features, a cutoff on
the interface fluctuations and the notion of perfect walls. The precise definition
and heuristics are postponed to Section 3. The thermodynamic limit of the surface
tension is derived by a recursive procedure. The rest of the L

1-approach (including
the coarse graining) is presented in Section 6 following the usual scheme.

In the present paper, we focus on a particular model in order to stress the
main ideas in the most simple context. We actually believe that the proof holds
for a general class of two phase models in the Pirogov-Sinai Theory (see the last
paragraph of Subsection 2.1). The liquid/vapour phase coexistence is also the
subject of current investigations and it seems possible to generalize our strategy
for particles in the continuum with Kac potentials as considered by Lebowitz,
Mazel, Presutti [LMP].

The main ideas in this work have been developed in collaboration with
Dima Ioffe.

2 Model and main theorem

2.1 The model

We consider a lattice model on Z
d, d � 2, which is made of interacting spins σx

taking values {−1, 1}. The interaction depends on a 2d-body potential defined so
that its ground states are the configurations with all spins equal to +1 and all
spins equal to −1. However the interaction is not invariant under spin flip and the
analysis of the Gibbs measures at positive temperatures relies on the Pirogov-Sinai
theory and phase coexistence occurs at non zero values of the magnetic field.

We call cell and denote it by c a cube in Zd of side 2 (meaning that it contains
2d lattice sites); denoting by σc the restriction of σ to c, we define the cell potential
V (σc) as equal to 0 if σc ≡ 1 and σc ≡ −1, otherwise V (σc) is equal to the number
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of +1 spins present in σc. The Hamiltonian in the finite set Λ with b.c. σΛc is then

HσΛc

h (σΛ) =
∑

c∩Λ�=∅
V (σc) −

∑

x∈Λ

hσx .

If σΛc is the restriction to Λc of a configuration σ̄ we will also write H σ̄
h (σΛ).

The Gibbs measure associated to the spin system with boundary conditions
σ̄ is

µσ̄
β,h,Λ(σΛ) =

1
Z σ̄

β,h,Λ

exp
(
−βH σ̄

h (σΛ)
)
,

where β is the inverse of the temperature and Z σ̄
β,h,Λ is the partition function. If

σ̄ is uniformly equal to 1 (resp −1), the Gibbs measure will be denoted by µ+
β,h,Λ

(resp µ−
β,h,Λ).

Classical Pirogov-Sinai theory ensures that for any β large enough, there
exists a value of the magnetic field h(β) such that a first order phase transition
is located on the curve (β, h(β)). In particular on the phase coexistence curve,
one can define (see Theorem 4.2 below) two distinct Gibbs measures µ+

β,h(β) and

µ−
β,h(β) which are measures on the space {±1}Z

d

. They are obtained by taking the
thermodynamic limit of µ+

β,h(β),Λ and µ−
β,h(β),Λ. Each of these measures represents

a pure state. The averaged magnetization in each phase is denoted by

m+
β = µ+

β,h(β)(σ0) and m−
β = µ−

β,h(β)(σ0) . (2.1)

Observe that if we replace cells by bonds we recover (modulo an additive
constant) the energy of the nearest neighbor Ising model. Our system is in our
intentions the simplest modification of the nearest neighbor Ising model where the
spin flip symmetry is broken but the ground states are kept unchanged. This choice
has been to give up any attempt of generality and instead to focus on a particular
model, where the main ideas are not obscured by too many technicalities. Never-
theless, we believe our analysis extends to finite range, many body Hamiltonians
of the form ∑

X⊂Λ

VX(σX)

provided they are into the Pirogov-Sinai class and under the assumptions that the
potentials VX are symmetric and translational invariant, with ground states the
constant configurations. The symmetry assumption means

for all X, VRX

(
(Rσ)RX

)
= VX(σX) , (2.2)

where R denotes the symmetry w.r.t. the origin and (Rσ)j = σ(R)−1(j). We will
pursue the discussion on possible extensions and open questions in Subsection 3.4.
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2.2 Phase coexistence

The phenomenon of phase segregation will be described in the framework of the
L1-approach. Let us first recall the functional setting. On the macroscopic level, the
system is confined in the torus T̂ = [0, 1]d of Rd and a macroscopic configuration
where the pure phases coexist is described by a function v taking values {m−

β ,m
+
β }.

The function v should be interpreted as a signed indicator representing the local
order parameter: if vr = m+

β for some r ∈ T̂, then the system should be locally at
r in equilibrium in the + phase.

To define the macroscopic interfaces, i.e., the boundary of the set {v = m−
β },

a convenient functional setting is the space BV(T̂, {m−
β ,m

+
β }) of functions of

bounded variation with values m±
β in T̂ (see [EG] for a review). For any v ∈

BV(T̂, {m−
β ,m

+
β }), there exists a generalized notion of the boundary of the set

{v = m−
β } called reduced boundary and denoted by ∂∗v. If {v = m−

β } is a regular
set, then ∂∗v coincides with the usual boundary ∂v.

The interfacial energy associated to a domain is obtained by integrating the
surface tension along the boundary of the domain. The surface tension is a function
τβ : S(d−1) → R+ on the set of unit vectors S(d−1), which in our model has the
expression specified in Section 3. The Wulff functional Wβ is defined in L1(T̂) as
follows

Wβ(v) =
{ ∫

∂∗v
τβ( �nx) dHx, if v ∈ BV(T̂, {m−

β ,m
+
β }),

∞ , otherwise.
(2.3)

To any measurable subset A of T̂, we associate the function 1IA = m+
β 1Ac +m−

β 1A

and simply write Wβ(A) = Wβ(1IA).

Fix an interval [m1,m2] included in (m−
β ,m

+
β ). The equilibrium crystal shapes

are the solutions of the Wulff variational problem, i.e., they are the minimizers of
the functional Wβ under a volume constraint

min
{
Wβ(v)

∣∣∣ v ∈ BV(T̂, {m−
β ,m

+
β }), m1 �

∫

T̂

vx dx � m2

}
. (2.4)

Let D(m1,m2) be the set of minimizers of (2.4).

2.3 Local magnetization

The correspondence between the microscopic quantities and the functional setting
described above can be obtained only after some averaging procedure, as the one
we are going to describe. We first need a few extra notations. Let B(K), K = 2k,
k ∈ N, be the partition of Z

d into cubes BK : the seed of the partition is

BK(0) =
{
x ∈ Z

d : 0 � xi < K, i = 1, . . . , d
}
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and the other cubes of B(K) are obtained by translations by integer multiples of
K in all coordinate directions. The sequence B(K), k ∈ N, is then a compatible
sequence of partitions of Rd, namely each cube BN ∈ B(N) is union of cubes BK

in B(K), if K = 2k � N = 2n.

Given K = 2k, we denote by BK(x) the box in B(K) which contains the point
x ∈ Zd. The local averaged magnetization is defined by

MK(x) =
1

|BK(x)|
∑

y∈BK(x)

σy . (2.5)

By abuse of notation, MK(·) can be viewed also as a piecewise constant function
on Rd.

For simplicity the microscopic region Λ is chosen as BN (0) and, imposing
periodic b.c. it becomes the torus TN . We call ψN the map from TN onto T̂,
obtained by shrinking by a factor 1/N . We then define the local magnetization

MN,K(r) = MK

(
ψ−1

N (r)
)
, r ∈ T̂ (2.6)

which is a function on T̂ piecewise constant on the boxes ψN (BK), BK ⊂ TN .
The local order parameter MN,K characterizes the local equilibrium. The total
magnetization in TN is simply denoted by MN .

We can now state a result on phase coexistence.

Theorem 2.1. There exists β0 > 0 such that for any β > β0 and [m1,m2] ⊂
(m−

β ,m
+
β ) (with m1 < m2), the following holds: for every δ > 0 there is a scale

K0 = K0(β, δ) such that for any K � K0

lim
N→∞

µβ,h(β),N

(
inf

v∈D(m1,m2)
‖MN,K − v‖1 � δ

∣∣∣ m1 � MN � m2

)
= 1 ,

where D(m1,m2) denotes the set of the equilibrium crystal shapes (2.4) (where the
surface tension is the one defined in Section 3) and µβ,h(β),N is the Gibbs measure
on TN with periodic boundary conditions.

3 Surface tension

For any given unit vector �n = (n1, . . . , nd), we are going to define the surface
tension τβ(�n) in the direction orthogonal to �n. Contrary to the Ising model, the
lack of symmetry between the two pure phases requires a more complex defini-
tion of surface tension which relies on two new features: a cutoff of the interface
fluctuations and the introduction of perfect walls.
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3.1 Interface fluctuations cutoff

We associate to any unit vector �n = (n1, . . . , nd) a coordinate direction j ∈
{1, . . . , d} in such a way that ni � nj for all i while ni < nj , for any i > j.
For notational simplicity suppose j = d, the other cases are treated similarly. We
set

Λ�,m(�n) =
{
x ∈ Z

d, ∀i < d, −� � xi � �; −m � (x · �n) � m
}
. (3.1)

As �n is fixed throughout this section, we will drop it from the notation.
The surface tension τβ(�n) will be the thermodynamic limit of ratios of par-

tition functions defined on subsets of the slab ΛL, 11ε10 L. The limit will be taken
for appropriate sequences of the parameters (L, ε), in particular we require L and
(ε/10)L to be in {2n, n ∈ N}. We will first introduce the partition function with
mixed boundary conditions.

We want to impose + and − boundary conditions on top and bottom of our
domains; it will be convenient to leave some freedom on their exact location and
with this in mind we introduce the notion of barriers. A barrier in a slab Λ�,m

is a connected set of cells in Λ�,m which connects the faces of Λ�,m parallel to �ed

and it is such that its complement in Λ�,m is made of two distinct components
which are not 
-connected. Let then C+ and C− be two barriers in ΛL, ε

10L + εL�ed

and ΛL, ε
10L − εL�ed. The subset of ΛL, 11ε10 L lying between C+ and C− is denoted by

Λ(C+, C−). The mixed boundary conditions σ̄± outside Λ(C+, C−) are defined as
follows

∀x �∈ Λ(C+, C−), σ̄±
x =

{
+1, if (x · �n) � 0 ,
−1, if (x · �n) < 0 .

We denote by S+ (resp S−) the set of spin configurations for which there is a
barrier included in ΛL, ε

10 L + εL
2 �ed (resp ΛL, ε

10 L − εL
2 �ed) where all spins are equal

to 1 (resp −1). Finally, we introduce the following constrained partition function
on Λ(C+, C−) with mixed boundary conditions (see Figure 1)

ZC+,C−

L,ε (S+,S−) =
∑

σ∈{±1}Λ(C+,C−)

1{σ∈S+∩S−} exp
(
−βH σ̄±

h (σ)
)
. (3.2)

The barriers S+,S− act as a cutoff of the interface fluctuations: they decouple
the interface from the boundary conditions outside Λ(C+, C−). In the following,
we will explain the role of this screening.

3.2 Perfect walls

A perfect wall is such that its contribution to the finite volume corrections to the
pressure is infinitesimal w.r.t. the area of its surface, best examples are walls de-
fined by periodic boundary conditions. Under suitable assumptions on the interac-
tion it is in fact well known that with periodic boundary conditions the corrections
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to the pressure decay exponentially with the size of the box. Periodic boundary
conditions are however not useful in our context, because we want to impose one
of the two phases on some of the walls; but, as we are going to see, it is possible
to define some sort of periodic conditions on single walls of the container.

We start by defining a symmetric partition of Zd by the hyperplane Σ or-
thogonal to �n and containing 0. Let us first suppose that the orientation �n is such
that Σ ∩ Zd = {0}. We then set

Z
d
+ =

{
x ∈ Z

d
∣∣∣ xd � −

d−1∑

i=1

ni

nd
xi

}
\ {0}, Z

d
− = Z

d \ (Zd
+ ∪ {0}) .

Then

Z
d = Z

d
+ ∪ Z

d
− ∪ {0}, Z

d
− = R(Zd

+) (3.3)

where R is the symmetry w.r.t. 0.
If there are sites in Zd∩Σ besides 0, we split them between Zd

+ and Zd
− in such

a way that (3.3) is preserved. Notice first that if x ∈ Σ ∩ Zd, also Rx ∈ Σ ∩ Zd.
Then if x = (x1, . . . , xd) �= 0, we call i the first integer so that xi �= 0 (i.e.,
x1 = · · · = xi−1 = 0) and we put x ∈ Zd

+ if xi > 0 and x ∈ Zd
− otherwise. Thus

Z
d
+ =

d⋃

k=1

{



x ∈ Z
d
∣∣∣∀i < k, xi = 0, xk > 0, xd � −

d−1∑

j=1

nj

nd
xj




 (3.4)

∪




x ∈ Z
d
∣∣∣∀i < k, xi = 0, xk < 0, xd > −

d−1∑

j=1

nj

nd
xj






}
,

A drawback of the definition is that for �n oriented along one of the axis of coordi-
nates the bottom of Z

d
+ is not flat. This could be avoided at the price of considering

a more complicated mapping than the simple symmetry w.r.t. 0.

We now proceed in defining the reflected Hamiltonian in Zd. The idea is to
use R in order to glue together different regions touching the surface Σ so that if,
for instance, x ∈ Z

d
+ interacts across Σ with y ∈ Z

d
− then x will now interact with

R(y) ∈ Zd
+. As the energy is defined in terms of cells, this can be easily achieved

by introducing a new set of cells {c}R.
Cells which are entirely contained either in Zd

+, or in Zd
− or in B = {−1, 0, 1}d

are unchanged. Instead any cell c containing sites both in Zd
+ and in Zd

− is re-
placed by

c →
{

c+ = (c \ Zd
−) ∪R(c ∩ Zd

−)
c− = (c \ Zd

+) ∪R(c ∩ Zd
+)

. (3.5)

Notice that both cells c and R(c) generate the same pair c±, so that the “total
number” of old and new cells is the same.
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Extending the definition of V (σc) to the new set of cells, the reflected Hamil-
tonian is then

HR,σΛc

h,Λ (σ) =
∑

c∈{c}R

c∩Λ�=∅

V (σc) − h
∑

x∈Λ

σx . (3.6)

We will always consider regions which do not contain B, so that the spins in B
will act as boundary conditions: thus the structure of cells entirely contained in B
is unimportant.

In preparation to the definition of the surface tension and using the notation
of Subsection 3.1, we define the upper half of Λ(C+, C−) by

Λ+(C+) = Λ(C+, C−) ∩ Z
d
+ \B .

The partition function with reflection and + boundary conditions outside Λ+(C+)

ZC+,R
L,ε =

∑

σ∈{±1}Λ+(C+)

exp
(
−βH(+,R)

Λ+(C+)(σ)
)
, (3.7)

where the Hamiltonian on the right-hand side is defined in (3.6) with Λ replaced
by Λ+(C+). Notice that the boundary conditions outside Λ+(C+) are imposed also
around the center of reflection on B = {−1, 0, 1}d. The partition function ZC−,R

L,ε

is defined similarly on the lower half, Λ−(C−) of Λ(C+, C−) and with − reflected
boundary conditions on the top (see Figures 1 and 2).

Let ΣL be the bottom face of Λ+(C+), i.e., the face with the reflected inter-
actions (the side-length of ΣL is L). As we will see in Lemma 4.7, away from 0
and from its boundaries, ΣL behaves as a wall with periodic boundary conditions;
indeed, the overall contribution of ΣL to the finite volume corrections to the pres-
sure will be proportional to Ld−2 which is therefore a “perfect wall” in the sense
specified at the beginning of this subsection.

Finally notice that one could also consider a mapping different from the
symmetry w.r.t. 0 provided that it respects the topological structure of Zd and
that most of the points are far apart from their images. This will be made clear
in Section 4.

3.3 Definition of the surface tension

We can finally introduce

Definition 3.1. The surface tension in the direction �n, is defined by

τβ(�n) = lim inf
ε→0

lim inf
L→∞

inf
C+,C−

− (�n · �ed)
βLd−1

log
ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

, (3.8)

where the infimum is taken over the barriers (C+, C−) in the slabs ΛL, ε
10L ± εL�ed.
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�n

S−

S+

εL

Λ(C+)

Λ(C−)

C+

C−

0

Λ(C+)

Λ(C−)

Figure 1. On the left, the domain ΛL,εL is depicted with mixed boundary
conditions in the direction �n and with the interface cutoff. The action of the
perfect walls boils down to fold Λ(C+) and Λ(C−) around the point 0 (see
right picture and also Figure 2).

There are two important points in this definition, one is that the perfect walls
should give negligible surface corrections to the pressure. Moreover, due to decay
of correlations, the inf over C+, C− should not matter because of cancellations
among numerator and denominator: the barriers S+ and S− screen the effect of
the boundary conditions.

The main step towards the derivation of phase coexistence (Theorem 2.1) will
be to prove the convergence of the thermodynamic limit for the surface tension:

Theorem 3.1. For any β large enough (such that the model is in the Pirogov-Sinai
regime, see Section 4), the following holds

τβ(�n) = lim
ε→0

lim
L→∞

sup
C+,C−

− (�n · �ed)
βLd−1

log
ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

, (3.9)

where the supremum is taken over the barriers (C+, C−) in the slabs ΛL, ε
10L±εL�ed.

In (3.9), the supremum can also be replaced by an infimum.

The derivation of Theorem 3.1 and of the properties of the surface tension is
postponed to Section 5.

3.4 Heuristics on the surface tension

We are going to discuss heuristically the representation of the surface tension
and explain the choice of the perfect walls and of the cutoff. We believe that
the ultimate justification for Definition 3.1 is to be the surface tension for which
Theorem 2.1 is valid.
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Let us start by a rough expansion of logZ+,−
L , which denotes the partition

function on the cube ∆L = {−L, . . . , L}d with mixed boundary conditions in the
direction �n.

logZ+,−
L =

Ld

2
(P+ + P−) +

Ld−1

(�n · �ed)
τβ(�n) + (τ+

bd + τ−bd) dL
d−1 +O(Ld−2) .

(3.10)

The first term is of volume order and corresponds to the pressures of the different
pure phases P+ and P− (which are equal on the curve of phase coexistence, see
Lemma 4.2). The surface tension τβ(�n) arises at the next order, but there are as
well other terms of order Ld−1 which can be interpreted as surface energies due
to the boundary conditions. The lack of symmetry of our model implies that the
surface energy τ+

bd produced by the + boundary conditions differs from the surface
energy τ−bd produced by the − boundary conditions.

In order to extract the surface tension factor, one has to compensate not only
the bulk term, but also the surface energies τ+

bd and τ−bd. In a symmetric case (e.g.,
the Ising model) τ+

bd = τ−bd therefore the partition function in ∆L with + boundary
conditions is the appropriate normalization factor. As this is no longer the case for
non-symmetric models, the following alternative definition seems to be the most
natural

τ�
β (�n) = lim

L→∞
− (�n · �ed)

Ld−1
log

Z+,−
L√

Z+
L

√
Z−

L

. (3.11)

Notice that this representation of the surface tension would also require an as-
sumption on the potential similar to (2.2) in order to produce exact cancellations
between the numerator and the denominator.

The representation (3.11) of the surface tension is the most commonly used,
nevertheless, to our best knowledge, the existence of its thermodynamic limit is
not known in general. The surface tension can be studied for different types of
models, in particular, let us mention the Ashkin-Teller model [Ve], the Blume
Capel model [HK], the Potts model at the critical temperature [MMRS, LMR]
and general 3D lattice models [HKZ1, HKZ2]. Depending on the dimension, the
results are of different nature.

In 2 dimensions, the interface has a uni-dimensional structure and a very
accurate control can be obtained by using renewal theory. In particular it should
be possible to derive in a general context a complete expansion of the right-hand
side of (3.11) which would include the Ornstein-Zernike corrections1. Such results
would also provide a description of the fluctuations of the interface. We refer the
reader to the paper by Hryniv and Kotecky [HK] for an implementation of these
methods in the case of Blume-Capel model (see also [Al, CIV]).

1Private communication by D. Ioffe.
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In dimension 3 or higher, if �n coincides with one of the axis, the interface
generated by the Dobrushin conditions is rigid and an extremely accurate descrip-
tion of the non-translation invariant Gibbs states can be obtained. As a byprod-
uct of this description, (3.11) can be derived for a broad class of models (see
Holicky, Kotecky, Zaradhnik [HKZ1, HKZ2]; Messager, Miracle-Solé, Ruiz, Shlos-
man [MMRS]). However a derivation of (3.11) in dimensions larger or equal to
3 for general slopes �n seems still to be missing. In general, the ground states of
tilted interfaces are degenerated, this complicates seriously the implementation of
a perturbative approach of the thermodynamic limit (3.11).

The representation (3.8) of the surface tension was motivated by the Wulff
construction and it has been designed primarily to prove the phase coexistence
(Theorem 2.1). The first step to evaluate the surface energy of a droplet is to
decompose the interface of the droplet and to estimate locally the surface tension.
As the system is random, one is lead to consider partition functions with mixed
boundary conditions on arbitrary domains of the type Λ(C+, C−) and not only on
regular sets like ∆L. Locally, the occurrence of an interface means a term like the
numerator of (3.8) can be factorized from the global partition function. At this
point, the local surface tension factor is extracted from the global partition function
by removing the numerator of (3.8) and replacing it instead by the denominator
of (3.8). In (3.11), the cancellation of the terms corresponding to the boundary
surface tension imposes to choose symmetric domains in the denominator. This
constraint is too stringent to apply the procedure previously described to arbitrary
domains. The perfect walls provide an alternative way to control the surface order
corrections without using symmetry.

The second important feature of Definition 3.1 is the interface fluctuation cut-
off. The Pirogov-Sinai theory describes accurately the bulk phenomena in a low
temperature regime, nevertheless it cannot be applied directly to study Gibbs mea-
sures with mixed boundary conditions. The cutoff decouples the interface from the
boundary conditions and therefore enables us to control the dependence between
the surface tension and the domain shapes. In fact, the problem in the domain
between C+ and S+ (resp S− and C−) is set in the regime associated to the pure
phase with + (resp. −) boundary conditions where again cluster expansion applies.

The derivation of the thermodynamic limit (Theorem 3.1) relies on a recursive
procedure which is reminiscent of the proof of the Wulff construction. The basic
idea is to approximate the interface on large scales by using the Definition 3.1 on
smaller scales. Concretely, the energy in the small regions along the interface is
evaluated by pasting the a priori estimates provided by Definition 3.1. The iteration
is possible thanks to the very loose structure of the definition of the surface tension.
The limit w.r.t. ε has no impact on the value of the surface tension, the main
motivation is technical: it is useful in the iteration procedure and afterwards in
the completion of Theorem 2.1.

We are going now to compare the representations τβ(�n) and τ�
β (�n) of the

surface tension. According to Theorem 3.1 the convergence (3.9) is uniform over



858 T. Bodineau and E. Presutti Ann. Henri Poincaré

the domains Λ(C+, C−) and thus it is enough to define the surface tension on
regular domains of the type ∆L. Furthermore, the perfect walls are such that

lim
L→∞

1
Ld−1

log

√
Z+

L

√
Z−

L

Z+,R
L Z−,R

L

= 0 .

It remains only to analyze the role of the cutoff of interface fluctuations. Definition
3.1 would coincide with (3.11) if the following holds

lim
L→∞

1
Ld−1

log
Z+,−

L (S+,S−)
Z+,−

L

= lim
L→∞

1
Ld−1

logµ+,−
β,∆L

(S+,S−) = 0 . (3.12)

This statement boils down to prove a very weak form of localization of the inter-
face. In fact, a much stronger localization is expected since the fluctuation of the
interface are of the order

√
L in 2D and believed to be at most of the order

√
logL

in 3D. For the ferromagnetic finite range Ising model and the Kac-Ising models,
(3.12) holds and Definition 3.1 of the surface tension coincide with the usual one
(3.11).

Since the ingredients used in the proof of Theorem 3.1 are the typical ones
of cluster expansion, the extension to more general Pirogov-Sinai models, as those
described at the end of Subsection 2.1, seems possible. For more general mod-
els several questions remain. In particular, Definition 3.1 does not seem appro-
priate to deal with periodic ground states. For multi-phase models, the solution
of the variational problem is not known and thus a macroscopic description of
phase coexistence is a mathematical challenge. The probabilistic point of view
is slightly different since one is interested to derive the macroscopic variational
problem (without solving it) from the microscopic system. In this case, the dif-
ficulties are of two distinct natures: geometric and probabilistic. For a thorough
study of the geometric problems we refer the reader to Cerf, Pisztora [CePi2]. For
the issues related to the coarse graining and the surface tension, we hope that our
approach can provide a step towards the derivation of phase coexistence for multi-
phase models. Nevertheless, it should be stressed that the interesting phenomena,
as boundary layers, occurring in multi-phase models cannot be capture in the L1-
framework. A more refined analysis of the microscopic structure of the interface is
necessary to describe these subtle mechanisms (see, e.g., [HK, MMRS, HKZ2]).

4 Peierls estimates, cluster expansion

In this section we will see that notion and procedures of the Pirogov-Sinai theory
can be modified to apply when reflecting walls are present. In particular we will
derive formulas for the finite volume corrections to the pressure which show that
the contribution of the reflecting walls is negligible.
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We need to generalize the context considered in the previous section because
in the next ones we will have simultaneously several reflecting surfaces {Σi} (intro-
duced to decouple different regions of the whole domain). An example is depicted
in Figure 2. These reflecting surfaces are separated in such a way that there will be
no interference among them and we can consider each one separately. Let us then
call Σ one of them (dropping momentarily the label i) and describe its structure.
Σ is the intersection of a hyperplane H and a coordinate cylinder π with cubic
cross section of integer side. The axis of the cylinder is the coordinate direction
associated to the normal to Σ, in the sense of Subsection 3.1, and its intersection
with Σ, called the center of Σ, is supposed to be in Zd. We then introduce the
set of boundary sites associated to Σ, i.e., the sites close to the border of Σ and
to the center of Σ. Defining Zd

± as the spaces above and below H, in the sense
of Subsection 3.2, we call B′ the “boundary of Σ” as the sites x of Zd

± which are
∗ connected to Z

d
∓ as well as ∗ connected to πc, if in π, and to π, if in πc. B is

defined as the union of B′ with the center of Σ and the sites ∗ connected to it. We
then call {c′}R the set of all new cells c′ determined by the reflection through the
hyperplane H which are in π, are not contained in B and differ from original cells.

This refers to the generic surface Σi with Bi and {c′}R
i , we are now resuming

the notation with the subscript i. The union of all Bi will be called B while
{c′}R is the union of all {c′}R

i . We then define the set of new cells {c}R, as the
collection of {c′}R and of all cells which have not been modified by reflections
through any of the surfaces Σi. Thus {c}R are the new cells and {c} the old ones.
The new Hamiltonian is given by the same expression (3.6) but with {c}R the
above collection of cells. Finally, we set Zd,R = Zd \B and fix hereafter the spins
in B. In the sequel Λ will denote regions in Z

d,R and the spins in B will always
act as boundary conditions.

The collection {c}R defines a new topology, where the nearest neighbor sites
of x ∈ Zd is the union of all cells c ∈ {c}R which contain x. Without reflection, this
reduces to the usual notion in Zd, where the n.n. sites of x are those ∗ connected
to x. It is convenient to add a metric structure, defining the “ball of radius n ∈ N

and center x ∈ Zd”, denoted by K(x, n) for the old and, respectively, by KR(x, n)
for the new cells, by setting K(x, 0) = KR(x, 0) = {x} and

K(x, n) =
{
y ∈ Z

d : y ∈ c, c ∩K(x, n− 1) �= ∅, c ∈ {c}
}

(4.1)

KR(x, n) =
{
y ∈ Z

d : y ∈ c, c ∩KR(x, n− 1) �= ∅, c ∈ {c}R
}

(4.2)

The external boundary of Λ in the old and new topology are

δ(Λ) =
{
y ∈ Λc : y ∈ c, c ∩ Λ �= ∅, c ∈ {c}

}

δR(Λ) =
{
y ∈ Λc : y ∈ c, c ∩ Λ �= ∅, c ∈ {c}R

}
(4.3)

where Λ ⊂ Z
d,R (we recall that B belongs to Λc).
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B

K(x, n)

KR(x, n)

B

Figure 2. The two examples above represent the different types of reflecting
surfaces which will be used in this paper. The gray rectangles stand for the
location of the boundary conditions B. On the left, a domain with two re-
flecting surfaces on its bottom face; a reflected contour is also depicted. This
type of domain will be used in the analysis of surface tension (Section 5). The
domain on the right contains several reflecting surfaces where the structure
of the cells is modified (see Subsections 6.3 and 6.4).

The whole analysis in this section is based on a simple geometric property
of the collection {c}R, which is a consequence of the way reflections on a single
surface have been defined and the fact that the reflecting surfaces are separated
from each other.

Given x ∈ Z
d,R, call n(x) the smallest integer n such that KR(x, n) ∩B �= ∅

and n′(x) the smallest integer n such that KR(x, n) reaches two distinct reflecting
surfaces Σi and Σj , i.e., contains sites on either side of Σi and on either side of Σj .

Theorem 4.1. Suppose that for all x ∈ Zd,R, n(x) < n′(x), then, for any n � n(x),
there is a bijective map T from K(x, n) onto KR(x, n) which transforms bijectively
all cells of {c} in K(x, n) onto the cells of {c}R in KR(x, n). Consequently, for
any ∆ ⊂ KR(x, n) with also δR(∆) ⊂ KR(x, n)

HR,σ∆c

h (σ∆) = H
σT −1(∆c)

h (σT −1(∆)), ZR,σ∆c

β,h,∆ = Z
σT −1(∆c)

β,h,T −1(∆) (4.4)

Proof. Since n < n′(x), it is enough to consider a reflection w.r.t. a single surface
and modulo a change of variables to work in the framework of Subsection 3.2.
Suppose x is in the upper part, x ∈ Zd

+, then, by induction on k � n it is easy to
see that KR(x, k) = T (K(x, k)), where T is equal to the identity on K(x, n)∩Zd

+

and to R on K(x, n) ∩ Zd
−. We next check that T is one-to-one. If it was not the

case, there would be two distinct sites y, z ∈ K(x, n) such that T (y) = T (z). This
would mean that z = R(y) and, since K(x, n) is a convex set, then 0 would be
in K(x, n), which is excluded because n � n(x). Since T maps the cells of {c}
in K(x, n) bijectively in those {c}R in KR(x, n), (4.4) follows. The theorem is
proved. �



Vol. 4, 2003 Surface Tension and Wulff Shape 861

The previous theorem implies that away from the set B, the reflections have
no impact on the energy. This will be useful to evaluate the corrections to the pres-
sure in presence of reflected boundaries. The particular structure of the reflecting
surfaces will not matter in the sequel, the analysis only relying on the following
assumption:

Assumption: For all x ∈ Z
d,R, n(x) < n′(x). (4.5)

Having defined the setup, we can now start the analysis which begins by
recalling the fundamental notion of contours, adapted to the case of reflecting
surfaces.

4.1 Contours

We will refer explicitly to the case of reflections, as underlined by the superscript
R; without R the expressions refer to the case without reflections for which the
classical proofs apply directly and which can anyway be recovered from our analysis
by replacing {c}R by {c}.

We define the phase indicator at x, ηR
x (σ), as equal to 1 (resp. −1) if σ is

identically 1 (resp. −1) on all c � x, c ∈ {c}R; otherwise ηx(σ) = 0.
Calling R-connected two sites x and y if they both belong to a same cell in

{c}R, the spatial supports sp(Γ) of the R contours Γ of σ are the maximal R-
connected components of the set {ηR

x = 0}. We will tacitly suppose in the sequel
that they are all bounded sets. Let

Γ̄ =
⋃

x∈sp(Γ)

KR(x, 2) (4.6)

Then the R contours Γ of σ are the pairs Γ = (Γ̄, σΓ̄), with σΓ̄ the restriction of σ
to Γ̄.

Notice that in each R connected component of Γ̄\ sp(Γ), σx is identically
equal either to 1 or to −1, while the values outside Γ̄ are not determined by Γ and
therefore can be arbitrary. Let

D := Γ̄ \ sp(Γ) (4.7)

and call D0 and D±
i the maximal R connected components of D. D0 is the one

which is R connected to the unbounded component of Γ̄c, D+
i (resp. D−

i ) are
the components where σx (as specified by Γ) is equal to 1 (resp. −1). We also
call int±i (Γ) the component of Γ̄c which is R connected to D±

i . Finally Γ is a ±
contour, if σ = ±1 on D0.

The R contours in a bounded domain Λ ⊂ Zd,R with + [−] boundary con-
ditions are defined as the contours of the configuration (σΛ, 1Λc) [resp. and of
(σΛ,−1Λc)].
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The weight wR,+(Γ) of a + R contour is

wR,+(Γ) =
e−βHR

h (σΓ̄)

eβh|Γ̄|

n−∏

i=1

ZR,−
β,h,int−i (Γ)

ZR,+

β,h,int−i (Γ)

. (4.8)

The superscript R recalls that all quantities are defined using the collection of cells
{c}R. The term eβh|Γ̄| in the denominator is the Gibbs factor of the configuration
1Γ̄ identically equal to 1 in Γ̄, e−βHh(1Γ̄) = eβh|Γ̄|.

The weight wR,−(Γ) of a − R contour is defined symmetrically with the role
of + and − interchanged. With these definitions, we have the identity

ZR,±
β,h,Λ = e±βh|Λ|

∑

{Γi}±
Λ

∏

{Γi}±
Λ

wR,±(Γi) , (4.9)

where {Γi}+
Λ [{Γi}−Λ ] is a compatible collection of + [−] R contours in Λ. Two

contours are compatible iff their spatial supports are not R-connected.
For the case without reflections we can apply directly the classical Pirogov-

Sinai theory:

Theorem 4.2. There is c > 0 and, for any β large enough, h(β) ∈ (0, ce−β/2) so that
the thermodynamic limits of µ±

β,h(β),Λ define distinct DLR measures. Moreover, for
any contour Γ, the weight without reflection satisfy

0 < w±(Γ) � e−βNΓ/2 , (4.10)

where NΓ is the number of distinct cells which cover sp(Γ).

In the following the bound (4.10) will be referred as a Peierls estimate since
it leads

µ±
β,h(β),Λ(Γ) � e−βNΓ/2 (4.11)

The bound (4.10) is actually the crucial point of the theorem, the small weight
of the contours is in fact responsible for the memory of the boundary conditions to
survive the thermodynamic limit, thus yielding the phase transition. Moreover, as
we will see, if β is large, (and the weight small), by cluster expansion, it is possible
to exponentiate the right-hand side of [the analogue without reflections] of (4.9)
and thus to compute the finite volume corrections to the pressure. This is on the
other hand also the key point in the proof of (4.10), which at first sight makes
all the above to look circular. The main goal in this section is to prove the bound
(4.10) in case of reflections.

4.2 Restricted ensembles

Following Zahradnik, we construct a much simpler, fictitious model which, as a
miracle, in the end, turns out to coincide with the real one. In the whole sequel β
is large enough and h = h(β), see Theorem 4.2, will often drop from the notation.
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Inspired by (4.9), we set for any bounded region Λ ⊂ Zd,R,

ΞR,±
β,Λ = e±βh|Λ|

∑

{Γi}±
Λ

∏

{Γi}±
Λ

ŵR,±(Γi) (4.12)

ŵR,+(Γ) = min
{
e−βNR

Γ /2;
e−βHR

h (σΓ̄)

eβh|Γ̄|

n−∏

i=1

ΞR,−
β,int−i (Γ)

ΞR,+

β,int−i (Γ)

}
, Γ a + R contour

(4.13)

ŵR,−(Γ) = min
{
e−βNR

Γ /2;
e−βHR

h (σΓ̄)

e−βh|Γ̄|

n+∏

i=1

ΞR,+

β,int+i (Γ)

ΞR,−
β,int+i (Γ)

}
, Γ a − R contour

(4.14)
where NR

Γ is the number of R cells in sp(Γ). In this way the weights automati-
cally satisfy the crucial bound (4.10), but first let us check that (4.12)–(4.14) do
really define the “partition functions” ΞR,±

β,Λ and the “weights” ŵR,±(Γ). Indeed,
the triple (4.12)–(4.14) should be regarded as an equation in the unknowns ΞR,±

β,Λ

and ŵR,±(Γ). Existence and uniqueness are proved by induction on |Λ|. If |Λ| = 1,
any contour in Λ has no interior, hence (4.13)–(4.14) specify its weight and conse-
quently (4.12) determines ΞR,±

β,Λ for such a Λ. If on the other hand we know ΞR,±
β,Λ

for all Λ ⊂ Zd,R, |Λ| � n, we can use (4.13)–(4.14) to determine the weights of all
Γ if all their interior parts have volume � n; since regions Λ with |Λ| = n + 1
cannot contain contours whose interior part has volume > n, we can use (4.12) to
determine ΞR,±

β,Λ for such a Λ, and the induction step is proved.
For β large enough the weights ŵR,±(Γ) become so small, that the general

theory of cluster expansion can be applied, see for instance [KP], so that

log ΞR,±
β,Λ = ±βh|Λ| +

∑

π∈ΠR,±
Λ

ω̂R,±(π) , (4.15)

where ΠR,+
Λ [ΠR,−

Λ ] is the collection of all + [−] polymers π contained in Λ and
ω̂R,±(·) their weights, all such notions being defined next. Analogous expressions
are valid in the absence of reflections.

A + R polymer π = [Γεi

i ] in ΠR,+
Λ (the definition of − polymers is similar

and omitted), is an unordered, finite collection of distinct + R contours Γi taken
with positive integer multiplicity εi, and such that, setting

X(π) =
⋃

i

sp(Γi), π = [Γεi

i ] (4.16)

X(π) is a R connected subset of Λ.
The weights ω̂R,±(π), π = [Γεi

i ], are given in terms of the weights of contours,
ŵR,±(Γ):

ω̂R,±(π) = r(π)
∏

i

ŵR,±(Γi)εi , (4.17)
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where
r(π) =

∏

i

(εi!)−1
∑

G′⊂G(π)

(−1)|G
′| ,

with G(π) the (abstract) graph of π, which consists of vertices, labelled by the∑
i εi contours in π, and of edges, which join any two vertices labelled by contours

with intersecting supports. By definition G(π) is connected and the sum in (4.18)
is over all the connected subgraphs G′ of G(π) which contain all the

∑
i εi vertices;

|G′| denotes the number of edges in G′.
The number of connections of each site is not increased by the reflection pro-

cedure. Thus, for β large enough, [KP], the series on the right-hand side of (4.15)
is absolutely convergent and, given any finite sequence Γ1, . . . ,Γn of contours,

∑

π∈ΠR,±,π�Γi,i=1,...,n

|ω̂R,±(π)| �
n∏

i=1

e−NΓi
(β/2−2dα) , (4.18)

where ΠR,± denotes the collection of all + [−] polymers in the whole space Zd,R

and α > 0 is large enough, in particular we will also require that
∑

D�0

22|D|e−α|D| < 1 , (4.19)

where the sum is over all R connected sets D in Zd,R which contain the origin
(supposing 0 ∈ Zd,R). D represents the spatial support of a contour and 2|D|

bounds the number of contours with same spatial support D. The extra 2 in 22|D|

is for convenience. The factor 2d in the last term of (4.18) enters via the relation
(2d)ND ≥ |D|, ND the number of cells needed to cover D.

Since by Theorem 4.2, the weights w±(Γ) satisfy the same bounds as the
ŵR,±(Γ), we have, analogously to (4.15),

logZ±
β,Λ = ±βh|Λ| +

∑

π∈ΠR,±
Λ

ω±(π) , (4.20)

with ω±(π) defined by (4.17) having w±(Γ) in the place of ŵR,±(Γ). As in (4.18),

∑

π∈Π,π�Γi,i=1,...,n

|ω±(π)| �
n∏

i=1

e−NΓi
(β/2−2dα) . (4.21)

We will often use the following corollary of (4.19)–(4.21):

Lemma 4.1. For any β large enough and any x ∈ Zd,R

∑

X(π)�x

|ω̂R,±(π)| � e−β/2+2d+1α (4.22)
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and, for any x and n,
∑

X(π)�x,X(π)∩KR(x,n)c �=∅

|ω̂R,±(π)| � e−(β/2−2d+1α)n (4.23)

Both (4.22) and (4.23) remain valid in the case without reflections.

Proof. By (4.18),

∑

X(π)�0

|ω̂R,±(π)| �
∑

Γ:sp(Γ)�0

e−NΓ(β/2−2dα)

� e−(β/2−2d+1α)
∑

Γ:sp(Γ)�0

e−α|sp(Γ)| ,

where we used that |sp(Γ)| = 2dNΓ. Applying (4.19), we obtain (4.22).
To prove (4.23), we denote by {Γ1, . . . ,Γk} any sequence of contours such that

sp(Γ1) � x, sp(Γk)∩Kc �= ∅,K ≡ KR(x, n), and sp(Γi) ∼ sp(Γi+1), i = 1, . . . , k−1,
(where A ∼ B shorthands that A is R connected to B). Then the left-hand side
of (4.23) is bounded by

∑

k,{Γ1,...,Γk}

∑

π:Γi∈π,i=1,...,k

|ω̂R,±(π)| �
∑

k,{Γ1,...,Γk}

k∏

i=1

e−NΓi
(β/2−2dα)

� e−(β/2−2d+1α)n
∑

k

∑

D1�x,Dj∼Dj+1,j=1,...,k−1

k∏

i=1

2|Di|e−α|Di|

which proves (4.23) because, as we are going to see, the sum over k, that we denote
by S(x), is bounded by 1.

Calling SN (x) the sum with k ≤ N , since S(x) is the limit as N → ∞
of SN (x), it suffices to prove that for all y and N , SN (y) � 1. The proof is by
induction on N . S1(y) < 1 by (4.19). Suppose SN−1(x) � 1 for all x, then

SN (x) �
∑

D1�x

2|D1|e−α|D1|
∏

y∈D1

(
1 + SN−1(y)

)
�
∑

D1�x

2|D1|2|D1|e−α|D1|

the second factor 2|D1| coming from the induction hypothesis. Then, by (4.19),
SN (x) � 1 for any x and (4.23) is proved. The lemma is proved. �

By the analogue of (4.22) we conclude convergence of the series on the right-
hand side of

P± := ±h+
1
β

∑

π∈Π(±),X(π)�0

ω±(π)
|X(π)| (4.24)

To study the weights of the polymers obtained by reflection we will use the fol-
lowing three lemmas, where Λ is tacitly supposed to be a bounded region in Z

d.
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They refer to the case without reflections and since the magnetic field h is equal
to h(β) they are part of the classical Pirogov-Sinai Theory. For convenience, we
give an explicit proof, consequence of Theorem 4.2.

Lemma 4.2. For β large enough,

P+ = P− = P (4.25)

where P is the thermodynamic pressure at inverse temperature β and magnetic
field h = h(β). Moreover,

logZ±
β,Λ = ±βh|Λ|+

∑

x∈Λ

∑

x∈X(π)⊂Λ

ω±(π)
|X(π)| (4.26)

= β|Λ|P −
∑

X(π)∩Λc �=∅

|X(π) ∩ Λ|
|X(π)| ω±(π) (4.27)

Proof. (4.26) is just a rewriting of (4.20); (4.25) follows from (4.26) by taking the
thermodynamic limit and using Lemma 4.1. (4.27) is also a rewriting of (4.26).
The lemma is proved. �

Lemma 4.3. For β large enough, and calling δ(Λ) the union of all sites in Λc which
are ∗-connected to Λ,

∣∣∣ logZ±
β,Λ − β|Λ|P

∣∣∣ � e−β/2+2d+1α|δ(Λ)| (4.28)

Proof. By (4.27)
∣∣∣ logZ±

β,Λ − β|Λ|P
∣∣∣ �

∑

x∈δ(Λ)

∑

X(π)�x

|ω±(π)|

which, by (4.22), yields (4.28). The lemma is proved. �
The final lemma proves that the bound (4.10) was too conservative.

Lemma 4.4. There is a constant c so that, for β large enough,
∣∣∣ logZ+

β,Λ − logZ−
β,Λ

∣∣∣ � 2e−β/2+2d+1α|δ(Λ)| (4.29)

w±(Γ) ≤ exp
{
− βNΓ

(
1 − ce−β/2

)}
(4.30)

Proof. (4.29) follows directly from (4.28). By the analogue of (4.8) without reflec-
tions,

w±(Γ) ≤ exp
{
− βNΓ + 2β|h||Γ̄| + 2e−β/2+2d+1α

∑

i

|δ(int−i (Γ))|
}
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Notice also that the constraint on h(β) can be easily recovered. By equating
the two right-hand side of (4.24) and then using (4.22) in the version without
reflections, we get

β|h| � e−β/2+2d+1α (4.31)

Moreover, if x ∈ δ(int−i (Γ)) there is a cell c such that c ∩ K(x, 2) �= ∅,
c∩sp(Γ) �= ∅, so that to each x ∈ ∪iδ(int−i (Γ)) we can associate a cell contributing
to NΓ, in such a way that the same cell is counted at most |K(0, 3)| times. Thus

w±(Γ) ≤ exp
{
− βNΓ + 2e−β/2+2d+1α|Γ̄| + 2e−β/2+2d+1α|K(0, 3)|NΓ

}
(4.32)

The inequality
|Γ̄| ≤ |sp(Γ)||K(2, 0)| ≤ NΓ2d|K(2, 0)|

concludes the proof of the lemma. �
We turn now back to the main goal of the section, namely to prove that the

bound (4.10) holds also for the weights with reflections. The proof is obtained in
two steps.

Theorem 4.3. For any β large enough the following holds. Let x ∈ Zd,R and
n � n(x); then if Λ ∪ ∂R(Λ) ⊂ KR(x, n), ΞR,±

β,Λ = ZR,±
β,Λ and if Γ is a ±, R

contour with Γ̄ ⊂ KR(x, n), then ŵR,±(Γ) = wR,±(Γ) < e−βNΓ/2.

Proof. Under the assumption that n � n(x), Theorem 4.1 applies and therefore the
proof will follow from the previous results on the weights without reflection and
from the one-to-one correspondence between K(x, n) and KR(x, n). In particular
(4.4) implies that for domains strictly contained in KR(x, n)

Z±
β,T −1(Λ) = ZR,±

β,Λ (4.33)

In the case |Λ| = 1, any contour in Λ has no interior and (4.12)–(4.13) allow
to compute ŵR,±(Γ), getting, as in the proof of Lemma 4.4,

ŵR,±(Γ) � exp
{
− βNΓ + 2β|h||Γ̄|

}

hence, for β large enough, ŵR,±(Γ) = w±(Γ) < e−βNΓ/2. Suppose by induction
that for any |Λ| � k (Λ as in the text of the theorem), ΞR,±

β,Λ = Z±
β,T −1(Λ) = ZR,±

β,Λ .
Then if Γ is as in the text of the theorem and moreover all its interior parts have
volume � k, then the second term on the right-hand side of (4.12)–(4.13) is
equal to w±(T −1Γ), with the obvious meaning of the notation, which by Lemma
4.4 is, for β large enough, < e−βNΓ/2. Then the second term on the right-hand
side of (4.12)–(4.13) is smaller than the first one, hence ŵR,±(Γ) = wR,±(Γ).
Since all contours inside Λ have interior parts with volume � k, (4.10) shows
that ΞR,±

β,Λ = Z±,R
β,Λ = Z±

β,T −1(Λ), thus proving the induction step. The theorem is
proved. �
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Before extending the result to general Λ, we state and prove the following
lemma.

Lemma 4.5. For β large enough,

log ΞR,±
β,Λ = β|Λ|P +

∑

x∈Λ

{ ∑

X(π)∩KR(x;n(x))c �=∅;x∈X(π)⊂Λ

ω̂R,±(π)
|X(π)|

−
∑

X(π)∩K(0;n(x))c �=∅;0∈X(π)

ω±(π)
|X(π)|

}
. (4.34)

Proof. We write

log ΞR,±
β,Λ = ±βh|Λ| +

∑

x∈Λ

{ ∑

x∈X(π)⊂KR(x;n(x))

ωR,±(π)
|X(π)|

+
∑

X(π)∩KR(x;n(x))c �=∅;x∈X(π)⊂Λ

ωR,±(π)
|X(π)|

}

β|Λ|P = ±βh|Λ| +
∑

i∈Λ

{ ∑

X(π)⊂K(x;n(x));x∈X(π)

ω±(π)
|X(π)|

+
∑

X(π)∩K(x;n(x))c �=∅;x∈X(π)

ω±(π)
|X(π)|

}

Then log ΞR,±
β,Λ − β|Λ|P is equal to the difference of the right-hand side of the last

two equations. The first terms in the sum over x cancel with each other, see the
proof of Theorem 4.1, and (4.34) follows after recalling that the weights without
reflections are translational invariant. The theorem is proved. �

Theorem 4.4. For any β large enough, for any bounded Λ ⊂ Zd,R, ΞR,±
β,Λ = ZR,±

β,Λ

and for any bounded, ±, R contour Γ, ŵR,±(Γ) = wR,±(Γ) < e−βNΓ/2.

Proof. By (4.34) and (4.22), denoting by n(x, y) the maximal integer such that
y /∈ KR(x;n(x, y)),

∣∣∣ log ΞR,±
β,Λ − β|Λ|P

∣∣∣ � 2
∑

x∈Λ

e−[β/2−2d+1α] n(x)

� 2
∑

x∈Λ

∑

y∈δR(Λ)

e−[β/2−2d+1α] n(x,y)

� 2
∑

y∈δR(Λ)

∑

n≥1

e−(β/2−2d+1α)n(2n+ 1)d
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which yields ∣∣∣ log ΞR,±
β,Λ − β|Λ|P

∣∣∣ � cαe
−β/2+2d+1α

∣∣δR(Λ)
∣∣ , (4.35)

with
cα = 2eα

∑

n≥1

e−αn(2n+ 1)d . (4.36)

An inductive argument as in the proof of Theorem 4.3 completes then the proof
of the theorem. �

Before ending this section, we collect some estimates used in the next sections.

Lemma 4.6. Given any positive integer n,
∣∣∣ logZ±

β,Λ − {±βh|Λ|+
∑

x∈Λ

∑

x∈X(π)⊂K(x;n)∩Λ

ω±(π)
|X(π)| }

∣∣∣ � |Λ|e−(β/2−2dα)n (4.37)

∣∣∣ logZR,±
β,Λ − {±βh(β)|Λ| +

∑

x∈Λ

∑

x∈X(π)⊂KR(x,n)∩Λ

ωR,±(π)
|X(π)| }

∣∣∣ � |Λ|e−(β/2−2dα)n

(4.38)

Proof. (4.37) and (4.38) follow from (4.23) and its analogue without reflections. �
This lemma will enable us to estimate the corrections to the pressure. Let us

also examine two other consequences which will be crucial in the rest of the paper.

The first consequence justifies the notion of perfect walls introduced in Sub-
section 3.2. We consider the slab ΛL,ε and the reflection w.r.t. to the hyperplane
Σ = {x ∈ Rd, (�n · x) = 0} which splits ΛL,ε into two non-interacting domains.

Lemma 4.7. There exists c > 0 such that
∣∣∣ logZ+

L,ε − logZR,+
L,ε

∣∣∣ � ce−(β/2−2dα)Ld−2 , (4.39)

where Z+
L,ε denotes the partition function on ΛL,εL with + boundary conditions

and ZR,+
L,ε is the partition function obtained by reflection (see Subsection 3.2). The

same statement holds with − boundary conditions.

Proof. Let B = {−1, 0, 1}d. For any x in ΛL,ε, we set

n̄(x) = min{n, K(x, n) ∩B �= ∅,K(x, n) ∩ Λc
L,ε �= ∅}

Then
∣∣∣ logZ+

L,ε − logZ+,R
L,ε

∣∣∣ �
∑

x∈ΛL,εL

( ∑

X(π)∩KR(x;n̄(x))c �=∅;x∈X(π)⊂ΛL,εL

ωR,+(π)
|X(π)|

+
∑

X(π)∩K(x;n̄(x))c �=∅;x∈X(π)

ω+(π)
|X(π)|

)
.
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The contribution of the polymers with X(π) in K(x, n) and the reflected ones in
X(π) in KR(x, n) with n � n̄(x) cancel with each other by Theorem 4.1.

Since the weights of the polymers are exponentially small (see Lemma 4.1),
the result follows. �

The second consequence will be used in Section 6. Let TN be the torus
{−N, . . . , N}d and we consider a collection of reflections inside TN for which the
assumption (4.5) is satisfied. Let B denote the boundary conditions imposed by
the reflections, i.e., the centers and the boundaries of each reflecting surfaces. We
have

∣∣∣ logZR
β,N − logZβ,N

∣∣∣ � cαe
−(β/2−2dα)|B| , (4.40)

where ZR
β,N (resp. Zβ,N) denotes the partition functions in TN with periodic

boundary conditions and with (resp. without) reflection.

5 Properties of the surface tension

In the following, β is fixed large enough such that the results of Section 4 are
satisfied and h refers to h(β). We first derive the existence of the thermodynamic
limit for the surface tension and then its convexity and positivity.

5.1 Proof of Theorem 3.1

The proof can be split into three steps. First, we are going to prove that the choice
of the barriers (C+, C−) has almost no contribution on the ratio of the partition
functions. Then, an inductive procedure enables us to improve (3.8) and to derive
the convergence (3.9).

Step 1:
The first step is to prove that

τβ(�n) = lim inf
ε→0

lim inf
L→∞

sup
C+,C−

− (�n · �ed)
βLd−1

log
ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

. (5.1)

This boils down to check that there are constants (C1, C2) such that for any
(L, ε) and for any (C+, C−) and (C̃+, C̃−)

∣∣∣∣∣∣
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

− log
Z C̃+,C̃−

L,ε (S+,S−)

Z C̃+,R
L,ε Z C̃−,R

L,ε

∣∣∣∣∣∣
� C1L

d exp(−C2εL) . (5.2)

The events S+,S− decouple the interface from the boundary effects thus (5.2) can
be derived by using only estimates in a pure phase.
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It is enough to consider C̃− = C−. In this case, (5.2) becomes
∣∣∣∣∣∣
log

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
− log

ZC+,R
L,ε

Z C̃+,R
L,ε

∣∣∣∣∣∣
� C1L

d exp(−C2εL) . (5.3)

For any spin configuration in S+, let us denote by s+ the support of the +
barrier in ΛL, ε

10 L + εL
2 �ed which is the closest to the hyperplane Σ = {x; (x · �n) =

0}. This particular choice of s+ will be stressed by the notation s+ � S+. The
constrained partition function can be decomposed as follows

ZC+,C−

L,ε (S+,S−) =
∑

s+

eβh|s+|ZC+,s+

L,ε Zs+,C−

L,ε (s+ � S+,S−) ,

with the first partition function free of constraints so that cluster expansion applies
and the second partition function which takes into account the constraint that
there is no + barrier in ΛL, ε

10L + εL
2 �ed below s+.

We first write

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
=
∑

s+

ZC+,s+

L,ε

Z C̃+,s+

L,ε

eβh|s+| Z
C̃+,s+

L,ε Zs+,C−

L,ε (s+ � S+,S−)

Z C̃+,C−

L,ε (S+,S−)
. (5.4)

Let N = εL/10, (suppose, for notational simplicity, N an integer), then

exp{−4Lde−(β/2−2α)N} �
ZC+,s+

L,ε

Z C̃+,s+

L,ε

Z C̃+,R
L,ε

ZC+,R
L,ε

� exp{4Lde−(β/2−2α)N} (5.5)

follows from crossed cancellations among the terms in the numerator and denom-
inator. We are going to apply the expansion of the partition function derived in
Lemma 4.6 with n = N . The factor 4 is because there are 4 partition functions
involved. With reference to (4.37) and (4.38), the contribution of x such that the
scalar product (x · �n) � 8εL/10 coming from ZC+,s+

L,ε and ZC+,R
L,ε cancel with each

other, as well as those from Z C̃+,s+

L,ε and Z C̃+,R
L,ε . Symmetrically, the contribution

of x such that (x · �n) < 8εL/10 arising from ZC+,s+

L,ε and Z C̃+,s+

L,ε cancel with each

other, as well as those from Z C̃+,R
L,ε and ZC+,R

L,ε .

Finally, by applying (5.5), we get from (5.4):

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)

�
ZC+,R

L,ε

Z C̃+,R
L,ε

e4Lde−(β/2−2α)N ∑

s+

Z C̃+,s+

L,ε eβh|s+| Zs+,C−

L,ε (s+ � S+,S−)

Z C̃+,C−

L,ε (S+,S−)

�
ZC+,R

L,ε

Z C̃+,R
L,ε

e4Lde−(β/2−2α)N
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In the same way we get

ZC+,C−

L,ε (S+,S−)

Z C̃+,C−

L,ε (S+,S−)
�

ZC+,R
L,ε

Z C̃+,R
L,ε

e−4Lde−(β/2−2α)N
.

Recalling that N = εL/10, we have thus completed the proof of (5.2).

Step 2:
The goal is to derive a lower bound for

φ(L, ε, C+, C−) =
ZC+,C−

L,ε (S)

ZC+,R
L,ε ZC−,R

L,ε

in terms of τβ(�n). For simplicity S = (S+,S−).
The previous step (see (5.1)) implies that there exists a sequence (εk, Lk)k � 0

such that
∣∣∣∣∣
(�n · �ed)
βLd−1

k

inf
C+,C−

logφ(Lk, εk, C+, C−) + τβ(�n)

∣∣∣∣∣ � 1
k
. (5.6)

We fix (εk, Lk) and consider a pair (ε, L) such that εkLk � εL and Lk � L.
In order to derive a lower bound on φ(L, ε, C+, C−), we are going to localize the
interface in the slab ΛL,εkLk

.
We set Λ0

k = ΛLk,εkLk
, the upper-script 0 is to distinguish it from its trans-

lates (which will be introduced below). We call C0
k = (C+,0

k , C−,0
k ) and S0

k =
(S+,0

k ,S−,0
k ) the set of all spin configurations which have ± barriers as required

from the definition of the surface tension. The “maximal barriers” are denoted by
c±,0
k , meaning that c±,0

k is the first barrier coming from the top [resp. the bottom]
of Λ0

k. We also write c±,0
k � C±,0

k for the event where c±,0
k are the maximal barriers

in C±,0
k . We finally call U±,0

k the union of all sites outside Λ0
k and at distance 1

from its faces parallel to �n; The ± labels distinguish those where the b.c. in the
definition of the surface tension are set equal to ±1.

Let (Λi
k) be those translates of Λ0

k which are contained in ΛL,εL, where

∀i = (i1, . . . , id);

Λi
k = Λ0

k +



(Lk + 2)i1, . . . , (Lk + 2)id−1,−
d−1∑

j=1

(Lk + 2)
nj

nd
ij + ξi



 ,

with ξi ∈ [0, 1) chosen such that Λi
k ⊂ Zd. The same translation which carries

Λ0
k onto Λi

k is used to define Ci
k = (C+,i

k , C−,i
k ), Si

k = (S+,i
k ,S−,i

k ), c±,i
k � C±,i

k ,
U±,i

k as translates of the corresponding quantities with i = 0. Notice that the
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distance between two distinct Λi
k and Λj

k is always larger than the range of the
interaction and indeed two distinct U±,i

k have at most their external surfaces in
common. We denote by U+

k the union of all U+,i
k with the addition of the regions

Λi
k ∩ ΛL,εL ∩ {(x · �n) � 0}, when i ranges over all values such that Λi

k is not
contained in ΛL,εL. U−

k is defined analogously and Uk = U+
k ∪ U−

k .
The volume of Uk is bounded (for L so large that (Lk + 2)2 < L) by

|Uk| � {(Lk + 2)d−22}εkLk
Ld−1

(Lk + 2)d−1
+ Ld−2(Lk + 2)εkLk � 4εkL

d−1 . (5.7)

The first term bounds the contribution of all i where Λi
k ⊂ ΛL,εL, the second term

the remaining ones; the final estimate uses that (Lk + 2)2 < L.

C+

C−

εkLk U+,0
k

U−,0
k

Uk = U+
k ∪ U−

k

c+,i
k

c−,i
k

∆({c+,i
k })

∆({c−,i
k })

Figure 3. Decomposition at the scale Lk of the domain Λ(C+, C−) by means
of the subsets (Λi

k)i (depicted by dashed boxes).

Let Qk be the intersection of the events Ci = (C+,i
k , C−,i

k ), Si
k = (S+,i

k ,S−,i
k )

over all i such that Λi
k ⊂ ΛL,εL. Call c±,i

k the maximal barriers realizing the event
C±,i

k (maximal in the sense described previously). In order to decouple the events
in the different regions (Λi

k), we fix the spin configurations in Uk as equal to 1±Uk
,

where the latter is the configuration where the spins are equal to ±1 on U±
k , we

call Q′
k such a further constraint. On Qk we set Λ(c+,i

k , c−,i
k ) as the region in Λi

k

which goes from the maximal top barrier c+,i
k down to the maximal bottom barrier

c−,i
k (both included), and set

∆({c±,i
k }) = Λ(C+, C−) \

(
⋃

i

Λ(c+,i
k , c−,i

k )
⋃

Uk

)
,

∆+({c+,i
k }) = ∆({c±,i

k }) ∩ {x; (x · �n) � 0},
∆−({c−,i

k }) = ∆({c±,i
k }) ∩ {x; (x · �n) < 0} .
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Imposing the constraint Qk,Q′
k, and decomposing the partition function with

respect to (C+,i
k , C−,i

k ), we get

ZC+,C−

L,ε

(
S
)

� ZC+,C−

L,ε

(
S
⋂

Qk

⋂
Q′

k

)
(5.8)

=
∑

(c+,i
k ,c−,i

k )

e
−βHh(1±Uk

)
ZC+

∆+({c+,i
k })

(
S+, c+,i

k � C+,i
k

)
ZC−

∆−({c−,i
k })

(
S−, c−,i

k � C−,i
k

)

×
∏

i

{
eβh(|c+,i|−|c−,i|)Z

c+,i
k

,c−,i
k

Lk,εk
(Si

k)
}
.

By introducing the partition functions in each Λi
k with reflected boundary

conditions at the scale Lk, we will recover an approximation of the surface tension.

For each factor Zc+,i
k ,c−,i

k

Lk,εk
(Sk) in the last product, we write (see (5.6))

Z
c+,i
k ,c−,i

k

Lk,εk
(Sk) � Z

c+,i
k ,R(k)

Lk,εk
Z

c−,i
k ,R(k)

Lk,εk
exp

(
−β Ld−1

k

(�n · �ed)
(
τβ(�n) + 1/k

)
)
,

we are using the notation of Subsection 3.2 with R(k) instead of R to underline

that the partition functions Zc±,i
k

,R(k)

Lk,εk
take into account the multiple reflections at

the scale Lk (see Figure 2). By taking the product over all i, we get

∏

i

Z
c+,i
k

,c−,i
k

Lk,εk
(Sk) � exp

(
−β Ld−1

(�n · �ed)
(
τβ(�n) + 1/k

)) ∏

i

Z
c+,i
k

,R(k)

Lk,εk
Z

c−,i
k

,R(k)

Lk,εk
.

We are going to plug the previous inequality in (5.8) in order to reconstruct
two partition functions on the domains

∆± =
⋃

i

{
∆±({c±,i

k }k) ∪ Λ±(c±,i, R(k)) ∪ c±,i
k

}
.

Notice that the sets ∆± are slightly different from Λ±(C±) since they are built
according to the rules of the reflection at the scale Lk. We finally obtain

ZC+,C−

L,ε

(
S
⋂

Qk

⋂
Q′

k

)
� Z

C+,R(k)
∆+

(
S+, C+,i

k

)
Z

C−,R(k)
∆−

(
S−, C−,i

k

)
e
−βHh(1±Uk

)

exp
(
−β Ld−1

(�n · �ed)
(
τβ(�n) + 1/k

))
,

where ZC+,R(k)
∆+

(
S+, C+,i

k

)
denotes the partition function on ∆+ with a perfect wall

made of multiple reflections on the scale Lk and taking into account the occurrence
of the barriers S+ and {C+,i

k }i.
By (5.7)

|Hh(1±Uk
)| � c|Uk| � c4εkL

d−1
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so that, it only remains to check that

lim
k→∞

lim
L→∞

inf
C+,C−

1
Ld−1

log
Z

C+,R(k)
∆+

(
S+, C+,i

k

)
Z

C−,R(k)
∆−

(
S−, C−,i

k

)

ZC+,R
L,ε ZC−,R

L,ε

� 0 , (5.9)

because, if we suppose that the previous inequality holds, then

lim inf
L→∞

(�n · �ed)
βLd−1

inf
C+,C−

logφ(L, ε, C+, C−) � − τβ(�n) ,

which completes the Theorem 3.1.

Step 3:
The final step is devoted to the derivation of (5.9). This amounts to prove

that the corrections to the pressure for the different types of reflected boundary
conditions are negligible.

First, we check that the constrained partition function ZC+,R(k)
∆+

(
S+, C+,i

k

)
is

asymptotically equivalent to the non-constrained partition function ZC+,R(k)
∆+ . Let

µ
+,R(k)
∆+ be the corresponding Gibbs measure. Then the following holds

µ
+,R(k)
∆+

(
S+, C+,i

k

)
�
(
1 − Ld−1 exp(−cεL)

)(
1 − Ld−1

k exp(−cεkLk)
)Nk . (5.10)

This can be derived as follows. The occurrence of a barrier with blocks uniformly
labelled by 1 in the slab Λl,m implies that there is no connected set of blocks la-
belled by −1 joining the two faces of Λl,m orthogonal to �n. Under µ+,R(k)

∆+ , a Peierls
estimate similar to (4.11) (see Theorem 4.4). A Peierls type argument implies then
that a connected set of − blocks with length at least m has a probability smaller
than exp(−β

2m). Applying recursively the Peierls argument, we derive (5.10).

By hypothesis on the sequence (εk, Lk), for k large enough (5.10) implies

µ
+,R(k)
∆+

(
S+, C+,i

k

)
� 2−1−Ld−1 exp(−cεkLk) .

Therefore

lim
k→∞

lim
L→∞

1
Ld−1

inf
C+

log
Z

C+,R(k)
∆+

(
S+, (C+,i

k )
)

Z
C+,R(k)
L,ε

� 0 . (5.11)

This reduces the proof of (5.9) to

lim
k→∞

lim
L→∞

1
Ld−1

inf
C+,C−

log
Z

C+,R(k)
∆+ Z

C−,R(k)
∆−

ZC+,R
L,ε ZC−,R

L,ε

= 0 . (5.12)

Again this estimate will follow from cross cancellations between the 4 partition
functions.
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Following the strategy of step 1, the bulk contribution and the correction to
the pressure from the boundary terms C+, C− can be estimated by Lemma 4.6;
they are of the order

Ld exp
{

2Lde−(β/2−2α)εL/10
}
.

Thus it is enough to check that the contribution of the perfect walls involved
in each partition function will be negligible w.r.t. to the surface order. We first
consider the partition functions ZC+,R

L,ε , ZC−,R
L,ε . By an analogous argument of the

one used to derive (4.39), we see that the corrections to the pressure induced by
the perfect wall Σ are of the order Ld−2.

We consider now the partition functions with multiple reflections. The perfect
wall associated to the box Λi

k is denoted Σi and to each reflection corresponds a
particular set Bi of boundary conditions. The set Bi comprises the sites around
the center of reflection in Σi as well as the sites outside Λi

k which are connected
to Σi. The union of the Bi is denoted by B (see Figure 2).

In order to use the estimate of Section 4, we should first check that the
assumption (4.5) holds for the multiple reflections at the scale Lk. Suppose that
for some x, n′(x) � n(x). Following the proof of Theorem 4.1 there exists a bijective
map T such that KR(x, n) = T (K(x, n)) for any n < n′(x). Thus KR(x, n′(x)−1)
contains only sites in K(x, n′(x) − 1) or in the reflection of K(x, n′(x) − 1) w.r.t.
one perfect wall. By construction KR(x, n′(x)) is obtained by adding all the cells
connected to KR(x, n′(x)− 1), so that it is impossible that KR(x, n′(x)) contains
sites in two distinct perfect walls Σi and Σj without intersecting the boundaries
of Σi and Σj which are included in B. This shows that n(x) < n′(x) and that
assumption (4.5) is satisfied.

In each partition function ZC+,R(k)
∆+ or ZC−,R(k)

∆− there are
(

L
Lk

)d−1

reflections

at the scale Lk. Each reflection leads to corrections of the order Ld−2
k and overall

we get an effect of the order Ld−1

Lk
. As k diverges this leads to vanishingly small

contributions w.r.t. the surface order Ld−1.
Combining the previous estimates, we conclude (5.12).

5.2 Properties

We are going to establish some basic properties of the surface tension

Proposition 5.1. For any β large enough such that the model is in the Pirogov
Sinai regime

inf

n∈Sd−1

τβ(�n) > 0.

The positivity of the surface tension defined in (3.11) was already derived in
[BKL] (nevertheless the existence of the thermodynamic limit was an assumption
in [BKL]).
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The homogeneous extension on Rd of the surface tension is defined by

∀x ∈ R
d, τβ(x) = ‖x‖2 τβ

(
x

‖x‖2

)
, τβ(0) = 0 .

Proposition 5.2. The surface tension τβ is convex on Rd.

As a consequence [Am], the functional Wβ is lower semi-continuous.

The definition (3.8) of the surface tension in the direction �n relies on the
arbitrary choice of the orientation of the slab along one of the axis (see Section 3).
Nevertheless, since τβ is convex, it is also continuous and therefore the value of
the surface tension is independent of the arbitrary choices in the definition.

Proof of Proposition 5.1.
According to Theorem 3.1, it is enough to prove that there is cβ > 0 such that
uniformly over �n the following holds

∀L > 0, ∀ε > 1
L
, inf

C+,C−
log

ZC+,C−

L,ε (S+,S−)

ZC+,R
L,ε ZC−,R

L,ε

� − cβL
d−1 . (5.13)

At this stage the constraint (S+,S−) plays no role and can be dropped. Further-
more, it is enough to select the most simple barriers C+, C− and to derive

∀L > 0, ∀ε > 1
L
, log

Z+,−
L,ε

Z+,R
L,ε Z−,R

L,ε

� − cβL
d−1 , (5.14)

where Z+,−
L,ε denotes the partition function with mixed boundary conditions in the

domain ΛL,εL. For simplicity we suppose that nd = (�n · �ed) � 1/
√
d.

As explained after the heuristic expansion (3.10), the precise derivation of the
surface tension requires to compensate precisely the boundary surface tensions τ+

bd

and τ−bd appearing in the numerator and the denominator. For (5.13), only a crude
bound on τ+

bd and τ−bd is necessary. More precisely, by (4.38), there is C1 > 0 such
that ∣∣∣logZ+,R

L,ε + logZ−,R
L,ε − βP|ΛL,εL|

∣∣∣ � C1

nd
Ld−1e−β/2 . (5.15)

Due to the mixed ± b.c. the spin configurations which contribute to Z+,−
L,ε have

necessarily an “open” contour Γ whose spatial support, sp(Γ), ∗-disconnects the
top and bottom faces of ΛL,εL. The complement of Γ̄, see Subsection 4.1 for defini-
tions, is made by a finite number of regions, say ∆1, . . . ,∆n, with their boundaries,
δ∆i (i.e., all cells in ∆c

i , ∗-connected to ∆i) where the spins have a constant sign,
denoted by ξi. Then

Z+,−
L,ε =

∑

Γ

e−βHh(σΓ̄)
n∏

i=1

Zξi
∆i

.
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By (4.28), we get

Z+,−
L,ε � eβ|ΛL,εL|P

∑

Γ

e−βHh(σΓ̄)+β|Γ̄|P
n∏

i=1

ee−β/2+2αNδ∆i .

In the last product we use the inequality
n∑

i=1

Nδ∆i � 3dNΓ

(as each cell in δ∆i is ∗-connected to a cell of sp(Γ) and the correspondence is at
most 3d to 1). Moreover, by the definition of contours and using the fact that h
belongs to (0, e−β/2+2d+1α) (see (4.31))

−βHh(σΓ̄) � β|h||Γ̄| − βNΓ � − β[1 − e−β/2+2d+1α6d]NΓ .

The previous estimate implies that for β large enough,

Z+,−
L,ε � eβ|ΛL,εL|P

∑

Γ

exp
{
−
(
β[1 − e−β/2+2d+1α6d] − 6d2e−β/2+2d+1α − 3de−β/2+2d+1α

)
NΓ

}

� eβ|ΛL,εL|P
∑

D�x∗,ND � 2−dLd−1

e−β/2ND23d|D| ,

where the sum is over all connected sets D of cells (D standing for sp(Γ)) which
contain x∗ a point of ΛL,εL ∗-connected to the surface which separates the + and
− boundary conditions; 23d|D| counts the number of contours with given spatial
support. This leads to

Z+,−
L,ε � eβ|ΛL,εL|Pe−(β/2−α)2−dLd−1

. (5.16)

Inequalities (5.15) and (5.16) imply

Z+,−
L,ε

Z+,R
L,ε Z−,R

L,ε

� exp
{
− Ld−1

(
2−d(

β

2
− α) − C1

nd
e−β/2

)}
.

Since nd � 1/
√
d, for β large enough (5.14) holds.

Proof of Proposition 5.2.
The convexity is equivalent to the pyramidal inequality (see, e.g., [MMR]). To any
collection of unit vectors (�n1, . . . , �nd+1), one associates a pyramid ∆(�n1, . . . , �nd+1)
with faces (Fi)i orthogonal to (�ni)i. Let |Fi| be the area of Fi. Then the pyramidal
inequality means that

|F1| τβ(�n1) �
d+1∑

i=2

|Fi| τβ(�ni) . (5.17)
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The derivation of the pyramidal inequality follows closely the approximation
scheme explained in the second step of the proof of Theorem 3.1. For a given
(L, ε), instead of approximating the surface tension in the slab ΛL,εL(�n1) by local-
izing the interface in the smaller slabs ΛLk,εkLk

(�n1), the interface is constrained
to follow a more complicated periodic pattern.

More precisely, the hyperplan orthogonal to �n1 and going through 0, is paved
by unit (d − 1)-dimensional cubes denoted by (C(�))�. For any �, let F (�)

1 be a
translate of F1 rescaled appropriately to fit in the cube C(�). The corresponding
pyramid is denoted by ∆(�). In this way, a periodic structure is created

Q =
⋃

�

(
C(�) ∪ ∆(�)

)
\ F (�)

1 .

The interface will be forced to cross ΛL,εL(�n1) by following the periodic pattern
NQ, where N = ε2L. This is done by decomposing each flat region of NQ or-
thogonal to �ni into slabs ΛLk,εkLk

(�ni), with Lk � N . The interface is allowed to
fluctuate inside each slab, thus an approximation of the surface tension in each
direction �ni can be recovered. Since the portion of the interface outside the slabs
is small w.r.t. the surface order, its contribution is negligible and we obtain

Ld−1

nd
τβ(�n1) �

∑

�

{
|C(�) \ F (�)

1 |
nd

τβ(�n1) +
d+1∑

i=2

|F (�)
i |
nd

τβ(�ni)

}
. (5.18)

Thus inequality (5.18) follows.

6 Wulff construction

In this section, β is fixed large enough such that the results of Section 4 on the
phase transition regime hold. The Gibbs measure with magnetic field h(β) and
periodic boundary conditions on TN is denoted by µβ,N .

6.1 Coarse graining

A key step in the analysis of the equilibrium crystal shapes is to extract a precise
information from the L1-estimates by means of a coarse graining. For this purpose,
we adapt in our context a coarse graining which was introduced in [B2].

The typical spin configurations are defined at the mesoscopic scale K = 2k.
Let ∂BK = BK+Kα \BK be the enlarged external boundary of the box BK , where
α is in (0, 1). The parameter ζ > 0 will control the accuracy of the coarse graining.

Let x be in TN and denote by BK(x) the corresponding B(K)-measurable
box. For any ε = ±1, the box BK(x) is ε-good if the spin configuration inside the
enlarged box BK+Kα(x) is typical, i.e.,
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(P1) The box BK(x) is surrounded by at least a connected surface of cells in
∂BK(x) with η-labels uniformly equal to ε.

(P2) The average magnetization inside BK(x) is close to the equilibrium value mε
β

of the corresponding pure phase

∣∣MK(x) −mε
β

∣∣ � ζ and MK(x) =
1

(2K + 1)d

∑

i∈BK(x)

σi .

See Figure 4.

|MK −m+
β | � ζ

+

K

Kα

d � 2

Figure 4. Coarse grained configuration with overlapping + good blocks.

On the mesoscopic level, each B(K)-measurable box BK(x) is labelled by a
mesoscopic phase label

∀x ∈ TN , uζ
K(x) =

{
mε

β , if BK(x) is ε-good ,
0, otherwise.

For large mesoscopic boxes, the typical spin configurations occur with over-
whelming probability.

Theorem 6.1. Then for any ζ > 0, the following holds uniformly over N

∀{x1, . . . , x�}, µβ,N

(
uζ

K(x1) = 0, . . . , uζ
K(x�) = 0

)
�
(
ρζ

K

)�
, (6.1)

where the parameter ρζ
K vanishes as K goes to infinity.

Despite the fact that the mesoscopic phase labels are not independent, the
theorem above ensures that the occurrence of the bad-blocks is dominated by
a Bernoulli measure. For the sake of completeness, the proof of Theorem 6.1 is
recalled in the Appendix.
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As in (2.6), the macroscopic counterpart of the phase labels is defined by

uζ
N,K(x) = uζ

K

(
ψ−1

N (x)
)
, x ∈ T̂ .

The images of B(K) boxes by ψN are denoted by B̂N,K(x).
Any discrepancy in the L1-norm between the coarse graining and the local

order parameter can be neglected with superexponential probability. By construc-
tion, for any x ∈ T̂ either |MN,K(x) − uζ

N,K(x)| is smaller than ζ or the block
B̂N,K(x) has label uζ

N,K(x) = 0. Using the domination by Bernoulli percolation,
the following holds. Given any δ > 0, one can choose the accuracy ζ of the coarse
graining and a scale K0(δ, β) such that for any mesoscopic K � K0

lim
N→∞

1
Nd−1

logµβ,N

(
‖MN,K − uζ

N,K‖1 > δ
)

= −∞ . (6.2)

This estimate will enable us to rephrase statements on the local parameter in terms
of the phase labels uζ

N,K which are much easier to handle.

6.2 Equilibrium crystal shapes

The concentration in L1 of MN,K to the solutions of the variational problem
requires the derivation of precise logarithmic asymptotic in terms of the surface
tension.

Proposition 6.1. Let v be in BV(T̂, {m−
β ,m

+
β }), then one can choose δ0 = δ0(v),

such that uniformly in δ < δ0

lim inf
N→∞

1
Nd−1

logµβ,N

(
‖MN,K − v‖1 � δ

)
� −Wβ(v) − o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

Proposition 6.2. For all v in BV(T̂, {m−
β ,m

+
β }) such that Wβ(v) is finite, one can

choose δ0 = δ0(v), such that uniformly in δ < δ0

lim sup
N→∞

1
Nd−1

logµβ,N

(
‖MN,K − v‖1 � δ

)
� −Wβ(v) + o(δ) ,

where the function o(·) depends only on β and v and vanishes as δ goes to 0.

6.3 Upper bound

The proof of Proposition 6.2 follows the general scheme of the L1 Theory. First
the boundary ∂∗v is approximated; this enables us to reduce the proof to local
computations in small regions. Then in each region the interface is localized on
the mesoscopic level by using the minimal section argument. In the last step, the
representation of the surface tension (see Definition 3.1) enables us to conclude.
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Step 1: Approximation procedure.
We approximate ∂∗v with a finite number of parallelepipeds.

Theorem 6.2. For any δ positive, there exists s positive such that there are � disjoint
parallelepipeds R̂1, . . . , R̂� included in T̂ with basis B̂1, . . . , B̂� of size length s and
height δs. The basis B̂i divides R̂i in 2 parallelepipeds R̂i,+ and R̂i,− and the
normal to B̂i is denoted by �ni. Furthermore, the parallelepipeds satisfy the following
properties

∫

R̂i

|XR̂i(x) − v(x)| dx � δ vol(R̂i) and

∣∣∣
�∑

i=1

∫

B̂i

τβ(�ni) dH(d−1)
x −Wβ(v)

∣∣∣ � δ,

where XR̂i = m+
β 1R̂i,+ +m−

β 1R̂i,− and the volume of R̂i is vol(R̂i) = δsd.

The proof follows from standard arguments of geometric measure theory (see for
example [Ce, B1]). Theorem 6.2 enables us to decompose the boundary into regular
sets (see Figure 5) so that it will be enough to consider events of the type

{
MN,K ∈

�⋂

i=1

V(R̂i, δvol(R̂i))

}
,

where V(R̂i, ε) is the ε-neighborhood of XR̂i

V(R̂i, ε) =
{
v′ ∈ L

1
(
T̂
) ∣∣

∫

R̂i

|v′(x) −XR̂i(x)| dx � ε

}
.

h

1
2
δh

{v = 1}
{v = −1}

�ni

B̂iR̂i,+

R̂i,−

Figure 5. Approximation by parallelepipeds.

According to (6.2), the local averaged magnetization can be replaced by the
mesoscopic phase labels. Therefore Proposition 6.2 is equivalent to the following
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statement: for any δ positive, there exists K0 = K0(δ, h), ζ0 = ζ0(δ, h) such that
uniformly in K � K0, ζ � ζ0

lim sup
N→∞

1
Nd−1

logµβ,N

(
uζ

N,K ∈
�⋂

i=1

V(R̂i, δvol(R̂i))

)

� −Wβ(v) + C(β, v)δ. (6.3)

The previous inequality localizes the L1-estimates into regular macroscopic
domains Ri

N which are the counterparts of the domains ΛsN,δsN (�ni) introduced
in Section 3. To use the definition of the surface tension, one has first to establish
the existence of 4 barriers in Ri

N which will play the roles of C+, C− and S+,S−.
The derivation of this boils down to transfer the macroscopic L1-bounds into a
microscopic statement on the localization of an interface inside each Ri

N . This is
a key step in the L

1-approach and the coarse graining will play a major role.

Step 2: Minimal section argument.

The microscopic images of R̂i,± in TN are denoted Ri,±
N and we set Ri

N =
Ri,+

N ∪Ri,−
N . For simplicity, we will only prove the existence of a + barrier Ci,+ lying

in the upper part of Ri
N and refer to [B2] for a complete derivation. We consider

∂topRi
N the face of Ri

N orthogonal to the vector �ni and contiguous to Ri,+
N . Let

Ri,top
N be the set of sites in Ri,+

N at distance smaller than δs
10N of ∂topRi

N . At a
given mesoscopic scale K, we associate to any spin configuration the set of bad
boxes which are the boxes BK intersecting Ri,top

N with uζ
K labels equal to 0 or −1.

For any integer j, we set Bi,j
N = Bi

N + j cdK �ni and define

Bi,j
N =

{
y ∈ Ri,top

N | ∃x ∈ Bi,j
N , ‖y − x‖ � 10

}
.

The sections Bi
j of the parallelepiped Ri

N are defined as the smallest connected set
of B(K)-measurable boxes BK intersecting Bi,j

N . The parameter cd is chosen such
that the Bi

j are disjoint surfaces of boxes. For j positive, let n+
i (j) be the number

of bad boxes in Bi
j and define

n+
i = min

{
n+

i (j) :
9δs
10cd

N

K
< j <

δs

cd

N

K

}
.

Call j+ the smallest location where the minimum is achieved and define the min-
imal section in Ri,top

N as Bi
j+ (see Figure 6).

For any spin configuration such that uζ
N,K belongs to

⋂�
i=1 V(R̂i, δvol(R̂i)),

the number of bad boxes in a minimal section is bounded by

n+
i � δvol(R̂i)

10cd
δs

(
N

K

)d−1

� 10cdδsd−1

(
N

K

)d−1

.
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bad blocks

bad blocks

{v = −1}

{v = 1}

Bj−

i

Bj+

i

Ri,+
N

′

Ri,−
N

′

Figure 6. Minimal sections.

As
∑�

i=1 |B̂i| = �sd−1 can be controlled in terms of the perimeter of ∂∗v, the total
number of bad boxes is bounded by

�∑

i=1

n+
i � δ C(v)

(
N

K

)d−1

. (6.4)

From the very construction of the coarse graining, the + spin surfaces asso-
ciated to overlapping boxes with uζ

N,K labels equal to 1 are connected. As each
minimal section contains mainly + good blocks, there exist almost a + barrier in
each minimal section. By modifying the spin configurations σ on the bad boxes,
we will complete these + barriers.

More precisely, we associate to any configuration σ the configuration σ̄ with
spins equal to + on the boundary of each bad box in the minimal section Bi

j+

and equal to σ otherwise. The cost of this surgical procedure can be estimated as
follows.

µβ,N

(
uζ

N,K ∈
�⋂

i=1

V(R̂i, δvol(R̂i))

)

�
∑

(i1,...,ik)

∑

(j1,...,jk)

∑

(n+
1 ,...,n+

k )

µβ,N

(
{n+

1 , . . . , n
+
k }
)
. (6.5)

The right-hand side takes into account the fact that in the domains Ri1 , . . . , Rik ,
the minimal sections are at heights j1, . . . , jk ∈ [ 9δsN

10K , δsN
K ] and contain n+

1 , . . . , n
+
k
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bad boxes such that (6.4) holds. Once the location of the bad boxes is fixed, the
number of spin flips to modify σ into σ̄ is at most C(v)

(
N
K

)d−1
Kd−1. By con-

struction σ̄ belongs to the set A1 of spin configurations which contain a + barrier
in the upper part of each domain Ri

N

µβ,N

(
{n+

1 , . . . , n
+
k }
)

�
k∏

α=1

(
(sN/K)d−1

n+
α

)
exp
(
δ C2(v, β)Nd−1

)
µβ,N

(
A1

)
,

where (sN/K)d−1 refers to the total number of blocks in each minimal section.
Summing over all the configurations and using (6.4) again, we obtain

∑

(n+
1 ,...,n+

k
)

µβ,N

(
{n+

1 , . . . , n
+
k }
)

� exp
(
o(δ)C3(v, β)Nd−1

)
µβ,N

(
A1

)
. (6.6)

Finally replacing (6.6) in (6.5), we get

µβ,N

(
uζ

N,K ∈
�⋂

i=1

V(R̂i, δvol(R̂i))

)

� 2�

(
N

K

)�

exp
(
o(δ)C3(v, β)Nd−1

)
µβ,N

(
A1

)
. (6.7)

Repeating the same argument, we can consider instead of A1 an event A
which contains at least 4 barriers in each Ri

N . For any spin configuration in A,
we define the set of sites Ci,+ as the support of the + barrier in Ri,+

N which is the
closest to ∂topRi

N . In the same way, Ci,− is the location of the − barrier in the
lower part of Ri

N which is the closest to (Ri
N )c. By analogy with the notation of

Section 3, the set of spin configurations which contain a + and a − barrier in the
domain Λ(Ci,+, Ci,−) is denoted by Si = (Si,+,Si,−).

Step 3: Surface tension estimates.
As a consequence of the previous step, for any spin configuration in A, there

exists a microscopic interface localized in each cube Ri
N . Thus we are now in a

good shape to check that

lim sup
N→∞

1
Nd−1

logµβ,N (A) � −
�∑

i=1

∫

B̂i

τβ(�ni) dHx + C(β, v, δ) , (6.8)

where C(β, v, δ) vanishes as δ tends to 0. Combining the previous inequality with
(6.7), we deduce (6.3). We now proceed in deriving (6.8).

We first pin the interfaces on the sides of each Ri
N by imposing that the boxes

on the boundary of each Ri,+
N (resp Ri,−

N ) parallel to �ni have η labels equal to 1
(resp −1). Since the height of Ri

N is δs, this procedure requires to modify at most
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δsd−1Nd−1 spins. Therefore this has no further impact on the evaluation of the
statistical weights of the configurations because the cost of flipping these spins is
bounded by exp(δC(v)Nd−1).

In this way, the domain TN is partitioned into the domains Λ(Ci,+, Ci,−) and
a remainder which will be denoted by ∆.

µβ,N(A) =
1

Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

�∏

i=1

ZCi,+,Ci,−

N,δN (Si) ,

where the boundary conditions ω are imposed by the values of the spins outside
∪iΛ(Ci,+, Ci,−) .

Introducing by force the partition functions with the perfect walls we get

µβ,N(A) =
1

Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

�∏

i=1

ZCi,+,R
N,δN ZCi,−,R

N,δN

�∏

i=1

ZCi,+,Ci,−

N,δN (Si)

ZCi,+,R
N,δN ZCi,−,R

N,δN

. (6.9)

By Definition 3.1 of the surface tension, the last term in the right-hand side
is bounded by

�∏

i=1

ZCi,+,Ci,−

N,δN (Si)

ZCi,+,R
N,δN ZCi,−,R

N,δN

� exp

(
−Nd−1

[
�∑

i=1

∫

B̂i

τβ(�ni)dHx + |B̂i|c(β,N, δ)
])

,

(6.10)

where the remainder c(β,N, δ) satisfies

lim sup
δ→0

lim sup
N→0

c(β,N, δ) = 0 .

In order to complete the derivation of (6.8), it remains to check that

lim
N→∞

1
Nd−1

log



 1
Zβ,N

∑

(Ci,+,Ci,−)

Zω
∆

�∏

i=1

ZCi,+,R
N,δN ZCi,−,R

N,δN





= lim
N→∞

1
Nd−1

log
ZR

β,N

Zβ,N
= 0 ,

where ZR
β,N denotes the partition function in TN where the interactions have been

reflected in the middle of each Ri
N . The previous statement follows readily from

(4.40) where the contribution of the reflected boundary conditions to the pressure
are proven to be of order Nd−2. Nevertheless in order to apply (4.40), we have first
to check that the assumption (4.5) holds for the particular topology imposed by
the reflections. If assumption (4.5) fails, it is easy to see that one can decompose
each parallelepiped Ri

N into smaller parallelepipeds {Ri,k
N }k of side-length h′ � h
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for which Theorem 6.2 still holds (see the proof in [B1]). If h′ is smaller than
the mutual distance between the parallelepipeds {Ri

N}i, a set KR(x, n) cannot
intersect two regions Rj,k

N and Rj′,k′

N with j �= j′ without touching the boundary
conditions B. Following the argument detailled in the third step of Subsection 5.1,
we can then exclude multiple reflections between cubes {Ri,k

N }k. Thus assumption
(4.5) is also valid in this setup.

6.4 Lower bound

In order to derive Proposition 6.1, it is enough to consider the typical spin config-
urations which contain a microscopic contour in a neighborhood of the boundary
of ∂∗v. At this stage, Theorem 3.1 becomes necessary.

Step 1: Approximation procedure.

We first start by approximating the boundary ∂∗v by a regular surface ∂V̂ .
A polyhedral set has a boundary included in the union of a finite number of hyper-
planes. The surface ∂∗v can be approximated as follows (see Figure 7)

Theorem 6.3. For any δ positive, there exists a polyhedral set V̂ such that

‖1IV̂ − v‖1 � δ and
∣∣Wβ(V̂ ) −Wβ(v)

∣∣ � δ.

For any s small enough there are � disjoint parallelepipeds R̂1, . . . , R̂� with basis
B̂1, . . . , B̂� included in ∂V̂ of side-length s and height δs. Furthermore, the sets
B̂1, . . . , B̂� cover ∂V̂ up to a set of measure less than δ denoted by Û δ = ∂V̂ \⋃�

i=1 B̂
i and they satisfy

∣∣∣
�∑

i=1

∫

B̂i

τβ(�ni) dH(d−1)
x −Wβ(v)

∣∣∣ � δ,

where the normal to B̂i is denoted by �ni.

The proof is a direct application of Reshtnyak’s Theorem and can be found in the
paper of Alberti, Bellettini [AlBe].

Using Theorem 6.3, we can reduce the proof of Proposition 6.1 to the compu-
tation of the probability of {‖MN,K−1IV̂ ‖1 � δ}. According to (6.2) the estimates
can be restated in terms of the mesoscopic phase labels. It will be enough to show
that: for any δ > 0, there exists ζ = ζ(δ) and K0(δ) such that for all K � K0

lim inf
N→∞

1
Nd−1

logµβ,N

(
‖uζ

N,K − 1IV̂ ‖1 � δ
)

� −Wβ(V̂ ) − o(δ), (6.11)

where the function o(δ) vanishes as δ goes to 0.
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Ûδ

�ni

B̂j

R̂i

{v = −1}

Figure 7. Polyhedral approximation.

Step 2: Localization of the interface.
The images of V̂ , R̂i and Û δ in TN will be denoted by VN , Ri

N and U δ
N . We

split Ri
N into Ri,−

N and Ri,+
N which are the microscopic counterparts of V̂ ∩ R̂i and

R̂i \ V̂ .
We will enforce the occurrence of a microscopic interface along the boundary

∂V̂ . As in the derivation of the upper bound, the domains Ri
N are the counterparts

of ΛN,δN(�ni). Let Ai,+ be the event that there are two + barriers in Ri,+
N and Ai,−

the analogous event with two − barriers in Ri,−
N . The ± barrier in Ri,±

N which is
the closest from (Ri

N )c is denoted by Ci,±. We set A =
⋂�

i=1 Ai,+ ∩ Ai,−. Let us
also define Di,+ (resp Di,−) the set of spin configurations such that the η-labels
are equal to 1 (resp −1) on the sides of Ri,+

N (resp Ri,−
N ) parallel to �ni. In order

to construct a closed contour of spins surrounding VN , we define D as the set
of configurations in Di,+ and Di,− such that the blocks on one side of U δ

N have
η-labels − and + in the other side.

Any spin configuration in A ∩ D contains a microscopic interface which de-
couples VN from its complement. One has

µβ,N

(
‖uζ

N,K − 1IV̂ ‖1 � δ
)

� µβ,N

({
‖uζ

N,K − 1IV̂ ‖1 � δ
}
∩ A ∩ D

)
. (6.12)

The spin configurations inside VN (resp V c
N ) are surrounded by − (resp +) bound-

ary conditions, so that they are in equilibrium in the − (resp +) pure phase. Bulk
estimate imply that one can choose s small enough, ζ′ = ζ′(δ) and K ′

0 = K ′
0(δ)

such that

lim
N→∞

µβ,N

(∫

V̂ c

|uζ′

N,K(x) −m+
β | dx � δ

2
or

∫

V̂

|uζ′

N,K(x) −m−
β | dx � δ

2

∣∣∣ A ∩D
)

= 0 .

(This limit can be obtained by using a proof similar to the one of Theorem 6.4.)
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So that (6.12) can be rewritten for N large enough as

µβ,N

(
‖uζ′

N,K − 1IV̂ ‖1 � δ
)

� 1
2
µβ,N (A ∩D) . (6.13)

Step 3: Surface tension.
Let Λ be the union of the sets Λi = Λ(Ci,+, Ci,−). The configurations in the

event A∩D contain two closed surfaces with + and − blocks which partition the
domain TN into 3 regions.

TN = Λ ∪ ∆+ ∪ ∆− ,

where ∆± represents the location of the ± pure phases and Λ is concentrated along
the interface. We proceed now to evaluate the right-hand side of (6.13)

µβ,N (A ∩D) � 1
ZN

∑

Ci,+,Ci,−

Z+
∆+Z

−
∆−

∏

i

ZCi,+,Ci,−

Λi
(Si) ,

where we used analogous notation to Section 3 for the partition function with
mixed boundary conditions. Introducing the partition functions with reflected
boundary conditions we get

µβ,N (A ∩D) � 1
ZN

∑

Ci,+,Ci,−

Z+
∆+Z

−
∆−Z

Ci,+,R
Λi

ZCi,−,R
Λi

∏

i

ZCi,+,Ci,−

Λi
(Si)

ZCi,+,R

Λ+
i

ZCi,−,R

Λ−
i

,

(6.14)

where Λ±
i refers to the sets Λ±(Ci,±) which were introduced in Subsection 3.2. The

last term in the right-hand side is an approximation of the surface tension in each
domain Λi, therefore Theorem 3.1 implies

inf
Ci,+,Ci,−

1
Nd−1

∑

i

log
ZCi,+,Ci,−

Λi
(Si)

ZCi,+,R

Λ+
i

ZCi,−,R

Λ−
i

� −
∑

i

∫

B̂i

τβ(�ni) dH(d−1)
x − P (v)c(δ,N) , (6.15)

where limδ→0 limN→∞ c(δ,N) = 0 and P (v) is the perimeter of v.
It remains to check that

lim
N→∞

1
Nd−1

log



 1
ZN

∑

Ci,+,Ci,−

Z+
∆+ Z

−
∆− Z

Ci,+,R

Λ+
i

ZCi,−,R

Λ−
i



 = 0 . (6.16)

Combining inequalities (6.15) and (6.16) we see that

lim inf
N→∞

1
Nd−1

logµβ,N (A ∩D) � −
�∑

i=1

∫

B̂i

τβ(�ni) dH(d−1)
x − o(δ) .

Using Theorem 6.3 and letting δ vanish, we conclude the proof of Proposition 6.1.
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We turn now to the derivation of (6.16). Since the reflected boundary con-
ditions decouple the system, the numerator should be understood as the prod-
uct of two partition functions associated to the sets ∆̄+ = ∆+ ∪i Λ+(Ci,+) and
∆̄− = ∆− ∪i Λ−(Ci,−), where Λ(Ci,±) denotes the part of Λi. It is important to
note that contrary to ∆±, the sets ∆̄± are independent of the choice of the surfaces
Ci,±. In particular, following the notation of Section 3,

∑

Ci,+

Z+
∆+ Z

Ci,+,R

Λ+
i

= ZR
∆̄+(Ci,+),

where the right-hand side denotes the partition function on ∆̄+ under the con-
straint that in each Ri,+

N there is a + barrier. Applying the same strategy as for
the derivation of (5.11), we can check that

lim
N→∞

1
Nd−1

log
ZR

∆̄+(Ci,+)
ZR

∆̄+

= 0 .

This implies that (6.16) is equivalent to

lim
N→∞

1
Nd−1

log
ZR

∆̄+ Z
R
∆̄−

ZN
= 0 . (6.17)

The partition functions in the numerator take also into account the con-
straints imposed by the set D on the spins along the set U δ

N and on the sides of
Ri

N parallel to �ni. These constraints can be released up to a small cost w.r.t. the
surface order. This comes from the fact that the event D is supported by at most
c(d, δ)Nd−1 edges where c(d, δ) vanishes as δ goes to 0. Therefore the probability
of D is negligible with respect to a surface order and we get

∣∣∣∣∣log
ZR

∆̄+ Z
R
∆̄−

ZR
N

∣∣∣∣∣ � c(d, δ)Nd−1 , (6.18)

where ZR
N is the unconstrained partition function on TN for which the interactions

in the middle of each Ri
N have been modified and replaced by perfect walls. Again

by the same considerations as in the last argument of the proof of the upper bound
(see Subsection 6.3), one check that one can find a polyhedral approximation for
which assumption (4.5) is satisfied. The corrections to the pressure induced by the
reflection are negligible w.r.t. the surface order (see (4.40)) so that

lim
N→∞

1
Nd−1

log
ZR

N

ZN
= 0 .

This, combined with (6.18) implies the validity of (6.16).
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6.5 Exponential tightness

The purpose of this subsection is to prove that phase coexistence cannot occur
by creation of many small droplets. Rephrased in a mathematical way, this means
that with an overwhelming probability, the configurations will concentrate close
to the compact set

Ka =
{
v ∈ BV(T̂, {m−

β ,m
+
β }) | P ({v = m−

β }) � a
}
, (6.19)

where P denotes the perimeter and a will be chosen large enough.

Proposition 6.3. There exists a constant C(β) > 0 such that for all δ positive one
can find K0(δ) such that for K � K0

∀a > 0, lim sup
N→∞

1
Nd−1

logµβ,N (MN,K �∈ V(Ka, δ)) � − C(β) a,

where V(Ka, δ) is the δ-neighborhood of Ka in L1(T̂).

The estimate (6.2) allows us to shift our attention from the local averaged
magnetization to the mesoscopic phase labels. In particular Proposition 6.3 follows
from

Theorem 6.4. Fix ζ > 0. For every a > 0 and δ > 0 there exists a finite scale
K0(δ), such that for all K � K0

lim sup
N→∞

1
Nd−1

logµβ,N

(
uζ

N,K �∈ V(Ka, 2δ)
)

� − c(β,K)a , (6.20)

where c(β,K) is a positive constant.

The core of the proof relies on the control of the phase of small contours by
means of an entropy/energy argument. The argument is standard and depends only
on the structure of the coarse graining. We refer the reader to [BIV1] (Theorem
2.2.1), where Proposition 6.4 was derived in a complete generality. Finally, notice
that similar arguments can easily be adapted to multi-phase models (see Remark
3.4 in [BIV2]).

Theorem 2.1 can be obtained by combining Propositions 6.3, 6.1, 6.2. Since
Ka is compact with respect to the L1 topology (see [EG]), the exponential tight-
ness property 6.3 enables us to focus only on a finite number of configurations
close to Ka. The precise asymptotic of these configurations is then estimated by
Propositions 6.1, 6.2 (see [B1] for details).

A Proof of Theorem 6.1

The magnetic field is equal to h(β) and omitted from the notation throughout the
proof. The proof follows the argument developed in [B2].
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Step 1. Let us start with a single box. If BK(x) is not a good box then either there
is a contour of length at least Kα crossing the enlarged boundary or conditionally
on the event that the box BK(x) is surrounded by a surface of η-block spins of sign
εx, the magnetization MK(x) is atypical. These two occurrences can be estimated
separately. Applying the Peierls estimate (4.11), we get

µβ,N

(
there is a contour crossing ∂BK(x)

)
� Kd−1 exp(−cβKα) . (A.1)

Conditionally on the occurrence of a connected surface S of η-block spins of sign
εx surrounding the box BK(x), the configurations inside BK(x) are decoupled from
the exterior. We first use Tchebyshev inequality

µβ,N

(
{|MK(x) −mεx

β | � ζ}
∣∣ S
)

� 1
ζ2K2d

µεx

β,int(S)



(
∑

i∈BK(x)

σi −mεx

β

)2


 ,

where int(S) is the region surrounded by S. As S has been chosen as the clos-
est surface to (BK+Kα)c, the magnetization inside the box BK(x) is measurable
after the conditioning. Classical Pirogov-Sinai theory ensures also that under the
assumptions of Theorem 4.2, the correlations decay exponentially in the εx-pure
phase, so that we obtain

µεx

β,h,int(S)

(
{|MK(x) −mεx

β | � ζ}
)
≤ 1
ζ2Kd

χ , (A.2)

where the susceptibility χ =
∑

i∈Zd µ
+
β (σ0;σi) is finite.

Step 2. In order to evaluate the probability of the event
{
uζ

K(x1) = 0, . . . , uζ
K(x�) = 0

}

the partition B(K) is sub-divised into cd sub-partitions (B(K)
i )i � cd such that two

cubes of size K+Kα centered on two sites of B(K)
i are disjoint. By applying Hölder

inequality, the estimate (6.1) is reduced to cubes which are not nearest neighbors.

µβ,N

(
uζ

K(x1) = 0, . . . , uζ
K(x�) = 0

)
�

cd∏

i=1

µβ,N

(
∀xj ∈ D(K)

i , uζ
K(xj) = 0

) 1
cd .

Step 3. The event
{
uζ

K(x1) = 0, . . . , uζ
K(x�) = 0

}
can be decomposed into 2 terms:

on �′ boxes the density is atypical, whereas there are contours crossing the �− �′

enlarged boundaries of the remaining boxes.
For a given collection of j boxes, we define

Aj = {The j boxes are surrounded by ± surfaces, but their averaged
magnetizations are non-typical}

Bj = {There are contours crossing the j enlarged boundaries of the boxes} .
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The probabilities of both events can be evaluated as follows. As the j boxes
are disjoint and the surfaces of blocks decouple the configurations inside each box

µβ,N (Aj) �
(
µβ,N (A1)

)j �
(
αK

)j
,

where the constant αK = χ
ζ2Kd was introduced in (A.2).

µβ,N (Bj) =
j∑

i=1

µβ,N

(
{∃ i contours crossing the j enlarged boundaries}

)
.

We choose i blocks as starting points of these contours. Then we have to evaluate

∑

|Γ1|+···+|Γi| � jKα

µβ,N(Γ1, . . . ,Γi) ,

where the contours (Γ1, . . . ,Γi) have also to cross each boundaries of the j cubes.
Let nr be the number of boundaries crossed by the contour r

∑

|Γ1|+···+|Γi| � jKα

µβ,N(Γ1, . . . ,Γi) �
∑

n1+···+ni=j

∑

(Γr,nr)

µβ,N (Γ1, . . . ,Γi) .

If a contour crosses nr boundaries then it has a length at least nrK
α + (nr − 1)K

because the distance between the boxes is at least K. Thus
∑

|Γ1|+···+|Γi| � jKα

µβ,N(Γ1, . . . ,Γi)

�
∑

n1+···+ni=j

i∏

r=1

exp(−cβnrK
α − cβ(nr − 1)K)

� exp(−cβjKα)

( ∞∑

n=1

exp(−cβ(n− 1)K)

)i

� Ci exp(−cβjKα) .

Finally

µβ,N(Bj) �
j∑

i=1

(
j

i

)
K(d−1)iCi exp(−cβjKα)

� exp(−cβ jKα)(1 + CKd−1)j = (α′
K)j ,

where the constant α′
K vanishes as K goes to infinity.
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Combining both estimates, we obtain

µβ,N

(
uζ

K(x1) = 0, . . . , uζ
K(x�) = 0

)
�

�∑

�′=1

(
�

�′

)
µβ,N(A�′)1/2µβ,N(B�−�′)1/2 �

(
αK + α′

K

)�
.

This completes the proof.
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