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Low Temperature Analysis of Two-Dimensional
Fermi Systems with Symmetric Fermi Surface

G. Benfatto, A. Giuliani and V. Mastropietro

Abstract. We prove the convergence of the perturbative expansion, based on Renor-
malization Group, of the two point Schwinger function of a system of weakly in-
teracting fermions in d = 2, with symmetric Fermi surface and up to exponentially
small temperatures, close to the expected onset of superconductivity.

1 Introduction and main results

1.1 Motivations

The unexpected properties of recently discovered materials, showing high-Tc su-
perconductivity and significative deviations from Fermi liquid behavior in their
normal phase (i.e., above Tc) [VLSAR], provides the main physical motivation
for the search of well-established results on models for interacting non-relativistic
fermions, describing the conduction electrons in metals. One can consider such
models not only in d = 3, but also in d = 1, 2, to describe metals so anisotropic
that the conduction electrons move essentially on a chain or on a plane.

Renormalization Group (RG) methods provide a powerful technique for stu-
dying such models. While in d = 1 RG methods were applied since long time
[So] and many rigorous results up to T = 0 were established (see for instance
[BGPS], [BoM], [BM] and [GM] for an updated review), in d > 1 the application
of RG methods is much more recent and started in [BG], [FT]. At the moment RG
methods seem unable to get a rigorous control of such models in d > 1 up to T = 0,
for the generic presence of phase transitions (for instance to a superconducting
state) at low temperatures (unless such phase transitions are forbidden by a careful
choice of the dispersion relation, see [FKT]). On the other hand, RG methods
seem well suited to obtain rigorous information on the behavior of d > 1 models at
temperatures above Tc, and to clarify the microscopic origin of Fermi or non-Fermi
liquid behavior in the normal phase. One can write, in the weakly interacting case,
an expansion for the Schwinger functions based on RG ideas; the finite temperature
acts as an infrared cut-off so that each perturbative order is trivially finite; the
mathematical non-trivial problem is to prove that the expansion is convergent,
and it turns out that such problem is more and more difficult as the temperature
of the system decreases. Indeed, if λ is the interaction strength, the cancellations
due to the anticommutativity properties of fermions allow quite easily to prove
convergence of naive perturbation theory for T ≥ |λ|α, for some constant α > 0. On
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the other hand, the critical temperature in the weak coupling case at which phase
transitions are expected is O(e−(a|λ|)−1

) where a is a constant essentially given
by the second order contributions [AGD] of the expansion, i.e., it is exponentially
small and so quite smaller than |λ|α, if λ is small enough.

In [FMRT] and [DR] the perturbative expansion convergence was proved
for the effective potential up to exponentially small temperatures, in the d = 2
Jellium model, describing fermions in the continuum, with dispersion relation
ε(�k) = |�k|2/(2m) and a rotation invariant weak interaction. One of the main
difficulties of the proof is that non-perturbative bounds are naturally obtained in
coordinate space, while one has to exploit the geometric properties of the Fermi
surface (i.e., the set of momenta �k such that ε(�k) = µ), which are naturally in-
vestigated in momentum space. In [FMRT] and [DR] an expansion based on RG
is considered, such that only the relevant (but not the marginal) terms are renor-
malized; this has the effect that one has convergence for T ≥ e−(c|λ|)−1

, where c is
related to an all order bound, hence it is expected to be much bigger than a. The
proof uses in a crucial way the rotation invariance of the Jellium model, an hy-
pothesis which is indeed quite unrealistic (it corresponds to completely neglecting
the effect of the lattice).

The aim of this paper is to prove convergence of the perturbative expan-
sion for the two point Schwinger function, in the case of an interacting system
of fermions in a lattice or in the continuum. Since the interaction modifies the
Fermi surface, we write the dispersion relation ε0(�k) of the free model in the form
ε0(�k) = ε(�k)+ δε(�k) and try to choose the counterterm δε(�k), which becomes part
of the interaction, as a suitable function of the original interaction, so that the
Fermi surface of the interacting system is the set F = {�k : ε(�k) = µ}. We can face
this problem if ε(�k) satisfies some conditions, implying mainly that F is a smooth,
convex curve, symmetric with respect to the origin.

We prove convergence for weak coupling and up to temperatures T ≥
exp{−(c0|λ|)−1}, where c0 is a constant whose explicit expression is given in (4.31)
and depends only on the size of the second order contributions of the perturbative
RG expansion. In order to get this type of result, we consider an expansion in
which both the relevant and marginal terms are renormalized. In fact, if one does
not renormalize the marginal terms, one obtains the bound T ≥ exp{−(c|λ|)−1},
the constant c being related to an all order bound, like in [DR]; of course it is
expected that c >> c0.

1.2 The model

There are two main classes of models of interacting fermions, depending whether
the Fermi operators space coordinates are continuous or discrete variables. Our
analysis deals with both such possibilities, so we give the following definitions.

1) Continuum models. In such a case, given a square [0, L]2 ∈ R
2, the inverse tem-

perature β and the (large) integer M , we introduce in Λ = [0, L]2 × [0, β] a lattice
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ΛM , whose sites are given by the space-time points x = (x0, �x) = (n0a0, n1a, n2a),
a = L/M , a0 = β/M , n1, n2, n0 = 0, 1, . . . ,M − 1. We also consider the set
D of space-time momenta k = (k0, �k), with �k = 2π�n

L , �n ∈ Z
2, �n = (n1, n2),

−M ≤ ni ≤ M − 1 and k0 = 2π
β (n0 + 1

2 ), n1, n2, n0 = 0, 1, . . . ,M − 1. With each

k ∈ D we associate four Grassmanian variables ψ̂εk,σ, ε, σ ∈ {+,−}. The lattice
ΛM is introduced only for technical reasons so that the number of Grassmanian
variables is finite, and eventually, before sending L to infinity, the (essentially
trivial) limit M → ∞ is taken.

2) Lattice models. In such a case, given [0, L]2 ∈ Z
2, the inverse temperature β

and the (large) integer M , we introduce in Λ = [0, L]2 × [0, β] a lattice ΛM , whose
sites are given by the space-time points x = (x0, �x) = (n0a0, n1, n2), a0 = β/M ,
n1, n2 = 0, . . . , L− 1 and n0 = 0, 1, . . . ,M − 1; this definition is obtained from the
previous one by defining a = 1. In such a case D is a set of space-time momenta
k = (k0, �k), with k0 = 2π

β (n + 1
2 ), n ∈ Z, −M ≤ n ≤ M − 1; and �k = 2π�n

L ,

�n ∈ Z
2, �n = (n1, n2), −[L2 ] ≤ ni ≤ [ (L−1)

2 ]. With each k ∈ D we associate four
Grassmanian variables ψ̂εk,σ, ε, σ ∈ {+,−}.

All the models are defined by introducing a linear functional P (dψ) on the
Grassmanian algebra generated by the variables ψ̂εk,σ, such that

∫
P (dψ)ψ̂−

k1,σ1
ψ̂+

k2,σ2
= L2βδσ1,σ2δk1,k2 ĝ(k1) , (1.1)

ĝ(k) =
C̄−1

0 (�k)

−ik0 + ε(�k) − µ
,

where ε(�k), the dispersion relation of the model, is a function strictly positive
for �k �= 0 and equal to 0 for �k = 0, µ is the chemical potential and C̄−1

0 (�k) is
the ultraviolet cut-off. In the case of lattice models we choose C̄−1

0 (�k) = 1, while
for continuum models the function C̄−1

0 (�k) is defined as C̄−1
0 (�k) = H

(
ε(�k) − µ

)
where H(t) ∈ C∞(R) is a smooth function of compact support such that, for
example, H(t) = 1 for t < 1 and H(t) = 0 for t > 2.

We introduce the propagator in coordinate space:

gL,β(x − y) ≡ lim
M→∞

1
L2β

∑
k∈D

e−ik·(x−y) ĝ(k) = lim
M→∞

∫
P (dψ)ψ−

x,σψ
+
y,σ , (1.2)

where the Grassmanian field ψεx is defined by

ψ±
x,σ =

1
L2β

∑
k∈D

ψ̂±
k,σe

±ik·x . (1.3)
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The “Gaussian measure” P (dψ) has a simple representation in terms of the
“Lebesgue Grassmanian measure”

Dψ =
∏

k∈D,σ=±
C

−1
0 (�k)>0

dψ̂+
k,σdψ̂

−
k,σ, (1.4)

defined as the linear functional on the Grassmanian algebra, such that, given a
monomial Q(ψ̂−, ψ̂+) in the variables ψ̂−

k,σ, ψ̂
+
k,σ, its value is 0, except in the case

Q(ψ̂−, ψ̂+) =
∏

k,σ ψ̂
−
k,σψ̂

+
k,σ, up to a permutation of the variable, in which case

its value is 1. We define

P (dψ) = N−1Dψ · exp



− 1
L2β

∑
k∈D,σ=±
C̄

−1
0 (�k)>0

C̄0(�k)(−ik0 + ε(�k) − µ)ψ̂+
k,σψ̂

−
k,σ




,

(1.5)
with N =

∏
k∈D,σ=±[(L2β)−1(−ik0 + ε(�k) − µ)C̄0(�k)].

The Schwinger functions are defined by the following Grassmanian functional
integral

S(x1, ε1, σ1; . . . ,xn, εn, σn) = lim
L→∞

lim
M→∞

∫
P (dψ)e−V(ψ)−N (ψ)ψε1x1,σ1

. . . ψεn,σn
xn∫

P (dψ)e−V(ψ)−N (ψ)
,

(1.6)
where

N (ψ) =
1
L2β

∑
k∈D,σ=±
C

−1
0 (�k)>0

ν̂(�k, λ)ψ+
k,σψ

−
k,σ, (1.7)

and, if we use
∫
dx and δ(x0 − y0) as short-hands for

∑
x∈ΛM

a0a
2 and a−1

0 δx0,y0 ,

V(ψ) = λ
∑
σ,σ′

∫
dxdyδ(x0 − y0)vσ,σ′ (�x− �y)ψ+

x,σψ
−
x,σψ

+
y,σ′ψ

−
y,σ′ , (1.8)

vσ,σ′(�x) being smooth functions such that maxσ,σ′
∫
d�x (1 + |�x|2) |vσ,σ′(�x)| is

bounded.
Note that ν̂(�k, λ) is related to the counterterm δε(�k) introduced in §1.1 by

the relation δε(�k) = C̄−1
0 (�k)ν̂(�k, λ)

In order to make more precise the model, we have to specify some properties of
the dispersion relation. We will assume that ε(�k) verifies the following properties
(whose consequences are discussed in §7. From now on c, c1, c2, . . ., will denote
suitable positive constants.

1. There exists e0 such that, for |e| ≤ e0, ε(�k) − µ = e defines a regular C∞

convex curve Σ(e) encircling the origin, which can be represented in polar
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coordinates as �p = u(θ, e)�er(θ) with �er(θ) = (cos θ, sin θ). Note that e0 < µ,
since ε(�k) > 0 for �k �= 0 and ε(�0) = 0; moreover u(θ, e) ≥ c > 0 and, if r(θ, e)
is the curvature radius,

r(θ, e)−1 ≥ c > 0 . (1.9)

2. e0 is chosen so that, if �k ∈ Σ(e) and |e| ≤ e0, then C̄−1
0 (�k) = 1.

3. If |e| ≤ e0, then
0 < c1 ≤ �∇ε(�p) · �er(θ) ≤ c2 . (1.10)

4. The following symmetry relation is satisfied

ε(�p) = ε(−�p) , (1.11)

implying that the curves Σ(e) are symmetric by reflection with respect to
the origin.

We will call ΣF ≡ Σ(0) the Fermi surface and we will put u(θ, 0)�er(θ) = �pF (θ)
and u(θ) ≡ u(θ, 0) = |�pF (θ)|.
Remarks. The Grassmanian functional integrals (1.6) are equal, in the limit M →
∞, to the Schwinger functions of an Hamiltonian model of fermions in two dimen-
sions, expressed in terms of fermionic creation or annihilation operators. Among
the dispersion relations which are in the class we are considering is that of the
Hubbard model, defined in a lattice with local interaction vσ,σ′(�x− �y) ≡ δσ,−σ′δ�x,�y
(without the counterterm) and ε(�k) = 2 − cos k1 − cos k2, and that of the Jellium
model, defined in the continuum with ε(�k) = |�k|2/2m. The index σ is the spin
index; in the following it will not play any role and it will be omitted to shorten
the notation.

We are mainly interested in the two point Schwinger function S(x − y) ≡
S(x,−;y,+), with S(x,−;y,+) given by (1.6). For λ = 0 and ν̂(�k, λ) = 0, S(x−y)
is equal to the propagator (1.2), hence its Fourier transform is singular at k0 = 0
(which is not an allowed value at finite temperature) and ε(�k) = µ. As we said in
§1.1, we want to fix ν̂(�k, λ) so that the location of this singularity does not change
for λ �= 0; this allows to study the model as a perturbation of the model with
λ = 0.

Our goal is to prove the following theorem.

Theorem 1.1 There exist two positive constants ε and c0, the last one only depend-
ing on first and second order terms in the perturbative expansion, and a continuous
function ν̂(�k, λ) = O(λ), such that, for all |λ| ≤ ε and T ≥ exp{−(c0|λ|)−1},

Ŝ(k) = ĝ(k)(1 + λŜ1(k)) , (1.12)

where ĝ(k) is the free propagator at finite β (i.e., it is equal to the Fourier trans-
form of limL→∞ gL;β(x − y), see (1.2)) and |Ŝ1(k)| ≤ c, for some constant c. In
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the continuum case with ε(�k) = |�k|2/2m and v(�r) = ṽ(|�r|), there exists another
constant c1 such that, if |λ| ≤ ε and T ≥ exp{−(c1|λ|)−1}, ν̂(�k, λ) = ν(λ) is a
constant.

However, in order to simplify the discussion, we shall not really study (even if
we would be able to do that) the finite volume case and the convergence as L→ ∞,
but we shall study directly the formal thermodynamical limit of our expansions
and we shall introduce a few other technical simplifications, which leave unchanged
the relevant properties of the models. See the remark at the end of §2.1 for a precise
definition of the model for which we do prove Theorem 1.1.

This theorem says that the two point Schwinger function of the interacting
system is close to the free one, for weak interactions and up to exponentially small
temperatures; the condition on the temperature is not technical, as at temperatures
low enough phase transitions are expected and a result like (1.12) cannot hold.
The theorem is proved by an expansion similar to the one in [BG], in which the
relevant and the marginal interactions are renormalized at any iteration of the
Renormalization Group. One writes Ŝ(k) in terms of a set of running coupling
functions, which obey recursive equations, the beta function of the model. We prove
that the expansions of Ŝ(k) and of the beta function are convergent, if the running
coupling functions are small in a suitable norm; the convergence proof is based on
the tree expansion and the determinant bounds used for instance in [BM] and on
a suitable generalization to the present problem of the sector counting lemma of
[FMRT]. Finally we show, by choosing properly the counterterm ν̂(�k, λ) and by
solving iteratively the beta function, that the running coupling functions are small
up to temperatures exponentially small T ≥ exp−(c0|λ|)−1; c0 is expressed in
terms of a few terms of first and second order, see (4.31) below, so much closer
to the expected value for the onset of superconductivity. Our non perturbative
definition of the beta function is interesting by itself, as it could be used to detect
the main instabilities of the model at lower temperatures.

In order to complete our program, we should prove that ν̂(�k, λ) and ε(�k) can
be chosen in a space of functions with the same differentiability properties and
that the relation ε0(�k) = ε(�k) + ν̂(�k, λ) can be solved with respect to ε(�k), given
ε0(�k) and λ. This would imply that the introduction of the counterterm is only a
technical trick, but does not restrict the class of allowed dispersion relations; for
example one could consider the Hubbard model away from half-filling.

We did not yet get this result, mainly because our bounds can only show
that ν̂(�k, λ) is a continuous function of compact support, whose Fourier transform
is summable, while ε(�k) has to be a bit more regular than a twice differentiable
function. A similar problem appears in [FKT] in which a result similar to Theorem
1.1 above is proved in a class of asymmetric Fermi surfaces (the asymmetry makes
an equation like (1.12) valid up to T = 0). It is likely that an improvement in the
differentiability properties of the counterterm could be obtained by applying the
more detailed analysis on the derivatives of the self-energy introduced in [DR].
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This problem is not present in the Jellium model, where, by using rotational
invariance (so that both the free and the interacting Fermi surfaces are circles),
one can choose ν̂(�k, λ) as a constant with respect to �k; this is the last statement in
the theorem, already proved in [DR]. In order to get this result in a simple way, we
chose to give up the “close to optimal” upper bound on the critical temperature;
in fact the constant c1 depends on an all order bound, like in [DR]. However, even
in this case, our result has some interest, since we get it without being involved in
the delicate one particle irreducibility analysis of [DR].

2 Renormalization Group analysis

We start, for clarity reasons, by studying the free energy of the model. In this
section we write an expansion for it in terms of a set of running coupling functions
and we show that the expansion is convergent if the running coupling functions
are small enough in a suitable norm.

2.1 The scale decomposition

The free energy is defined as

EL,β = − 1
L2β

log
∫
P (dψ(≤1))e−V(1)

, (2.1)

P (dψ(≤1)) ≡ P (dψ), V(1) ≡ V + N .

Note that our model has an ultraviolet cut-off in the �k momentum, but the k0

variable is unbounded in the limit M → ∞. Hence, it is convenient to decom-
pose the field as ψ(≤1) = ψ(+1) + ψ(≤0), where ψ(+1) and ψ(≤0) are independent
fields whose covariances have Fourier transforms with support, respectively, in the
ultraviolet region and the infrared region, defined in the following way.

Item 1) in the list of properties of the dispersion relation given in §1.2 implies
that, if H0(t) is a smooth function of t ∈ R

1, such that

H0(t) =
{

1 if t < e0/γ ,
0 if t > e0 ,

(2.2)

γ > 1 being a parameter to be fixed below, then, since C̄−1
0 (�k) = 1 if |ε(�k)−µ| ≤ e0,

C̄−1
0 (�k) = C−1

0 (k) + f1(k) ,

C−1
0 (k) = H0

[√
k2
0 + [ε(�k) − µ]2

]
, (2.3)

f1(k) = C̄−1
0 (�k)

{
1 −H0

[√
k2
0 + [ε(�k) − µ]2

]}
.

The covariances g(+1) and g(≤0) of the fields ψ(+1) and ψ(≤0) are defined as in
(1.8), with f1(k) and C−1

0 (k) in place of C̄−1
0 (�k).
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If we perform the integration of the ultraviolet field variables ψ(+1), we get

e−L
2βEL,β = e−L

2βE0

∫
P (dψ(≤0))e−V0(ψ≤0) , (2.4)

where V(0)(ψ(≤0)), the effective potential on scale 0, is given by an expression like
(2.12) below and E0 is defined by the condition V(0)(0) = 0.

The analysis of the ultraviolet integration is far easier than the infrared one.
It can be done by the same procedure applied below for the infrared problem, by
making a multiscale expansion of the u.v. propagator g(1)(x), based on an obvious
smooth partition of the interval {|k0| > 1}. In this way, one can build a tree
expansion for V(0), with endpoints on scale M > 0, similar to the infrared tree
expansion, to be described below, see Fig. 1 and following items 1)–6). It is easy to
see that there is no relevant or marginal term on any scale > 0, except those which
are obtained by contracting two fields associated with the same space-time point
in a vertex located between an endpoint and the first non-trivial vertex following
it (i.e., the tadpoles). However the sum over the scales of this type of terms, which
is not absolutely convergent for M → +∞, can be controlled by using the explicit
expression of the single scale propagator, since there is indeed no divergence, but
only a discontinuity at x0 = 0 for �x = 0. We shall omit the details, which are of
the same type of those used below for the infrared part of the model.

Let us now consider the infrared integration; it will be performed, as usual,
by an iterative procedure. Note first that we can write

H0(t) =
0∑

h=−∞
f̃h(t) , (2.5)

where f̃h(t) = H0(γ−ht) −H0(γ−h+1t) is a smooth function, with support in the
interval [γh−2e0, γ

he0], and γ > 1 is the scaling parameter. In order to simplify
some calculations, we will put in the following γ = 4, but this choice is not essential.

Since |k0| ≥ π/β, ∀k ∈ D, if we define

hβ = max{h ≤ 0 : γh−1e0 < π/β} , (2.6)

we have the identity

C−1
0 (k) =

0∑
h=hβ

fh(k) , fh(k) ≡ f̃h

(√
k2
0 + [ε(�k) − µ]2

)
. (2.7)

We associate with the decomposition (2.7) a sequence of constants Eh, h =
hβ , . . . , 0, and a sequence of effective potentials V(h)(ψ) such that V(h)(0) = 0 and

e−L
2βEL,β = e−L

2βEh

∫
P (dψ(≤h))e−V(h)(ψ(≤h)) , (2.8)
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where P (dψ≤h) is the fermionic integration with propagator

g(≤h)(x) =
1
L2β

∑
k∈D

C−1
h (k)

−ik0 + ε(�k) − µ
e−ikx , (2.9)

with

C−1
h (k) =

h∑
j=hβ

fj(k) = C−1
h−1(k) + fh(k) . (2.10)

The definition (2.8) implies that

EL,β = Ehβ
− 1
L2β

log
∫
P (dψ(≤hβ))e−V(hβ)(ψ(≤hβ )) . (2.11)

If we neglect the spin indices and we put ε1 = · · · = εn = +, εn+1 = · · · =
ε2n = −, we can write the effective potentials in the form

V(h)(ψ(≤h)) =
∞∑
n=1

∫
dx1 . . . dx2n

[
2n∏
i=1

ψ(≤h)εi
xi

]
W

(h)
2n (x1, . . . ,x2n) . (2.12)

Remark. The terms in the right-hand side of (2.12) are well defined at finite M and
L, as elements of a finite Grassmanian algebra, but have only a formal meaning
for M = L = ∞. However, one can prove that the kernels, as well as EL,β, have
well-defined limits as M and L go to infinity. Such result is achieved by studying
a suitable perturbative expansion of these quantities and by proving that they are
uniformly (in M and L) convergent and, in the case of the kernels, that they have
fast decaying properties in the x variables; see [BM] for a complete analysis of this
type in the one-dimensional case. However, since this procedure is cumbersome
and difficult to describe rigorously without making obscure the main ideas, which
have nothing to do with the details related with the finite values of M and L, we
shall discuss in the following only the formal limit of our expansions and we shall
prove that the kernels as well as the free energy constants Eh are well defined.
For similar reasons, we shall also consider k0 as a continuous variable and we shall
take into account the essential infrared cut-off related with the finite temperature
value, by preserving the definition (2.10) of the cut-off functions. This means, in
particular that, from now on

1
L2β

∑
k∈D

→ 1
(2π)3

∫
D
dk . (2.13)

Moreover, we shall suppose that the space coordinates are continuous variables,
both in the continuum and lattice models. This means that, from now on,

∫
dx will

denote the integral over R
3. Finally, we shall still use the symbol L2β to denote

the formally infinite space-time volume in the extensive quantities like L2βEh.
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2.2 The localization procedure

Let us now describe our expansion, which is produced by using an inductive pro-
cedure. First of all, we define an L operator acting on the kernels in the following
way:

1. LW (h)
2n = 0 if n ≥ 3.

2. If n = 2 and we put x = (x1, . . . ,x4), xi = (xi,0, �xi), x̃i = (x̃i,0, �xi), δ(x0) =
δ(x1,0 − x2,0)δ(x1,0 − x3,0)δ(x1,0 − x4,0)

LW (h)
4 (x) = δ(x0)

∫
d(x̃0\x̃1,0)W

(h)
4 (x̃) . (2.14)

Note that, because of translation invariance, this definition is independent of
the choice of the localization point, that is the point whose time coordinate
is not integrated (x1 in (2.14)).

3. If n = 1 and we put (by using translation invariance) W
(h)
2 (x1,x2) =

W̃
(h)
2 (x1 − x2),

LW (h)
2 (x1,x2) = δ(x1,0 − x2,0)

∫
dt W̃

(h)
2 (t, �x1 − �x2)

+∂x2,0δ(x1,0 − x2,0)
∫
dt t W̃

(h)
2 (t, �x1 − �x2) . (2.15)

The definition of L is extended by linearity to V(h), so that we can write

LV(h)(ψ(≤h)) =
∫
dx1dx2δ(x1,0 − x2,0)γhνh( �x1 − �x2)ψ(≤h)+

x1
ψ(≤h)−

x2

+
∫
dx1dx2δ(x1,0 − x2,0)zh( �x1 − �x2)ψ(≤h)+

x1
∂x2,0ψ

(≤h)−
x2

+
∫
dxλh(�x)δ(x0)ψ

(≤h)+
x1

ψ(≤h)+
x2

ψ(≤h)−
x3

ψ(≤h)−
x4

, (2.16)

where λh(�x) =
∫
d(x0\x1,0)W

(h)
4 (x), γhνh( �x1 − �x2) =

∫
dtW̃

(h)
2 (t, �x1 − �x2) and

zh( �x1 − �x2) = −
∫
dt t W̃

(h)
2 (t, �x1 − �x2). Note that, in the term containing zh(�x1 −

�x2), we can substitute ψ(≤h)+
x1 ∂x2,0ψ

(≤h)−
x2 with −[∂x1,0ψ

(≤h)+
x1 ]ψ(≤h)−

x2 .
The functions λh, νh and zh will be called the running coupling functions of

scale h or simply the coupling functions.
It is useful to consider also the representation of LV (h)(ψ(≤h)) in terms of

the Fourier transforms, defined so that, for example,

W
(h)
2 (x1,x2) =

∫
dk

(2π)3
e−ik(x1−x2)Ŵ

(h)
2 (k) , (2.17)

W
(h)
4 (x1,x2,x3,x4) =

∫ 3∏
i=1

[
dki

(2π)3
e−iεiki(xi−x4)

]
Ŵ

(h)
4 (k1,k2,k3) . (2.18)
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We can write

LV(h)(ψ(≤h)) =
∫

dk
(2π)3

[γhν̂h(�k) − ik0ẑh(�k)]ψ
(≤h)+
k ψ

(≤h)−
k

+
∫ 4∏

i=1

dki
(2π)3

ψ
(≤h)+
k1

ψ
(≤h)+
k2

ψ
(≤h)−
k3

ψ
(≤h)−
k4

(2.19)

· λ̂h(�k1, �k2, �k3)δ(k1 + k2 − k3 − k4) ,

where λ̂h(�k1, �k2, �k3) = Ŵ
(h)
4 ((0, �k1), (0, �k2), (0, �k3)), γhν̂h(�k) = Ŵ

(h)
2 (0, �k), ẑh(�k) =

i∂k0Ŵ
(h)
2 (0, �k).

We also define R ≡ 1 − L; by using (2.15), we get:

RW (h)
2 (x1,x2) = W̃

(h)
2 (x1 − x2) − δ(x1,0 − x2,0)W̄

(h)
2 (0, �x1 − �x2)

− i∂x1,0δ(x1,0 − x2,0)∂k0W̄
(h)
2 (0, �x1 − �x2) , (2.20)

where W̄ (h)
2 (k0, �x) =

∫
dt eik0tW̃

(h)
2 (t, �x). Furthermore

RW (h)
4 (x) = W

(h)
4 (x) − δ(x0)W̄

(h)
4 (0, �x) , (2.21)

where W̄ (h)
4 (k0, �x) is the Fourier transform of W (h)

4 (x) with respect to the time
coordinates.

2.3 The sector decomposition

We now further decompose the field ψ(≤h), by slicing the support of C−1
h (k) as in

[FMRT]. Let H2(t) be a smooth function on the interval [−1,+1], such that

H2(t) =
{

1 if |t| < 1/4
0 if |t| > 3/4; , H2(t) +H2(1 − t) = 1 if 1/4 < t < 3/4, (2.22)

and let us define, if ω is an integer in the set Oh ≡ {0, 1, . . . , γ−(h−1)/2− 1} (recall
that γ = 4) and h ≤ 0,

ζ̄h,ω(t) = H2

(
γ−

h
2

π
(t− θh,ω)

)
, θh,ω = π(ω +

1
2
)γ

h
2 . (2.23)

It is easy to see that ζ̄h,ω(t) can be extended to the real axis as a periodic function
of period 2π, that we can use to define a smooth function on the one-dimensional
torus T

1, to be called ζh,ω(θ); moreover

∑
ω∈Oh

ζh,ω(θ) = 1 , ∀θ ∈ T
1
. (2.24)
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On the other hand, the properties of ε(�k) assumed in §1.2 imply that, if C−1
h (k) �=

0, �k = u(θ, e)�er(θ) with e = ε(�k) − µ. Hence, we can write

ψ(≤h)±
x ≡

∑
ω∈Oh

e±i�pF (θh,ω)�xψ(≤h)±
x,ω , P (dψ(≤h)) =

∏
ω∈Oh

P (dψ(≤h)
ω ) , (2.25)

where P (dψ(≤h)
ω ) is the Grassmanian integration with propagator

g(≤h)
ω (x − y) =

1
(2π)3

∫
dke−i[k(x−y)−�pF (θh,ω)(�x−�y)] C

−1
h (k)ζh,ω(θ)

−ik0 + ε(�k) − µ
. (2.26)

If we insert the left-hand side of (2.25) in (2.12), we get

V(h)

( ∑
ω∈Oh

eεi�pF (θh,ω)�xψ(≤h))ε
ω

)
=

∞∑
n=1

∑
ω1,...,ω2n∈Oh

·
∫
dx1 . . . dx2n

[
2n∏
i=1

eεii�pF (θωh,i
)�xiψ(≤h)εi

xi,ωi

]
W

(h)
2n (x1, . . . ,x2n). (2.27)

By using (2.10), we can write
∫ ∏

ω∈Oh

P (dψ(≤h)
ω )e−(L+R)V(h)

��
ω∈Oh

eεi�pF (θh,ω)�xψ(≤h)ε
ω

�

=
∫
P (dψ(≤h−1))

∫ ∏
ω∈Oh

P (dψ(h)
ω ) (2.28)

·e−(L+R)V(h)
�
ψ(≤h−1)ε

x +
�

ω∈Oh
eεi�pF (θh,ω)�xψ(h)ε

x,ω

�
,

where P (dψ(h)
ω ) is the integration with propagator

g(h)
ω (x) ≡ 1

(2π)3

∫
dke−i(kx−�pF (θh,ω)�x) Fh,ω(k)

−ik0 + ε(�k) − µ
, (2.29)

Fh,ω(k) = fh(k)ζh,ω(θ) . (2.30)

The support of Fh,ω(k) will be called the sector of scale h and sector index ω.
In order to compute the asymptotic behavior of g(h)

ω (x) it is convenient to
introduce a coordinate frame adapted to the Fermi surface in the point �pF (θh,ω).
By using the definitions of §1.2 and putting �et(θ) = (− sin θ, cos θ), we define

�τ(θ) =
d�pF (θ)
dθ

∣∣∣∣d�pF (θ)
dθ

∣∣∣∣
−1

=
u′(θ)�er(θ) + u(θ)�et(θ)√

u′(θ)2 + u(θ)2
,

�n(θ) =
u(θ)�er(θ) − u′(θ)�et(θ)√

u′(θ)2 + u(θ)2
. (2.31)
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Moreover, given any k belonging to the support of Fh,ω(k), we put

�k = �pF (θh,ω) + k′1�n(θh,ω) + k′2�τ (θh,ω) = �pF (θh,ω) + �k′ ; (2.32)

it is easy to verify that |k′1| ≤ Cγh, |k′2| ≤ Cγ
h
2 , see Lemma 7.3 in §7 for details.

By using (2.32), we can rewrite (2.29) as

g(h)
ω (x) ≡ 1

(2π)3

∫
dk0d�k

′e−i(k0x0+�k
′�x) Fh,ω(k0, �pF (θh,ω) + �k′)

−ik0 + ε(�pF (θh,ω) + �k′) − µ
. (2.33)

Let us now put
�x = x′1�n(θh,ω) + x′2�τ (θh,ω) ; (2.34)

the following lemma gives a bound on the asymptotic behavior of g(h)
ω (x), which

is very important in our analysis, as in [FMRT]. It will be proved in §7.

Lemma 2.1 Given the integers N,m, n0, n1, n2 ≥ 0, with m = n0 + n1 + n2, there
exists a constant CN,m such that

|∂n0
x0
∂n1
x′
1
∂n2
x′
2
g(h)
ω (x)| ≤ CN,mγ

3
2hγ(n0+n1+

1
2n2)h

1 + (γh|x0| + γh|x′1| + γ
1
2h|x′2|)N

. (2.35)

Remark. Lemma 2.1 holds also for non C∞ Fermi surfaces: it is sufficient the con-
dition that the derivatives of ε(�k) diverge “not too fast” (i.e., that ∂n/∂k′n1

1 ∂k′
n2
2

[ε(�k) − µ] = O(γ−h(n1+ 1
2n2−1))).

2.4 The tree expansion

Our expansion of V(h), 0 ≥ h ≥ hβ is obtained by integrating iteratively the field
variables of scale j ≥ h + 1 and sector index ω = 1, . . . , γ−h/2 and by applying
at each step the localization procedure described above, which has the purpose of
summing together the relevant contributions of the same type. It is well known
(see for instance the reviews [G], [BG1] or [GM] for a tutorial introduction) that
the result of this iteration can be expressed as a sum over trees. We assume the
reader familiar with this formalism and we simply give here some definitions in
order to fix the notation.

1) Let us consider the family of all trees which can be constructed by joining a
point r, the root, with an ordered set of n ≥ 1 points, the endpoints of the unlabeled
tree (see Fig. 1), so that r is not a branching point. n will be called the order of
the unlabeled tree and the branching points will be called the non-trivial vertices.
The unlabeled trees are partially ordered from the root to the endpoints in the
natural way; we shall use the symbol < to denote the partial order.

Two unlabeled trees are identified if they can be superposed by a suitable
continuous deformation, so that the endpoints with the same index coincide. It is



150 G. Benfatto, A. Giuliani, V. Mastropietro Ann. Henri Poincaré

r v0

v

h h+ 1 hv 0 +1 +2

Figure 1: A possible tree of the expansion for the effective potentials.

then easy to see that the number of unlabeled trees with n endpoints is bounded
by 4n.

We shall consider also the labeled trees (to be called simply trees in the fol-
lowing); they are defined by associating some labels with the unlabeled trees, as
explained in the following items.
2) We associate a label h ≤ 0 with the root and we denote Th,n the corresponding
set of labeled trees with n endpoints. Moreover, we introduce a family of vertical
lines, labeled by an integer taking values in [h, 2], and we represent any tree τ ∈
Th,n so that, if v is an endpoint or a non-trivial vertex, it is contained in a vertical
line with index hv > h, to be called the scale of v, while the root is on the line
with index h. There is the constraint that, if v is an endpoint, hv > h+ 1.

The tree will intersect in general the vertical lines in set of points different
from the root, the endpoints and the non-trivial vertices; these points will be called
trivial vertices. The set of the vertices of τ will be the union of the endpoints, the
trivial vertices and the non-trivial vertices. Note that, if v1 and v2 are two vertices
and v1 < v2, then hv1 < hv2 .

Moreover, there is only one vertex immediately following the root, which will
be denoted v0 and cannot be an endpoint (see above); its scale is h+ 1.

Finally, if there is only one endpoint, its scale must be equal to h+ 2.
3) With each endpoint v of scale hv = +2 we associate one of the two contributions
to V(1)(ψ(≤1)), and a set xv of space-time points (the two corresponding integration
variables); we shall say that the endpoint is of type λ or ν, respectively. With each
endpoint v of scale hv ≤ 1 we associate one of the three terms appearing in (2.16)
and the set xv of the corresponding integration variables; we shall say that the
endpoint is of type ν, z or λ, respectively.

Given a vertex v, which is not an endpoint, xv will denote the family of all
space-time points associated with one of the endpoints following v.
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Moreover, we impose the constraint that, if v is an endpoint, hv = hv′ + 1, if
v′ is the non-trivial vertex immediately preceding v.

4) If v is not an endpoint, the cluster Lv with scale hv is the set of endpoints
following the vertex v; if v is an endpoint, it is itself a (trivial) cluster. The tree
provides an organization of endpoints into a hierarchy of clusters.

5) The trees containing only the root and an endpoint of scale h+ 1 will be called
the trivial trees; note that they do not belong to Th,1, if h ≤ 0 (see the end of item
3 above), and can be associated with the three terms in the local part of V(h).

6) We introduce a field label f to distinguish the field variables appearing in the
terms associated with the endpoints as in item 3); the set of field labels associated
with the endpoint v will be called Iv. Analogously, if v is not an endpoint, we shall
call Iv the set of field labels associated with the endpoints following the vertex v;
x(f) and ε(f) will denote the space-time point and the ε index, respectively, of
the field variable with label f .

If hv ≤ +1, one of the field variables belonging to Iv carries also a time
derivative ∂0 if the corresponding local term is of type z, see (2.16). Hence we can
associate with each field label f an integer m(f) ∈ {0, 1}, denoting the order of
the time derivative. Note that m(f) is not uniquely determined, since we are free
to choose on which field exiting from a vertex of type z the derivative falls, see
comment after (2.16); we shall use this freedom in the following.

If h ≤ 0, the effective potential can be written in the following way:

V(h)(ψ(≤h)) + LβẼh+1 =
∞∑
n=1

∑
τ∈Th,n

V(h)(τ, ψ(≤h)) , (2.36)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s = sv0) are the subtrees of τ
with root v0, V(h)(τ, ψ(≤h)) is defined inductively by the relation

V(h)(τ, ψ(≤h)) =
(−1)s+1

s!
ETh+1[V̄(h+1)(τ1, ψ(≤h+1)); . . . ; V̄(h+1)(τs, ψ(≤h+1))] ,

(2.37)
and V̄(h+1)(τi, ψ(≤h+1))

a) is equal to RV(h+1)(τi, ψ(≤h+1)) if the subtree τi is not trivial;

b) if τi is trivial and h ≤ −1, it is equal to one of the three terms contributing
to LV(h+1)(ψ(≤h+1)) or, if h = 0, to one of the two terms contributing to
V(1)(ψ≤1).

ETh+1 denotes the truncated expectation with respect to the measure

∏
ω

P (dψ(h+1)
ω ),
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that is

ETh+1(X1; . . . ;Xp) ≡
∂p

∂λ1 . . . ∂λp
log

∫ ∏
ω

P (dψ(h+1)
ω )eλ1X1+···+λpXp

∣∣∣∣∣
λi=0

.

(2.38)
This means, in particular, that, in (2.37), one has to use for the field variables the
sector decomposition (2.25).

We can write (2.37) in a more explicit way, by a procedure very similar to
that described, for example, in [BM]. Note first that, if h = 0, the right-hand side
of (2.37) can be written more explicitly in the following way. Given τ ∈ T0,n, there
are n endpoints of scale 2 and only another one vertex, v0, of scale 1; let us call
v1, . . . , vn the endpoints. We choose, in any set Ivi , a subset Qvi and we define
Pv0 = ∪iQvi ; then we associate a sector index ω(f) ∈ O0 with any f ∈ Pv0 and
we put Ωv0 = {ω(f) : f ∈ Pv0}. We have

V(0)(τ, ψ(≤0)) =
∑

Pv0 ,Ωv0

V(0)(τ, Pv0 ,Ωv0) , (2.39)

V(0)(τ, Pv0 ,Ωv0) =
∫
dxv0 ψ̃

≤0
Ωv0

(Pv0)K
(1)
τ,Pv0

(xv0 ) , (2.40)

K
(1)
τ,Pv0

(xv0) =
1
n!
ET1 [ψ̄(1)(Pv1\Qv1), . . . , ψ̄(1)(Pvn\Qvn)]

n∏
i=1

K(2)
vi

(xvi) , (2.41)

where we use the definitions (∂0 is from now on the time derivative)

ψ̃
(≤h)
Ωv

(Pv) =
∏
f∈Pv

eiε(f)�pF (θh,ω(f))�x(f)∂
m(f)
0 ψ

(≤h)ε(f)
x(f),ω(f) , h ≤ 0 , (2.42)

ψ̄(1)(Pv) =
∏
f∈Pv

ψ
(1)ε(f)
x(f) , (2.43)

K(2)
vi

(xvi ) =
{
λv(�x − �y)δ(x0 − y0) if vi is of type λ and xvi = (x,y),
ν(�x− �y)δ(x0 − y0) if vi is of type ν, (2.44)

and we suppose that the order of the (anticommuting) field variables in (2.43)
is suitable chosen in order to fix the sign as in (2.41). Note that the terms with
Pv0 = ∅ in the right-hand side of (2.39) contribute to LβẼ1, while the others
contribute to V(0)(ψ(≤0)).

We now write V(0) as LV(0) + RV(0), with LV(0) defined as in §2.2 (it rep-
resent, in the usual RG language, the relevant and marginal contributions to
V(0)(ψ(≤0))), and we write for RV(0) a decomposition similar to the previous one,
with RV(0)(τ, Pv0 ,Ωv0) in place of V(0)(τ, Pv0 ,Ωv0); this means that we modify,
according to the representation (2.20), (2.21) of the R operation, the kernels

W
(0)
τ,Pv0

(xPv0
) =

∫
d(xv0\xPv0

)K(1)
τ,Pv0

(xv0) , (2.45)
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where xPv0
= ∪f∈Pv0

x(f). In order to remember this choice, we write

RV(0)(τ, Pv0 ,Ωv0) =
∫
dxv0 ψ̃

(≤0)
Ωv0

(Pv0)[RK
(1)
τ,Pv0

(xv0)] . (2.46)

It is not hard to see that, by iterating the previous procedure, one gets for
V(h)(τ, ψ(≤h)), for any τ ∈ Th,n, the representation described below.

We associate with any vertex v of the tree a subset Pv of Iv, the external
fields of v. These subsets must satisfy various constraints. First of all, if v is not an
endpoint and v1, . . . , vsv are the vertices immediately following it, then Pv ⊂ ∪iPvi ;
if v is an endpoint, Pv = Iv. We shall denote Qvi the intersection of Pv and Pvi ;
this definition implies that Pv = ∪iQvi . The subsets Pvi\Qvi , whose union Iv will
be made, by definition, of the internal fields of v, have to be non-empty, if sv > 1.

Moreover, we associate with any f ∈ Iv a scale label h(f) = hv and, if
h(f) ≤ 0, an index ω(f) ∈ Oh(f), while, if h(f) = +1, we put ω(f) = 0. Note that,
if h(f) ≤ 0, h(f) and ω(f) single out a sector of scale h(f) and sector index ω(f)
associated with the field variable of index f . In this way we assign h(f) and ω(f)
to each field label f , except those which correspond to the set Pv0 ; we associate
with any f ∈ Pv0 the scale label h(f) = h and a sector index ω(f) ∈ Oh. We shall
also put, for any v ∈ τ , Ωv = {ω(f), f ∈ Pv}.

Given τ ∈ Th,n, there are many possible choices of the subsets Pv, v ∈ τ ,
compatible with all the constraints; we shall denote Pτ the family of all these
choices and P the elements of Pτ . Analogously, we shall call Oτ the family of
possible values of Ω = {ω(f), f ∈ ∪vIv}.

Then we can write

V(h)(τ, ψ(≤h)) =
∑

P∈Pτ ,Ω∈Oτ

V(h)(τ,P,Ω) . (2.47)

V(h)(τ,P,Ω) can be represented as

V(h)(τ,P,Ω) =
∫
dxv0 ψ̃

(≤h)
Ωv0

(Pv0 )K
(h+1)
τ,P,Ω (xv0) , (2.48)

with K
(h+1)
τ,P,Ω (xv0 ) defined inductively (recall that hv0 = h + 1) by the equation,

valid for any v ∈ τ which is not an endpoint,

K
(hv)
τ,P,Ω(xv) =

1
sv!

sv∏
i=1

[K(hv+1)
vi

(xvi)] EThv
[ψ̃(hv)

Ω1
(Pv1\Qv1), . . . , ψ̃

(hv)
Ωsv

(Pvsv
\Qvsv

)] ,

(2.49)
where Ωi = {ω(f), f ∈ Pvi\Qvi} and ψ̃

(hv)
Ωi

(Pvi\Qvi) has a definition similar to
(2.42), if hv ≤ 0, while, if hv = +1, is defined as in (2.43).

Moreover, if v is an endpoint, K(2)
v (xv) is defined as in (2.44) if hv = 2,

otherwise

K(hv)
v (xv) =



λhv−1(�x)δ(x0) if v is of type λ,
γhv−1νhv−1(�x− �y)δ(x0 − y0) if v is of type ν,
zhv−1(�x − �y)δ(x0 − y0) if v is of type z,

(2.50)
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where xv = (x1,x2,x3,x4) if v is of type λ, and xv = (x,y) in the other two cases.
If vi is not an endpoint,

K(hv+1)
vi

(xvi) = RK(hv+1)

τi,P(i),Ω(i)(xvi ) , (2.51)

where τi is the subtree of τ starting from v and passing through vi (hence with
root the vertex immediately preceding v), P(i) and Ω(i) are the restrictions to τi
of P and Ω. The action of R is defined using the representations (2.20), (2.21) of
the regularization operation, as in (2.45), (2.46).

Remark. In order to simplify (2.42) and the following discussion, we now decide
to use the freedom in the choice of the field that carries the ∂0 derivative in the
endpoints of type z, so that, given any vertex v, which is not an endpoint of type
z, m(f) = 0 for all f ∈ Pv.

(2.47) is not the final form of our expansion, since we further decompose
V(h)(τ,P,Ω), by using the following representation of the truncated expectation
in the right-hand side of (2.49). Let us put s = sv, Pi ≡ Pvi\Qvi ; moreover we
order in an arbitrary way the sets P±

i ≡ {f ∈ Pi, ε(f) = ±}, we call f±
ij their

elements and we define x(i) = ∪f∈P−
i
x(f), y(i) = ∪f∈P+

i
x(f), xij = x(f−

i,j),
yij = x(f+

i,j). Note that
∑s

i=1 |P
−
i | =

∑s
i=1 |P

+
i | ≡ n, otherwise the truncated

expectation vanishes. A couple l ≡ (f−
ij , f

+
i′j′ ) ≡ (f−

l , f
+
l ) will be called a line

joining the fields with labels f−
ij , f

+
i′j′ and sector indices ω−

l = ω(f−
l ), ω+

l = ω(f+
l )

and connecting the points xl ≡ xi,j and yl ≡ yi′j′ , the endpoints of l. Moreover,
we shall put ml = m(f−

l ) +m(f+
l ) and, if ω−

l = ω+
l , ωl ≡ ω−

l = ω+
l . Then, it is

well known (see [Le], [BGPS], [GM] for example) that, up to a sign, if s > 1,

ETh (ψ̃(h)
Ω1

(P1), . . . , ψ̃
(h)
Ωs

(Ps))

=
∑
T

∏
l∈T

∂ml
0 g̃(h)

ωl
(xl − yl)δω−

l ,ω
+
l

∫
dPT (t) detGh,T (t) , (2.52)

where
g̃(h)
ω (x) = e−i�pF (θh,ω)�xg(h)

ω (x) , (2.53)

T is a set of lines forming an anchored tree graph between the clusters of points
x(i)∪y(i), that is T is a set of lines, which becomes a tree graph if one identifies all
the points in the same cluster. Moreover t = {ti,i′ ∈ [0, 1], 1 ≤ i, i′ ≤ s}, dPT (t) is
a probability measure with support on a set of t such that ti,i′ = ui · ui′ for some
family of vectors ui ∈ R

s of unit norm. Finally Gh,T (t) is a (n − s + 1) × (n −
s+ 1) matrix, whose elements are given by Gh,Tij,i′j′ = ti,i′∂

m(f−
ij )+m(f+

i′j′ )
0 g̃

(h)
ωl (xij −

yi′j′ )δω−
l ,ω

+
l

with (f−
ij , f

+
i′j′) not belonging to T .

In the following we shall use (2.52) even for s = 1, when T is empty, by
interpreting the right-hand side as equal to 1, if |P1| = 0, otherwise as equal to
detGh = ETh (ψ̃(h)(P1)).
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If we apply the expansion (2.52) in each non-trivial vertex of τ , we get an
expression of the form

V(h)(τ,P,Ω) =
∑
T∈T

∫
dxv0 ψ̃

(≤h)
Ωv0

(Pv0)W
(h)
τ,P,Ω\Ωv0 ,T

(xv0 )

≡
∑
T∈T

V(h)(τ,P,Ω, T ) , (2.54)

where T is a special family of graphs on the set of points xv0 , obtained by putting
together an anchored tree graph Tv for each non-trivial vertex v. Note that any
graph T ∈ T becomes a tree graph on xv0 , if one identifies all the points in the
sets xv, for any vertex v which is also an endpoint.

Remarks. An important role in this paper, as in [FMRT], will have the remark that,
thanks to momentum conservation and compact support properties of propagator
Fourier transforms, V(h)(τ,P,Ω) vanishes for some choices of Ω. This constraint
will be made explicit below in a suitable way, see (2.79).
Note also that W (h)

τ,P,Ω\Ωv0 ,T
(xv0), as underlined in the notation, is independent

of Ωv0 , so that V(h)(τ,P,Ω, T ) depends on Ωv0 only through the external fields
sector indices.

2.5 Detailed analysis of the R operation

The kernels W (h)
τ,P,Ω\Ωv0 ,T

(xv0 ) in (2.54) have a rather complicated expression,
because of the presence of the operatorsR acting on the tree vertices, which are not
endpoints. In order to clarify their structure, we have to further expand each term
in the right-hand side of (2.54), by a procedure similar to that explained in [BM].

We start this analysis by supposing that |Pv0 | > 0 (otherwise there is no R
operation acting on v0) and by considering the action of R on a single contribution
to the sum in the right-hand side of (2.54). This action is trivial, that is R = I,
by definition, if |Pv0 | > 4 or, since R2 = R, if v0 is a trivial vertex (sv0 = 1) and
|Pv0 | is equal to |Pv̄|, v̄ being the vertex (of scale h+ 2) immediately following v0.
Hence there is nothing to discuss in these cases.

Let us consider first the case |Pv0 | = 4 and note that, by the remark following
(2.51), m(f) = 0 for all f ∈ Pv0 . If Pv0 = (f1, f2, f3, f4), with ε(f1) = ε(f2) =
+ = −ε(f3) = −ε(f4), and we put x(fi) = xi, x̃i = (x1,0, �xi), ω(fi) = ωi,
�pF,i = �pF (θh,ωi), we can write, by using (2.21),

RV(h)(τ,P,Ω, T ) =
∫
dx e

�4
i=1 εi�pF,i�xiW4(x)

·
{

(x2,0 − x1,0)ψ(≤h)+
x1,ω1

[∂̂1(x1,0)ψ(≤h)+
x2,ω2

]ψ(≤h)−
x3,ω3

ψ(≤h)−
x4,ω4

+(x3,0 − x1,0)ψ(≤h)+
x1,ω1

ψ
(≤h)+
x̃2,ω2

[∂̂1(x1,0)ψ(≤h)−
x3,ω3

]ψ(≤h)−
x4,ω4

+ (x4,0 − x1,0)ψ(≤h)+
x1,ω1

ψ
(≤h)+
x̃2,ω2

ψ
(≤h)−
x̃3,ω3

[∂̂1(x1,0)ψ(≤h)−
x4,ω4

]
}
, (2.55)
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where W4(x) is the integral of W (h)
τ,P,Ω,T (xv0) over the variables xv0\x, up to a

sign, and ∂̂1(x0) is an operator defined by

∂̂1(x0)F (y) =
∫ 1

0

ds∂0F (ξ0(s), �y) , ξ0(s) = x0 + s(y0 − x0) . (2.56)

Similar expressions are obtained, if the localization point (see comment after
(2.14)) is changed.

Let us now consider the case |Pv0 | = 2. If only one of the external fields of v0
carries a ∂0 derivative, the action of R would not be trivial. However, we can limit
this possibility to the contribution corresponding to the tree with n = 1, whose
only endpoint is of type z, which gives no contribution to RV(h). In fact, if there
is more than one endpoint, at most one of the fields of any endpoint of type z
can belong to Pv0 , so that we can use the freedom in the choice of the field which
carries the derivative so that m(f) = 0 for both f ∈ Pv0 (see remark after (2.51)).

Hence, we have to discuss only the case m(f) = 0 for both f ∈ Pv0 ; if we put
Pv0 = (f1, f2), x(fi) = xi, ω(fi) = ωi, �pF,i = �pF (θh,ωi), we can write

RV(h)(τ,P,Ω, T ) (2.57)

=
∫
dxdyei(�pF,1�x−�pF,2�y)(y0 − x0)2W (x − y)ψ(≤h)+

x,ω1
[∂̂2(x0)ψ(≤h)−

y,ω2
] ,

where W (x1 −x2) is the integral of W (h)
τ,P,Ω,T (xv0) over the variables xv0\(x1,x2),

up to a sign, and ∂̂2(x0) is an operator defined by

∂̂2(x0)ψ(≤h)ε
y,ω2

=
∫ 1

0

ds(1 − s)∂2
0ψ

(≤h)ε
ξ0(s),�y,ω , ξ0(s) = x0 + s(y0 − x0) . (2.58)

Instead of (2.57), one could also use a similar expression with [∂̂2(y0)ψ
(≤h)+
x,ω1 ]

ψ
(≤h)−
y,ω2 in place of ψ(≤h)+

x,ω1 [∂̂2(x0)ψ
(≤h)−
y,ω2 ]. We shall distinguish these two differ-

ent choices by saying that we have taken x, in the case of (2.57), or y, in the other
case, as the localization point.

By using (2.49) and (2.52), we can also write

RV(h)(τ,P,Ω, T ) (2.59)

=
1
sv0 !

∑
α∈A

∫
dxv0

∫
dPTv0

(t) R[ψ̃(≤h)
Ωv0 ,α

(Pv0)] (yα,0 − xα,0)b(|Pv0 |)

·
[ ∏
l∈Tv0

∂ml
0 g̃(h+1)

ωl
(xl − yl)δω−

l ,ω
+
l

]
detGh+1,Tv0 (t)

sv0∏
i=1

[K(h+2)
vi

(xvi)] ,

where A is a set of indices containing only one element, except in the case |Pv0 | = 4,
when |A| = 3, and xα,yα are two points of xv0 . Moreover, R[ψ̃(≤h)

Ωv0 ,α
(Pv0)] =
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ψ̃
(≤h)
Ωv0

(Pv0), except if |Pv0 | = 4 or |Pv0 | = 2 and m(f) = 0 for both f ∈ Pv0 ; in
these cases, its expression can be easily deduced from (2.55) and (2.57). Finally,
b(p) is an integer, equal to 1, if p = 4, equal to 2, if p = 2, and equal to 0 otherwise.

We would like to apply iteratively equation (2.55) and (2.57), starting from
v0 and following the partial order of the tree τ , in all the τ vertices with |Pv| = 4 or
|Pv| = 2 and m(f) = 0 for f ∈ Pv. However, in order to control the combinatorics,
it is convenient to decompose the factor (yα,0 − xα,0)b(|Pv0 |) in the following way.
Let us consider the unique subset (l1, . . . , lm) of Tv0 , which selects a path joining
the cluster containing xα with the cluster containing yα, if one identifies all the
points in the same cluster; if this subset is empty (since xα and yα belong to the
same cluster), we put m = 0. If m > 0, we call (v̄i−1, v̄i), i = 1,m, the couple of
vertices whose clusters of points are joined by li. We shall put x2i−1, i = 1,m,
equal to the endpoint of li belonging to xv̄i−1 , x2i equal to the endpoint of li
belonging to xv̄i , x0 = xα and x2m+1 = yα. These definitions imply that there are
two points of the sequence xr , r = 0, . . . , m̄ = 2m+ 1, possibly coinciding, in any
set xv̄i , i = 0, . . . ,m; these two points are the space-time points of two different
fields belonging to Pv̄i . Then, we can write

yα,0 − xα,0 =
m̄∑
r=1

(xr,0 − xr−1,0) . (2.60)

If we insert (2.60) in (2.59), the right-hand side can be written as the sum over
a set Bv0 of different terms, that we shall distinguish with a label αv0 ; note that
|Bv0 | ≤ 3(2sv0 − 1)2. We get an expression of the form

RV(h)(τ,P,Ω, T ) =
1
sv0 !

∑
αv0∈Bv0

∫
dxv0

∫
dPTv0

(t)R[ψ̃(≤h)
Ωv0 ,α

(Pv0)]

·
[ ∏
l∈Tv0

(xl,0 − yl,0)bl(αv0 )∂ml
0 g̃(h+1)

ωl
(xl − yl)δω−

l ,ω
+
l

]

· detGh+1,Tv0 (t)
sv0∏
i=1

[(x(i)
0 − y

(i)
0 )bvi

(αv0 )K(h+2)
vi

(xvi)] , (2.61)

where we called (x(i),y(i)) the couple of points which, in the previous argument,
belong to xvi and bl(αv0), bvi(αv0) are integers with values in {0, 1, 2}, such that
their sum is equal to b(|Pv0 |).

Let us now see what happens, if we iterate the argument leading to (2.61).
Let us suppose, for example, that |Pv1 | = 2, that the action of R is not trivial on
v1 and that b ≡ bv1(αv0) > 0. In this case, if we exploit the action of R in the
form of (2.57), we have an overall factor (x(1)

0 −y(1)
0 )m, m = 2+b, which multiplies

K
(h+2)
v1 (xv1 ). Hence, if we expand this factor, by using an equation similar to

(2.60), we get terms with some propagator multiplied by a factor (xl,0 − yl,0)bl ,
with bl > 2. If we further iterate this procedure, we can end up with an expansion,



158 G. Benfatto, A. Giuliani, V. Mastropietro Ann. Henri Poincaré

where some propagator is multiplied by a factor (xl,0 − yl,0)bl with bl of order
|h|, which would produce bad bounds. However, we can avoid very simply this
difficulty, by noticing that, if we insert (2.20) in an expression like

Jb =
∫
dxdyF1(x)F2(y)(y0 − x0)bRW (x − y) , (2.62)

we get, by a simple integration by part, if b = 2,

J2 =
∫
dxdyF1(x)F2(y)(y0 − x0)2W (x − y) , (2.63)

that is the R operation can be substituted by the identity, while, if b = 1, we get

J1 =
∫
dxdyF1(x)[∂̂1(x0)F2(y)](y0 − x0)2W (x − y) , (2.64)

where ∂̂1(x0) is the operator defined by (2.56). This means that, if b = 1, the
action of R only increases the power of (y0 − x0) by one unit. Note that, in (2.64)
one could substitute F1(x)[∂̂1(x0)F2(y)] with −[∂̂1(y0)F1(x)]F2(y); we shall again
distinguish these two different choices by saying that we have taken x, in the case
of (2.64), or y, in the other case, as the localization point.

Even simpler is the situation, when |Pv1 | = 4. In fact, if we insert (2.21) in
an expression like

∫
dxF (x)(y∗0 −x∗0)RW4(x), y∗ and x∗ being two points of x, we

get ∫
dxF (x)(y∗0 − x∗0)RW4(x) =

∫
dxF (x)(y∗0 − x∗0)W4(x) , (2.65)

so that, even in this case, the power of the “zero” cannot increase.
There are in principle two other problems. First of all, one could worry that

there is an accumulation of the operators ∂̂q (dimensionally equivalent to a deriva-
tive of order q) on a same line, if this line is affected many times by the R operation
in different vertices. Moreover, since the definition of the ∂̂q(x0) operators depends
on the choice of the localization point x, it could happen that there is an “interfer-
ence” between the R operations in two different vertices, which would make more
involved the expansion. However, one can show, by the same arguments given in
§3.3 and §3.4 of [BM] in the one-dimensional case, that these problems can be
avoided by using the freedom in the choice of the localization point and, mainly,
the fact that some regularization operations are not really present. Let us consider,
for example, the first term in the right-hand side of (2.55) and note that, if we sum
it over the sector indices, we get, in terms of Fourier transforms, an expression of
the type

∫
dk

4∏
i=1

ψ̂
(≤h),εi

ki
δ(k1 + k2 − k3 − k4)

·
[
Ŵ4(k1,k2,k3) − Ŵ4(k1, (0, �k2),k3)

]
. (2.66)
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However, if f̄ is the label of the field ψ
(≤h),+
x2 , it is easy to see that Ŵ4(k1,

(0, �k2),k3) = 0, if there is a vertex v̄ > v0 with four external legs, such that
f ∈ Pv̄ and f is affected by the R operation in v̄. Hence, in this case, we can
substitute the first term in the braces of (2.55) with

∏
i ψ

(≤h),εi
xi,ωi .

We refer to §3.3 and §3.4 of [BM] for a complete analysis of this problem,
whose final result is that the action of R on all the vertices of τ will produce
terms where the propagators related with the lines of T are multiplied by a factor
(xl,0 − yl,0)bl with bl ≤ 2 and (after that) are possibly subject to one or two
operators ∂̂q, q = 1, 2. Moreover, some of the external lines belonging to Pv0 can
be affected from one operator ∂̂q, as a consequence of the action of R on v0 or some
other vertex v > v0. Finally, the lines involved in the determinants may be affected
from one operator ∂̂q. We introduce an index α to distinguish these different terms
and, given α, we shall denote by ∂̂qα(f) the differential operators acting on the
external lines of Pv0 or the propagators belonging to T , as a consequence of the
regularization procedure.

All the previous considerations imply that RV(h)(τ,P,Ω, T ) = 0, if |Pv0 | = 4
and n = 1 (that is there is only an endpoint of type λ and no internal line associated
with v0) or Pv0 = (f1, f2) and m(f1) +m(f2) = 1 (since this can happen only if
n = 1 and the endpoint is of type z, as a consequence of the freedom in the choice
of the field carrying the derivative in the endpoints of type z) or m(f1)+m(f2) = 0
and n = 1. In all the other cases, we can write RV(h)(τ,P,Ω, T ) in the form

RV(h)(τ,P,Ω, T ) =
∑
α∈AT

∫
dxv0Wτ,P,Ω\Ωv0 ,T,α

(xv0 )R[ψ̃(≤h)
Ωv0 ,α

(Pv0)] , (2.67)

where

R[ψ̃(≤h)
Ωv0 ,α

(Pv0)] =
∏

f∈Pv0

eiε(f)�pF (θh,ω(f))�x(f)[∂̂qα(f)ψ](≤h)ε(f)
xα(f),ω(f), (2.68)

and, up to a sign,

Wτ,P,Ω\Ωv0 ,T,α
(xv0)

=

[
n∏
i=1

Khi

v∗i
(xv∗i )

]{ ∏
v

not e.p.

1
sv!

∫
dPTv (tv) detGhv ,Tv

α (tv) (2.69)

·
[ ∏
l∈Tv

δω+
l ,ω

−
l
∂̂qα(f−

l )(x′l,0)∂̂
qα(f+

l )(y′l,0)[(xl,0 − yl,0)bα(l)∂ml
0 g̃(hv)

ωl
(xl − yl)]

]}
,

where “e.p.” is an abbreviation of “endpoint” and, together with the definitions
used before, we are using the following ones:

1. AT is a set of indices which allows to distinguish the different terms produced
by the non-trivial R operations and the iterative decomposition of the zeros;
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2. v∗1 , . . . , v
∗
n are the endpoints of τ and hi = hv∗i ;

3. bα(v), bα(l), qα(f−
l ) and qα(f+

l ) are positive integers ≤ 2;

4. if qα(f−
l ) > 0, x′l,0 denote the time coordinate of the point involved, together

with xl, in the corresponding R operation, see (2.58) and (2.56), otherwise
∂̂0(x′l,0) = I;

5. if v is a non-trivial vertex (so that sv>1), the elementsGhv ,Tv

α,ij,i′j′ of Ghv ,Tv
α (tv)

are of the form

Ghv ,Tv

α,ij,i′j′ = ti,i′ (2.70)

· ∂̂qα(f−
ij )

0 (x′l,0)∂̂
qα(f+

i′j′ )
0 (y′l,0)∂

m(f−
l )

0 ∂
m(f−

l )
0 g̃(hv)

ωl
(xij − yi′j′)δω−

l ,ω
+
l

;

if v is trivial, Tv is empty and
∫
dPTv (tv) detGhv ,Tv

α (tv) has to be interpreted
as 1, if |Iv| = 0 (Iv is the set of internal fields of v), otherwise it is the
determinant of a matrix of the form (2.70) with ti,i′ = 1.

2.6 Modification of the running coupling functions

We want now to introduce a different representation of the running coupling func-
tions λh, νh, zh, in order to include in the new definitions the momentum con-
straints on the external lines of the corresponding vertices. To remember these
constraints in the iterative calculation of the (so modified) running coupling func-
tions will play an essential role.

Note that, if we substitute (2.69) in (2.67) and we express the whole integral
in Fourier space, the Fourier transform of Khi

v∗i
(xv∗i ) is multiplied by the factor

∏
f∈Pv∗

i
∩Pv0

ψ̂
≤hv0 ,ε(f)

k(f),ω(f)

∏
f∈Pv∗

i
\Pv0

Fh(f),ω(f)(k(f)) . (2.71)

In order to use this property, we define, for any h ≤ 0 and ω ∈ Oh, the
s-sector Sh,ω (see §2.1 and §2.3 for related definitions) as

Sh,ω = {�k = ρ�er(θ) ∈ R
2 : |ε(�k) − µ| ≤ γhe0, ζh,ω(θ) �= 0} . (2.72)

Note that the definition of s-sector has the property, to be used extensively in the
following, that the s-sector Sh+1,ω of scale h+1 contains the union of two s-sectors
of scale h: Sh+1,ω ⊇ {Sh,2ω ∪ Sh,2ω+1}, as follows from the definition of ζh,ω, see
(2.23).

We now observe that the field variables ψ̂≤hv0 ,ε(f)

k(f),ω(f) have the same supports
as the functions C−1

hv0
(k(f)) ζhv0 ,ω(f)(θ(f)) and h(f) ≤ hi − 1, ∀f ∈ Pv∗i ; hence in

the expression (2.69), we can freely multiply K̂hi

v∗i
(kv∗i ) by

∏
f∈Pv∗

i

F̃hi−1,ω̃(f)(�k),
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where F̃h,ω(�k) is a smooth function = 1 on Sh,ω and with a support slightly
greater than Sh,ω, while ω̃(f) ∈ Ohi−1 is the unique sector index such that
Sh(f),ω(f) ⊆ Shi−1,ω̃(f). In order to formalize this statement, it is useful to in-
troduce the following definition.

Let G(�x) be a function of 2p variables �x = (�x1, . . . , �x2p) with Fourier trans-
form Ĝ(�k), defined so that G(�x) =

∫
d�k(2π)−4p exp(−i

∑2p
l=1 εi

�ki�xi)Ĝ(�k), where
ε1, . . . , εp = −εp+1 = . . . = −ε2p = +1. Then, we define, given h ≤ 0 and a family
σ = {σi ∈ Oh, i = 1, . . . , 2p} of sector indices,

(F2p,h,σ ∗G)(�x) =
∫

d�k

(2π)4p
e−i

�2p
l=1 εi

�ki�xi

[
2p∏
i=1

F̃h,σi(�ki)

]
Ĝ(�k) . (2.73)

In order to extend this definition to the case h = 1, when the sector index can
take only the value 0, we define F̃1,0(�k) as a smooth function of compact support,
equal to 1 on the support of C̄−1

0 (�k), defined in §1.2.
Hence, if we put pi = |Pv∗i |, Ω̃i = {ω̃(f), f ∈ Pv∗i } and we define, for any

family σ = {σ(f) ∈ Ohi−1, f ∈ Pv∗i } of sector indices of scale hi − 1, labeled by
the set Pv∗i (Ω̃i is a particular example of such a family),

K̃hi

v∗i ,σ
(xv∗i ) =

(
Fpi,hi−1,σ ∗Khi

v∗i

)
(xv∗i ) , (2.74)

we can substitute in (2.69) each Khi

v∗i
(xv∗i ) with K̃hi

v∗i ,Ω̃i
(xv∗i ). If v∗i is of type ν, z or

λ, K̃hi

v∗i ,σ
(xv∗i ) can be written as γhi−1δ(x0,v∗i )ν̃hi−1,σ(�xv∗i ), δ(x0,v∗i )z̃hi−1,σ(�xv∗i ) or

δ(x0,v∗i ) λ̃hi−1,σ(�xv∗i ) respectively. ν̃hi−1,σ(�xi−�yi), z̃hi−1,σ(�xi−�yi) and λ̃hi−1,σ(�xv∗i )
will be called the modified coupling functions.

We shall call W (mod)
τ,P,Ω,T,α(xv0) the expression we get from Wτ,P,Ω\Ωv0 ,T,α

(xv0)
by the substitution of the running coupling functions with the modified ones. Note
that W (mod)

τ,P,Ω,T,α(xv0) is not independent of Ωv0 , unlike Wτ,P,Ω\Ωv0 ,T,α
(xv0), and

that W (mod)
τ,P,Ω,T,α(xv0) is equal to Wτ,P,Ω\Ωv0 ,T,α

(xv0), only if |Pv0 | = 0; however,
the previous considerations imply that, if p0 = |Pv0 | > 0,(

Fp0,h,Ωv0
∗W (mod)

τ,P,Ω,T,α

)
(xv0 ) =

(
Fp0,h,Ωv0

∗Wτ,P,Ω\Ωv0 ,T,α

)
(xv0 ) , (2.75)

a trivial remark which will be important in the discussion of the running coupling
functions flow in §4.

2.7 Bounds for the effective potentials and the free energy

Given a vertex v of a tree τ and an arbitrary family S̄ = {Sjf ,σf
, f ∈ Pv} of

s-sectors labeled by Pv, we define

χv(S̄) = χ


∀f ∈ Pv, ∃�k(f) ∈ Sjf ,σf

:
∑
f∈Pv

ε(f)�k(f) = 0


 , (2.76)
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where χ(condition) is the function = 1 when condition is verified, and = 0 in
the opposite case. Moreover, given a set P of field labels, we denote by S(P ) the
special family of s-sectors labeled by P , defined as

S(P ) = {Sh(f),ω(f) , f ∈ P} . (2.77)

The previous considerations imply that

EL,β ≤
0∑

h=hβ−1

∞∑
n=1

Jh,n(0, 0) , (2.78)

with

Jh,n(2l0, q0) =
∑

τ∈Th,n

∑
P∈Pτ :|Pv0 |=2l0,
�

f∈Pv0
qα(f)=q0

∑
T∈T

∑
α∈AT

∗∑
Ω∈Oτ

[∏
v

χv(S(Pv))

]

·
∫
d(xv0\x∗)

∣∣∣W (mod)
τ,P,Ω,T,α(xv0 )

∣∣∣ , (2.79)

where x∗ is an arbitrary point in xv0 , l0 is a non-negative integer and
∑∗

Ω∈Oτ

differs from
∑

Ω∈Oτ
since one ω index, arbitrarily chosen among the 2l0 ω’s in

Ωv0 , is not summed over, if l0 > 0, otherwise it coincides with
∑

Ω∈Oτ
.

Remarks. Note that we could freely insert [
∏
v χv(S(Pv))] in (2.79), because of

the constraints following from momentum conservation and the compact support
properties of propagator’s Fourier transform.
Note also that, if l0 = 0, given τ ∈ Th,n, the number of internal lines in the lowest
vertex v0 (of scale h+ 1) has to be different from zero.

Hence, in order to prove that the free energy and the effective potentials are
well defined (in the limit L→ ∞ and β not “too large”), we need a “good” bound
of Jh,n(2l0, q0).

In order to get this bound, we shall extend the procedure used in[BM] for the
analysis of the one-dimensional Fermi systems, which we shall refer to for some
details (except for the sum over the sector indices, which is a new problem).

An important role has the following bound for the determinants appearing
in (2.69):

| detGhv ,Tv
α (tv)| ≤ c

�sv
i=1 |Pvi

|−|Pv|−2(sv−1)

· γhv
3
4 (
�sv

i=1 |Pvi
|−|Pv|−2(sv−1))γhv

�sv
i=1[qα(Pvi

\Qvi
)+m(Pvi

\Qvi
)]

· γ−hv
�

l∈Tv
[qα(f+

l )+qα(f−
l )+m(f+

l )+m(f−
l )] , (2.80)

where, if P ⊂ Iv0 , we define qα(P ) =
∑

f∈P qα(f) and m(P ) =
∑

f∈P m(f).
The proof of (2.80) is based on the well-known Gram-Hadamard inequality,

stating that, if M is a square matrix with elements Mij of the form Mij = 〈Ai, Bj〉,
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where Ai, Bj are vectors in a Hilbert space H with scalar product < ·, · > and
induced norm || · ||, then

| detM | ≤
∏
i

||Ai|| · ||Bi|| . (2.81)

Let H = R
|Oh| ⊗ R

s ⊗ L2(R3); it can be shown that

Ghv,Tv

α,ij,i′j′ = 〈vω−
l
⊗ ui ⊗A

(hv)

x(f−
ij ),ω−

l

,vω+
l
⊗ ui′ ⊗B

(hv)

x(f+
i′j′ ),ω

+
l

〉 , (2.82)

where vω ∈ R
|Oh|, ω ∈ Oh, and ui ∈ R

s, i = 1, . . . , s, are unit vectors such that
vω ·vω′ = δω,ω′ , ui ·ui′ = ti,i′ ; moreover, A(hv)

x(f−
ij ),ωl

, B(hv)

x(f+
i′j′ ),ωl

are defined so that:

∂̂
qα(f−

ij )

0 (x′l,0)∂̂
qα(f+

i′j′ )
0 (y′l,0)∂

m(f−
l )

0 ∂
m(f+

l )
0 g̃(hv)

ωl
(xij − yi′j′ ) (2.83)

= 〈A(hv)

x(f−
ij ),ωl

, B
(hv)

x(f+
i′j′ ),ωl

〉 ≡
∫

dk
(2π)3

A
∗(hv)

x(f−
ij ),ωl

(k)B(hv)

x(f+
i′j′ ),ωl

(k) ,

with ||Ai|| · ||Bi|| satisfying the same dimensional bound as the left side of (2.83).
For example, if qα(f−

ij ) = qα(f+
i′j′) = 0, one can put,

A(hv)
x,ωl

(k) = eikx

√
Fhv ,ωl

k2
0 +

(
ε(�k) − µ

)2 (ik0)m(f−
l )(ik0)m(f+

l )

B(hv)
x,ωl

(k) = eikx
√
Fhv ,ωl

[
ik0 + ε(�k) − µ

]
. (2.84)

Using Lemma 2.1 and (2.81), we easily get (2.80).
The next step is to bound by 1 the integrals over the probability measures

dPTv appearing in (2.69). After that, we bound the integral
∫
d(xv0\x∗)

∣∣∣∣∣
n∏
i=1

[
K̃hi

v∗i ,Ω̃i
(xv∗i )

] ∏
vnot e.p.

1
sv!

(2.85)

·
∏
l∈Tv

{
∂̂
qα(f−

l )
0 (x′l,0)∂̂

qα(f+
l )

0 (y′l,0)[(xl,0 − yl,0)bα(l)∂ml
0 g̃(hv)

ωl
(xl − yl)]

}∣∣∣∣∣ .

We can take from §3.15 of [BM] the identity (independent of the dimension):

d(xv0\x∗) =
∏
l∈T∗

drl , (2.86)

where T ∗ is a tree graph obtained from T = ∪vTv, by adding in a suitable (obvious)
way, for each endpoint v∗i , i = 1, . . . , n, one or more lines connecting the space-
time points belonging to xv∗i . Moreover rl = (ξ0(tl) − η0(sl), �xl − �yl) (see (2.56)),
if l ∈ ∪vTv, and rl = xl − yl, if l ∈ T ∗ \ ∪vTv.
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Hence (2.85) can be written as

Jτ,P,T,α

∫ ∏
l∈T∗\∪vTv

drl

∣∣∣∣∣
n∏
i=1

K̃hi

v∗i ,Ω̃i
(xv∗i )

∣∣∣∣∣ , (2.87)

with

Jτ,P,T,α =
∏

vnot e.p.

1
sv!

∫ ∏
l∈Tv

drl (2.88)

·
∣∣∣∂̂qα(f−

l )
0 (x′l,0)∂̂

qα(f+
l )

0 (y′l,0)[(xl,0 − yl,0)bα(l)∂ml
0 g̃(hv)

ωl
(xl − yl)]

∣∣∣ .
By using Lemma 2.1, we can bound each propagator, each derivative and each
zero by a dimensional factor, so finding

Jτ,P,T,α ≤ cn
∏

vnot e.p.

[ 1
sv!

c2(sv−1)γ−hv

�
l∈Tv

bα(l)

· γ−hv(sv−1)γhv

�
l∈Tv

[qα(f+
l )+qα(f−

l )+m(f+
l )+m(f−

l )]
]
. (2.89)

Let us now define, for any set of field indices P , Oh(P ) = ⊗f∈POh. The next
step is to use the following lemma, to be proved in §3.

Lemma 2.2 Suppose that there exist two constants C1 and Cν such that the modi-
fied coupling functions satisfy the following conditions:

i) if |Pv| = 4, then

∗∑
σ∈Ohv−1

∫
d(�xv\�x∗)|λ̃hv−1,σ(�xv)| ≤ 2C1|λ|γ−

1
2 (hv−1) , (2.90)

where
∑∗ means that one of the sector indices is not summed over;

ii) if |Pv| = 2 and xv = (x1,x2), then

∗∑
σ∈Ohv−1

∫
d�x1|ν̃hv−1,σ(�x1 − �x2)| ≤ 2C1Cν |λ| , (2.91)

∗∑
σ∈Ohv−1

∫
d�x1|z̃hv−1,σ(�x1 − �x2)| ≤ C1|λ| . (2.92)

Consider a tree τ ∈ Th,n, a graph T ∈ T and the corresponding tree graph
T ∗, defined as after (2.86). Then

∗∑
Ω∈Oτ

[∏
v∈τ

(
χv(S(Pv))

∏
l∈Tv

δω+
l ,ω

−
l

)]∫ ∏
l∈T∗\T

drl

∣∣∣∣∣
n∏
i=1

K̃hi

v∗i ,Ω̃i
(xv∗i )

∣∣∣∣∣
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≤ cn|λ|nγ− 1
2h[m4(v0)+χ(Pv0=∅)]

n∏
i=1

γ(hi−1)χ(v is of type ν)

·
∏

v not e.p.

γ[− 1
2m4(v)+

1
2 (|Pv|−3)χ(4≤|Pv |≤8)+ 1

2 (|Pv|−1)χ(|Pv |≥10)] , (2.93)

where m4(v) denotes the number of endpoints of type λ following the vertex v.

Since
∑sv

i=1 |Pvi | − |Pv| − 2(sv − 1) ≤ 4n,
∑

v(sv − 1) = n− 1 and |AT | ≤ cn,
(2.80), (2.88) and Lemma 2.2 imply that

|Jh,n(2l0, q0)| ≤ (c|λ|)n ·
∑

τ∈Th,n

∑
P∈Pτ :|Pv0 |=2l0,
�

f∈Pv0
qα(f)=q0

∑
T∈T

γ−
1
2h(m4(v0)+χ(l0=0))

n∏
i=1

γ(hi−1)χ(v is of type ν)

·
∏

v not e.p.

[ 1
sv!

γhv
3
4 (
�sv

i=1 |Pvi
|−|Pv|−2(sv−1)) (2.94)

· γhv

�sv
i=1[qα(Pvi

\Qvi
)+m(Pvi

\Qvi
)]γ−hv

�
l∈Tv

bα(l)γ−hv(sv−1)

· γ[− 1
2m4(v)+

1
2 (|Pv|−3)χ(4≤|Pv |≤8)+ 1

2 (|Pv|−1)χ(|Pv |≥10)]
]
.

Note now that the constraints on the values of qα(f) and bα(l) imply, as shown in
detail in §3.11 of [BM], that

∑
v not e. p.

hv

sv∑
i=1

qα(Pvi\Qvi) + h q0 =
∑
f∈Iv0

h(f)qα(f) , (2.95)

[ ∏
f∈Iv0

γh(f)qα(f)
][∏

l∈T
γ−hα(l)bα(l)

]
≤

∏
v not e.p.

γ−z(v) (2.96)

where

z(v) =

{
2 if |P (v)| = 2 ,
1 if |P (v)| = 4 ,
0 otherwise.

(2.97)

Moreover, since the freedom in the choice of the field carrying the derivative in
the endpoints of type z was used (see remark a few lines before (2.57)) so that
m(Pv) = 0, if v is not an endpoint, and the field with m(f) = 1 belonging to
the endpoint v is contracted in the vertex immediately preceding v, whose scale is
hv − 1, we have the identity

∏
v not e.p.

γhv

�sv
i=1[m(Pvi

\Qvi
)] =

n∏
i=1

γ(hi−1)χ(v is of type z) . (2.98)
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Putting together the previous bounds and supposing that the hypothesis
(2.90), (2.91), (2.92) of Lemma 2.2 are verified, we find that

Jh,n(2l0, q0) ≤ (c|λ|)n
∑

τ∈Th,n

∑
P∈Pτ :|Pv0 |=2l0,
�

f∈Pv0
qα(f)=q0

∑
T∈T

γ−h[ 12m4(v0)+
1
2χ(l0=0)+q0]

·
[
n∏
i=1

γ(hi−1)χ(|P (v)|=2)

] ∏
v not e. p.

[
1
sv!

γhv[ 3
4 (
�sv

i=1 |Pvi
|−|Pv|)− 5

2 (sv−1)]

· γ[−z(v)− 1
2m4(v)+

1
2 (|Pv|−3)χ(4≤|Pv |≤8)+ 1

2 (|Pv|−1)χ(|Pv |≥10)]
]
. (2.99)

On the other hand, if m2(v) denotes the number of endpoints of type ν or z
following v, we have, if ṽ is not an endpoint, the identities

∑
v≥ṽ

v not e. p.

(
sv∑
i=1

|Pvi | − |Pv|
)

= 4m4(ṽ) + 2m2(ṽ) − |Pṽ| ,

∑
v≥ṽ

(sv − 1) = m4(ṽ) +m2(ṽ) − 1 , (2.100)

which, together with (2.99) imply that

Jh,n(2l0, q0) (2.101)

≤ (c|λ|)nγh[−q0+δext(2l0)]
∑

τ∈Th,n

∑
P

|Pv0 |=2l0

∑
T∈T

∏
v

not e.p.

1
sv!

γδ(|Pv |) ,

where

δ(p) = −χ(2 ≤ p ≤ 4)

+
(
1 − p

4

)
χ(6 ≤ p ≤ 8) +

(
2 − p

4

)
χ(p ≥ 10) , (2.102)

δext(p) =
5
2
− 3

4
p− 1

2
χ(p = 0) . (2.103)

Since δ(|Pv|) < 0, for any vertex v, which is not an endpoint, a standard
argument, see [BM] or [GM], allows to show that

∑
τ∈Th,n

∑
P

|Pv0 |=2l0

∑
T∈T

∏
v

not e.p.

1
sv!

γδ(|Pv|) ≤ cn . (2.104)

The bounds (2.101) and (2.104) imply the following theorem.
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Theorem 2.1 If conditions (2.90), (2.91), (2.92) are satisfied, then

Jh,n(2l0, q0) ≤ (c|λ|)nγh[−q0+δext(2l0)] . (2.105)

Remark. We will prove in §4 that, if |λ| is small enough and c0 log β|λ| ≤ 1,
where c0 is a constant depending only on first and second order contributions of
perturbation theory, it is possible to choose ν̃1(�x) so that the modified running
coupling functions satisfy the hypotheses of Lemma 2.2, (2.90), (2.91) and (2.92).
So, in that case, we see from Theorem 2.1 that limL→∞EL,β does exist and is of
order λ.

3 Proof of Lemma 2.2

3.1 The sector counting lemma

In order to present the proof of Lemma 2.2, we need to introduce some new defi-
nitions.

1. Given a tree τ and P ∈ Pτ , we shall call χ-vertices the vertices v of τ , such
that Iv (the set of internal lines, that is the lines contracted in v) is not
empty. We shall also call Vχ the family of all χ-vertices, whose number is of
order n.

2. Given h ≤ 0 and a set of field indices P , we define Oh(P ) = ⊗f∈POh and
we shall call σ = {σf ∈ Oh, f ∈ P} the elements of Oh(P ).

3. Given h ≤ 0 and σ ∈ Oh(P ), we define Sh(σ) = {Sh,σf
, σf ∈ σ}.

4. Given a set of field indices P and two families of s-sectors labeled by P ,
S(i) = {S

j
(i)
f ,σ

(i)
f

, f ∈ P}, i = 1, 2, we shall say that S(1) ≺ S(2), if S
j
(1)
f ,σ

(1)
f

⊂
S
j
(2)
f ,σ

(2)
f

, for any f ∈ P .

The main point in the proof is the following lemma, which is an extension of
that proved in [FMRT] in the Jellium case; see §7 for a proof.

Lemma 3.1 Let h′, h, L be integers such that h′ ≤ h ≤ 0. Let v be a vertex of a tree
τ , such that |Pv| = L and f1 a fixed element of Pv. Then, given the sector index
σf1 ∈ Oh′ , and a set σ ∈ Oh(Pv\f1), the following bound holds:

∑
σ′∈O

h′ (Pv\f1)

S
h′ (σ′)≺Sh(σ)

χv
(
{Sh′,σf1

} ∪Sh′(σ′)
)
≤

{
cLγ

h−h′
2 (L−3) , if L ≥ 4,

c , if L = 2 .
(3.1)
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3.2 Proof of Lemma 2.2

First of all, we note that

∏
v

χv(S(Pv)) =
∏
v∈Vχ

χv(S(Pv)) . (3.2)

Let us consider first the case Pv0 �= ∅ and let ṽ0 be the first χ-vertex following
the root (possibly equal to v0); note that Pṽ0 = Pv0 and that h(f) = h for any
f ∈ Pṽ0 . In the following it will also very important to remember that Ω is the
family of all sector indices ω(f) associated with the field labels f and that ω(f) ∈
Oh(f), h(f) being the scale of the propagator connected to the corresponding field
variable, see §2.4. In agreement with this definition, if Ω̄ is a subset of Ω,

∑
Ω̄ will

denote the sum over ω(f) ∈ Oh(f), for any f ∈ Ω̄.
Let us call f0 the field whose sector index ω(f0) ∈ Oh is fixed in the sum over

Ω. We rewrite the sector sum in the left-hand side of (2.93) as:

∗∑
Ω

=
∗∑

Ωṽ0

∑
Ω\Ωṽ0

=
∑

σṽ0
∈Ohṽ0

(Pṽ0\f0)

∗∑
Ωṽ0

:

S(Pṽ0
\f0)≺Shṽ0

(σṽ0
)

∑
Ω\Ωṽ0

. (3.3)

Then, for any fixed σṽ0 ∈ Ohṽ0
(Pṽ0\f0), we bound the product of χv functions as

∏
v∈Vχ

χv(S(Pv)) ≤ χṽ0(S(Pṽ0 ))
∏

v∈{Vχ\ṽ0}
χv(S̃v,ṽ0) , (3.4)

where

S̃v,ṽ0 = S
(
Pv\(Pṽ0\f0)

)
∪
{
Shṽ0 ,σf

∈ Shṽ0
(σṽ0), f ∈ Pv ∩ (Pṽ0\f0)

}
. (3.5)

In other words, for any v �= ṽ0, we relax the sector condition by allowing the
external fields of v, which are also external fields of ṽ0 and are not equal to f0, to
have a momentum varying, instead than in the original sector, of scale h, in that
of scale hṽ0 containing it.

Let us now observe that the modified running coupling functions do not
depend on Ωṽ0 , if σṽ0 is fixed, as it follows from definition (2.74); hence the only
remaining dependence on Ωṽ0 is in χṽ0(S(Pṽ0 )). It follows, by using Lemma 3.1
for |Pṽ0 | ≤ 8 and the trivial bound

∗∑
Ωṽ0

S(Pṽ0
\f0)≺Shṽ0

(σṽ0
)

1 ≤ cγ
1
2 (hṽ0−h)(|Pṽ0 |−1) , (3.6)
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for |Pṽ0 | ≥ 10, that we can bound the sum over Ωṽ0 , for any Shṽ0
(σṽ0), as

∗∑
Ωṽ0

S(Pṽ0
\f0)≺Shṽ0

(σṽ0
)

χṽ0(S(Pṽ0 ))

≤ cγ(hṽ0−h)[ 1
2 (|Pṽ0 |−3)χ(4≤|Pṽ0 |≤8)+ 1

2 (|Pṽ0 |−1)χ(|Pṽ0 |≥10)] . (3.7)

We are thus left with the problem of bounding a sum similar to the initial
one, but with all the external sector indices on scale hṽ0 instead of h. We shall do
that by iterating the previous procedure, in a way which depends on the structure
of the tree τ and of the graph T ; the iteration stops at the endpoints, where we
can use the hypotheses (2.90), (2.91) and (2.92).

To describe this inductive procedure, we establish, for any vertex v ∈ Vχ, a
partial ordering of the sv vertices v1, . . . , vsv ∈ Vχ immediately following v on τ ,
by assigning a root to the tree graph T ∗ and to each anchored tree graph Tv. We
decide that the root of T ∗ is the space-time point containing f0; then we assign
a direction to the lines of the tree graph T ∗, the one which goes from the root
towards the leaves. Finally we decide that the root of Tv is the vertex which the line
of Tv′ enters, where v′ is the χ-vertex immediately preceding v ∈ Vχ, if f0 �∈ Pv;
otherwise, the root of Tv is the vertex containing the root of T ∗, see Fig. 2.

v0

f0

v1
1

3

v2

v3

Figure 2: A possible cluster structure corresponding to a tree τ of the expansion
for the effective potentials such that sṽ0 = 3. The set Tṽ0 is formed by the lines
�1 and �3. The lines different from �1 and �3 and not belonging to Pṽ0 have to be
contracted into the Lesniewski determinants.

The left-hand side of (2.93) is bounded by the product of the right-hand side
of (3.7) and the following quantity:

 ∏
v>ṽ0,v∈Vχ

∑
Ω̃v,ṽ0

χv

(
S̃v,ṽ0

)
[∏
l∈T

δω+
l ,ω

−
l

]∫ ∏
l∈T∗\T

drl
n∏
i=1

∣∣∣K̃hi

v∗i ,Ω̃i
(xv∗i )

∣∣∣ , (3.8)
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where
Ω̃v,ṽ0 = {Ωv\Ωṽ0} ∪ {σf ∈ Ohṽ0

, f ∈ Pv ∩ (Pṽ0\f0)} . (3.9)

Note that there is no sector index associated with f0 in Ω̃v,ṽ0 and that, if v is a
χ-vertex immediately following ṽ0 on τ , all the sector indices included in Ω̃v,ṽ0
belong to Ohṽ0

, since in this case the fields associated with Pv\Pṽ0 are contracted
on scale hṽ0 .

We now consider the sṽ0 χ-vertices immediately following ṽ0 and we reorder
the expression (3.8) in the following way:

(3.8) =
sṽ0∏
j=1


 ∑
∪v≥vj

Ω̃v,ṽ0


χvj (S̃vj ,ṽ0)

∏
v>vj
v∈Vχ

χv(S̃v,ṽ0 )
∏

l∈∪v≥vj
Tv

δω+
l ,ω

−
l




·
∏
v∗i ≥vj

∫
drv∗i

∣∣∣K̃hi

v∗i ,Ω̃i
(xv∗i )

∣∣∣

 ∏
l∈Tṽ0

δω+
l ,ω

−
l
, (3.10)

where: i)
∫
drv∗i is equal to

∫ ∏
l∈Tv∗

i

drl, where Tv∗i denotes the subset of the tree

graph T ∗ connecting the set xv∗i ; ii) if sv = 1,
∏
l∈Tv

δω+
l ,ω

−
l

has to be thought as
equal to 1.

We now choose a leave of Tv0 (v1 or v3 in Fig. 2), say v∗, and we consider the
factor in the product

∏sṽ0
j=1 appearing in the right-hand side of (3.10) corresponding

to v∗, together with the line l∗ ∈ Tv0 entering v∗ (�1 or �3 in Fig. 2). We can
associate with v∗ the following quantity, which is independent of all the other
leaves and of the sector indices associated with the lines of Tv0 :

[v∗] =




∗∑
Ω̃v∗,ṽ0


χv∗(S̃v∗,ṽ0)

∗∑
∪v>v∗ Ω̃v,ṽ0\Ω̃v∗,ṽ0

∏
v>v∗
v∈Vχ

χv(S̃v,ṽ0)

·
∏

l∈∪v≥v∗Tv

δω+
l ,ω

−
l


 ∏
i:v∗i ≥v∗

∫
drv∗i

∣∣∣K̃hi

v∗i ,Ω̃i
(xv∗i )

∣∣∣

 , (3.11)

where
∑∗

Ω̃v∗,ṽ0
means that we do not sum over the sector index associated with l∗.

In order to bound the expression in the right-hand side (3.11), we have to
distinguish two cases
(a) v∗ is an endpoint. In this case

∑∗
Ω̃v∗,ṽ0

=
∑∗
σ∈Ωhv∗−1

and χv∗(S̃v∗,ṽ0) = 1,
since the corresponding constraint is already included in the definition of the
modified coupling functions, so that the expression to bound is simply:

∗∑
σ∈Ωhv∗−1

∫
drv∗

∣∣∣K̃hv∗
v∗,σ(xv∗)

∣∣∣ . (3.12)
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Hence, conditions (2.90), (2.91), (2.92) imply that

[v∗] ≤ c|λ|γ− 1
2 (hv∗−1)χ(|Pv∗ |=4)γ(hv∗−1)χ(v∗ is of type ν) . (3.13)

(b) v∗ is not an endpoint. In this case, by the remark following (3.9), the expres-
sion in the right-hand side of (3.11) has exactly the same structure as the
left-hand side of (2.93), which we started the iteration from; one has only to
substitute ṽ0 with v∗, h with hṽ0 and hṽ0 with hv∗ . Hence we can bound the
right-hand side of (3.11) by extracting a factor

cγ(hv∗−hṽ0)( 1
2 (|Pv∗ |−3)χ(4≤|Pv∗ |≤8)+ 1

2 (|Pv∗ |−1)χ(|Pv∗ |≥10)) (3.14)

and we end up with an expression similar to (3.8), the line l∗ acting now as
an external field, since there is only one sector sum associated with it, thanks
to the factor δω+

l∗ ,ω
−
l∗

present in the right-hand side of (3.10).

It is now completely obvious that we can iterate the previous procedure, for
each leave of Tṽ0 , ending up with a bound of the left-hand side of (2.93) of the
form

(c|λ|)n

 ∏
v∈Vχ

γ(hv−hv′ )( 1
2 (|Pv |−3)χ(4≤|Pv|≤8)+ 1

2 (|Pv |−1)χ(|Pv|≥10))




·
[
n∏
i=1

γ−
1
2 (hi−1)χ(v∗i is of type λ)γ(hi−1)χ(v∗i is of type ν)

]
, (3.15)

where v′ is the χ-vertex immediately preceding v on τ , if v > ṽ0, or the root, if
v = ṽ0. On the other hand, given v ∈ Vχ, Pv̄ = Pv if v′ < v̄ ≤ v. Moreover,

n∏
i=1

γ−
1
2 (hi−1)χ(v∗i is of type λ) = γ−

1
2hm4(v0)

∏
v not e.p.

γ−
1
2m4(v) , (3.16)

where m4(v) is the number of end points of type λ following vertex v on τ . It
follows that (3.15) can be written in the form

(c|λ|)nγ− 1
2hm4(v0)

[
n∏
i=1

γ(hi−1)χ(v∗i is of type ν)

]

·
∏

v not e.p.

γ[− 1
2m4(v)+ 1

2 (|Pv |−3)χ(4≤|Pv|≤8)+ 1
2 (|Pv |−1)χ(|Pv|≥10)] , (3.17)

which proves Lemma 2.2 in the case |Pv0 | > 0.
The case Pv0 = ∅ is treated in a similar way. The only real difference is that

one has to sum over all sector indices. However, since the set of internal fields Iv0
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is necessarily not empty (our definitions imply that, in this case, ṽ0 = v0), we can
choose in an arbitrary way one field f0 ∈ Iv0 and let it play the same role of the
selected external field of v0 in the previous iterative procedure. Of course, the first
iteration step, which produced before the “scale jump” factor in the right-hand
side of (3.7), is now missing, but this is irrelevant, since that factor is equal to 1
if |Pv0 | = 0. All the other steps are absolutely identical, but, at the end of the
iteration, we end up with the sector sum related with f0; this produces a factor
γ−

1
2hv0 = γ−

1
2 (h+1). This completes the proof. �

4 The flow of running coupling functions

In this section we prove that, if λ is small enough, under a suitable choice of
the counterterm ν(�k) and up to temperatures exponentially small T ≥ e

− 1
c0|λ| ,

the running coupling functions are uniformly bounded, so that the free energy is
analytic in λ.

4.1 The expansion for LV(h)(ψ(≤h))

By using (2.36), (2.47) and (2.54), we get

LV(h)(ψ(≤h)) =
∞∑
n=1

∑
τ∈Th,n

∑
P∈Pτ :

|Pv0 |=2,4

∑
Ω∈Oτ

∑
T∈T

·
∫
dxv0 ψ̃

(≤h)
Ωv0

(Pv0)LW
(h)
τ,P,Ω\Ωv0 ,T

(xv0) , (4.1)

where, if Pv0 = (f1, . . . , f4) and we put x(fi) = xi = (xi,0, �xi), x̃i = (x̃i,0, �xi) and
x∗ is any point in xv0 ,

LW (h)
τ,P,Ω\Ωv0 ,T

(x) = δ(x0)
∫
d(x̃0\x̃∗0)W

(h)
τ,P,Ω\Ωv0 ,T

(x̃) , (4.2)

while, if Pv0 = (f1, f2) and m(Pv0) = m(f1) +m(f2) = 0,

LW (h)
τ,P,Ω\Ωv0 ,T

(x1,x2) = δ(x1,0 − x2,0)
∫
dx̃1,0W

(h)
τ,P,Ω\Ωv0 ,T

(x̃1, x̃2) , (4.3)

and finally, if Pv0 = (f1, f2), m(Pv0) = 1,

LW (h)
τ,P,Ω\Ωv0 ,T

(x1,x2) = δ(x1,0 − x2,0)

·
∫
dx̃1,0(x̃1,0 − x̃2,0)W

(h)
τ,P,Ω\Ωv0 ,T

(x̃1, x̃2) . (4.4)

Note that there is no other case to consider, since, as a consequence of the freedom
in the choice of the field carrying the derivative in the endpoints of type z, there
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is no contribution to the effective potential with n ≥ 2 and a derivative acting on
the external fields of v0, before the application of the L operator.

Let us consider first the contributions to the right-hand side of (4.1) coming
from the trees with n = 1. These trees have only two vertices, v0 (of scale h+ 1)
and the endpoint v∗, whose scale has to be equal to h+2. If we impose the further
condition that Pv∗ = Pv0 , the sum of these terms is equal to LV(h+1)(τ, ψ(≤h)).
In order to control the flow of the running coupling functions, we need a “good
bound” of the remaining terms.

Let us consider a contribution to the right-hand side of (4.1), such that n ≥ 2
or n = 1 and Pv∗ �= Pv0 . By proceeding as in §2.5, it is easy to show that

LW (h)
τ,P,Ω\Ωv0 ,T

(xv0 ) =
∑
α∈AT

W
(L)
τ,P,Ω\Ωv0 ,T,α

(xv0) , (4.5)

where AT is a suitable set of indices and W (L)
τ,P,Ω\Ωv0 ,T,α

(xv0) can be represented as
in (2.69). There is indeed a small difference, because of the delta function and the
integral appearing in (4.2), (4.3) and (4.4), but it can be treated without any new
problem. Moreover, by the considerations of §2.6, if we insert (4.5) in the right-
hand side of (4.1), we can substitute W (L)

τ,P,Ω\Ωv0 ,T,α
(xv0 ) with W

(L,mod)
τ,P,Ω,T,α(xv0),

obtained by using the modified running coupling functions in place of the original
ones. As before, these modified functions are not constant with respect to Ωv0 . We
can prove the following Theorem, analogous to Theorem 2.1.

Theorem 4.1 If conditions (2.90), (2.91), (2.92) are satisfied, given a couple of
integers (p,m) equal to (2, 0), (2, 1) or (4, 0), we have:

∑
τ∈Th,n

∗∗∑
P∈Pτ :

|Pv0 |=p,m(Pv0 )=m

∑
T∈T

∑
α∈AT

∗∑
Ω∈Oτ

∫
d(xv0\x∗)

∣∣∣W (L,mod)
τ,P,Ω,T,α(xv0)

∣∣∣

≤ (c|λ|)nγh[δext(p)−m] , (4.6)

with δext(p) defined by (2.103) and
∑∗∗ means that, if n = 1 and v∗ is the endpoint,

Pv∗ �= Pv0 .

Proof. We can repeat step by step the proof of Theorem 2.1 and use the remark
that, in the identity (2.95), q0 = m. �

4.2 The beta function

The discussion of §4.1 and the definition of modified running coupling functions
(MRCF in the following) of §2.6 (see in particular (2.75)) imply that

λ̃h,σ(�x) = (F4,h,σ ∗ λh+1)(�x) + (F4,h,σ ∗ β4,0
h+1)(ṽh+1, . . . , ṽ1; �x) , (4.7)

ν̃h,σ(�x) = γ (F2,h,σ ∗ νh+1)(�x) + (F2,h,σ ∗ β2,0
h+1)(ṽh+1, . . . , ṽ1; �x) , (4.8)
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z̃h,σ(�x) = (F2,h,σ ∗ zh+1)(�x) + (F2,h,σ ∗ β2,1
h+1)(ṽh+1, . . . , ṽ1; �x) , (4.9)

where vh ≡ (λh, νh, zh), ṽh is the set of the corresponding MRCF, �x = (�x1, . . . , �xp),
σ = (σ1, . . . , σp), with σi ∈ Oh−1 and p = 4 in (4.7), p = 2 in (4.8) and (4.9).
Finally, the beta function βp,mh+1(vh, . . . ,v1; �x) is defined by the equation

βp,mh+1(vh, . . . ,v1; �x) = γ−h·χ(p=2,m=0) (4.10)

·
∞∑
n=1

∑
τ∈Th,n

∗∗∑
P:|Pv0 |=p

m(Pv0 )=m

∑
T∈T

∑
Ω\Ωv0

∑
α∈AT

∫
d(x0\x∗0)W

(L)
τ,P,Ω\Ωv0 ,T,α

(x) .

Note that, given a tree contributing to the right-hand side of (4.10), we can
substitute the RCF with the MRCF in all endpoints except those containing one
of the external fields of v0. However (Fp,h,σ ∗ βp,mh+1) is indeed a function of the
MRCF, as we made explicit in the right-hand side of (4.7)–(4.9) and

(Fp,h,σ ∗ βp,mh+1)(ṽh+1, . . . , ṽ1; �x) = γ−h·χ(p=2,m=0)
∞∑
n=1

∑
τ∈Th,n

∗∗∑
P

|Pv0 |=p, m(Pv0 )=m

·
∑
T∈T

∑
Ω:

Ωv0=σ

∑
α∈AT

∫
d(x0\x∗0) (Fp,h,σ ∗W (L,mod)

τ,P,Ω,T,α)(x) . (4.11)

Iterating (4.7), (4.8) and (4.9) we find, for h ≤ 0,

λ̃h,σ(�x) = (F4,h,σ ∗ λ̃1)(�x) +
1∑

j=h+1

(F4,h,σ ∗ β4,0
j )(ṽj , . . . , ṽ1; �x) , (4.12)

ν̃h,σ(�x) = γ−h+1(F2,h,σ ∗ ν̃1)(�x)

+
1∑

j=h+1

γ−h+j−1(F2,h,σ ∗ β2,0
j )(ṽj , . . . , ṽ1; �x) , (4.13)

z̃h,σ(�x) = (F2,h,σ ∗ z̃1)(�x) +
1∑

j=h+1

(F2,h,σ ∗ β2,1
j )(ṽj , . . . , ṽ1; �x) , (4.14)

where, ignoring in the notation the spin dependence of v(�x), see (1.8), λ̃1(�x) =
(F4,1,0 ∗ λ1)(�x), with λ1(�x) = −λv(�x1 − �x2)δ(�x3 − �x1)δ(�x4 − �x2), and ν̃1(�x) =
(F2,1,(0,0) ∗ ν1)(�x). Furthermore z̃1(�x) = z1(�x) = 0 and ν1(�x) must be suitably
chosen.

We note that it is possible to choose the functions F̃h,σ(�k) appearing in the
definition of the operators (Fp,h,σ ∗ ·), see (2.73), in such a way that, if h ≤ 0,

|ε(�k) − µ| ≤ e0γ
h ⇒ 1

2

∑
σ∈Oh

F̃h,σ(�k) = 1 . (4.15)
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In order to simplify the following discussion, we shall suppose that the property
(4.15) is satisfied. Moreover we define Oh,p = ⊗pi=1Oh.

Theorem 4.1 implies that, given h̄ < 0, the MRCF are well defined for h̄ ≤
h ≤ 1, if λ and ν̃1(�x) are small enough. We want to show that, given λ small
enough and log β ≤ c0|λ|−1, it is possible to choose ν̃1(�x) so that the MRCF are
well defined for hβ ≤ h, with hβ defined by (2.6). We shall try to fix ν̃1(�x) in such
a way that

γ−hβ+1ν̃1(�x)+
1∑

j=hβ+1

γ−hβ+j−1 1
4

∑
σj∈Oj,2

(F2,j,σj
∗β2,0

j )(ṽj , . . . , ṽ1; �x) = 0 , (4.16)

so that (4.13) becomes:

ν̃h,σ(�x) = −
h∑

j=hβ+1

γ−h+j−1

· 1
4

∗∑
σj∈Oj,2

(
F2,h,σ ∗ F2,j,σj

∗ β2,0
j

)
(ṽj , . . . , ṽ1; �x) , (4.17)

where, given σ = (σ1, σ2) ∈ Oh,2,
∑∗

σj∈Oj,2
is the sum restricted to the σj =

(σ′
1, σ

′
2) ∈ Oj,2 such that Sh,σi ∩ Sj,σ′

i �= ∅, i = 1, 2.
In order to present our results, we have to introduce a few other definitions.

Given h ≤ 1 and ω ∈ Oh, we denote by Dh,σ ∈ R
2 the support of F̃h,σ(�k).

Moreover, if p = 2, 4, we call Mh,p the space of functions Gσ(�x) : Oh,p×R
2p → R,

such that
1) for any σ ∈ Oh,p, Gσ(�x) is translation invariant;

2) for any σ ∈ Oh,p, the Fourier transform Ĝσ(�k) of Gσ(�x), defined so that,

Gσ(�x) =
∫

d�k

(2π)2p
e−i

�k·�x Ĝσ(�k) δ(
p∑
i=1

εi�ki) , (4.18)

with ε1 = −ε2 = +, if p = 2, and ε1 = ε2 = −ε3 = −ε4 = +, if p = 4, is a
continuous function with support in the set ⊗pi=1Dh,σi .

Given G ∈ Mh,p, we shall say that Gσ(�x) is the σ-component of G. These defi-
nitions are such that ν̃h,σ(�x) and z̃h,σ(�x) are the σ-components of two functions
ν̃h and z̃h belonging to Mh,2, while λ̃h,σ(�x) is the σ-component of a function
λ̃h ∈ Mh,4.
We shall define a norm on the set Mh,p by putting

||G||h,p = sup
i,σi∈Oh

j,�xj∈R
2

∑
σ\σi∈Oh,p−1

∫
d(�x\�xj)|Gσ(�x)| . (4.19)
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Finally we shall define Mp as the set of sequences G = {Gh ∈ Mh,p, hβ ≤
h ≤ 1}, such that the norm

||G||p = max
hβ≤h≤1

||Gh||h,p (4.20)

is finite. We want to prove that the sequence λ̃ ≡ {λ̃h, hβ ≤ h ≤ 1} is well
defined as an element of M4, while the sequences ν̃ ≡ {ν̃h, hβ ≤ h ≤ 1} and
z̃ ≡ {z̃h, hβ ≤ h ≤ 1} are two elements of M2.

We begin our analysis by “decoupling” equations (4.12) and (4.14) from
(4.13), that is we imagine that, in the right-hand side of (4.12) and (4.14), ν̃ is an
arbitrary element of M2, acting as a parameter. We want to look for a solution
(λ̃(ν̃) ∈ M4, z̃(ν̃) ∈ M2). We shall prove the following lemma.

Lemma 4.1 There exist positive constants C1 and C2, depending only on first and
second order terms in our expansion, such that, given two positive constants C3 ≥
C1 and C4, there exists λ0 so that, if |λ| ≤ λ0,

2C2C3 max{1, C−1
4 }|λ||hβ| ≤ 1 (4.21)

and ||ν̃||2, ||ν̃′||2 ≤ C3|λ|, then, for hβ ≤ h ≤ 1,

||λ̃(ν̃)h||h,4 ≤ 2C1|λ|γ−
1
2h , ||z̃(ν̃)h||h,2 ≤ C1|λ| , (4.22)

||λ̃(ν̃)h − λ̃(ν̃′)h||h,4 ≤ C4γ
− 1

2h max
j>h

||ν̃h − ν̃′h||h,2 ,

||z̃(ν̃)h − z̃(ν̃′)h||h,2 ≤ C4 max
j>h

||ν̃h − ν̃′h||h,2 . (4.23)

Proof. Note that, if F̄h,ω(�x) is the Fourier transform of F̃h,ω(�k), then

∣∣F̄h,ω(�x)
∣∣ ≤ CNγ

3
2h

1 +
(
γh|x′1| + γ

h
2 |x′2|

)N , (4.24)

so that
∫
d�x

∣∣F̄h,ω(�x)
∣∣ ≤ cF for some constant cF independent of h and ω. It follows

that there exists a constant C1, such

||λ̃1||1,4 ≤ 2C1|λ|γ−1/2 , ||F4,h,σ ∗ λ̃1||h,4 ≤ C1|λ|γ−h/2 , (4.25)

having used also Lemma 3.1 for the second inequality.
We shall prove inductively that, if ||ν̃||2 ≤ C3|λ|, with C3 ≥ C1, then

||λ̃(ν̃)h||h,4 ≤ 2C1|λ|γ−
1
2h and ||z̃(ν̃)h||h,2 ≤ C1|λ|. This bound is satisfied for

h = 1, by the first inequality of (4.25) and the fact that z̃1 = 0; let us suppose
that it is true for any j > h. Then, by using (4.12), (4.14), the second inequality
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of (4.25), Theorem 4.1 and the fact that β(4,0)
j and β

(2,1)
j do not have first order

contributions, we find

||λ̃(ν̃)h||h,4 ≤ C1|λ|γ−
1
2h + γ−

1
2h

1∑
j=h+1

[
C2,λC1C3|λ|2 +

∞∑
n=3

(c|λ|)n
]
,

||z̃(ν̃)h||h,2 ≤
1∑

j=h+1

[
C2,zC1C3|λ|2 +

∞∑
n=3

(c|λ|)n
]
. (4.26)

Hence, if λ small enough and 2|λ||hβ |C3 max{C2,λ, C2,z} ≤ 1, then ||λ̃(ν̃)h||h,4
≤ 2C1|λ|γ−

1
2h and ||z̃(ν̃)h||h,2 ≤ C1|λ|, up to h = hβ.

We still have to prove that, if ||ν̃||2, ||ν̃′||2 ≤ C3|λ|, then the bounds (4.23)
are verified. We shall again proceed by induction, by using that λ̃(ν̃)1− λ̃(ν̃′)1 = 0,
since λ̃1 is independent of ν̃, and that z̃(ν̃)1 = 0. Then, if we suppose that the
bound is true for any j > h, we find

||λ̃(ν̃)h − λ̃(ν̃′)h||h,4 ≤ γ−
1
2h max

j>h
||ν̃j − ν̃′j ||j,2

·
1∑

j=h+1

[
C̃2,λC3 max{1, C4}|λ| +

∞∑
n=3

cn|λ|n−1

]

||z̃(ν̃)h − z̃(ν̃′)h||h,2 ≤ max
j>h

||ν̃j − ν̃′j ||j,2 (4.27)

·
1∑

j=h+1

[
C̃2,zC3 max{1, C4}|λ| +

∞∑
n=3

cn|λ|n−1

]
.

Hence, if λ small enough and 2|λ||hβ|C3 max{1, C−1
4 }max{C̃2,λ, C̃2,z} ≤ 1, the

bound is verified up to h = hβ. The constant C2 appearing in the condition (4.21)
can be chosen as C2 = max{C2,λ, C2,z, C̃2,λ, C̃2,z}. �

We want now to show that there is indeed a solution of the full set of equations
(4.12)–(4.14), satisfying condition (4.16).

Theorem 4.2 If |λ| is small enough there exists a constant c0 such that, for c0|λ|
log β ≤ 1, it is possible to choose ν̃1(�x) so that the MRCF satisfy the hypothesis of
Lemma 2.2, (2.90), (2.91) and (2.92).

Proof. In order to prove the theorem, it is sufficient to look for a fixed point of the
operator T : M2 → M2, defined in the following way, if ν̃′ ≡ T(ν̃):

ν̃′h = −
h∑

j=hβ+1

γ−h+j−1 1
4

∗∑
σj∈Oj,2

(
F2,h,σ ∗ F2,j,σj

∗ β2,0
j

)
(ṽj(ν̃), . . . , ṽ1(ν̃); �x) ,

(4.28)
where ṽj(ν̃) = (λ̃(ν̃), ν̃, z̃(ν̃)).
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We want to prove that it is possible to choose the constant Cν ≥ 1, so
that, if C1 is the constant defined in Lemma 4.1 and |λ| is small enough, the set
F = {ν̃ ∈ M2 : ||ν̃||2 ≤ 2C1Cν |λ|} is invariant under T and that T is a contraction
on it. This is sufficient to prove the theorem, since M2 is a Banach space, as one
can easily show.

By using Theorem 4.1 and Lemma 4.1 (with C3 = 2C1Cν), we see that, if |λ|
is small enough and 4C2C1Cν max{1, C−1

4 }|λ||hβ | ≤ 1 (C4 will be chosen later),

||ν̃′h||h,2 ≤
h∑

j=hβ+1

γ−h+j−1γ
h−j
2

[
C1,νC1|λ| +

∞∑
n=2

cn|λ|n
]
, (4.29)

where γ
h−j
2 is, up to a constant, a bound for the number of sectors σ′ ∈ Oj

with non empty intersection with a given σ ∈ Oh, h ≥ j and C1,ν is a constant
depending on the first order contribution (i.e., the tadpole). So, if Cν ≥ C1,ν

γ−√
γ and∑∞

n=2 c
n|λ|n ≤ C1,νC1|λ|, then ||ν̃′h|| ≤ 2C1Cν |λ|.

We then show that T is a contraction on F . In fact, given ν̃1, ν̃2 ∈ F , by
using again Theorem 4.1 and Lemma 4.1, we see that, under the same conditions
supposed above,

||ν̃′1,h − ν̃′2,h|| ≤
h∑

j=hβ+1

γ−h+j−1γ
h−j
2

· max
i≥j

||ν̃1,i − ν̃2,i||
[
C1,νC4 +

∞∑
n=2

cn|λ|n−1

]
, (4.30)

so that, if
∑∞
n=2 c

n|λ|n−1 ≤ C1,νC4/2 and C4 = (2Cν)−1, then ||ν̃′1 − ν̃′2|| ≤
3
4 ||ν̃1 − ν̃2||, if 8C2C1C

2
ν |λ||hβ | ≤ 1. So the stated result follows and the constant

c0 can be chosen, by using (2.6) and by supposing that e0 ≤ π, as

c0 = 2(log γ)−1C1C
2
1,ν max{C2,λ, C2,z, C̃2,λ, C̃2,z} . (4.31)

�

Remark. We have proved that the flow of the MRCF remains bounded and small
up to temperatures T ≥ e−(c0|λ|)−1

with c0 given by (4.31). Note that C1,ν is
a bound for first order contribution to ν̃h in the norm || · ||h,2, see (4.19); more
exactly is a bound for the contribution from the tree with one endpoint to the
second addendum of the right-hand side of (4.13). In the same way γ−h/2C2,λ is a
bound in the norm || · ||h,4 of the first non trivial contribution (a second order one)
to λ̃h, and so on. Finally C1 is equal to c4

∫
d�x(1 + |�x|2)|v(�x)|, if c is the constant

appearing in the sector counting Lemma 3.1.
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5 The two point Schwinger function

In this section we define a convergent expansion for the two point Schwinger func-
tion which allows us to find its large distance asymptotic behavior and to complete
the proof of Theorem 1.1.

The Schwinger functions can be derived by the generating function defined
as

W(φ) = log
∫
P (dψ)e−V(ψ)−N (ψ)+

�
dx[φ+

x ψ
−
x +ψ+

x φ
−
x ] , (5.1)

where the variables φσx are defined to be Grassmanian variables, anticommuting
with themselves and ψσx . In particular the two point Schwinger function is given
by

S(x − y) =
∂2

∂φ+
x ∂φ

−
y

W(φ)
∣∣∣∣
φ=0

. (5.2)

We can get a multiscale expansion for W(φ), by a procedure very similar to
that used for the free energy, by taking into account that the interaction contains
a new term, linear in ψ and φ. This novelty has the consequence that new terms
appear in the expansion, containing one or more φ fields linked to the correspond-
ing graphs through a single scale propagator. In order to study S(x − y), it is
sufficient to analyze the structure of the terms with one or two φ fields.

Let us consider first the terms produced after integrating the scales greater
or equal to h + 1 and linear in φ. These terms can be obtained by taking one
of the contributions V(h)(τ,P) ≡

∑
Ω V(h)(τ,P,Ω) to the effective potential on

scale h and by linking one of its external lines, say f̄ , with the φ field through a
propagator of scale j ≥ h+ 1, to be called the external propagator. However, one
has to be careful in the choice of the localization point in the vertices v such that
f̄ ∈ Pv and |Pv| ≤ 4 (so that the action of R in v is not trivial); we choose it as
that one which connects f̄ with the φ field (hence no derivative can act on the
external propagator, when one exploits the effect of the R operations as in §2.5).
This choice has the aim of preserving the regularizing effect of the R operation,
based on the fact that, if a field acquires a derivative as a consequence of the R
operation on scale i, then it has to be contracted on a scale j < i, so producing
an improvement of order γ−(i−j) in the bounds. Note also that, because of the
localization operation, the scale j of the external propagator can be higher of the
scale of the endpoint v̄, such that f̄ ∈ Pv̄.

The situation is different in the terms with two φ fields, connected through
two external propagators of scale jx and jy greater than h and involving two ψ
fields, of labels fx and fy. There are two different types of contributions. The first
type is associated with trees τ satisfying the following conditions:

1. the root has scale hr ≥ h,

2. Iv0 (the set of internal lines in the vertex immediately following the root) is
not empty,



180 G. Benfatto, A. Giuliani, V. Mastropietro Ann. Henri Poincaré

3. there is no external line in v0, except fx and fy, the lines contracted in the
external propagators.

These terms are produced, in the iterative integration procedure, at scale hr + 1
and, after that scale are constant with respect to the integration process. The
other type of terms is associated with trees such that

1. the root has scale h,

2. |Pv0 | > 2.

These terms depend on the integration field ψ(≤h), so that they are involved in
the subsequent integration steps.

Given a tree τ (of any type) with two φ fields, the corresponding contributions
to W(φ) are obtained in a way slightly different from that described in the case of
the effective potential. Given jx and jy, larger or equal to h + 1, select two field
labels fx and fy and call v̄ the higher vertex, of scale h̄, such that

1. h̄ ≤ min{jx, jy},
2. fx and fy belong to Pv̄.

Let C be the path on τ connecting v̄ with v0. Given v ∈ C, we avoid to apply
there the localization procedure, because the R operation, no matter we choose
the localization point, would give rise to terms with a derivative acting on the
external propagators (which is not convenient, see above). In all other vertices of
τ the localization procedure is defined as in the case of the free energy expan-
sion, by suitably choosing the localization point in the vertices following v̄ and
containing fx or fy, as explained above. Then we substitute fx and fy with two
external propagators of scale jx and jy, respectively. Note that these propagators
can acquire a derivative, as a consequence of the R operation acting on a vertex
v, only if hv is greater or equal to their scale (jx or jy).

The previous considerations imply that S(x − y) is given by the following
sum:

S(x − y) = g(x − y) +
1∑

h̄=hβ

h̄−1∑
hr=hβ−1

∞∑
n=1

∑
τ∈T h̄,hr

n

∑
P

Sτ,P(x − y) , (5.3)

where the family of labeled trees T h̄,hr
n and the families of external lines Pv can

be described as in §2, with the following modifications (see Fig. 3).

1) There are two field labels, fx and fy, two scale labels jx ≥ h̄ and jy ≥ h̄, and a
vertex v̄ such that hv̄ = h̄, fx, fy ∈ Pv̄ and there is no other vertex v > v̄ such that
hv ≤ min{jx, jy} and fx, fy ∈ Pv; we shall call vx and vy the endpoints (possibly
coinciding) that fx and fy belong to. Note that we are not introducing the sector
decomposition for the external propagators and that the vertex v̄ can be lower
than the higher vertex preceding both vx and vy (opposite to what happens in
Fig. 3).
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r v0

+1 +2

v̄

vx

vy

hr h̄

Figure 3: An example of tree contributing to S(x − y).

2) Given fx and fy, let C be the path on the tree (see dashed line in Fig. 3),
connecting v̄ with the lowest vertex v0, of scale hr + 1. If v ∈ C and v �= v0,
|Pv| ≥ 4, while |Pv0 | = 2.

Given τ ∈ T h̄,hr
n and P, we have

Sτ,P(x − y) =
[
g(jx) ∗Wτ,P,jx,jy ∗ g(jy)

]
(x − y) , (5.4)

where ∗ means the convolution in x space and Wτ,P,jx,jy differs from the kernel
K

(hr+1)
τ,P =

∑
Ω\Ωv0

K
(hr+1)
τ,P,Ω of V(hr)(τ,P,Ω) (see (2.48) and note that K(hr+1)

τ,P,Ω

does not depend on Ωv0) only because no R operation acts on the vertices of C.
We now consider the Fourier transform Ŝ(k) of S(x−y), which can be written

in the form:
Ŝ(k) = ĝ(k)

(
1 + λŜ1(k)

)
, (5.5)

where ĝ(k) is the free propagator. In order to prove Theorem 1.1, we have to show
that Ŝ1(k) is a bounded function.

Let us define hk = max{h : ĝ(h)(k) �= 0}. By using (5.4), it is easy to see that

λĝ(k)Ŝ1(k) =
hk∑

jx,jy=hk−1

∞∑
n=1

min{jx,jy}∑
h̄=hβ

h̄−1∑
hr=hβ−1

∑
τ∈T h̄,hr

n

∑
P

Ŝτ,P,jx,jy(k) , (5.6)

implying that

|Ŝ1(k)| ≤ c|λ|−1γhk

· sup
jx,jy=hk−1,hk

∞∑
n=1

min{jx,jy}∑
h̄=hβ

h̄−1∑
hr=hβ−1

∑
τ∈T h̄,hr

n

∑
P

||Sτ,P,jx,jy ||1 , (5.7)

where ||.||1 denotes the L1 norm.
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We can bound
∑
τ∈T h̄,hr

n

∑
P ||Sτ,P,jx,jy ||1 by proceeding as in §2.7. Since

the combinatorial problems are of the same nature, we can describe in a simple
way the result by dimensional arguments. We can take as a reference the bound of
Jhr,n(2, 0), see (2.79) and (2.101), that is the bound of the L1 norm of the effective
potential terms with two external lines on scale hr and no external derivative, and
multiply it by a factor γ−jx−jy , which comes from the external propagators (the
derivatives possibly acting on them are absorbed in the “gain factors” γ−(h−h′),
produced by the localization procedure, so that they do not give any contribution
to the final bound). There are two relevant differences.

1) There is no regularization on the vertices with four external lines belonging
to C. This implies that one “looses” a factor γ−1, with respect to the bound
(2.101), for each vertex v ∈ C such that |Pv| = 4.

2) The external propagators sectors are not on the scale hr, but they are exactly
fixed. Hence, we have to modify the momentum conservation constraint (2.76)
in the tree vertices v such that fx or fy belong to Pv, in order to remember this
condition when we bound the sector sums. Then, we have to prove a lemma
similar to Lemma 3.1, by substituting one sector sum with the constraint
that one momentum is exactly fixed. It is not hard to see, by using Lemma
7.5 and by proceeding as in §7.4, that we get a bound of the same type of
that of Lemma 3.1.

The previous considerations, together with the bound (2.101), allow to prove
that

∑
τ∈T h̄,hr

n

∑
P

||Sτ,P,jx,jy ||1 ≤ (c|λ|)nγhr−2hk

·
∑

τ∈T h̄,hr
n

∑
P

|Pv0 |=2

∑
T∈T

∏
v

not e. p.

1
sv!

γδ
∗
v , (5.8)

where δ∗v = δ(|Pv|), if v /∈ C, otherwise δ∗v = δ(|Pv|)+χ(|Pv| = 4). By using (2.102),
it is easy to see that, if we define δ̃v = δ∗v − 1/2, if v ∈ C and δ̃v = δ∗v otherwise,
δ̃v < 0 for all v ∈ τ . Hence, the bound (2.104) is still valid, if we put δ̃v in place of
δ(|Pv|), and we get

|Ŝ1(k)| ≤ cγ−hk

hk∑
h̄=hβ

h̄−1∑
hr=hβ−1

γhrγ(h̄−hr)/2

≤ c

hk∑
h̄=hβ

γ−(hk−h̄)
h̄−1∑

hr=hβ−1

γ−(h̄−hr)/2 ≤ c . (5.9)

�
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6 The rotation-invariant case

We consider now the Jellium model, which is defined in the continuum with ε(�k) =
|�k|2/(2m) and v(�x − �y) = ṽ(|�x − �y|), implying rotation invariance symmetry. In
particular, pF = |�pF (θ)| does not depend on θ and the two point contribution to
the effective potential Ŵ (h)

2 (k0, �k) =
∫
dxW̃ (h)

2 (x) exp(ikx), see (2.17) and the line
before (2.15), is of the form W(h)

2 (k0, |�k|), where W(h)
2 (k0, ρ) is a function of two

variables. We show that in such a case we can choose the counterterm ν̂(�k) as a
constant ν, if the temperature T is big enough, i.e., T ≥ e

− 1
c1|λ| , where c1 is a

constant depending on a bound to all orders of multiscale perturbation theory.
In order to get this result, we must change the localization definition, so that

1. LW (h)
2n = 0 if n ≥ 2;

2. if n = 1, LŴ (h)
2 (k0, �k) = W(h)

2 (0, pF ) ≡ γhνh.
We want now to analyze the properties of the R operator. If we put, as in

(2.32), for any �k ∈ Sh,ω, ω ∈ Oh, �k = �k′ + �pF (θh,ω), we can write

RŴ (h)
2 (k0, �k) =

∫ 1

0

dt
d

dt
W(h)

2

(
tk0, |t�k′ + �pF (θh,ω)|

)
(6.1)

=
∫ 1

0

dt
[
k0∂k0W

(h)
2 (tk0, ρ(t) )

+
(tk′1 + pF )k′1 + t(k′2)

2

ρ(t)
∂ρW(h)

2 (tk0, ρ(t) )
]
,

where, for any vector �v, we are defining v1 ≡ �v ·�n(θh,ω), v2 ≡ �v ·�τ (θh,ω) (see (2.31),
recalling that now �er(θ) = �n(θ), �et(θ) = �τ (θ)) and ρ(t) ≡

√
(tk′1 + |�pF |)2 + (tk′2)2.

It is easy to see that the term ∂ρW(h)
2 (tk0, ρ(t) ) in (6.1) can be rewritten in

the following form:

∂ρW(h)
2 (tk0, ρ(t) ) = cos θ(t)∂k1Ŵ

(h)
2 (tk0, t�k

′ + �pF (θh,ω))

+ sin θ(t)∂k2Ŵ
(h)
2 (tk0, t�k

′ + �pF (θh,ω)) (6.2)

=
∫
dy

(
iy1

tk′1 + pF
ρ(t)

+ iy2
tk′2
ρ(t)

)
W̃

(h)
2 (y)eitk0y0+i(t�k

′+�pF (θh,ω))�y ,

where θ(t) is the angle between �n(θh,ω) and t�k′ + �pF (θh,ω). Substituting (6.2) in
(6.1) we get, if pω = (0, �pF (θh,ω)),

RV(h)(ψ(≤h)) =
∑

σ,ω∈Oh

∫
dk

(2π)3
ψ̂

(≤h)+
k−pσ,σ

ψ̂
(≤h)−
k−pω,ω

RŴ (h)
2 (k)

=
∑

σ,ω∈Oh

∫ 1

0

dt

∫
dk′

(2π)3
ψ̂

(≤h)+
k′+pω−pσ,σ

ψ̂
(≤h)−
k′,ω

∫
dyW̃ (h)

2 (y)ei(tk
′+pω)y
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·
[
ik0y0 +

(tk′1 + pF )k′1 + t(k′2)
2

ρ(t)

(
tk′1 + pF
ρ(t)

iy1 +
tk′2
ρ(t)

iy2

)]
. (6.3)

Let us define the operators Di(t), i = 1, 2, so that

D1(t)ψ(≤h)ε
x,ω = iε

∫
dk′

(2π)3
eiεk

′x tk
′
1 + pF
ρ(t)

(tk′1 + pF )k′1 + t(k′2)
2

ρ(t)
ψ̂

(≤h)ε
k′,ω ,

D2(t)ψ(≤h)ε
x,ω = iε

∫
dk′

(2π)3
eiεk

′x tk
′
2

ρ(t)
(tk′1 + pF )k′1 + t(k′2)2

ρ(t)
ψ̂

(≤h)ε
k′,ω . (6.4)

Hence, (6.3) can be written as

RV(h)(ψ(≤h)) = −
∑

σ,ω∈Oh

∫ 1

0

dt

∫
dx

∫
dy eipσy−ipωxW̃

(h)
2 (y − x)ψ(≤h)+

y,σ

· [(y0 − x0)∂0 + (y1 − x1)D1(t) + (y2 − x2)D2(t)]ψ
(≤h)−
ξ(t),ω

=
∑

σ,ω∈Oh

∫ 1

0

dt

∫
dx

∫
dy eipσy−ipωxW̃

(h)
2 (y − x) (6.5)

· [(y0 − x0)∂0 + (y1 − x1)D1(t) + (y2 − x2)D2(t)]ψ
(≤h)+
η(t),σ ψ

(≤h)−
x,ω ,

where

η(t) ≡ y + t(x − y)
ξ(t) ≡ x + t(y − x) . (6.6)

It is easy to prove the following dimensional bound.

Lemma 6.1 Given non negative integers N,n0, n1, n2, m = n0 + n1 + n2, there
exists a constant CN,m, such that

|∂n0
0 Dn1

1 Dn2
2 g(h)

ω (x)| ≤ CN,m
γh( 3

2 +n0+n1+
3
2n2)

1 +
[
(γhx0)2 + (γhx1)2 + (γ

h
2 x2)2

]N , (6.7)

where Dn
i denotes the product of n factors Di(tj), j = 1, . . . , n.

Remark. Each operator Di(t) improves the bound of the covariance by a factor
at least γh; this is what we need to obtain the right dimensional gain from renor-
malization operations, which also produce a factor γ−h

′
on a scale h′ > h. This

is a consequence of rotational invariance; in fact a naive Taylor expansion would
apparently produce a term of the form (y2 − x2)∂x2 , which would give rise to a
“bad factor” γ−h

′+h/2 in the bounds.
We can now repeat the analysis of the previous sections, in a much more

simple context. In fact it is easy to see that it is possible to fix ν1 in such a way that
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νh stay bounded for hβ ≤ h ≤ 1. Furthermore we can easily perform the bounds
for the nth-order contributions to the kernel of the effective potentials or to the
two point Schwinger functions. In both cases we find that, unless for the external
dimensional factors, the nth-order contributions are bounded by (c|λ|)n(log β)n−1,
where the diverging factor (log β)n−1 is due to the choice of not localizing the
four-legs clusters and of localizing the two-legs clusters only at the first order. So
the result of Theorem 1.1 in the rotational invariant case easily follows.

7 Some technical lemmata

In this section, we first prove a few geometrical properties of the dispersion relation,
see §7.1, and the consequent bound on single scale propagators given in Lemma
2.1, see §7.2. In §7.3 we prove a parallelogram lemma, i.e., an implicit function
type theorem stating that, given a vector �b varying in a small neighborhood of
�pF (θ̄1) + �pF (θ̄2), with |θ̄1 − θ̄2| > 0, (see (7.23) below), �b can be uniquely written
as �pF (θ1) + �pF (θ2), with θi varying in a small interval around θ̄i. This is the key
result we need in order to prove the sector counting Lemma 3.1.

7.1 Geometrical properties of the dispersion relation

Let B = {�p ∈ R
2 : |ε(�p) − µ| ≤ e0}; the hypotheses on ε(�p) described in §1.2

imply that there is a C∞ diffeomorphism between B and the compact set A =
T

1 × [−e0, e0], defined by

�p = �q(θ, e) = u(θ, e)�er(θ) , (θ, e) ∈ A . (7.1)

Moreover, the symmetry property (1.11) implies that

�q(θ + π, e) = −�q(θ, e) , (7.2)

a property that will have an important role in the following.
Let us now introduce some more geometrical definitions, which we shall need

in the following. For any fixed e, we can locally define the arc length s(θ, e) on
Σ(e); we shall denote ∂/∂s the partial derivative with respect to s, at fixed e, and
we shall sometime use the prime to denote the partial derivative with respect to
θ. If �τ (θ, e) = ∂�p(θ, e)/∂s is the unit tangent vector at Σ(e) in �q(θ, e), we have

s′(θ, e)�τ (θ, e) =
∂�p

∂θ
(θ, e) = u′(θ, e)�er(θ) + u(θ, e)�et(θ) ,

s′(θ, e) =
√
u′(θ, e)2 + u(θ, e)2 , (7.3)

where �et(θ) = (− sin θ, cos θ).
Analogously, if �n(θ, e) is the outgoing unit normal vector at Σ(e) in �q(θ, e)

and 1/r(θ, e) is the curvature (which satisfies the convexity condition (1.9)), we
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have

s′(θ, e)�n(θ, e) = u(θ, e)�er(θ) − u′(θ, e)�et(θ) ,
∂2�p

∂θ2
(θ, e) = s′′(θ, e)�τ (θ, e) − s′(θ, e)2

r(θ, e)
�n(θ, e) . (7.4)

Lemma 7.1 The angle α(θ, e) between �n(θ, e) and �er(0) is a monotone increasing
function of θ, such that, if ||θ1 − θ2|| denotes the distance on T

1.

c1||θ2 − θ1|| ≤ ||α(θ2, e) − α(θ1, e)|| ≤ c2||θ2 − θ1|| ; (7.5)

moreover, α(θ + π, e) − α(θ, e) = π.

Proof. By using (7.3) and (7.4) and Taylor expansion, one can easily prove that,
if αi = α(θi, e),

sin(α2 − α1) = �n(θ2, e) · �τ(θ1, e) = (θ2 − θ1)
s′(θ1, e)
r(θ1, e)

+O(θ2 − θ1)2 , (7.6)

cos(α2 − α1) = �n(θ2, e) · �n(θ1, e) = 1 − (θ2 − θ1)2

2
s′2(θ1, e)
r2(θ1, e)

+O(θ2 − θ1)3 ,

which implies (7.5) for |θ2−θ1| small, hence even for any value of θ2−θ1, together
with the monotonicity property. The fact that α(θ+ π, e)−α(θ, e) = π is a trivial
consequence of (7.2). �

We denote by �pF (θ) = �q(θ, 0) the generic point of the Fermi surface ΣF ≡
Σ(0). Moreover, to simplify the notation, from now on we shall in general suppress
the variable e when it is equal to 0; for example, we shall put �pF (θ) = u(θ)�er(θ).
Let us consider an s-sector Sh,ω, see (2.72).

Lemma 7.2 If �p = ρ�er(θ) ∈ Sh,ω, h ≤ 0, ω ∈ Oh, then

|ρ− u(θ)| ≤ cγh , |θ − θh,ω| ≤ πγh/2 . (7.7)

Proof. The bound on θ follows directly from the definition of Sh,ω. On the other
hand, the identity

ε(�p) − µ = ε(ρ�er(θ)) − ε(u(θ)�er(θ)) =
∫ u(θ)

ρ

dρ′ �er(θ)�∇ε (ρ′�er(θ)) , (7.8)

and the property (1.10) of ε(�p), easily imply the bound on ρ− u(θ, 0). �

The following lemma shows that, if �p ∈ Sh,ω, the difference between �p and
�pF (θh,ω) is of order γh in the direction normal to ΣF in the point �pF (θh,ω), while
it is of order γh/2 in the tangent direction.
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Lemma 7.3 If �p ∈ Sh,ω, h ≤ 0, ω ∈ Oh, then

�p = �pF (θh,ω) + k1�n(θh,ω) + k2�τ(θh,ω) , |k1| ≤ cγh , |k2| ≤ cγh/2 . (7.9)

Moreover, ∣∣∣∣ ∂

∂k2
ε(�pF (θh,ω) + k1�n(θh,ω) + k2�τ(θh,ω))

∣∣∣∣ ≤ cγh/2 . (7.10)

Proof. If �p = ρ�er(θ), by Lemma 7.2 |�p − �pF (θ)| ≤ cγh. Hence, to prove (7.9),
it is sufficient to prove that |[�pF (θ) − �pF (θh,ω)]�n(θh,ω)| ≤ cγh and |[�pF (θ) −
�pF (θh,ω)]�τ (θh,ω)| ≤ cγh/2. These bounds immediately follow from the following
ones, which can be easily proved, by using (7.3), (7.4) and some Taylor expan-
sions:

[�pF (θ1) − �pF (θ2)] · �n(θ2) = O(θ1 − θ2)2 , (7.11)

[�pF (θ1) − �pF (θ2)] · �τ (θ2) = O(θ1 − θ2) . (7.12)

It is sufficient to put here θ1 = θ, θ2 = θh,ω and to recall that θ− θh,ω = O(γh/2).
Let us now observe that, if we derive with respect to θ the identity ε(u(θ, e)·

�er(θ)) = e, we get, for any �p ∈ B,

[�∇ε(�p)�τ (θ, e)]s′(θ, e) = 0 ⇒ �∇ε(�p) = a(θ, e)�n(θ, e) , (7.13)

a(θ, e) being a smooth function, strictly positive by (1.10). Hence, if �p ∈ Sh,ω, by
using the first line of (7.6), (7.13) and the fact that |ε(�p) − µ| ≤ cγh, |θ − θh,ω| ≤
cγh/2,

∂ε(�p)
∂k2

= �∇ε(�p) · �τ(θh,ω) = a(θ, e)�n(θ, e) · �τ (θh,ω)

= a(θ, e)�n(θ) · �τ(θh,ω) +O(γh) = O(γh/2) , (7.14)

which proves (7.10). �

Given �p ∈ Sh,ω, we shall also consider the projection on the Fermi surface,
defined as

�p⊥ = �pF (θ⊥) = �p− x�n(θ⊥) . (7.15)

Note that (7.15) has to be thought as an equation for θ⊥ and x, given �p ; it is easy
to prove that, as a consequence of the condition (1.9), this equation has a smooth
unique solution, if e0 is small enough, what we shall suppose from now on.

Lemma 7.4 If �p = ρ�er(θ) ∈ Sh,ω, h ≤ 0, and x and θ⊥ are defined as in (7.15),
then |x| ≤ cγh and |θ⊥ − θh,ω| ≤ cγh/2.
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Proof. (7.9) and (7.15) imply that

k1 = [�pF (θ⊥) − �pF (θh,ω)] · �n(θh,ω) + x�n(θ⊥) · �n(θh,ω) , (7.16)
k2 = [�pF (θ⊥) − �pF (θh,ω)] · �τ (θh,ω) + x�n(θ⊥) · �τ(θh,ω) . (7.17)

By using the (7.11), (7.12) and (7.6), one can easily complete the proof of the
lemma. �

7.2 Proof of Lemma 2.1

The bounds on k1 and k2 in (7.9) imply that
∫
dpFh,ω(p) ≤ cγ5h/2. On the

other hand, if Fh,ω(p) �= 0, | − ip0 + ε(�p) − µ| ≥ cγh, so that (2.33) implies the
bound |g(h)

ω (x)| ≤ cγ3h/2. It is also very easy to prove that |∂nĝ(h)
ω (p)/∂pn0 | and

|∂nĝ(h)
ω (p)/∂kn1 | are bounded by cγ−h(n+1). Hence, using simple integration by

parts arguments, one can show that |xn0 g
(h)
ω (x)| ≤ cγh(3/2−n) and |x′1

n
g
(h)
ω (x)| ≤

cγh(3/2−n). Moreover, it is easy to prove that

|∂nĝ(h)
ω (p)/∂kn2 | ≤ cγ−h

[
γ−h sup

�p∈Sh,ω

|∂ε(�p)
∂k2

|
]n
, (7.18)

which implies the bound |x′2
n
g
(h)
ω (x)| ≤ cγh(3/2−n/2). Finally, by using Lemma 7.3,

it is easy to prove that the previous bounds have to be multiplied by γmh, if one
substitutes g(h)

ω (x) with ∂mg
(h)
ω (x)/∂xm0 or ∂mg(h)

ω (x)/∂x′1
m, while they have to

be multiplied by γmh/2 if g(h)
ω (x) is changed in ∂mg(h)

ω (x)/∂x′2
m.

The bound (2.35) is a simple consequence of the previous considerations. �

7.3 The parallelogram lemma

Let us consider the map F, defined on the two-dimensional torus T
2, with values

in R
2, such that, if (θ1, θ2) ∈ T

2 and �b = F (θ1, θ2), then

�b = �pF (θ1) + �pF (θ2) . (7.19)

The differential J(θ1, θ2) of F is a matrix, whose columns coincide with s′(θ1)�τ (θ1)
and s′(θ2)�τ (θ2). Then Lemma 7.1 implies that detJ �= 0, hence F is invertible,
around any point (θ1, θ2) ∈ T , where

T = {(θ1, θ2) ∈ T
2 : sin(θ1 − θ2) �= 0} . (7.20)

Moreover, if ||θ1 − θ2|| = π, �b = 0, while, if θ1 = θ2 = θ, �b = 2u(θ)�er(θ). Finally,
T is the union of two disjoint subsets, which are obtained one from the other by
exchanging θ1 with θ2, and each one of them is in a one-to-one correspondence
through F with the open set

D = {�p = ρ�er(θ) : 0 < ρ < 2u(θ), θ ∈ T
1} . (7.21)

The following lemma will have an important role in the following.
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Lemma 7.5 Let (θ̄1, θ̄2) ∈ T , �b = �pF (θ̄1) + �pF (θ̄2),

φ = min{||θ̄1 − θ̄2||, π − ||θ̄1 − θ̄2|||} > 0 , (7.22)

�r = r1�n(θ̄1) + r2�τ(θ̄1) , |r1| ≤ c1ηφ , |r2| ≤ η ≤ c2φ . (7.23)

Then there exist c0, c̄2 and η0, such that, if c2 ≤ c̄2 and η ≤ η0, then �b + �r ∈ D
and

�b+ �r = �pF (θ1) + �pF (θ2) , |θi − θ̄i| ≤ c0η . (7.24)

Proof. We shall consider only the case φ = ||θ̄1 − θ̄2||; the case φ = π − ||θ̄1 − θ̄2||
can be easily reduced to this one, by using the symmetry property (7.2). We shall
also choose the sign of θ̄1 − θ̄2, so that φ = θ̄2 − θ̄1.

Let us define δi = θi − θ̄i, δ =
√
δ21 + δ22 ; then we can write, by using (7.19),

(7.3) and (7.4), if �b+ �r ∈ D (which is certainly true, if �r is small enough),

�r =
d�pF (θ̄1)
dθ

δ1 +
d�pF (θ̄2)
dθ

δ2 +O(δ2)

= δ1s
′(θ̄1)�τ(θ̄1) + δ2s

′(θ̄2)�τ (θ̄2) +O(δ2) . (7.25)

Let us now put δi = ηxi, r1 = ηφr̃1, r2 = ηr̃2; condition (7.23) takes the form
|r̃1| ≤ c1 and |r̃2| ≤ 1. Since, by hypothesis, η ≤ c2φ, the condition �b + �r ∈ D is
satisfied, together with (7.24), if and only if the following system of two equations
in the unknowns x1, x2 has a unique solution:

x2 =
r̃1φ

s′(θ̄2) sin[α(θ̄1) − α(θ̄2)]
+O(c2) ,

x1 =
r̃2

s′(θ̄1)
− r̃1φ cos[α(θ̄1) − α(θ̄2)]
s′(θ̄1) sin[α(θ̄1) − α(θ̄2)]

+O(η) + O(c2) , (7.26)

where α(θ) is defined as in Lemma 7.1 and O(c2), O(η) are of second order as
functions of the xi’s.

By using Lemma 7.1, we see that the right sides of (7.26) are bounded for
φ → 0. Hence, by the Dini Theorem, (7.26) allow to uniquely determine x1 and
x2 for any φ > 0, given �r, if η and c2 are small enough, and |δi| ≤ c0η, with c0
independent of c2. �

7.4 Proof of Lemma 3.1 (sectors counting lemma)

Let h′, h, L be integers such that h′ ≤ h ≤ 0. Given ω1 ∈ Oh′ and ω̃i ∈ Oh,
i = 2, . . . L, let Ah,h′(ω1; ω̃2, . . . , ω̃L) be the set of the sequences (ω2, . . . , ωL), such
that i) Sh′,ωi ⊂ Sh,ω̃i for i = 2, . . . , L; ii) there exists, for i = 1, . . . , L, a vector
�k(i) ∈ Sh′,ωi , so that

∑L
i=1

�k(i) = 0.
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If L = 2, the momentum conservation ii) and the symmetry property (1.11) im-
mediately imply that |Ah,h′(ω1; ω̃2, . . . , ω̃L)| = 1. Hence, in order to prove Lemma
3.1 it is sufficient to consider the case L ≥ 4; we have to prove that

|Ah,h′(ω1; ω̃2, . . . , ω̃L)| ≤ cLγ
h−h′

2 (L−3) . (7.27)

Let θi ≡ θh′,ωi , so that θi is the center of the θ-interval, which the polar angle
of �p has to belong to, if �p ∈ Sh′,ωi . For any pair (i, j), we define

φi,j = min{||θi − θj ||, π − ||θi − θj ||} . (7.28)

By a reordering of the sectors, which is unimportant since we are looking for a
bound proportional to cL, we can get the condition (recall that L ≥ 4):

φ ≡ φL−1,L ≥ φi,j , ∀i, j ∈ [2, L] . (7.29)

Note that, given ω̃ ∈ Oh,

|ω ∈ Oh′ : Sh′,ω ⊂ Sh,ω̃| = γ
h−h′

2 . (7.30)

Hence, given any positive constant c0, if we define

A< = {(ω2, . . . , ωL) ∈ Ah,h′(ω1, ω̃2, . . . , ω̃L) : φ ≤ Lc−1
0 γh

′/2} , (7.31)

we have:
|A<| ≤ γ

h−h′
2 (L−3)(cLc−1

0 )2 , (7.32)

where (cLc−1
0 )2 is a bound on the number of possible choices of ωL−1 and ωL,

given ω1, . . . , ωL−2. Hence, in order to prove (7.27), it is sufficient to prove that,
if c0 is small enough, a similar bound is valid for the set

A> = {(ω2, . . . , ωL) ∈ Ah,h′(ω1, ω̃2, . . . , ω̃L) : φ ≥ Lc−1
0 γh

′/2} . (7.33)

We have
|A>| ≤ mLγ

h−h′
2 (L−3) , (7.34)

wheremL is a bound on the number of choices of ωL−1 and ωL, given ω1, . . . , ωL−2.
In order to get mL, we consider a particular choice of ω2, . . . , ωL−2 ∈ Oh′

and we suppose that the set E = {(ωL−1, ωL) : (ω2, . . . , ωL) ∈ A>} is not empty.
Moreover, we define

φ0 = max
(ωL−1,ωL)∈E

φL−1,L , (7.35)

By definition, for any choice of (ωL−1, ωL) ∈ E , we can find L vectors
�k(1), . . . , �k(L), such that �k(i) ∈ Sh′,ωi and

L∑
i=1

�k(i) = 0 . (7.36)
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Moreover, by Lemma 7.3, for i = 1, . . . , L, we can write

�k(i) = �pF (θi) + xi�n(θi) + yi�τ(θi) , |xi| ≤ cγh
′

, |yi| ≤ cγh
′/2 . (7.37)

Hence, since φ0 ≥ Lc−1
0 γh

′/2, we get

|�k(i) ∧ �pF (θ2)| = |�pF (θi)| |�pF (θ2)| sinφi,2 +O(γ
h′
2 ) ≤ cφ0 , (7.38)

for i = 2, . . . , L, and, by using (7.36),

|�k(1) ∧ �pF (θ2)| =

∣∣∣∣∣
L∑
i=2

�k(i) ∧ �pF (θ2)

∣∣∣∣∣ ≤ cLφ0 , (7.39)

so that φ1,2 ≤ cLφ0.
Lemma 7.1, (7.37) and (7.39) easily imply that

�k(i) = �pF (θi) + x̄i�n(θ2) + ȳi�τ(θ2),

|x̄i| ≤
{
cφ0γ

h′/2 if i > 1
cLφ0γ

h′/2 if i = 1
, |ȳi| ≤

{
cγh

′/2 if i > 1
cLγh

′/2 if i = 1
. (7.40)

Let us now define

�a = −
L−2∑
i=1

�pF (θi) , �b = �k
(L−1)
⊥ + �k

(L)
⊥ , �r = �b− �a , (7.41)

where �k⊥ denotes the projection on the Fermi surface, see (7.15). By using Lemma
7.4, the momentum conservation (7.36) and (7.40), we get

�r = r1�n(θ2) + r2�τ(θ2) , |r1| ≤ cLφ0γ
h′/2 , |r2| ≤ cLγh

′/2 . (7.42)

Note that the vector �a defined in (7.41) is fixed, if the indices ω1, . . . , ωL−2

are fixed. Hence, if we put �pF (θ̄i) = �k
(i)
⊥ , i = L − 1, L, mL can be calculated by

studying the possible solutions of the equation

�pF (θ̄L−1) + �pF (θ̄L) = �a+ �r , (7.43)

as �r varies satisfying (7.42). Let (θ̄(0)L−1, θ̄
(0)
L ) be a particular solution of (7.43),

such that �k(i) ∈ Sh′,ωi , i = L − 1, L, with φL−1,L = φ0, and put �b0 = �pF (θ̄(0)L−1) +
�pF (θ̄(0)L ) = �a+�r0, so that (7.43) can be written as �pF (θ̄L−1)+�pF (θ̄L) = �b0+(�r−�r0).
The definition of φ0 implies that �r−�r0 can be represented as �r−�r0 = r′1�n(θ̄(0)L ) +
r′2�τ(θ̄

(0)
L ), with |r′1| ≤ cLφ0γ

h′/2 and |r′2| ≤ cLγh
′/2. Hence a simple application of

Lemma 7.5 shows that the solutions of (7.43) belong, up to a exchange between
θ̄L−1 and θ̄L, to a connected set and that mL ≤ cL2, if c0 ≤ c̄2/c1, where c1 is the
constant c of (7.42) and c̄2 is defined in Lemma 7.5. �
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