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Uniform Estimates of the Resolvent
of the Laplace-Beltrami Operator
on Infinite Volume Riemannian Manifolds. II

F. Cardoso∗ and G. Vodev

Abstract. We prove uniform weighted high frequency estimates for the resolvent of
the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds
under some natural assumptions on the metric on the ends of the manifold. This
extends previous results by Burq [3] and Vodev [8].

1 Introduction and statement of results

The purpose of this paper is to extend the results in [8] to more general Riemannian
manifolds (which may have cusps). Let (M, g) be an n-dimensional unbounded,
connected Riemannian manifold with a Riemannian metric g of class C∞(M)
and a compact C∞-smooth boundary ∂M (which may be empty), of the form
M = X0 ∪X1 ∪X2, where X0 is a compact, connected Riemannian manifold with
a metric g|X0 of class C∞(X0) with a compact boundary ∂X0 = ∂M ∪∂X1∪∂X2,
∂M ∩ ∂X1 = ∅, ∂M ∩ ∂X2 = ∅, ∂X1 ∩ ∂X2 = ∅, Xk = [rk,+∞) × Sk, rk �
1, with metric g|Xk

:= dr2 + σk(r), k = 1, 2. Here (Sk, σk(r)), k = 1, 2, are
n − 1 dimensional compact Riemannian manifolds without boundary equipped
with families of Riemannian metrics σk(r) depending smoothly on r which can be
written in any local coordinates θ ∈ Sk in the form

σk(r) =
∑
i,j

gkij(r, θ)dθidθj , gkij ∈ C∞(Xk).

Denote Xk,r = [r,+∞)×Sk. Clearly, ∂Xk,r can be identified with the Riemannian
manifold (Sk, σk(r)) with the Laplace-Beltrami operator ∆∂Xk,r

written as follows

∆∂Xk,r
= −p−1

k

∑
i,j

∂θi(pkg
ij
k ∂θj ),

where (gijk ) is the inverse matrix to (gkij) and pk = (det(gkij))
1/2 = (det(gijk ))

−1/2.
Let ∆g denote the Laplace-Beltrami operator on (M, g). We have

∆Xk
:= ∆g|Xk

= −p−1
k ∂r(pk∂r) + ∆∂Xk,r

= −∂2
r −

p′k
pk

∂r +∆∂Xk,r
.
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Throughout this paper given a function p(r, θ), p′, p′′ and etc. will denote the first,
the second and etc. derivative with respect to r. It is easy to check the identity

p
1/2
k ∆Xk

p
−1/2
k = −∂2

r + Λk,r + qk(r, θ), (1.1)

where
Λk,r = −

∑
i,j

∂θi(g
ij
k ∂θj ),

and qk is an effective potential given by

qk(r, θ) = (2pk)−2

(
∂pk
∂r

)2

+ (2pk)−2
∑
i,j

∂pk
∂θi

∂pk
∂θj

gijk + 2−1pk∆Xk
(p−1
k ).

We make the following assumptions:

|qk(r, θ)| ≤ C,
∂q1

∂r
(r, θ) ≤ Cr−1−δ0 , −∂q2

∂r
(r, θ) ≤ Cr−1, (1.2)

with constants C, δ0 > 0. Denote by hk the principal symbol of ∆∂Xk,r
, that is,

hk(r, θ, ξ) =
∑
i,j

gijk (r, θ)ξiξj , (θ, ξ) ∈ T ∗Sk.

Clearly, −∂hk/∂r can be interpreted as being the second fundamental form of the
surface ∂Xk,r. We suppose that

(−1)k ∂hk
∂r

(r, θ, ξ) ≥ C

r
hk(r, θ, ξ), ∀(θ, ξ) ∈ T ∗Sk, (1.3)

with a constant C > 0. In particular, this means that ∂X1,r (resp. ∂X2,r) is strictly
convex (resp. strictly concave) viewed from X1,r (resp. X2,r). This implies that
the commutators (−1)k[∂r,Λk,r], k = 1, 2, are strictly positive.

Denote by G the selfadjoint realization of ∆g on the Hilbert space H =
L2(M,dVolg) with Dirichlet or Neumann boundary conditions on ∂M . Given
s1, s2 ∈ R, choose a real-valued positive function χs1,s2 ∈ C∞(M), χs1,s2 = 1
on M \ (X1,r1+1 ∪X2,r2+1), χs1,s2 = r−sk on Xk,rk+2. Also, given a > r1 choose a
real-valued positive function ηa ∈ C∞(M), ηa = 0 on M \X1,a, ηa = 1 on X1,a+1.
Our main result is the following

Theorem 1.1 Under the assumptions (1.2) and (1.3), for every s1 > 1/2, s2 > 1,
there exist positive constants C0, C > 0, a > r1 so that for z ∈ R, z ≥ C0, the limit

R+
s1,s2(z) := lim

ε→0+
χs1,s2(G − z + iε)−1χs1,s2 : H → H

exists and satisfies the bounds

‖R+
s1,s2(z)‖L(H) ≤ eCz

1/2
, (1.4)

‖ηaR+
s1,s2(z)ηa‖L(H) ≤ Cz−1/2. (1.5)
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Suppose that there exist metrics σ̃k(r) depending smoothly on r ∈ (−∞,+∞)
such that σ̃k(r) = σk(r) for r ≥ rk and the resolvents (defined for Im z < 0,
Re z > 0)

RX0
k
(z) := (∆X0

k
− z)−1 : L2

comp(X
0
k , dVolgX0

k

) → H2
loc(X

0
k , dVolgX0

k

),

where X0
k = (−∞,+∞) × Sk with metric gX0

k
= dr2 + σ̃k(r), ∆X0

k
denoting the

selfadjoint realization of the Laplace-Beltrami operator on X0
k on the Hilbert space

L2(X0
k , dVolgX0

k

), extend analytically to Im z ≤ e−γ1|z|
1/2

, Re z ≥ C1, γ1, C1 > 0,
and satisfy in this region the bounds (with α = 0, 1):

‖∂αz χRX0
k
(z)χ‖L(L2(X0

k,dVolg
X0

k

)) ≤ C2e
γ2|z|1/2

, ∀χ ∈ C∞
0 (X0

k), (1.6)

with some constants C2, γ2 > 0. As a consequence of Theorem 1.1 we get the
following

Corollary 1.2 Under the assumptions (1.2), (1.3) and (1.6), the resolvent (defined
for Im z < 0, Re z > 0)

RM (z) := (G − z)−1 : L2
comp(M,dVolg) → H2

loc(M,dVolg),

extends analytically to Im z ≤ e−γ|z|
1/2
, Re z ≥ C0, and satisfies in this region the

bound
‖χRM (z)χ‖L(H) ≤ Ceγ|z|

1/2
, (1.7)

∀χ ∈ C∞(M) of compact support, with some constants C0, C, γ > 0.

Remark. It is easy to see that the above results hold for more general connected
Riemannian manifolds of the form

M = X0 ∪ X1
1 ∪ · · · ∪ XJ

1 ∪ X1
2 ∪ · · · ∪ XI

2 , I ≥ 0, J ≥ 1,

with Xj
1 like X1, X i

2 like X2, and X0 being a compact Riemannian manifold with
boundary ∂X0 = ∂M ∪ ∂X1

1 ∪ · · · ∪ ∂XJ
1 ∪ ∂X1

2 ∪ · · · ∪ ∂XI
2 , ∂M ∩ ∂Xj

1 = ∅,
∂M ∩ ∂X i

2 = ∅, ∂Xj
1 ∩ ∂X i

2 = ∅, ∂Xj1
1 ∩ ∂Xj2

1 = ∅, j1 �= j2, ∂X i1
2 ∩ ∂X i2

2 = ∅,
i1 �= i2.

This corollary can be derived from the bounds (1.4) and (1.6) in precisely
the same way as in the proof of Theorem 1.2 of [8] and this is why we omit the
proof.

Another consequence of the above theorem is that we get uniform high fre-
quency resolvent estimates for long-range perturbations of the Euclidean metric.
Let O ⊂ Rn, n ≥ 2, be a bounded domain with a C∞-smooth boundary Γ and
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a connected complement Ω = Rn \ O. Let g be a Riemannian metric in Ω of the
form

g =
n∑

i,j=1

gij(x)dxidxj , gij(x) ∈ C∞(Ω).

We make the following assumption:

|∂αx (gij(x) − δij)| ≤ Cα〈x〉−δ0−|α|, (1.8)

for every multi-index α, with constants Cα, δ0 > 0, where 〈x〉 := (1 + |x|2)1/2
and δij denotes the Kronecker symbol. Denote by ∆g the corresponding Laplace-
Beltrami operator, i.e.

∆g = −f−1/2
n∑

i,j=1

∂xi(f
1/2gij∂xj ),

where (gij) is the inverse matrix to (gij) and f = det(gij). Denote by G the self-
adjoint realization of ∆g on the Hilbert space H = L2(Ω; dVolg), dVolg := f1/2dx,
with Dirichlet or Neumann boundary conditions on Γ. It is not hard to see (e.g. see
the appendix of [3] for the proof of an analytic version) that under the assumption
(1.8), there exists a global smooth change of variables, (r, θ) = (r(x), θ(x)), for
|x| � 1, where r ∈ [r0,+∞), r0 � 1, θ ∈ S = {y ∈ Rn : |y| = 1}, which
transforms the metric g in the form

dr2 + r2
∑
i,j

hij(r, θ)dθidθj , (1.9)

where hij ∈ C∞ satisfy the inequalities

|∂αr ∂βθ (hij(r, θ)− h0
ij(θ))| ≤ Cα,βr

−δ0−α (1.10)

for all multi-indexes α and β. Here
∑

i,j h0
ij(θ)dθidθj is the metric on S induced by

the Euclidean one. The coordinates (r, θ) are just the normal geodesics coordinates
which are well defined outside a sufficiently large compact since the metric g is close
to the Euclidean one. In other words, the Riemannian manifold (Ω, g) is isometric
to a connected Riemannian manifold (M, g) of the form M = Y0 ∪ Y , where Y0

is a compact connected Riemannian manifold with boundary ∂Y0 = ∂M ∪ ∂Y ,
∂M ∩ ∂Y = ∅, and Y = [r0,+∞) × S, r0 � 1, with metric given by (1.9) and
satisfying (1.10). Therefore, Y is a particular case of the manifold X1 above, and
we get the following consequence of Theorem 1.1.

Corollary 1.3 Under the assumption (1.8), for every s > 1/2 there exist constants
C0, C > 0 and a � 1 so that for z ∈ R, z ≥ C0, the limit

R+
s (z) := lim

ε→0+
〈x〉−s(G − z + iε)−1〈x〉−s : H → H
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exists and satisfies the bounds

‖R+
s (z)‖L(H) ≤ eCz

1/2
, (1.11)

‖χaR+
s (z)χa‖L(H) ≤ Cz−1/2, (1.12)

where χa denotes the characteristic function of |x| ≥ a.

Remark. It is easy to see from the proof that it suffices to have (1.10) for α+|β| ≤ 3.

When gij = δij outside some compact the bound (1.11) follows from the
results of Burq [2], where he proved a similar bound for the cutoff resolvent. This
was improved in [7] for metrics satisfying gij − δij = O(e−|x|2+ε0 ), ε0 > 0. Burq
[3] has recently extended his result to long-range metric perturbations assuming
that gij admit an analytic extension from {x ∈ Rn : |x| ≥ ρ0}, ρ0 � 1, to
{z ∈ Cn : |Re z| ≥ ρ0, |Im z| ≤ γ0|Re z|}, γ0 > 0. In particular, this implies that if
(1.8) holds with α = 0, it holds for any α. He used the complex scaling method to
show that there are no resonances in an exponentially small neighbourhood of the
real axis. In particular, it follows from [3] that one has an analogue of (1.11) for
the cutoff resolvent, which combined with the result of Bruneau-Petkov [1] imply
the bound (1.11) itself in that case. Burq [3] has also proved an analogue of (1.12)
with χa replaced by the characteristic function of a < |x| < b with b > a � 1.

Note that the class of manifolds, (M, g), we study includes hyperbolic ones
with negative curvature, κ, satisfying C−1 ≤ −κ ≤ C on M for some constant
C > 0. In fact, the methods we develop in the present paper apply to infinite
volume Riemannian manifolds with infinity consisting of a finite number of two
type of ends - elliptic ends (like X1 above) whose number is ≥ 1 and cusps (like X2

above) whose number is ≥ 0. An elliptic end satisfying (1.2) and (1.3) with k = 1 is
of infinite volume. The condition (1.2) on the effective potential together with (1.3)
guarantee that the (Dirichlet) self-adjoint realization of ∆X1 on L2(X1, dVolg) has
no discrete spectrum (except for possibly a finite number of eigenvalues). Moreover,
if we consider the generalized geodesic flow in X1, as (1.3) implies that ∂X1 is
strictly convex, every geodesic coming from the infinity of X1 is allowed to hit
the boundary either transversally or at a diffractive point, so it escapes back to
infinity. This suggests that the operator ∆X1 should have properties typical for
the so called nontrapping operators. This in turn suggests that the resolvent of
the global operator ∆g cut off on the both sides by a cutoff function supported in
X1 should satisfy the same high frequency estimates as does the resolvent of ∆X1 .
We show that this is exactly what happens - see the bound (1.5) which without
cutoffs is known to hold for nontrapping perturbations. The key point of our proof
is the estimate (2.22) proved in Section 2. It seems that the assumptions (1.2) and
(1.3) with k = 1 are the weakest ones under which (2.22) holds true.

The situation on a cusp X2 is exactly opposite and this is why in (1.5) we
cannot take the function η with support on X2. In fact, the conditions (1.2) and
(1.3) with k = 2 do not imply that the volume of X2 must be finite, but we
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will keep the notion cusp in this case as well. Of course, there are finite volume
hyperbolic cusps, X2, (with negative curvature) satisfying (1.2) and (1.3) with
k = 2. An interesting example of two dimensional hyperbolic manifolds our results
apply to is Xk = [ak,+∞)r × (R \ 3kZ)t, ak, 3k > 0, k = 1, 2, with metrics
g|X1 = dr2 + cosh2 rdt2, g|X2 = dr2 + e−2rdt2. Note that for such manifolds the
bound (1.4) as well as Corollary 1.2 have been already proved in [8], but the bound
(1.5) seems to be new. We expect that Theorem 1.1 (or at least (1.4)) holds for
more general infinite volume hyperbolic manifolds with a more complex structure
at infinity, as for example manifolds with non-maximal cusps.

The bound (1.4) is proved in [8] for manifolds which have a similar structure
at infinity as the manifold M above, but under the restriction that the metric on
the ends Xk, k = 1, 2, is of the form dr2 + pk(r)−2σk, where σk does not depend
on r, and pk(r) are smooth positive functions satisfying conditions analogous to
(1.2) and (1.3) above. The fact that we have a separation of variables was used in
an essential way in the methods developed in [8]. In the situation we treat in the
present paper we do not have such a separation of variables, which requires a dif-
ferent approach. It is based on an idea of Burq [3] which consists of using Carleman
estimates outside a sufficiently large compact with a real-valued phase function,
ϕ(r), with ϕ′(r) > 0, depending on the spectral parameter (in our case λ � 1)
such that ϕ′ = O(λ−1r−1) outside another compact (in which region the estimates
are no longer of Carleman type). We apply this on the elliptic (infinite volume)
end X1 - see Proposition 2.3 which is essentially due to Burq (see Propositions
6.2 and 7.2 of [3]), but here we give a different proof in a little bit more general
situation. Moreover, our construction of the phase function ϕ is simpler than that
one in [3]. Then the problem is to paste together this estimate with estimates
on the compact part of the manifold essentially due to Lebeau-Robbiano [4], [5]
(see Proposition 4.1 and also Theorem A.2 of [7]), with weighted estimates at the
infinity of X1 (see Proposition 2.4) as well as with weighted Carleman estimates
on X2 (see Proposition 3.1). This is carried out in Section 4.

Acknowledgements. A part of this work was carried out while the second author
was visiting Universidade Federal de Pernambuco, Recife, Brazil, in March-April
2001, and he would like to thank this institution for the hospitality and the nice
working conditions. The first author was also partially supported by the agreement
Brazil-France in Mathematics - Proc. 69.0014/01-5.

2 Uniform a priori estimates on X1

We begin this section by constructing a real-valued phase function, ϕ, with proper-
ties described in Lemma 2.1 below. A similar phase function was first constructed
by Burq [3]. Here we simplify this construction (as well as some of his arguments)
adapting it to our approach.

Let λ � 1 be a big parameter, let 0 < δ � 1 be independent of λ, and
let γ0 > 1 be independent of λ and δ. In what follows, C will denote a positive
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constant independent of λ, while C′ will denote a positive constant independent
of λ and δ. Define the continuous function ϕ̃1(r) so that ϕ̃1(r) = (Ar−δ − 1)1/2

for r1 ≤ r < a1 = A1/δ, ϕ̃1(r) = 0 for r ≥ a1, where A = (r1 + 2)δ(γ0 + 1)2/4 + 1.
Choose a real-valued function φ ∈ C∞

0 ((−1, 1)) such that φ ≥ 0,
∫

φ = 1 and
φ′2 ≤ C0φ with some constant C0 > 0, and set φε(r) = ε−1φ(r/ε), 0 < ε � 1. Let
ζ ∈ C∞

0 (R) be a real-valued function, ζ ≥ 0, equal to 1 in a small neighbourhood
of a1 and to zero outside another small neighbourhood of a1. Then the function

ϕ1 = (1− ζ)ϕ̃1 + φε : (ζϕ̃1)

belongs to C∞([r1,∞)) and vanishes for r ≥ a1 + 1. Moreover, since ϕ′
1ϕ1 →

ϕ̃′
1ϕ̃1 = −2−1δAr−1−δ if r < a1 and to zero if r > a1 as ε → 0, taking ε > 0 small

enough we can arrange

−ϕ′
1(r)ϕ1(r) ≤ C′δr−1, ∀r ≥ r1. (2.1)

Also, the choice of φ guarantees the bound

ϕ′
1(r)

2 ≤ Cϕ1(r), ∀r ≥ r1. (2.2)

Define a real-valued function ϕ ∈ C∞([r1,+∞)) such that ϕ(r1) = −1 and

ϕ′(r) = ϕ1(r) + λ−1/2r−1ϕ2(r)(1 + λ1/2ϕ3(r))−1,

where ϕj ∈ C∞([r1,+∞)), j = 2, 3, are real-valued functions independent of λ,
0 ≤ ϕj(r) ≤ 1, ϕ′

j(r) ≥ 0, ∀r, chosen so that ϕ2 = 0 for r ≤ a′
1, ϕ2 = 1 for

r ≥ a′′
1 , r1 + 2 < a′

1 < a′′
1 ∈ supp (1 − ζ), ϕ3 = 0 for r ≤ a′

2, ϕ3 = 1 for r ≥ a′′
2 ,

a1 + 1 < a′
2 < a′′

2 . We also require that

rϕ′
3(r) ≤

1
4
, ∀r. (2.3)

Moreover, near a′
1 we choose ϕ2 in the form ϕ2(r) = exp((a′

1 − r)−1) if r > a′
1,

which guarantees the inequality

ϕ′
2(r)

2 ≤ Cϕ2(r), ∀r ≥ r1. (2.4)

It is easy also to see that we have the inequalities

|ϕ′
j(r)|+ |ϕ′′

j (r)| + |ϕ′′′
j (r)| ≤ Cr−1ϕ2(r), j = 1, 3,

|ϕ′
2(r)| + |ϕ′′

2 (r)| + |ϕ′′′
2 (r)| ≤ Cϕ1(r). (2.5)

Note that the choice of the constant A guarantees that ϕ(r1 + 2) ≥ γ0.

Lemma 2.1 The following inequalities hold for λ ≥ λ0(δ) � 1 and ∀r ≥ r1:

Cλ−1r−1 ≤ ϕ′(r) ≤ Cr−1, (2.6)

−ϕ′(r)ϕ′′(r) ≤ C′δr−1, (2.7)

|ϕ′′(r)| ≤ Cλ1/2r−1ϕ′(r), ϕ′′(r)2 ≤ Cλ1/2r−1ϕ′(r), (2.8)



680 F. Cardoso and G. Vodev Ann. Henri Poincaré

|ϕ′′′(r)| ≤ Cλr−1ϕ′(r), |ϕ′′′(r)| ≤ Cλ1/2r−1, (2.9)

|ϕ(4)(r)| ≤ Cλ3/2r−1ϕ′(r), (2.10)

2λϕ′(r)2 + ϕ′′(r) ≥ C′r−1ϕ′(r). (2.11)

Proof. We have

Cλ−1r−1 ≤ λ−1r−1(rϕ1(r) +ϕ2(r)) ≤ ϕ′(r) ≤ r−1(rϕ1(r) +λ−1/2ϕ2(r)) ≤ Cr−1,

which proves (2.6). To prove (2.7) observe that

ϕ′′(r) = ϕ′
1(r) − λ−1/2r−2ϕ2(r)(1 + λ1/2ϕ3(r))−1

+λ−1/2r−1ϕ′
2(r)(1 + λ1/2ϕ3(r))−1 − r−1ϕ2(r)ϕ′

3(r)(1 + λ1/2ϕ3(r))−2,

and hence, in view of (2.1),

−ϕ′ϕ′′ = −ϕ1ϕ
′
1 + λ−1/2r−2ϕ1ϕ2(1 + λ1/2ϕ3)−1

−λ−1/2r−1(ϕ′
1ϕ2 + ϕ1ϕ

′
2)(1 + λ1/2ϕ3)−1

+λ−1r−2ϕ2
2(1 + λ1/2ϕ3)−2 − λ−1r−2ϕ2ϕ

′
2(1 + λ1/2ϕ3)−2

+λ−1/2r−2ϕ2
2ϕ

′
3(1 + λ1/2ϕ3)−2 ≤ C′δr−1 + Cλ−1/2r−1 ≤ 2C′δr−1.

Moreover, in view of (2.5) we have

|ϕ′′| ≤ Cr−2ϕ2(1 + λ1/2ϕ3)−1 ≤ Cλ1/2r−1ϕ′.

On the other hand,

ϕ′′2 ≤ 4ϕ′2
1 + Cr−2(ϕ2 + ϕ′2

2 )(1 + λ1/2ϕ3)−1,

and hence (2.8) follows in view of (2.2) and (2.4). Furthermore, we have

ϕ′′′ = ϕ′′
1 + 2λ−1/2r−3ϕ2(1 + λ1/2ϕ3)−1 − 2λ−1/2r−2ϕ′

2(1 + λ1/2ϕ3)−1

+2r−2ϕ′
3(1 + λ1/2ϕ3)−2 + λ−1/2r−1ϕ′′

2 (1 + λ1/2ϕ3)−1

−r−1ϕ′′
3(1 + λ1/2ϕ3)−2 + 2λ1/2r−2ϕ′2

3 (1 + λ1/2ϕ3)−3,

and hence |ϕ′′′| ≤ Cλ1/2r−1. On the other hand, in view of (2.5) we have

|ϕ′′′| ≤ Cr−2ϕ2 + λ−1/2ϕ1 + Cλ1/2r−2ϕ2(1 + λ1/2ϕ3)−1 ≤ Cλr−1ϕ′,

which proves (2.9). In the same way,

|ϕ(4)| ≤ |ϕ′′′
1 |+Cλr−2ϕ2(1+λ1/2ϕ3)−1+Cλ−1/2(|ϕ′

2|+|ϕ′′
2 |+|ϕ′′′

2 |) ≤ Cλ3/2r−1ϕ′.

To prove (2.11) observe that

2λϕ′2 + ϕ′′ ≥ 2λϕ2
1 + 2r−2ϕ2

2(1 + λ1/2ϕ3)−2 + ϕ′
1

− λ−1/2r−2ϕ2(1 + λ1/2ϕ3)−1 − r−1ϕ2ϕ
′
3(1 + λ1/2ϕ3)−2.
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For r ≥ a1 + 1 we have ϕ1 = ϕ′
1 = 0 and hence, in view of (2.3),

2λϕ′2 + ϕ′′ ≥ (1− 2rϕ′
3 − λ−1/2)r−2(1 + λ1/2ϕ3)−2 ≥ C′r−1ϕ′.

For r < a1 + 1 we have ϕ3 = 0 and hence

2λϕ′2 + ϕ′′ ≥ 2λϕ2
1 + ϕ′

1 + r−2ϕ2
2.

Since ϕ′
1(a1 + 1) = 0, there exists a0 < a1 + 1 such that |ϕ′

1| ≤ (2r)−2ϕ2
2 for

a0 ≤ r ≤ a1 + 1. Hence, for a0 ≤ r ≤ a1 + 1,

2λϕ′2 + ϕ′′ ≥ λϕ′2 ≥ Cλ1/2r−1ϕ′. (2.12)

For r1 ≤ r ≤ a0, we have |ϕ′
1| ≤ Cϕ2

1, which again implies (2.12). �

Throughout this section ‖ · ‖ and 〈·, ·〉 will denote the norm and the scalar
product on L2(S1), while the Sobolev space H1(X1, dVolg) will be equipped with
the semiclassical norm given by

‖u‖2
H1(X1,dVolg)

= ‖u‖2
L2(X1,dVolg) + ‖Dru‖2

L2(X1,dVolg) +
∫ ∞

r1

∑
i,j

〈p1g
ij
1 Dθiu(r, ·),Dθju(r, ·)〉dr,

where Dr = (iλ)−1∂r, Dθj = (iλ)−1∂θj . Denote by L2(X1) and H1(X1) the spaces
equipped with the norms

‖u‖2
L2(X1) =

∫ ∞

r1

‖u(r, ·)‖2dr,

‖u‖2
H1(X1) =

∫ ∞

r1


‖u(r, ·)‖2 + ‖Dru(r, ·)‖2 +

∑
i,j

〈gij1 Dθiu(r, ·),Dθju(r, ·)〉

 dr.

It is easy to see that

‖u‖L2(X1,dVolg) = ‖p1/2
1 u‖L2(X1), ‖u‖H1(X1,dVolg) � ‖p1/2

1 u‖H1(X1).

Finally, given an a ≥ r1 and functions u(r, θ), v(r, θ), we denote

‖u‖L2(∂X1,a) := ‖u(a, ·)‖, 〈u, v〉L2(∂X1,a) := 〈u(a, ·), v(a, ·)〉,

‖u‖2
H1(∂X1,a) := ‖u(a, ·)‖2 +

∑
i,j

〈gij1 Dθiu(a, ·),Dθju(a, ·)〉.

It is clear from the definition of the function ϕ above that there exists an a ≥ r1

such that ϕ′(r) = λ−1r−1 for r ≥ a. The main result in this section is the following
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Theorem 2.2 Let u ∈ H2(X1, dVolg), u = 0, ∂ru = 0 on ∂X1, be such that
rs(∆X1 − λ2 + iε)u ∈ L2(X1, dVolg) for λ > 0, 0 < ε ≤ 1 and 0 < s − 1/2 �
1. Then, for a suitable choice of the parameter δ > 0, there exist constants
C1, C2, λ0 > 0 (independent of λ and ε) so that for λ ≥ λ0 we have

‖eλ(ϕ(r)−ϕ(a))u‖2
H1(X1\X1,a,dVolg) + ‖r−su‖2

H1(X1,a,dVolg)

≤ C1λ
−2‖eλ(ϕ(r)−ϕ(a))(∆X1 − λ2 + iε)u‖2

L2(X1\X1,a,dVolg)

+C1λ
−2‖rs(∆X1 − λ2 + iε)u‖2

L2(X1,a,dVolg) − C2λ
−1Im〈∂ru, u〉L2(∂X1,a). (2.13)

Proof. Denote

P = p
1/2
1 (λ−2∆X1 − 1 + iε)p−1/2

1 = D2
r + Lr − 1 + V + iε,

where 0 < ε = O(λ−2), Lr = λ−2Λ1,r, V = λ−2q1, and

Pϕ = eλϕPe−λϕ = P − ϕ′(r)2 + λ−1ϕ′′(r) + 2iϕ′(r)Dr .

We will first prove the following

Proposition 2.3 Let u ∈ H2(X1 \ X1,a), u = 0, ∂ru = 0 on ∂X1 ∪ ∂X1,a. Then,
there exist constants C, λ0 > 0 (independent of λ and ε) so that for λ ≥ λ0 we
have

‖(ϕ′/r)1/2u‖H1(X1\X1,a) ≤ Cλ1/2‖Pϕu‖L2(X1\X1,a). (2.14)

Proof. Let ψ(r) ∈ C∞([r1, a]) be a real-valued function. Integrating by parts one
can easily get the identity

Re 〈ψPϕu, u〉L2(X1\X1,a) = 〈ψDru,Dru〉L2(X1\X1,a) + 〈ψLru, u〉L2(X1\X1,a)

−〈(ψ + ψϕ′2 − λ−2q1 + λ−1ϕ′ψ′ + 2−1λ−2ψ′′)u, u〉L2(X1\X1,a). (2.15)

Set
F (r) = −〈(Lr − 1 + W )u(r, ·), u(r, ·)〉 + ‖Dru(r, ·)‖2,

where W = λ−2q1 − ϕ′2 + λ−1ϕ′′. We have

F ′(r) =

= −2Re 〈Lru(r, ·), u′(r, ·)〉 − 2Re 〈D2
ru(r, ·), u′(r, ·)〉+ 2Re 〈(1− W )u(r, ·), u′(r, ·)〉

− 〈[∂r, Lr]u(r, ·), u(r, ·)〉 − 〈W ′u(r, ·), u(r, ·)〉
= −2Re 〈Pϕu(r, ·), u′(r, ·)〉 + 4λϕ′‖Dru(r, ·)‖2 − 2εIm 〈u(r, ·), u′(r, ·)〉

− 〈[∂r, Lr]u(r, ·), u(r, ·)〉 − 〈W ′u(r, ·), u(r, ·)〉.
Multiplying this identity by ϕ′ and integrating with respect to r lead to∫ a

r1

ϕ′F ′dr = −2Re
∫ a

r1

〈ϕ′Pϕu, u′〉dr + 4λ
∫ a

r1

‖ϕ′Dru‖2dr (2.16)

− 2εIm
∫ a

r1

〈ϕ′u, u′〉dr −
∫ a

r1

〈ϕ′[∂r, Lr]u, u〉dr −
∫ a

r1

〈ϕ′W ′u, u〉dr.
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On the other hand, we have∫ a

r1

ϕ′F ′dr = −
∫ a

r1

ϕ′′Fdr

= Re
∫ a

r1

〈ϕ′′Lru, u〉dr −
∫ a

r1

〈ϕ′′Dru,Dru〉dr −
∫ a

r1

〈ϕ′′(1− W )u, u〉dr

= Re
∫ a

r1

〈ϕ′′Pϕu, u〉dr − 2
∫ a

r1

〈ϕ′′Dru,Dru〉dr

+
∫ a

r1

〈(λ−1ϕ′′2 + λ−1ϕ′ϕ′′′ + 2−1λ−2ϕ(4))u, u〉dr, (2.17)

where we have used (2.15) with ψ = ϕ′′. Combining (2.16) and (2.17) we get the
identity

2
∫ a

r1

〈(2λϕ′2 + ϕ′′)Dru,Dru〉dr −
∫ a

r1

〈ϕ′[∂r, Lr]u, u〉dr

= 2Re
∫ a

r1

〈ϕ′Pϕu, u′〉dr +Re
∫ a

r1

〈ϕ′′Pϕu, u〉dr + 2εIm
∫ a

r1

〈ϕ′u, u′〉dr

+
∫ a

r1

〈(−2ϕ′2ϕ′′ + λ−1ϕ′′2 + 2λ−1ϕ′ϕ′′′ + 2−1λ−2ϕ(4) + λ−2ϕ′q′1)u, u〉dr. (2.18)

It is easy to see that (1.3) implies

−[∂r, Lr] ≥ C

r
Lr, C > 0, (2.19)

and hence in view of (1.2) and Lemma 2.1 we conclude from (2.18)∫ a

r1

‖(ϕ′/r)1/2Dru‖2dr +
∫ a

r1

‖(ϕ′/r)1/2L1/2
r u‖2dr

≤ O(λ)
∫ a

r1

‖Pϕu‖2dr + Cδ

∫ a

r1

‖(ϕ′/r)1/2u‖2dr, (2.20)

for λ ≥ λ0(a, δ) � 1, where C > 0 does not depend on λ, δ and a. On the other
hand, by (2.15) used with ψ = r−1ϕ′ we have∫ a

r1

〈(
r−1ϕ′(1 + ϕ′2 + λ−1ϕ′′ − λ−1r−1ϕ′ + λ−2r−2 − λ−2q1)

−λ−2r−2ϕ′′ + 2−1λ−2r−1ϕ′′′)u, u
〉
dr

=
∫ a

r1

〈r−1ϕ′Dru,Dru〉dr +
∫ a

r1

〈r−1ϕ′Lru, u〉dr − Re
∫ a

r1

〈Pϕu, r−1ϕ′u〉dr,
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and hence, in view of Lemma 2.1 and (1.2), we get

1
4

∫ a

r1

‖(ϕ′/r)1/2u‖2dr (2.21)

≤
∫ a

r1

‖(ϕ′/r)1/2Dru‖2dr +
∫ a

r1

‖(ϕ′/r)1/2L1/2
r u‖2dr +

∫ a

r1

‖Pϕu‖2dr.

Now (2.14) follows from (2.20) and (2.21), provided δ > 0 is taken small enough.
�

Proposition 2.4 Let u ∈ H2(X1,a) be such that rsPu ∈ L2(X1,a) for 1/2 < s ≤
(1 + δ0)/2. Then, ∀0 < γ � 1 there exist constants C1, C2, λ0 > 0 (which may
depend on γ but are independent of λ and ε) so that for λ ≥ λ0 we have

‖r−su‖2
H1(X1,a+1)

≤ C1λ
2‖rsPu‖2

L2(X1,a) −C2λ
−1Im 〈∂ru, u〉L2(∂X1,a)+ γ‖u‖2

H1(X1,a\X1,a+1). (2.22)

Proof. Choose a real-valued function φ ∈ C∞(R), 0 ≤ φ ≤ 1, such that φ(r) = 0
for r ≤ a + 1/2, φ(r) = 1 for r ≥ a + 2/3 and φ′(r) ≥ 0, ∀r. Integrating by parts
we get

〈r−2s(Lr − 1 + V )φu, φu〉L2(X1,a) + ‖r−sDr(φu)‖2
L2(X1,a)

= Re 〈r−2sP (φu), φu〉L2(X1,a) + 2sλ−2Re 〈r−2s−1(φu)′, φu〉L2(X1,a),

and hence ∣∣∣〈r−2s(Lr − 1 + V )φu, φu〉L2(X1,a) + ‖r−sDr(φu)‖2
L2(X1,a)

∣∣∣
≤ O(λ)‖P (φu)‖2

L2(X1,a) + O(λ−1)
(
‖r−sφu‖2

L2(X1,a) + ‖r−sDr(φu)‖2
L2(X1,a)

)
.

(2.23)
We also have

ε‖u‖2
L2(X1,a) = Im 〈Pu, u〉L2(X1,a) − λ−2Im 〈u′, u〉L2(∂X1,a)

≤ γ−1λ‖rsPu‖2
L2(X1,a) + γλ−1‖r−su‖2

L2(X1,a) − λ−2Im 〈u′, u〉L2(∂X1,a),

∀γ > 0, and

‖Dr(φu)‖2
L2(X1,a) ≤ 2‖φu‖2

L2(X1,a) + ‖P (φu)‖2
L2(X1,a)

≤ 2‖u‖2
L2(X1,a) + ‖Pu‖2

L2(X1,a) + O(λ−2)‖φ1u‖2
H1(X1,a),

where φ1 ∈ C∞
0 ([a, a+ 1]), φ1 = 1 on [a+ 1/3, a+ 3/4]. Hence,

ελ
(
‖φu‖2

L2(X1,a) + ‖Dr(φu)‖2
L2(X1,a)

)
(2.24)

≤ Oγ(λ2)‖rsPu‖2
L2(X1,a) + γ‖r−su‖2

H1(X1,a) − 3λ−1Im 〈u′, u〉L2(∂X1,a),
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∀γ > 0. Set

E(r) = −〈(Lr − 1 + V )φu(r, ·), φu(r, ·)〉 + ‖Dr(φu)(r, ·)‖2.

We have

E′(r) = −〈[∂r, Lr]φu(r, ·), φu(r, ·)〉 − 〈V ′φu(r, ·), φu(r, ·)〉
−2εIm 〈φu(r, ·), (φu)′(r, ·)〉 − 2λIm 〈P (φu)(r, ·),Dr(φu)(r, ·)〉

= −〈[∂r, Lr]φu(r, ·), φu(r, ·)〉 − 〈V ′φu(r, ·), φu(r, ·)〉
−2εIm 〈φu(r, ·), (φu)′(r, ·)〉 − 2λIm 〈φPu(r, ·),Dr(φu)(r, ·)〉

−2λIm 〈[P, φ]u(r, ·), φDru(r, ·)〉 − 2λIm 〈[P, φ]u(r, ·), [Dr , φ]u(r, ·)〉.
Since

[P, φ] = [D2
r , φ] = −λ−2φ′′ − 2iλ−1φ′Dr,

we obtain in view of (2.19),

E′(r) ≥ C

r
〈Lr(φu)(r, ·), φu(r, ·)〉 − ελ

(‖φu(r, ·)‖2 + ‖Dr(φu)(r, ·)‖2
)

−O(γ)r−2s
(‖φu(r, ·)‖2 + ‖Dr(φu)(r, ·)‖2

)
−O(λ−1)

(‖φ1u(r, ·)‖2 + ‖φ1Dru(r, ·)‖2
)

+4φφ′‖Dru(r, ·)‖2 − Oγ(λ2)r2s‖Pu(r, ·)‖2.

Since φφ′ ≥ 0, we deduce

E′(r) ≥ C

r
〈Lr(φu)(r, ·), φu(r, ·)〉 − ελ

(‖φu(r, ·)‖2 + ‖Dr(φu)(r, ·)‖2
)

−O(γ)r−2s
(‖u(r, ·)‖2 + ‖Dru(r, ·)‖2

) − Oγ(λ2)r2s‖Pu(r, ·)‖2. (2.25)

Integrating (2.25) from t ≥ a to +∞ and using that Lr ≥ 0 and (2.24), we get

E(t) ≤ O(γ)‖r−su‖2
H1(X1,a) + Oγ(λ2)‖rsPu‖2

L2(X1,a) − 3λ−1Im 〈u′, u〉L2(∂X1,a),

(2.26)
∀γ > 0. Multiplying (2.26) by t−2s and integrating from a to +∞ yield (with a
constant C > 0): ∫ ∞

a

r−2sE(r)dr ≤ O(γ)‖r−su‖2
H1(X1,a)

+Oγ(λ2)‖rsPu‖2
L2(X1,a) − Cλ−1Im 〈u′, u〉L2(∂X1,a), (2.27)

∀γ > 0. On the other hand, multiplying (2.25) by r1−2s, integrating from a to
+∞, using (2.23), (2.24) and the identity∫ ∞

a

r1−2sE′(r)dr = (2s − 1)
∫ ∞

a

r−2sE(r)dr,
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we obtain (with a new constant C > 0):

‖r−sL1/2
r (φu)‖2

L2(X1,a) ≤ O(γ)‖r−su‖2
H1(X1,a)

+Oγ(λ2)‖rsPu‖2
L2(X1,a) − Cλ−1Im 〈u′, u〉L2(∂X1,a), (2.28)

∀γ > 0. Combining (2.23), (2.27) and (2.28), we get (with possibly a new constant
C > 0):

‖r−sφu‖2
H1(X1,a) ≤ O(γ)‖r−su‖2

H1(X1,a)

+Oγ(λ2)‖rsPu‖2
L2(X1,a) − Cλ−1Im 〈u′, u〉L2(∂X1,a), (2.29)

∀0 < γ � 1, which clearly implies (2.22). �
Let u ∈ H2(X1), u = 0, ∂ru = 0 on ∂X1, be such that rsPu ∈ L2(X1).

Choose a function χ ∈ C∞(X1) such that χ = 1 on X1 \X1,a+2, χ = 0 on X1,a+3.
Applying Proposition 2.3 to the function eλϕχu (with a replaced by a+3), we get

‖eλϕu‖2
H1(X1\X1,a+2)

≤ O(λ2)‖eλϕPu‖2
L2(X1\X1,a+3) + O(1)‖eλϕu‖2

H1(X1,a+2\X1,a+3). (2.30)

Since 1 ≤ eλ(ϕ(r)−ϕ(a)) ≤ Const for a ≤ r ≤ a + 3, we deduce

‖eλ(ϕ(r)−ϕ(a))u‖2
H1(X1\X1,a) + ‖u‖2

H1(X1,a\X1,a+2)

≤ O(λ2)‖eλ(ϕ(r)−ϕ(a))Pu‖2
L2(X1\X1,a)

+O(λ2)‖Pu‖2
L2(X1,a\X1,a+3) + O(1)‖u‖2

H1(X1,a+2\X1,a+3). (2.31)

It is easy to see that (2.13) follows from combining (2.22) and (2.31).

3 Uniform a priori estimates on X2

The purpose of this section is to prove the following

Proposition 3.1 Let u ∈ H2(X2, dVolg), u = 0, ∂ru = 0 on ∂X2. Then ∀δ > 0,
0 < ε ≤ 1, we have

‖r−1−δeλr
−2δ

u‖H1(X2,dVolg) ≤ Cλ−3/2‖eλr−2δ

(∆X2 −λ2 + iε)u‖L2(X2,dVolg), (3.1)

for λ ≥ λ0 with constants C, λ0 > 0 independent of λ, ε and u but depending on δ.

Proof. Define the spaces L2(X2) and H1(X2) analogously to L2(X1) and H1(X1)
introduced in the previous section. Denote ϕ(r) = r−2δ, w = eλϕu, and

P := p
1/2
2 (λ−2∆X2 − 1 + iε)p−1/2

2 = D2
r + Lr − 1 + V + iε,

Pϕ = eλϕPe−λϕ = P − ϕ′(r)2 + λ−1ϕ′′(r) + 2iϕ′(r)Dr ,
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where 0 < ε = O(λ−2), Lr = λ−2Λ2,r, V = λ−2q2. Note that (1.3) implies

[∂r, Lr] ≥ C

r
Lr, C > 0. (3.2)

Clearly, (3.1) is equivalent to the estimate

‖r−1−δw‖H1(X2) ≤ O(λ1/2)‖Pϕw‖L2(X2). (3.3)

Denote by P ∗
ϕ the adjoint operator of Pϕ with respect to the scalar product in

L2(X2), and set RePϕ =
Pϕ+P∗

ϕ

2 , ImPϕ =
Pϕ−P∗

ϕ

2i . We have

RePϕ = D2
r + Lr − 1− ϕ′(r)2 + V, ImPϕ = ϕ′(r)Dr +Drϕ

′(r) + ε.

In view of (1.2) and (3.2), and taking into account that

ϕ′(r) = −2δr−2δ−1, ϕ′′(r) = 2δ(2δ+1)r−2δ−2, ϕ′′′(r) = −2δ(2δ+1)(2δ+2)r−2δ−3,

it is easy to see that we have, in view of (3.2) and (1.2),

λ‖Pϕw‖2
L2(X2)

= λ‖(RePϕ)w‖2
L2(X2) + λ‖(ImPϕ)w‖2

L2(X2) + iλ〈[RePϕ, ImPϕ]w,w〉L2(X2)

≥ iλ〈[RePϕ, ImPϕ]w,w〉L2(X2) ≥ 2〈ϕ′′Drw,Drw〉L2(X2)

+ 4〈−ϕ′[∂r, Lr]w,w〉L2(X2) + 4〈ϕ′2ϕ′′w,w〉L2(X2) − 2〈ϕ′V ′w,w〉L2(X2)

− O(λ−1)
(‖r−1−δDrw‖L2(X2) + ‖r−1−δw‖L2(X2)

)
≥ C‖r−1−δDrw‖2

L2(X2) + C‖r−1−δL1/2
r w‖2

L2(X2) − O(λ−1)‖r−1−δw‖2
H1(X2).

(3.4)

On the other hand, integrating by parts leads to the identity

Re〈r−2−2δPϕw,w〉L2(X2) = ‖r−1−δDrw‖2
L2(X2)

+〈r−2−2δ(Lr−1+V −ϕ′2−4δ(δ+1)λ−1r−2−2δ−(δ+1)(2δ+3)λ−2r−2)w,w〉L2(X2),

and hence
1
2
‖r−1−δw‖2

L2(X2)

≤ ‖r−1−δDrw‖2
L2(X2) + ‖r−1−δL1/2

r w‖2
L2(X2)

+
∣∣〈r−2−2δPϕw,w〉L2(X2)

∣∣ .
Since ∣∣〈r−2−2δPϕw,w〉L2(X2)

∣∣ ≤ 1
4
‖r−1−δw‖2

L2(X2) + ‖Pϕw‖2
L2(X2)

,

we conclude
1
4
‖r−1−δw‖2

L2(X2) ≤ ‖r−1−δDrw‖2
L2(X2)

+ ‖r−1−δL1/2
r w‖2

L2(X2) + ‖Pϕw‖2
L2(X2)

.

(3.5)
Now (3.3) follows from (3.4) and (3.5). �
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4 Proof of Theorem 1.1

Let (M0, g0) be a compact, connected Riemannian manifold with a C∞-smooth
boundary ∂M0 and a metric g0 of class C∞(M0). Denote by ∆M0 the (positive)
Laplace-Beltrami operator on (M0, g0) and let U ⊂ M0, U �= ∅, be an arbitrary
open domain such that ∂U ∩ ∂M0 = ∅. Suppose that ∂M0 = Γ ∪ Γ̃, Γ �= ∅, Γ̃ �= ∅,
Γ ∩ Γ̃ = ∅, and given 0 < ε0 � 1 denote M0,ε0 = M0 \ {x ∈ M0 : dist(x, ∂M0) ≤
ε0}, M̃0,ε0 = M0 \ {x ∈ M0 : dist(x, Γ̃) ≤ ε0}. Let U ⊂ M0,2ε0 . The following
proposition is proved in [8] using the interpolation inequalities of Lebeau-Robbiano
[4], [5] (see Theorem 3.2 of [8]) and this is why we omit the proof.

Proposition 4.1 Let u ∈ H2(M0) satisfy either Dirichlet or Neumann boundary
conditions on Γ. Then, ∀β > 0 ∃Cβ , γβ > 0 (independent of u and λ below but
depending on U) so that we have

‖u‖
H1(fM0,ε0 )

≤ Cβe
γβ |λ|‖(∆M0 − λ2)u‖L2(M0)

+Cβe
γβ |λ|‖u‖H1(U) + e−β|λ|‖u‖

H1(M0\fM0,ε0 )
, λ ∈ C, |λ| � 1. (4.1)

Let u ∈ D(G) be such that χ−1
s1,s2u ∈ L2(M,dVolg), where s1 and s2 are as

in Theorem 1.1. Let χ2 ∈ C∞(M), χ2 = 0 on M \ X2,r2+1, χ2 = 1 on X2,r2+2.
Applying Proposition 3.1 (with δ = s2 − 1) to χ2u yields

‖r−s2u‖2
H1(X2,r2+2,dVolg) ≤ ec0λ‖(∆g − λ2 + iε)u‖2

L2(X2,dVolg)

+ec0λ‖u‖2
H1(X2,r2+1\X2,r2+2,dVolg). (4.2)

Let χ1 ∈ C∞(M), χ1 = 1 on M \ X1,r1+2, χ1 = 0 on X1,r1+3. By Proposition 4.1
applied to the function χ1u we get

‖χ1u‖2
H1(M\X2,r2+2,dVolg) ≤ Cβe

γβλ‖(∆g − λ2 + iε)χ1u‖2
L2(M\X2,r2+3,dVolg)

+e−βλ‖u‖2
H1(X2,r2+2\X2,r2+3,dVolg), (4.3)

∀β > 0 with Cβ , γβ > 0 independent of λ, ε and u. Hence,

‖u‖2
H1(M\(X1,r1+2∪X2,r2+2),dVolg)

≤ Cβe
γβλ‖(∆g − λ2 + iε)u‖2

L2(M\(X1,r1+3∪X2,r2+3),dVolg)

+C′
βλ

2eγβλ‖u‖2
H1(X1,r1+2\X1,r1+3,dVolg) + e−βλ‖u‖2

H1(X2,r2+2\X2,r2+3,dVolg), (4.4)

∀β > 0.
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Combining (4.2) and (4.4), for λ � 1, we obtain

‖r−s2u‖2
H1(X2,r2+2,dVolg) + ‖u‖2

H1(M\(X1,r1+2∪X2,r2+2),dVolg)

≤ ec0λ‖(∆g − λ2 + iε)u‖2
L2(X2,dVolg)

+e2γ1λ‖(∆g − λ2 + iε)u‖2
L2(M\(X1,r1+3∪X2,r2+3),dVolg)

+e2γ1λ‖u‖2
H1(X1,r1+2\X1,r1+3,dVolg), (4.5)

with a constant γ1 > 0 independent of λ, ε and u. Let r1 < b1 < b2 < r1 + 1
be such that ϕ(b1) < ϕ(b2) < 0 and choose χ̃1 ∈ C∞(M), χ̃1 = 0 on M \ X1,b1 ,
χ̃1 = 1 on X1,b2 . By Theorem 2.2 applied to χ̃1u (with γ0 = γ1 + 1, s = s1), we
get

‖eλϕu‖2
H1(X1,b2\X1,a,dVolg) + e2λϕ(a)‖r−s1u‖2

H1(X1,a,dVolg)

≤ O(λ−2)‖eλϕ(∆g − λ2 + iε)u‖2
L2(X1\X1,a,dVolg)

+O(λ−2)e2λϕ(a)‖rs1 (∆g − λ2 + iε)u‖2
L2(X1,a,dVolg)

−Cλ−1e2λϕ(a)Im 〈∂ru, u〉L2(∂X1,a) + e−cλ‖u‖2
H1(X1,b1\X1,b2 ,dVolg), (4.6)

with some c, C > 0. Since ϕ(r) ≥ γ1 + 1 for r ≥ r1 + 2, by combining (4.5) and
(4.6) one can absorb the last terms in the right-hand sides and conclude

‖r−s2u‖2
H1(X2,r2+2,dVolg) + ‖u‖2

H1(M\(X1,r1+2∪X2,r2+2),dVolg)

+‖eλϕu‖2
H1(X1,b2\X1,a,dVolg) + e2λϕ(a)‖r−s1u‖2

H1(X1,a,dVolg)

≤ ec0λ‖(∆g − λ2 + iε)u‖2
L2(X2,dVolg)

+e2γ1λ‖(∆g − λ2 + iε)u‖2
L2(M\(X1,r1+3∪X2,r2+3),dVolg)

+O(λ−2)‖eλϕ(∆g − λ2 + iε)u‖2
L2(X1\X1,a,dVolg)

+O(λ−2)e2λϕ(a)‖rs1 (∆g − λ2 + iε)u‖2
L2(X1,a,dVolg)

−Cλ−1e2λϕ(a)Im 〈∂ru, u〉L2(∂X1,a). (4.7)

On the other hand, by Green’s formula we have

− Im 〈∂ru, u〉L2(∂X1,a)

= −Im 〈(∆g − λ2 + iε)u, u〉L2(M\X1,a,dVolg) − ε‖u‖2
L2(M\X1,a,dVolg)

≤ e−βλ‖ρs2u‖2
L2(M\X1,a,dVolg) + eβλ‖ρ−1

s2 (∆g − λ2 + iε)u‖2
L2(M\X1,a,dVolg), (4.8)

∀β > 0, where ρs ∈ C∞(M), ρs = r−s on X2,r2+1, ρs = 1 on M \X2.
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Combining (4.7) and (4.8) leads to the estimate

e−c1λ‖ρs2u‖2
H1(M\X1,a,dVolg) + ‖r−s1u‖2

H1(X1,a,dVolg)

≤ ec2λ‖ρ−1
s2 (∆g − λ2 + iε)u‖2

L2(M\X1,a,dVolg)

+O(λ−2)‖rs1 (∆g − λ2 + iε)u‖2
L2(X1,a,dVolg), (4.9)

with some constants c1, c2 > 0. Hence,

‖χs1,s2u‖L2(M,dVolg) ≤ Ceγλ‖χ−1
s1,s2(∆g − λ2 + iε)u‖L2(M,dVolg) (4.10)

for λ ≥ λ0, with some constants C, λ0, γ > 0 independent of λ, ε and u, which
implies the existence of the limit in Theorem 1.1 as well as the bound (1.4) (with
z = λ2).

Let now (∆g − λ2 + iε)u = 0 in M \ X1,a. Then (4.9) yields

‖r−s1u‖L2(X1,a,dVolg) ≤ O(λ−1)‖rs1 (∆g − λ2 + iε)u‖L2(X1,a,dVolg), (4.11)

which clearly implies (1.5).
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