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c© Birkhäuser Verlag, Basel, 2002
1424-0637/02/040659-13 Annales Henri Poincaré

Algebraic Structure of n-Body Systems

E. Sorace

Abstract. A general method to easily build global and relative operators for any
number n of elementary systems if they are defined for 2 is presented. It is based
on properties of the morphisms valued in the tensor products of algebras of the
kinematics and it allows also the generalization to any n of relations demonstrated
for two. The coalgebra structures play a peculiar role in the explicit constructions.
Three examples are presented concerning the Galilei, Poincaré and deformed Galilei
algebras.

1 Introduction

It has been recently found that the renormalization procedure in Quantum Field
Theory is intrinsically determined by an Hopf algebra whose essential constituent
has been soon recognized to be the set of the parameters of the classical group of
Virasoro with their law of composition [1]. The presence and the utility of basic
algebraic concepts even in such an elementary problem as the search of the so
called “relative variables” in classical and quantum mechanics will be illustrated
here. In this note indeed we introduce a method, whose use is based on the coal-
gebraic structure of canonical commutation relations, which allows for the explicit
construction of the collective, i.e. global and relative, canonical operators for any
number n of elementary systems in a given kinematics once one has been able to
operate this transformation for n = 2. It is also shown that there are classes of
relations between single system operators and the collective ones that once they
hold for two of them, then they are straightforward extended to any n. This is
done by using the same algorithm which generates the transformation of the op-
erators. The construction is a priori possible in any situation in which operators
are constructed in terms of single algebra generators and the separation of the
“global operators” is necessary. The presentation is self explanatory, very euristic
and constructive. We tacitly suppose the existence of any object necessary for the
results.

The examples are thus essential, not only to illustrate the physical utility of
the method but also to show that it is rather flexible and not mathematically void.
In section 1 we give the general definitions and results. In sections 2, 3 we present
examples from usual Galilei and Poincaré kinematics while useful applications are
devised for a quantum algebra too in 4. We use always 1d algebras, thus avoiding
the rotations whose consideration is not essential in exemplifying the method. In
5 there are some concluding remarks.
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2 Collective operators

Let us consider an algebra A, whose elements can be represented as hermitian
operators on an Hilbert space, endowed with algebra morphism Γ : A → A⊗A,

Γa = Σ(a1)i ⊗ (a2)i ∀aεA, (a1)i, (a2)iεA,

Γ(ab) = ΓaΓb, ∀a, bεA, (2.1)

With such a morphism Γ one can combine the two operators of the single
systems in collective ones, we call global. The set of operators acting on the same
space must be completed to conserve the number of the operators of the original
set of the single systems, (such sets include too the Poisson algebra of functions
on a symplectic manifold).

This involves the introduction of the aforementioned relative operators which
complement the global ones in the set of the collective operators.

We thus introduce, by assuming it exists, another homomorphic map δ on A:

δ : A → A⊗A, δ(ab) = δaδb, ∀a, bεA, ΓA⊕ δA = A⊗ 1⊕ 1⊗A (2.2)

Moreover we impose the commutation property

Γaδb− δbΓa .= [Γa, δb] = 0 ∀a, bεA (2.3)

so that Γ and δ implement exactly a transformation we may call canonical. If the
generators of A satisfy canonical relations we may call canonical the operators
recovered by the transformation.

As a direct consequence of the more general result below it is possible to
produce all the collective canonical operators for n-body by using only Γ and δ
and the right tensor multiplication ⊗1.

Indeed let us given n morphisms, Γj : A → A ⊗ A, (j = 0, . . . , n − 1), not
necessarily different, and a morphism δ satisfying (2.2) and (2.3), with Γ = Γj ,
∀jε(0, n− 1).

Let us now consider the following expressions:

δa⊗ 1⊗
(n−2)

,

Γ(n−1)δa⊗ 1⊗
(n−3)

,

Γ(n−1)Γ(n−2)δa⊗ 1⊗
(n−4)

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ(n−1) . . . . . . . . . . . .Γ(1)δa,

Γ(n−1) . . . . . . . . . . . .Γ(1)Γ(0)a (2.4)

where the following notations have been introduced:
Γ(0) = Γσ(0), Γ(j) = Γσ(j) ⊗ id⊗

(j)
with x⊗(j) ≡ x⊗ . . . x⊗ x, (j factors x),

and σ is any permutation of i, (i = 0, . . . , n− 1).
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The following proposition then holds:

“Each one of the previous expressions realizes the algebra A in the n-fold tensor
product A⊗(n)

. Moreover the n realizations are all mutually commuting.”

The demonstration is by recurrence. So let us suppose the proposition is true
for n and apply to the left of each one of the n previous expressions 2.4 the map
Γ(n). This map is a morphism A⊗(n) → A⊗(n+1)

so that the new expressions satisfy
the same algebraic relations as the previous ones. Let us now complete the set with
the new expression δa⊗1⊗

(n−1)
: to end the proof it must be shown that it commutes

with the n new expressions. By construction the last ones are n-multilinear sums
of elements of the form (Γσ(n)a(1))⊗ a(2) . . .⊗ a(n), a(k)εA, kε(1, n).

The commutators to evaluate are sums of elements:[
(Γσ(n)a(1))⊗ a(2) . . .⊗ a(n), δa⊗ 1⊗

(n−1)
]
=

[
Γσ(n)a(1), δa

] ⊗ a(2) . . .⊗ a(n) = 0.

The proposition being true for n = 2 is thus demonstrated for any n.
If one deals, as it is very probable, with only one morphism Γ = Γj , ∀jε(0, n−

1) then the (2.4) give a straightforward procedure to generate the n-body expres-
sions from the two-body ones.

By the way in this case the proposition holds even if we change everywhere
in (2.4) Γ with δ.

Let us show now a general implication of the use of algorithmic definitions
in generating relations for n-body once they hold for 2.

So suppose that for 2 peculiar elements a, b εA (a may be equal or not to b)
it exists a function R on A⊗A×A⊗A×A⊗A with values in A⊗A, which can
be extended on the direct product of growing tensor powers of A, which makes
explicit a relation between global and the relative operators built on a and b in
the form, e.g.:

Γ(0)a = R(a1, a2, δb) (2.5)

where we have introduced the notation:

zi = 1⊗ 1⊗ 1 · · · ⊗ z ⊗ 1⊗ . . . · · · ⊗ 1,

with z acting on the i-th space.
Let us now apply to both sides of (2.5) one time the right multiplication

⊗1 and another time the operation from the left Γ(1). We thus get by exploiting
identities like f(a⊗ 1) = f(a)⊗ 1, with a, f(a)εA⊗(j)

, j integer :

Γ(0)a⊗ 1 = R(a1, a2, δb⊗ 1), Γ(1)Γ(0)a = R(Γ(0)a⊗ 1, a3,Γ(1)δb)

where now a1, a2 must be read as a⊗1⊗1, 1⊗a⊗1 and R is valued in A⊗A⊗A.
The explicit relation between the 3-body collective operators and the 3 single body
ones is therefore:

Γ(1)Γ(0)a = R(R(a1, a2, δb⊗ 1), a3,Γ(1)δb)
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It is now straightforward to find, by iterating n− 2 times the two previous oper-
ations, that for the n-body the following implicit relation between all the single
and all the collective operators derived from a and b (the tensor product domain
and codomain of R is extended at each step) holds:

Γ(n−2) . . .Γ(1)Γ(0)a = R(Γ(n−3) . . .Γ(1)Γ(0)a⊗ 1, an,Γ(n−2) . . .Γ(1)δb), (2.6)

and the general solution in the computable form of a recursive function is:

Γ(n−2) ...Γ(1)Γ(0)a

=R
(
R

(
...

(
R

(
a1,a2,δb⊗1⊗

(n−2)
)
,a3,Γ(1)δb⊗1⊗

(n−3)
)
,...

)
,an,Γ(n−2) ...Γ(1)δb

)
(2.7)

which eventually recovers an explicit expression by taking into account the concrete
form of the 2-body initial relation (2.5). Let us remark now that a could be any
expressions of the generators so that there can be interesting cases in which R is
simply a primitive recursive function. Moreover the demonstration deals only with
the elements a, b and those expressions derived from them by using Γ, δ so that
(2.7) could hold even if Γ, δ don’t fulfil their defining properties on all A.

As is well known a morphism ∆A → A ⊗ A is called coproduct when the
coassociativity holds:

(∆⊗ id)∆a = (id⊗∆)∆a, ∀aεA . (2.8)

In this case A is a coalgebra, all the Lie and quantum algebras stay in this category.
A property to notice in this context is that owing to the coassociativity (2.8) the
action of ∆ can be univocally iterated to any A⊗(n)

There are also algebras where
the coassociativity is fulfilled only modulo some equivalence: the quasi-coalgebras,
and the quasi-coassociative morphism is the quasi-coproduct. When we deal with
n representations (rps from now on) of A we can, by means of the map ∆ and id
recover a set of global operators on the product space satisfying exactly the original
algebra of the single components La, independently of the order of ∆ and id. In
any Lie algebra the coproduct simply reads in algebraic terms:

∆La = La ⊗ 1 + 1⊗ La .

When there is a basis of an algebra A in which ∆ gets this form it is called a
primitive coproduct. If ∆ is invariant after the interchange of the two base spaces
in the tensor product it is called cocommutative, any element built in terms of the
generators of a Lie algebra clearly shares this property. The “barycenter formu-
las” of the classical kinematics are tied to the canonical coassociative coproduct.
Thus the starting point in the research of the collective operators must be, if it
exists, the coproduct. But one cannot find in general a δ satisfying (2.3) with
Γ = ∆; clear examples are given by semisimple Lie algebras. A near solution to
this problem could existe.g. for nonsemisimple Lie algebras with non null first
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class of cohomology, where an arbitrary scalar variation can be given to the action
of the global morphism on some generators and a quasi-coassociative Γ results.
Sometimes we can thus satisfy (2.3), at the price however of the non univocity of
some global operators. Actually to proceed with Γ 	= ∆ seems physically reliable
only when one deals with global operators of no direct physical meaning. Anyway
it must be remarked again that the collective set is completely defined once the
morphisms Γj , δ, whichever they are, have been done. This will be illustrated from
the three examples we present in the next sections which share different degrees
of complexity.

3 The Galilei Algebra

Despite its ubiquitous presence in the contemporary Physics, as symmetry of the
non relativistic Q.M., the literature on the Galilei group is not huge, and even in
general presentations [2] the space devoted to collective coordinates is not large.
Moreover in last times physical results and researches mainly concerned the clas-
sical and quantum statistical mechanics and the field theory implications of the
Galilean invariance [3, 4, 5, 6]. Therefore it maybe that an extensive treatment
of the collective position operators in 2-body Galilei kinematics must be searched
yet in [7]. Thus it will be instructive to apply firstly our method to the 1d Galilei
group. The mass is chosen to be a Lie generator, this implies the use of non projec-
tive representations with the advantages that the Galilean symmetry is seen from
the physicist viewpoint, see e.g. [8], and that this is the form necessary to obtain
the deformed version [9].

We start thus with the 3 generators Lie algebra gh(1) :

[B,P ] = iM, [M,B] = [M,P ] = 0; (3.9)

It is the algebra of the purely spatial 1d extended Galilean transformations where
B is the boost, P the momentum and the central generator M is the mass.

If one defines, by exploiting the localization with respect to the center, the
position generator X = B/M one gets:

[X,P ] = i1, [M,X ] = [M,P ] = 0; (3.10)

where 1 is the identity element of the enveloping algebra U(gh(1)).
The first commutator of (3.10) define a couple of Heisenberg canonical op-

erators. But the Lie coalgebraic structure in the Heisenberg commutator is not
compatible with X primitive if P is primitive owing to ∆1 .= 1 ⊗ 1. Indeed once
the momenta have been summed the corresponding positions must be linearly
combined with arbitrary coefficients whose sum is 1.

This is recovered by exploiting the algebraic status of M. In fact in the Lie
algebra (3.9) the coproduct amounts simply to:

∆P = P1 + P2, ∆B = B1 +B2, ∆M = M1 +M2 . (3.11)



664 E. Sorace Ann. Henri Poincaré

Consequently one has for X:

∆X = ∆B/∆M = (M1X1 +X2M2)/(M1 +M2) . (3.12)

It is therefore very sensible to think in this case to the Heisenberg canonical set
as a coalgebra with three generators.

A good well known map δ is given by

δP = (P ⊗M −M ⊗ P )/(∆M) =
P1M2 −M1P2

M1 +M2
,

δX = X ⊗ 1− 1⊗X = X1 −X2,

δM = M ⊗M/(∆M) =
M1M2

M1 +M2
, (3.13)

The expressions (2.4), with Γj = ∆, are then the usual canonical Jacobi
coordinates.

Anyway the algebra (3.9) is a sub-algebra of the full Galilei Lie algebra g one
gets by adding a fourth Lie generatorE, the energy, whose non zero commutator is:

[B,E] = iP .

The center of g is generated besides M even by the quadratic Casimir C = 2ME−
P 2. It is now obvious that the coproduct of the energy cannot commute with all
the relative operators. But the generator E cannot be written as a commutator
and we can put ΓE 	= ∆E. Thus the set of collective operators can be completed
by introducing a global energy ΓE and a relative energy δE. They can be found
by imposing that 2ΓM ΓE − ΓP 2 and 2δM δE − δP 2 are Casimir. The result is:

ΓE =
M1E1 +M2E2 + P1P2

M1 +M2
(3.14)

and
δE = (M ⊗ E + E ⊗M)− P ⊗ P )/(∆M)

=
M1E2 +M2E1 − P1P2

M1 +M2
= E1 + E2 − ΓE .

(3.15)

The definition of ΓE is anyway coassociative modulo global Galilei invariant
operators.

The application of (2.4) gives the expressions for any n. Let us notice that
(3.15) is in a form where the general recursive formula (2.7) is trivially explicited
so that we have for any n:

ΣEj = Γ(n−2) . . .Γ(0)E + Γ(n−3) . . .Γ(1)δE ⊗ 1 +

· · ·+ Γ(1)δE ⊗ 1⊗
(n−3)

+ δE ⊗ 1⊗
(n−2)

(3.16)

Let us observe also that by choosing a = b = P 2/(2M) and then recovering from
the 2-body that R(x, y, z) = x+y−z the formula (2.7) gives immediately that the
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sum of the n single kinetic energies transforms in the identical formal expression
in terms of the collective Jacobi set. It must be remarked that the map δ (3.13),
doesn’t satisfy coassociativity nor it is a coaction, (i.e.: (∆ ⊗ id)δa is not equal
to (id ⊗ δ)δa, ∀aεA). Indeed it is just the initial support for the action of the
globalizing and injecting operations. It can be shown by direct calculation that
there is no coassociative δ producing all the previous properties in the Galilei
algebra. Of course one can introduce functions of the masses as factors in the
definition of δ, as, e.g., in the analysis of the 1d integrable many-body Schrödinger
equation by McGuire [10]. A δ actually quasi-coassociative can be obtained in this
way, with a lack of completeness however as relative and global masses happen to
be the same.

It is worth noticing that the analogous coproduct and the same role of the
mass hold in the three-dimensional situation, where the Heisenberg set can be de-
rived again by a sub-algebra of the extended Galilei. In this case the expressions of
the 2-body collective operators can be much more composite, following the dynam-
ical problems one has to face. But, as shown before, once the collective expressions
have been found for 2 the algorithm to give expressions for n is straightforward.

4 The Poincaré Algebra

The proposals about the localization and the canonical operators of the posi-
tion in special relativity are not univocal, see e.g. [11] and references therein. We
adopt here the one, firstly studied in [7], based on the Weyl algebra, analyzed and
exploited in [12] where the hamiltonian dynamics of 1 and 2 scalar or spinning
relativistic particles was written. Coulomb and Schwartzschwild type 2-body in-
teractions were covariantly introduced in the mass square and the dynamics of two
scalar particles completely solved, with results in very good agreement with field
calculations (see [13] also). Some very encouraging quantistic estimates were also
done for 2 and 3 interacting scalar particles [14]. Moreover operators with identi-
cal expressions, although there the Weyl algebra is included in the conformal one,
have been independently rediscovered and proposed as the quantum observables of
relativistic spinning particles in many recent papers see [15] and references therein.
We exploit the cohomological based possibility of adding a 2-body Weyl invariant
operator to the global dilatator defined by the primitive coproduct. Thus the coas-
sociativity holds only modulo Weyl invariant operators and the global operators
involving the dilatators are strictly dependent on the order of the Γ and id.

We discuss now the (1, 1)d situation. The analogous in the Poincaré kinemat-
ics of the (2.2) is given by the E(1, 1) Lie algebra :

[B,P ] = iE, [B,E] = iP, [E,P ] = 0.

However, to get a time operator, the starting point of our procedure must be the
Weyl algebra, obtained by adding as fourth Lie generator the dilatator D:

[D,P ] = −iP, [D,E] = −iE, [D,B] = 0 .
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We construct then two commuting Heisenberg pairs by defining the two “Lorentz
(1,1)-vectors”: (P,E) and (X,T ),

X = M−2(DP +BE), T = M−2(DE +BP ) (4.17)

whereM2 = E2−P 2 is the Casimir of E(1, 1) and one has [X,P ] = i, [T,E] = −i,
all the other commutators being zero. Those operators are the building blocks of
the 1-body. It must be remarked however that the dynamics of such systems must
be generated by Hamiltonians conserving the Poincaré invariant mass and that the
maximal invariance can be the Poincaré symmetry, not the Weyl one, because in
any situation the physical time T at least must change with any evolution param-
eter: all that is done in quite natural manner in this framework. The projection
on the irreducible rps of E(1, 1) is indeed the equivalent of the classical reduction
procedure on the fixed mass sub-variety. Let us now discuss the 2-body collective
scheme. It reads

ΓE = E1 + E2, ΓP = P1 + P2, ΓB = B1 +B2 and ΓD = D1 +D2 + c

where c is an arbitrary element in the center of the global Weyl in the tensor prod-
uct, allowed because D never appears on the right member of the commutations
relations (this happens in the (3, 1)d case also). We have thus:

ΓM = ((ΓE)2 − (ΓP )2)1/2

and the “quasi-coproduct” of X,T is given by

ΓX = (ΓM)−2(((µ1)2X1 + (µ2)2X2)− t(P1E2 − P2E1) + (2i+ c)(P1 + P2))

ΓT = (ΓM)−2(((µ1)2T1 + (µ2)2T2) + r(P1E2 − P2E1) + (2i+ c)(E1 + E2))

where (µA)2 = (EA)2 − (PA)2 + (E1E2 − P1P2) so that (µ1)2 + (µ2)2) = (ΓM)2,
and it is

r = X1 −X2, t = T1 − T2.

q = (P1 − P2)/2, u = (E1 − E2)/2 .

Let us choose c = −2i − (ut − qr): it is straightforward to show that (Γ ⊗
id)ΓD − (id⊗ Γ)ΓD is again an operator invariant under the global 3-body Weyl
algebra. A good set of relative operators is then obtained by adding the definitions

δX = r̃ = (ΓE r − ΓP t)/(ΓM), δP = q̃ = (ΓE q − ΓP u)/(ΓM)
δT = r̄ = (ΓE t− ΓP r)/(ΓM), δE = q̄ = (ΓE u− ΓP q)/(ΓM)

Together with ΓX, ΓT , and ΓP, ΓE they give a complete set of canonical
and “covariant”(invariant in this 1d case) operators as a direct calculation can
confirm. The relevant property of this set is the existence of a relation:

(ΓM)2 = (((M1)2 + (q̃)2)1/2 + ((M2)2 + (q̃)2)1/2)2 (4.18)
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recovered by eliminating δE from the collective expressions of (M1)2 and (M2)2

and solving in (ΓM)2. By projecting on definite values (M1)2 = m2
1, (M2)2 = m2

2

one recovers for the relativistic 2-body a rigorous hamiltonian formulation in terms
of one global time, while the relative time δT = r̄ is ignorable and can be chosen
a posteriori to reconstruct the dynamics in the higher dimension. At this point
one can introduce interactions depending on |r̃|. Clearly the physical description
is given at this level, the galilean limit too must be checked there.

It is now possible to extend straightforward (4.18) to any number of massive
Poincaré representations because it is given explicitly in the form of relation (2.5).
The absence of angular momenta in those (1, 1)d models avoid any problem of
formal covariance (as opposed to the commutativity of the components of the
position, see [12]). It is thus possible to construct recursively, by adopting the
formulas (2.4) for the n-body and the corresponding expressions (2.7) with nested
square roots, a genuine relativistic hamiltonian system of n interacting particles,
with n given masses and one global physical time.

5 The Quantum framework

The definitions (2.4), (2.6) depend on a canonical map and thus they can be in
principle applied to any coalgebra. The crucial problem is to find a good map δ
for the 2-body system. It is thus interesting to analyze from this view point the
operators of the quantum version of the Galilei algebra [9], where (2.3) cannot be
completely realized. This deformed algebra has found physical applications directly
as kinematical symmetry of many-body quantum dynamics on lattice [9]. Moreover
its unitary irreducible rps have been studied by inducing on the non commutative
space of parameters and they appear in agreement with those of Heisenberg on
the lattice, but the recovering of unitary irreducible rps in the usual way in the
common space of the product of two is rather problematic, notwithstanding the
algebra has a real form although rather unconventional [17].

Thus let us introduce the coalgebra gha(1) having the same 3 generators and
algebraic relations as gh(1) and non trivial coproduct of B and M:

∆P = P ⊗ 1 + 1⊗ P

∆B = B ⊗ exp(iaP ) + exp(−iaP )⊗B

∆M = M ⊗ exp(iaP ) + exp(−iaP )⊗M (5.19)

where the length a is the deformation parameter and having, defined again X =
B/M , one gets

∆X =
∆B

∆M
=

M1X1 +M2X2exp(−ia(P1 + P2))
M1 +M2exp(−ia(P1 + P2))

. (5.20)

We take obviously Γ = ∆ but let us observe that ∆M is a Casimir of the algebra
∆A but it is not a central element of A ⊗ A. Its expression implies that it is
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impossible to get δ such that both δX and δP commute with ∆X , ∆P and even
with ∆M . The map δ we define is the following:

δX = X1 −X2

δP =
i

a
log

(
ΓM

(M1 +M2)

)

δM =
M1M2

(M1 +M2)
(5.21)

and we have two couple of commuting canonical operators, although not a direct
product of the two triples. Indeed there is a deformed commutator:

[δX,ΓM ] = aΓM .

By looking at the structure of the expressions (2.4) one sees that in this case they
produce n distinct realizations of the algebra which however are not commuting
between them. It must be remarked again that ∆M, ∆X are given a priori and
δX has the form necessary to commute with total momentum while the remaining
expressions have correct relations. Thus the previous choice must be accepted and
one has to pay the price of a deformation of canonicity, starting from n = 3, in
the collective formulation.

A quasi-associative energy E completes the Galilean deformed algebra. The
resulting nonstandard

[B,E] = (i/a) sin(aP )

determines a Casimir C = ME − (1/a2)(1 − cos(aP )), from which we define the
deformed kinetic energy:

T = (1/(Ma2))(1 − cos(aP )) .

It is then straightforward to obtain for the 2-body operators:

T1 + T2 = (1/(∆M a2))(1 − cos(a∆P )) + (1/(δM a2))(1 − cos(a δP ))
= ∆T + δT . (5.22)

We are again in a situation where an explicit elementary expression of the (2.6)
exists and the previous anomalies cannot affect the result given by (2.7). Indeed we
are using only the abelian coalgebra generated by P and M , with their coproducts.
Therefore we can be sure of the existence of the set of trigonometric identities which
state in the deformed case the same theorem about the kinetic energies as in the
classical one:

ΣTj = ∆(n−2) . . .∆(0)T +∆(n−3) . . .∆(1)δT ⊗ 1+

· · ·+∆(1)δT ⊗ 1⊗
(n−3)

+ δT ⊗ 1⊗
(n−2)

. (5.23)
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This is the kinetic part of a lattice Hamiltonian. If one searches for values of
observables such that the kinetic energy is given only by the barycenter term the
result is that all the relative momenta must be zero, i.e.:

∆(0)M = M1 +M2

∆(j) . . .∆(1)∆(0)M = ∆(j−1) . . .∆(1)∆(0)M +Mj+2, j ∈ (1, n− 2). (5.24)

It has been demonstrated that when all the masses are equal the system (5.24)
gives exactly the Bethe conditions for the momenta of n-magnons bound states of
the XXX model and the right spectrum of the energy [9].

It is possible to introduce in the same way as in the classical case the global
energy and the relative one δE:

δE =
m1E2 +m2E1

m1 +m2
+ δT − m1T2 +m2T1

m1 +m2

whose non deformed limit is (3.15). The global energy is E1 + E2 − δE, which -
like ∆T - doesn’t commute with δX . A sum rule formally identical to (3.16) can
be written however.

6 Concluding remarks

An intuitive method of constructing collective classical canonical coordinates or
quantum mechanical operators for n-body on the ground of their expressions for
n = 2 has been precisely formulated and demonstrated by means of algebra mor-
phisms, constructed on the basis of the coalgebra of the systems. Examples from
Galilei, Poincaré and deformed Galilei are discussed. An interesting result is the
ability of writing immediately for n relations calculated for 2. A further point
worth to be studied is the way to apply the algorithm in field theory and the pos-
sible connection to the integrability suggested by section 4. Preliminary analysis
of those problems are in fieri.

Concerning the coproduct it must be stressed that its possible substitution
by the morphism Γ is essential in allowing a rigorous and physically good de-
scription of the many-body relativistic systems in our approach to the Poincaré
systems. From this view point the inclusion of the Weyl in the larger conformal
algebra as in [15] may generate problems, because in that case there is no space
to substitute the coproduct of D with a morphism having c 	= 0. This remark
leads us again to enhance a very general point sometimes ignored in the practice,
owing to the long monopoly of the Lie primitive structures; i.e. that a complete
knowledge of an algebra can be obtained only by the knowledge of the coalge-
bra too. All that is very important in those attempts to grasp quantum gravity
by means of noncommutative geometries, implied e.g. by the introduction of de-
formed relativistic kinematics, strongly supported in last years by the preliminary
astrophysical measures concerning gamma-ray bursts and the possible violation
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of the GZK threshold in cosmic rays, see [17, 18] and references therein. A deep
analysis of the collective operators connected to the proposed deformations of the
Poincaré kinematics could then be very useful in formulating their phenomenolog-
ical implications. Indeed one exotic relation of dispersion is in itself not enough,
but if it is accompanied by the emergence of 2-body spectra deduced from nonco-
commutative coalgebra it will be read as a clear signature of a noncommutative
space-time.

Acknowledgements. I thanks M. Tarlini for very helpful discussion and valuable
criticisms.
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