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Long Range Scattering and Modified Wave Operators
for the Wave-Schrödinger System∗

J. Ginibre and G. Velo

Abstract. We study the theory of scattering for the system consisting of a
Schrödinger equation and a wave equation with a Yukawa type coupling in space
dimension 3. We prove in particular the existence of modified wave operators for
that system with no size restriction on the data and we determine the asymptotic
behaviour in time of solutions in the range of the wave operators. The method
consists in solving the wave equation, substituting the result into the Schrödinger
equation, which then becomes both nonlinear and nonlocal in time, and treating the
latter by the method previously used for a family of generalized Hartree equations
with long range interactions.

1 Introduction

This paper is devoted to the theory of scattering and more precisely to the existence
of modified wave operators for the Wave-Schrödinger (WS) system

i∂tu = −1
2
∆u−Au (1.1)

 ��A = |u|2 (1.2)

where u and A are respectively a complex valued and a real valued function defined
in space time R

3+1, ∆ is the Laplacian in R
3 and �� = ∂2

t −∆ is the d’Alembertian
in R

3+1. That system is Lagrangian with Lagrangian density

L = i (ū ∂t u− u ∂t ū)− 1
2
|∇u|2 +

1
2
(∂tA)2 − 1

2
|∇A|2 +A|u|2 . (1.3)

Formally, the L2 norm of u is conserved, as well as the energy

E(u,A) =
∫
dx

{1
2

(|∇u|2 + (∂tA)2 + |∇A|2)−A|u|2} . (1.4)

The Cauchy problem for the WS system (1.1) (1.2) is known to be globally well
posed in the energy space Xe = H1 ⊕ Ḣ1 ⊕ L2 for (u,A, ∂tA) [1] [2] [4] [15].

A large amount of work has been devoted to the theory of scattering for
nonlinear equations and systems centering on the Schrödinger equation, in partic-
ular for nonlinear Schrödinger (NLS) equations, Hartree equations, Klein-Gordon
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Schrödinger (KGS) and Maxwell-Schrödinger (MS) systems. As in the case of the
linear Schrödinger equation, one must distinguish the short range case from the
long range case. In the former case, ordinary wave operators are expected and
in a number of cases proved to exist, describing solutions where the Schrödinger
function behaves asymptotically like a solution of the free Schrödinger equation.
In the latter case, ordinary wave operators do not exist and have to be replaced
by modified wave operators including a suitable phase in their definition. In that
respect, the WS system (1.1) (1.2) in R

3+1 belongs to the borderline (Coulomb)
long range case, because of the t−1 decay in L∞ norm of solutions of the wave
equation. Such is the case also for the Hartree equation with |x|−1 potential. Both
are simplified models for the more complicated Maxwell-Schrödinger system in
R

3+1, which belongs to the same case, as well as the KGS system in R
2+1.

Whereas a well developed theory of long range scattering exists for the linear
Schrödinger equation (see [3] for a recent treatment and for an extensive bibliogra-
phy), there exist only few results on nonlinear long range scattering. The existence
of modified wave operators in the borderline Coulomb case has been proved for
the NLS equation in space dimension n = 1 [19]. That result has been extended to
the NLS equation in dimensions n = 2, 3 and to the Hartree equation in dimension
n ≥ 2 [5], to the derivative NLS equation in dimension n = 1 [14], to the KGS
system in dimension 2 [20] and to the MS system in dimension 3 [22]. All those
results are restricted to the case of small data.

In a recent series of papers, [6] [7] [8], we proved the existence of modified wave
operators for a family of Hartree type equations with general (not only Coulomb)
long range interactions and without any size restriction on the data. The method
is strongly inspired by a previous series of papers by Hayashi et al [9] [10] [11] [12]
[13] on the Hartree equation. In the latter papers it is proved first in the borderline
Coulomb case and then in the whole long range case, that the global solutions of
the Hartree equation with small initial data exhibit an asymptotic behaviour for
large time that is typical of long range scattering and includes in particular the
expected relevant phase factor.

The present paper is devoted to the extension of the results of [6] [7] [8] to
the WS system and in particular to the proof of the existence of modified wave
operators for that system without any size restriction on the data. The method
consists in eliminating the wave equation by solving it for A in terms of u and
substituting the result into the Schrödinger equation, thereby obtaining a new
Schrödinger equation which is both nonlinear and nonlocal in time. The latter
is then treated as the Hartree equation in [6] [7] [8], namely u is expressed in
terms of an amplitude w and a phase ϕ satisfying an auxiliary system similar
to that introduced in [11]. Wave operators are constructed first for that auxiliary
system, and then used to construct modified wave operators for the original system
(1.1). The detailed construction is too complicated to allow for a more precise
description at this stage, and will be described in heuristic terms in Section 2
below. In subsequent papers, the results of the present one will be extended to the
case of the MS system.
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We now give a brief outline of the contents of this paper. A more detailed de-
scription of the technical parts will be given at the end of Section 2. After collecting
some notation and preliminary estimates in Section 3, we study the asymptotic
dynamics for the auxiliary system in Section 4 and uncover some difficulties due
to the different propagation properties of solutions of the wave and Schrödinger
equations. As a preparation for the general case, we construct in Section 5 the
wave operators associated with the simplified linear system obtained by replacing
(1.2) by the free wave equation ��A = 0. We then solve the local Cauchy problem
at infinity for the auxiliary system in Sections 6 and 7, which contain the main
technical results of this paper. We finally come back from the auxiliary system
to the original one (1.1) (1.2) and construct the modified wave operators for the
latter in Section 8, where the final result is stated in Proposition 8.1.

We conclude this section with some general notation which will be used freely
throughout this paper. We denote by ‖ · ‖r the norm in Lr ≡ Lr(R3) and we define
δ(r) = 3/2−3/r. For any interval I and any Banach spaceX , we denote by C(I,X)
(resp. Cw(I,X)) the space of strongly (resp. weakly) continuous functions from I to
X and by L∞(I,X) (resp. L∞

loc(I,X)) the space of measurable essentially bounded
(resp. locally essentially bounded) functions from I to X . For real numbers a and
b, we use the notation a ∨ b = Max(a, b), and a ∧ b = Min(a, b). Furthermore, we
define

[a ∨ b] = a ∨ b if a �= b

= a+ ε for some ε > 0 if a = b ,

[a ∧ b] = a+ b− [a ∨ b] and [a]+ = [a ∨ 0] .

For any interval I ⊂ R
+, we denote by Ī the closure of I in R

+ ∪{∞} and for any
interval I = [a, b) we denote by I+ the interval I+ = [a,∞). In the estimates of
solutions of the relevant equations, we shall use the letter C to denote constants,
possibly different from an estimate to the next, depending on various parameters,
but not on the solutions themselves or on their initial data. We shall use the
notation C(a1, a2, · · · ) for estimating functions, also possibly different from an
estimate to the next, depending in addition on suitable norms a1, a2, · · · of the
solutions or of their initial data. Additional notation will be given in Section 3.

2 Heuristics

In this section, we discuss in heuristic terms the construction of the modifed wave
operators for the system (1.1) (1.2), as it will be performed in this paper. We
refer to Section 2 of [6] [7] for general background and for a similar discussion
adapted to the case of the Hartree equation. The problem that we want to address
is that of classifying the possible asymptotic behaviours in time of the solutions
of (1.1) (1.2) by relating them to a set of model functions V = {v = v(v+)}
parametrized by some data v+ and with suitably chosen and preferably simple
asymptotic behaviour in time. For each v ∈ V , one tries to construct a solution
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(u,A) of (1.1) (1.2) such that (u,A)(t) behaves as v(t) when t→∞ in a suitable
sense. We then define the wave operator as the map Ω : v+ → (u,A) thereby
obtained. A similar question can be asked for t → −∞. We restrict our attention
to positive time. The more standard definition of the wave operator is to define it
as the map v+ → (u,A)(0), but what really matters is the solution (u,A) in the
neighborhood of infinity in time, namely in some interval [T,∞), and continuing
such a solution down to t = 0 is a somewhat different question which we shall not
touch here.

In cases such as (1.1) (1.2) where the system of interest is a perturbation of
a simple linear system, hereafter called the free system, a natural candidate for V
is the set of solutions of the free system, parametrized by the initial data v+ at
time t = 0 for the Cauchy problem for that system. In the case of the system (1.1)
(1.2) one is therefore tempted to consider the Cauchy problem i∂tu = −1

2
∆u u(0) = u+

��A = 0 A(0) = A+ , ∂tA(0) = Ȧ+ ,
(2.1)

to take v+ = (u+, A+, Ȧ+) and to take for v(v+) the solution (u,A) of (2.1). Cases
where such a procedure yields an adequate set V are called short range cases. They
require that the perturbation has sufficient decay in time or equivalently in space.
This is the case for instance for the linear Schrödinger equation or for the Hartree
equation with potential V (x) = |x|−γ for γ > 1. Such is not the case however for
the system (1.1) (1.2). This shows up through the fact that the solution A of the
wave equation ��A = 0 decays at best as t−1 (in L∞ norm), which is the borderline
case of nonintegrability in time. That situation corresponds to the limiting case
γ = 1 (the Coulomb case in space dimension n = 3) for the linear Schrödinger
and for the Hartree equation. A similar situation prevails for the KGS system in
space dimension 2 and for the MS system in space dimension 3. In the present
case, which is the borderline long range case, the set of solutions of the Cauchy
problem (2.1) is inadequate, and one of the tasks that will be performed in this
paper (see especially Sections 7 and 8) will be to construct a better set V of model
asymptotic functions.

Constructing the wave operators essentially amounts to solving the Cauchy
problem with infinite initial time. The system (1.1) (1.2) in this form is not well
suited for that purpose and we shall now perform a number of transformations
leading to an auxiliary system for which that problem can be handled. For addi-
tional flexibility we shall first of all allow for imposing initial data at two different
initial times t0 and t1 for the Schrödinger and wave equations respectively. With
the aim of letting t1 and t0 tend to infinity in that order, we shall take t0 ≤ t1. We
shall then eliminate the wave equation by solving it and substituting the result
into the Schrödinger equation. We define

ω = (−∆)1/2 , K(t) = ω−1 sinωt , K̇(t) = cosωt
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and we replace the wave equation (1.2) by its solution

A = A0 +At1
1 (|u|2) (2.2)

where

A0 = K̇(t) A+ +K(t) Ȧ+ (2.3)

At1
1 (|u|2) =

∫ t

t1

dt′ K(t− t′) |u(t′)|2 . (2.4)

Here A0 is a solution of the free wave equation, with initial data (A+, Ȧ+) at time
t = 0. For t1 = ∞, (A+, Ȧ+) is naturally interpreted as the asymptotic state for
A, in keeping with the previous discussion.

The Cauchy problem for the system (1.1) (2.2) with initial data u(t0) = u0

is no longer a usual PDE Cauchy problem because A1 depends on u nonlocally in
time. A convenient way to handle that difficulty is to first replace that problem
by a partly linearized form thereof, namely i∂tu

′ = −1
2
∆u′ −Au′ , u′(t0) = u0

A = A0 +A1(|u|2) .
(2.5)

For given u, (2.5) is an ordinary (linear) Cauchy problem for u′. Solving that
problem for u′ defines a map Γ : u → u′, and solving the original problem then
reduces to finding a fixed point of Γ, which in favourable cases can be done for
instance by contraction. We shall make use of that linearization method, not for
the equation for u, but for the auxiliary system to be defined below.

Aside from the nonlocality in time of the nonlinear interaction term, which
can be handled by the previous linearization, the system (1.1) (2.2) is rather similar
to the Hartree type equations considered in [6] [7] [8], and we next perform the
same change of variables, which is well adapted to the study of the asymptotic
behaviour in time. The unitary group

U(t) = exp(i(t/2)∆) (2.6)

which solves the free Schrödinger equation can be written as

U(t) = M(t) D(t) F M(t) (2.7)

where M(t) is the operator of multiplication by the function

M(t) = exp
(
ix2/2t

)
, (2.8)

F is the Fourier transform and D(t) is the dilation operator

(D(t)f)(x) = (it)−n/2 f(x/t) (2.9)
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normalized to be unitary in L2. We shall also need the operator D0(t) defined by

(D0(t)f) (x) = f(x/t) . (2.10)

We now parametrize u in terms of an amplitude w and of a real phase ϕ as

u(t) = M(t) D(t) exp[−iϕ(t)]w(t) . (2.11)

Substituting (2.11) into (1.1) yields an evolution equation for (w,ϕ), namely{
i∂t + (2t2)−1∆− i(2t2)−1(2∇ϕ · ∇+ ∆ϕ) + t−1B + ∂tϕ− (2t2)−1|∇ϕ|2}w = 0

(2.12)
where we have expressed A in terms of a new function B by

A = t−1 D0 B . (2.13)

Corresponding to the decomposition (2.2) of A, we decompose

B = B0 +Bt1
1 (w,w) (2.14)

where A0 = t−1D0B0 and At1
1 = t−1D0B

t1
1 . One computes easily

Bt1
1 (w1, w2) =

∫ t1/t

1

dν ν−3 ω−1 sin((ν − 1)ω)D0(ν)(Re w̄1w2)(νt) . (2.15)

As in the case of the Hartree equation, we have only one evolution equation
(2.12) for two functions (w,ϕ). We arbitrarily impose a second equation, namely
a Hamilton-Jacobi (or eikonal) equation for the phase ϕ, thereby splitting the
equation (2.12) into a system of two equations, the other one of which being a
transport type equation for the amplitude w. For that purpose, we split Bt1

1 into
a short range and a long range parts

Bt1
1 = Bt1

S +Bt1
L . (2.16)

in the following way. We take 0 < β < 1 and we define{ (
FBt1

S

)
(t, ξ) = χ(|ξ| > tβ)FBt1

1 (t, ξ)(
FBt1

L

)
(t, ξ) = χ(|ξ| ≤ tβ)FBt1

1 (t, ξ)
(2.17)

where χ(|ξ|<
>
tβ) is the characteristic function of the set {(t, ξ) : |ξ|<

>
tβ}. The

parameter β will satisfy various conditions which will appear later, all of which
will be compatible with β = 1/2. We then split the equation (2.12) into the
following system of two equations{

∂tw = i(2t2)−1∆w + t−2Q(∇ϕ,w) + it−1(B0 +Bt1
S (w,w))w

∂tϕ = (2t2)−1|∇ϕ|2 − t−1 Bt1
L (w,w)

(2.18)
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where we have defined

Q(s, w) = s · ∇w + (1/2)(∇ · s)w (2.19)

for any vector field s. The first equation of (2.18) is the transport type equation
for the amplitude w, while the second one is the Hamilton-Jacobi type equation
for the phase ϕ. Since the right-hand sides of (2.18) contain ϕ only through its
gradient, we can obtain from (2.18) a closed system for w and s = ∇ϕ by taking
the gradient of the second equation, namely{

∂tw = i(2t2)−1∆w + t−2Q(s, w) + it−1(B0 +Bt1
S (w,w))w

∂ts = t−2s · ∇s− t−1∇Bt1
L (w,w) .

(2.20)

Once the system (2.20) is solved for (w, s), one recovers ϕ easily by integrating
the second equation of (2.18) over time. We refer to [6] for details. The system
(2.20) will be referred to as the auxiliary system and will play an essential role in
this paper. For the same reason as was explained for the partly resolved system
(1.1) (2.2), we shall use at intermediate stages a partly linearized version of the
system (2.20), namely{

∂tw
′ = i(2t2)−1∆w′ + t−2Q(s, w′) + it−1(B0 +Bt1

S (w,w))w′

∂ts
′ = t−2s · ∇s′ − t−1∇Bt1

L (w,w)
(2.21)

to be considered as a system of equations for (w′, s′) for given (w, s). The first ques-
tion to be considered is whether the auxiliary system (2.20) defines a dynamics
for large time, namely whether the Cauchy problem for that system is locally well
posed in a neighborhood of infinity in time, more precisely has a unique solution
defined up to infinity in time for sufficiently large t1 and sufficiently large initial
time t0, possibly depending on the size of the initial data. This property was sat-
isfied by the corresponding auxiliary system associated with the Hartree equation
and considered in [6] [7]. Here however we encounter serious difficulties associated
with the difference of propagation properties of solutions of the Schrödinger and
wave equations. In fact a typical solution of the free Schrödinger equation behaves
asymptotically in time as

(U(t)u+)(x) ∼ (MDFu+)(x) = exp(ix2/2t)(it)−3/2 Fu+(x/t)

namely spreads by dilation by t in all directions in the support of Fu+, while by
the Huyghens principle A0 remains concentrated in a neighborhood of the light
cone, more precisely within a distance R of the latter if the initial data (A+, Ȧ+)
are supported in a ball of radius R. When switching to the new variables (w,B),
w tends to a limit when t→∞ whereas B0 concentrates in a neighborhood of the
unit sphere, within a distance R/t of the latter in the previous case of compactly
supported data. Note however that for t1 = ∞, B∞

1 is expected to tend to a limit
like w and not to concentrate like B0, as can be guessed from (2.15).
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We shall treat the auxiliary system (2.20) by energy methods, and in partic-
ular look for w in spaces of the type C([T,∞), Hk) where Hk is the usual Sobolev
space based on L2. In order to treat the nonlinear term B1(w,w), we shall need a
minimal regularity, in practice k > 1. However, when taking Hk norms of B0, the
previous concentration phenomenon implies

‖ B0;Hk ‖ ∼ O
(
tk−1/2

)
which has worse and worse asympotic behaviour in time as k increases. This dif-
ficulty manifests itself in the following way:
(i) If t0 = t1 < ∞, the available estimates for the sytem (2.20) do not prevent

finite time blow up after t0, even if A0 = 0.
This encourages us to take t1 > t0, and actually the situation becomes slightly
better in that case. Nevertheless
(ii) the available estimates do not prevent finite time blow up after t1, which is

the same fact as (i) with t0 replaced by t1, and
(iii) if A0 �= 0 and if t1 is sufficiently large, the available estimates do not prevent

blow up before t1.
A definite improvement occurs however if A0 = 0.
(iv) If A0 = 0, the available estimates allow for a proof of existence of solutions

in [t0, t1] for t0 sufficiently large and arbitrary t1 > t0, possibly t1 = ∞.
In particular for t1 = ∞, the solutions are defined up to infinity in time.
Furthermore, for those solutions, w(t) has a limit w+ as t→∞.

The last case brings us in the same situation as that encountered for the Hartree
equation in [6] [7] and could be taken as the starting point for the construction
of partial modified wave operators (restricted to the case of vanishing (A+, Ȧ+))
by the same method as in [6] [7]. We shall however refrain from performing that
construction and turn directly to the case of nonvanishing (A+, Ȧ+). In that case,
the need to use Hk norms with k > 1 for w makes the treatment of A0 nontrivial,
even if one drops the interaction term A1. As a preparation for the general case,
we shall therefore first construct the wave operators at the same level of regularity
for the simplified system {

i∂tu = −(1/2)∆u−A0u

��A0 = 0
(2.22)

namely for a linear Schrödinger equation with time dependent potential A0 satis-
fying the free wave equation. After the appropriate change of variables

u = MDw , A0 = t−1 D0 B0 (2.23)

the Schrödinger equation becomes

R(w) ≡ ∂tw − i(2t2)−1∆w − it−1B0w = 0 . (2.24)
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The construction of the wave operators for that equation in L2, either in the
form (2.22) or (2.24) can be easily performed by a simple variant of Cook’s method,
and the construction of the wave operators at the level of Hk becomes a regularity
problem for the previous wave operators. Solving that problem for k ≥ 1 (in fact
for k > 1/2) requires special assumptions on the asymptotic states (w+, A+, Ȧ+),
to the effect that the product B0w+ decays faster in time in the relevant norms
than what would naturally follow from factorized estimates. Those assumptions
can be ensured for instance by imposing support properties of w+, to the effect
that w+ = 0 on the unit sphere, and suitable decay of (A+, Ȧ+) at infinity in
space. They will be needed again in the treatment of the general problem.

The construction of the modified wave operators in the general case follows
the same pattern as for the Hartree equation. The aim is to construct solutions
of the auxiliary system (2.20) with suitably prescribed asymptotic behaviour at
infinity, and in particular with w(t) tending to a limit w+ as t→∞. That asymp-
totic behaviour will be imposed in the form of a suitably chosen pair (W,φ) and
therefore (W,S) with S = ∇φ, with W (t) tending to w+ as t → ∞. For fixed
(W,S), we make a change of variables in the system (2.18) from (w,ϕ) to (q, ψ)
defined by

(q, ψ) = (w,ϕ) − (W,φ) (2.25)

or equivalently a change of variables in the system (2.20) from (w, s) to (q, σ)
defined by

(q, σ) = (w, s)− (W,S) , (2.26)

and instead of looking for a solution (w, s) of the system (2.20) with (w, s) behaving
asymptotically as (W,S), we look for a solution (q, σ) of the transformed system
with (q, σ) (and also ψ) tending to zero as t→∞. Actually for technical reasons, we
need to modify the auxiliary system slightly, in the following way. When expanding
w = W + q in Bt1

1 (w,w), we shall replace that quantity by

Bt1,∞
1 (w,w) ≡ B∞

1 (W,W ) + 2Bt1
1 (W, q) +Bt1

1 (q, q) . (2.27)

We furthermore define the remainders

R1(W,S) = ∂tW − i(2t2)−1∆W − t−2Q(S,W )− it−1(B0 +B∞
S (W,W ))W

(2.28)
R2(W,S) = ∂tS − t−2S · ∇S + t−1∇B∞

L (W,W ) . (2.29)

Performing the change of variables (2.26) and including the previous technical
modification in the system (2.20) yields the modified auxiliary system for the new
variables (q, σ).

∂tq = i(2t2)−1∆q + t−2(Q(s, q) +Q(σ,W )) + it−1B0q

+it−1Bt1,∞
S (w,w)q + it−1

(
2Bt1

S (W, q) +Bt1
S (q, q)

)
W −R1(W,S)

∂tσ = t−2(s · ∇σ + σ · ∇S)− t−1∇ (
2Bt1

L (W, q) +Bt1
L (q, q)

)−R2(W,S).

(2.30)
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Note that changing Bt1(w,w) to Bt1,∞(w,w) changes A by a solution of the free
wave equation, so that we are still solving the original system (1.1) (1.2), with
however a slightly different A0 as compared with (2.2).

For the same reason as for the partly resolved system (1.1) (2.2) and for
the auxiliary system (2.20), we shall use at intermediate stages a partly linearized
version of the system (2.30), namely
∂tq

′ = i(2t2)−1∆q′ + t−2(Q(s, q′) +Q(σ,W )) + it−1B0q
′

+it−1Bt1,∞
S (w,w)q′ + it−1

(
2Bt1

S (W, q) +Bt1
S (q, q)

)
W −R1(W,S)

∂tσ
′ = t−2(s · ∇σ′ + σ · ∇S)− t−1∇ (

2Bt1
L (W, q) +Bt1

L (q, q)
)−R2(W,S).

(2.31)

The construction of solutions (q, σ) tending to zero at infinity for the system (2.30)
with t1 = ∞ proceeds in several steps. We assume first that (W,S) and B0 satisfy
suitable boundedness properties and that the remainders R1(W,S) and R2(W,S)
satisfy suitable decay in time. We solve the linearized system (2.31) for (q′, σ′) for
given (q, σ), both with finite and infinite time t1 and initial time t0. We then solve
(2.30) by proving that the map Γ : (q, σ) → (q′, σ′) is a contraction in suitable
norms. We also prove that the solution of (2.30) with t0 = t1 < ∞ converges to
the solution with t0 = t1 = ∞ when t0 → ∞, a property which is natural in
the framework of scattering theory. There remains the task of constructing (W,S)
with W (t) tending to w+ as t→∞, and satisfying the required boundedness and
decay properties. This is done by solving the auxiliary system (2.20) with t1 = ∞
approximately by iteration. We restrict our attention to the second iteration, which
is sufficient to cover the range 1 < k < 2. The pair (W,S) or equivalently (W,φ)
thereby obtained depends only on the asymptotic state w+. Solving the auxiliary
system (2.30) with that (W,S) and with t0 = t1 = ∞ yields a solution (w, s)
of the system (2.20) and therefore a solution (w,ϕ) of the system (2.18) with
prescribed asymptotic behaviour characterized by (W,S) or (W,φ). That solution
depends on (w+, A+, Ȧ+). Plugging that solution with w+ = Fu+ into (2.11) and
substituting u thereby obtained into (2.2) (2.4) with t1 = ∞ yields a solution
(u,A) of the system (1.1) (1.2) with prescribed asymptotic behaviour in time
explicitly expressed in terms of the asymptotic state (u+, A+, Ȧ+). More precisely,
that asymptotic behaviour is obtained or rather defined by replacing (w,ϕ) by
(W,φ) and |u|2 = |Dw|2 by |DW |2 in (2.11) and (2.2) (2.4) with t1 = ∞, so that
actually (u,A) behaves asymptotically as (MD exp(−iφ)W , A0 + A∞

1 (|DW |2)),
which plays the role of modified free solution for the system (1.1) (1.2). As a by
product of that construction, we can define the map Ω : (u+, A+, Ȧ+) → (u,A),
which is the required modified wave operator for the system (1.1) (1.2).

The main result of this paper, namely the construction of solutions of the sys-
tem (1.1) (1.2) defined for large time and with prescribed asymptotic behaviour
as described above, is stated in full mathematical detail in Proposition 8.1 below.
Since however that detail is rather cumbersome, we give here a heuristic descrip-
tion thereof, which can serve as a reader’s guide for that proposition. One starts
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with asymptotic states (u+, A+, Ȧ+) which are sufficiently regular in the sense that
(i) w+ ≡ Fu+ ∈ Hk+ for sufficiently large k+, (ii) the solution A0 of the free wave
equation generated by (A+, Ȧ+) according to (2.3) satisfies the optimal time decay
associated with that equation in suitable norms (see (8.9)≡(3.15)) and satisfies an
additional joint time decay with w+, needed to damp light cone interferences (see
(8.10)). One then constructs model asymptotic functions (W,S) for the auxiliary
system (2.20), depending only on w+, by solving a truncated version of that sys-
tem approximately by iteration to second order (see (7.3) (7.5) (7.7)). The main
technical result is that one can construct a unique solution (w, s) of the auxiliary
system (2.20), defined for large time, and asymptotic to (W,S) in suitable norms
(see (8.11) (8.12) (8.13)). One then defines the phases ϕ and φ corresponding to s
and S according to s = ∇ϕ and S = ∇φ and one reconstructs (u,A) from (w,ϕ)
by (2.11) and (2.2) (2.4) with t1 =∞. Then (u,A) is a solution of the system (1.1)
(1.2), defined for large time, and (u,A) is asymptotic to the modified free solution
(MD exp(−iφ)W,A0 +A∞

1 (|DW |2)) in suitable norms (see (8.15)–(8.23)).
The auxiliary system (2.18) satisfies a gauge invariance property similar to

that of the corresponding system for the Hartree equation used in [6] [7], and the
construction of the intermediate wave operator for that system can be made in a
gauge covariant way. For brevity we shall refrain from discussing that question in
this paper.

We now describe the contents of the technical parts of this paper, namely
Sections 3–8. In Section 3, we introduce some notation, define the relevant function
spaces and collect a number of preliminary estimates. In Section 4, we study the
Cauchy problem for large time for the auxiliary system (2.20). We solve the Cauchy
problem with finite initial time for the linearized system (2.21) (Proposition 4.1),
we prove a number of uniqueness results for the system (2.20) (Proposition 4.2),
we prove the existence of a limit w(t) of w+ for suitably bounded solutions of
the system (2.20) (Proposition 4.3), we discuss in more quantitative terms the
possible occurrence of blow up mentioned above, and we finally solve the Cauchy
problem for the system (2.20) with t1 =∞ and large t0 in the special case A0 = 0
(Proposition 4.4).

In Section 5, as a preparation for the construction of the wave operators for
the system (2.20) with A0 �= 0, we study the existence of wave operators for the
linear problem (2.22) in the form (2.24). In particular we prove the existence of
L2-wave operators by a variant of Cook’s method (Proposition 5.2), we prove the
Hk regularity of those wave operators under suitable decay assumptions of R(W )
for the model functionW (Proposition 5.3) and we finally reduce those decay prop-
erties to conditions on the asymptotic state (w+, A+, Ȧ+). In Section 6 and 7, we
study the Cauchy problem at infinity in the general case A0 �= 0 for the auxiliary
system (2.20) in the difference form (2.30). Under suitable boundedness assump-
tions on (W,S) and decay assumptions on R1(W,S) andf R2(W,S) we prove the
existence of solutions for t0 and t1 finite and infinite, first for the linearized sys-
tem (2.31) (Propositions 6.1 and 6.2) and then for the nonlinear system (2.30)
(Proposition 6.3). We then choose appropriate (W,S), prove that they satisfy the
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required assumptions (Lemmas 7.1 and 7.2) and finally state the result on the
Cauchy problem at infinity for the system (2.30) in Hk for 1 < k < 2 (Proposition
7.1). Finally in Section 8, we construct the wave operators for the system (1.1)
(1.2) from the results previously obtained for the system (2.30) and we derive the
asymptotic estimates for the solutions (u,A) in their range that follow from the
previous estimates (Proposition 8.1).

3 Notation and preliminary estimates

In this section we introduce some additional notation and we collect a number
of estimates which will be used throughout this paper. We shall use the Sobolev
spaces Hk

r defined for 1 ≤ r ≤ ∞ by

Hk
r =

{
u :‖ u;Hk

r ‖ ≡ ‖< ω >k u ‖r <∞
}

where < · >= (1 + | · |2)1/2. The subscript r will be omitted if r = 2.
We shall look for solutions of the auxiliary system (2.20) in spaces of the type

C(I,Xk,�) where I is an interval and

Xk,� = Hk ⊕ ω−1 H�

namely
Xk,� =

{
(w, s) : w ∈ Hk , ∇s ∈ H�

}
(3.1)

where it is understood that ∇s ∈ L2 includes the fact that s ∈ L6, and we shall
use the notation

‖ w;Hk ‖ = |w|k . (3.2)

We shall use extensively the following Sobolev inequalities, stated here in R
n, but

to be used only for n = 3.

Lemma 3.1 Let 1 < q, r < ∞, 1 < p ≤ ∞ and 0 ≤ j < k. If p = ∞, assume that
k − j > n/r. Let σ satisfy j/k ≤ σ ≤ 1 and

n/p− j = (1− σ)n/q + σ(n/r − k) .

Then the following inequality holds

‖ ωju ‖p ≤ C ‖ u ‖1−σ
q ‖ ωku ‖σr . (3.3)

The proof follows from the Hardy-Littlewood-Sobolev (HLS) inequality ([16],
p. 117) (from the Young inequality if p = ∞), from Paley-Littlewood theory and
interpolation.

We shall also use extensively the following Leibnitz and commutator esti-
mates.
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Lemma 3.2 Let 1 < r, r1, r3 <∞ and

1/r = 1/r1 + 1/r2 = 1/r3 + 1/r4 .

Then the following estimates hold

‖ ωm(uv) ‖r ≤ C (‖ ωmu ‖r1 ‖ v ‖r2 + ‖ ωmv ‖r3 ‖ u ‖r4) (3.4)

for m ≥ 0, and

‖ [ωm, u]v ‖r ≤ C
(‖ ωmu ‖r1 ‖ v ‖r2 + ‖ ωm−1v ‖r3 ‖ ∇u ‖r4

)
(3.5)

for m ≥ 1, where [ , ] denotes the commutator.

The proof of those estimates is given in [17] [18] with ω replaced by < ω >
and follows therefrom by a scaling argument.

We shall also need the following consequence of Lemma 3.2.

Lemma 3.3 Let m ≥ 0 and 1 < r <∞. Then the following estimate holds

‖ ωm(eϕ − 1) ‖r ≤ ‖ ωmϕ ‖r exp (C ‖ ϕ ‖∞) . (3.6)

Proof. For any integer n ≥ 2, we estimate

an ≡ ‖ ωm ϕn ‖r ≤ C
(‖ ωmϕ ‖r ‖ ϕ ‖n−1

∞ + ‖ ωmϕn−1 ‖r ‖ ϕ ‖∞
)

= C
(
a1 b

n−1 + an−1 b
)

(3.7)

by (3.4), where b =‖ ϕ ‖∞ and we can assume C ≥ 1 without loss of generality. It
follows easily from (3.7) that

an ≤ n(Cb)n−1 a1

for all n ≥ 1, from which (3.6) follows by expanding the exponential. �

We next give some estimates of Bt1
1 , Bt1

S and Bt1
L defined by (2.15) (2.17). It

follows immediately from (2.17) that

‖ ωmBt1
S ‖2 ≤ tβ(m−p) ‖ ωpBt1

S ‖2 ≤ tβ(m−p) ‖ ωpBt1
1 ‖2 (3.8)

for m ≤ p and similarly

‖ ωmBt1
L ‖2 ≤ tβ(m−p) ‖ ωpBt1

L ‖2 ≤ tβ(m−p) ‖ ωpBt1
1 ‖2 (3.9)

for m ≥ p. On the other hand it follows from (2.15) that

‖ ωm+1Bt1
1 (w1, w2) ‖2 ≤ It1m (‖ ωm(w1w̄2) ‖2) (3.10)
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where It1m is defined by

(
It1m(f)

)
(t) =

∣∣∣∣∣
∫ t1/t

1

dν ν−m−3/2 f(νt)

∣∣∣∣∣ (3.11)

or equivalently (
It1m(f)

)
(t) = tm+1/2

∣∣∣∣∫ t1

t

dt′ t′−m−3/2 f(t′)
∣∣∣∣

for t > 0, t1 > 0. Most of the subsequent estimates of Bt1
1 will follow from (3.8)

(3.9) (3.10) and from an estimate of ‖ ωm(w1w̄2) ‖2. The latter follows from the
HLS inequality if −3/2 < m < 0 and from (3.4) if m ≥ 0. For future reference, we
quote the following special case, which will occur repeatedly

‖ ω2k−1/2Bt1
1 (w,w) ‖2 ≤ C It12k−3/2

(‖ ωkw ‖22) (3.12)

and which holds for 0 < k < 3/2. The required estimate

‖ ω2k−3/2|w|2 ‖2 ≤ C ‖ ωkw ‖22 (3.13)

follows from the HLS inequality if 2k < 3/2 and from (3.4) if 2k ≥ 3/2, as men-
tioned above, and from Sobolev inequalities.

We next give a special estimate of the long range part Bt1
L of Bt1

1 .

Lemma 3.4 Let m > −3/2. Then

‖ ωm+1Bt1
L (w1, w2) ‖2 ≤ C tβ(m+3/2)It1−3/2 (‖ w1 ‖2 ‖ w2 ‖2) . (3.14)

Proof. Let f = D0(ν)Re w1w̄2. From (2.15) (2.17), we estimate

‖ ωm+1Bt1
L (w1, w2) ‖2 ≤

∣∣∣∣∣
∫ t1/t

1

dν ν−3 ‖ χ(|ξ| ≤ tβ)|ξ|m Ff(ξ) ‖2
∣∣∣∣∣

≤
∣∣∣∣∣
∫ t1/t

1

dν ν−3 ‖ χ(|ξ| ≤ tβ)|ξ|m ‖2 ‖ Ff ‖∞
∣∣∣∣∣

≤ C

∣∣∣∣∣
∫ t1/t

1

dν tβ(m+3/2) ‖ (w1 w̄2)(νt) ‖1
∣∣∣∣∣

which implies (3.14). �
We finally collect some estimates of the solution of the free wave equation

��A0 = 0 with initial data (A+, Ȧ+) at time zero, given by (2.3).

Lemma 3.5 Let m ≥ 0. Let ωmA+ ∈ L2, ωm−1Ȧ+ ∈ L2, ∇2ωmA+ ∈ L1 and
∇ωmȦ+ ∈ L1. Then the following estimate holds

‖ ωmA0 ‖r ≤ b0 t
−1+2/r for 2 ≤ r ≤ ∞ (3.15)

for all t > 0.
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Proof. It suffices to prove (3.15) for m = 0, for r = 2 and r = ∞. For r = 2, it
follows from (2.3) that

‖ A0 ‖2 ≤ ‖ A+ ‖2 + ‖ ω−1Ȧ+ ‖2 (3.16)

for all t ∈ R. For r = ∞, the result follows from the divergence theorem applied
to the standard representation of solutions of the free wave equation in terms of
spherical means [21]. �

The time decay expressed by (3.15) is known to be optimal, and we shall
always consider solutions A0 of the free wave equation satisfying those estimates for
suitable m. In the applications, we shall use the estimates (3.15) in the equivalent
form expressed in terms of B0 defined by (2.13), namely

‖ ωm B0 ‖r ≤ b0 t
m−1/r for 2 ≤ r ≤ ∞ . (3.17)

4 Cauchy problem and preliminary asymptotics
for the auxiliary system

In this section, we study the Cauchy problem for the auxiliary system (2.20) and
we derive some preliminary asymptotic properties of its solutions. This section
illustrates both the method of solution with the help of the linearized version
(2.21) of that system and the difficulties arising from the different propagation
properties of the Schrödinger and wave equations. In particular we are able to
prove the existence of solutions up to infinity in time only if A0 = 0. This section
could be the starting point for the construction of partial wave operators with
vanishing asymptotic states for the field A, a construction which would be very
similar to that of the wave operators for the Hartree equation performed in [6] [7],
but which we shall refrain from performing here. The general case of non-vanishing
asymptotic states for A will be treated by a similar but more complicated method
in Section 6 below.

The basic tool of this section consists of a priori estimates for suitably regular
solutions of the linearized system (2.21). Those estimates can be proved by a reg-
ularisation and limiting procedure and hold in the integrated form at the available
level of regularity. For brevity, we shall state them in differential form and we shall
restrict the proof to the formal computation.

We first estimate a single solution of the linearized system (2.21) at the level
of regularity where we shall eventually solve the auxiliary system (2.20).

Lemma 4.1 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval and
let t1 ∈ Ī. Let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k. Let (w, s), (w′, s′) ∈
C(I,Xk,�) with w ∈ L∞(I,Hk) and let (w′, s′) be a solution of the system (2.21)
in I. Then the following estimates hold for all t ∈ I:
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‖ w′ ‖2= const.

|∂t|w′|k| ≤ C b0

{
‖ w′ ‖1/k2 |w′|1−1/k

k + tk−1−δ/3 ‖ w′ ‖1−δ/k
2 |w′|δ/kk

}
+ C

{
t−2|∇s|� + t−1−β1 It1m1

(|w|2k)
} |w′|k (4.1)

|∂t|∇s′|�| ≤ C t−2|∇s|�|∇s′|� +C t−1+β2

(
It1m1−k(‖ w ‖2 |w|k) + It1m1

(|w|2k)
)

(4.2)

where 0 < δ ≤ [k ∧ 3/2],

β1 = β[1 ∧ 2(k − 1)] = β(1 − 2[3/2− k]+) , (4.3)
m1 = [k ∧ (2k − 3/2)] = k − [3/2− k]+ , (4.4)
β2 = β(:+ 1− k + [3/2− k]+) . (4.5)

Proof. We omit the superscript t1 in all the proof. We first estimate w′. It is clear
from (2.21) that ‖ w′ ‖2 = const. We next estimate∣∣∂t ‖ ωkw′ ‖2

∣∣ ≤ t−1 ‖ [ωk, B0]w′ ‖2 +t−2
{
‖ [ωk, s] · ∇w′ ‖2 + ‖ (∇ · s)ωkw′ ‖2

+ ‖ ωk((∇ · s)w′) ‖2
}

+ t−1 ‖ [ωk, BS(w,w)]w′ ‖2 . (4.6)

The contribution of B0 is estimated by Lemma 3.2 and (3.17) as

‖ [ωk, B0]w′ ‖2 ≤ C
(‖ ∇B0 ‖∞ ‖ ωk−1w′ ‖2 + ‖ ωkB0 ‖3/δ ‖ w′ ‖r

)
≤ C b0

(
t ‖ ωk−1w′ ‖2 +tk−δ/3 ‖ w′ ‖r

)
(4.7)

with 0 < δ = δ(r) < k ∧ 3/2. This yields the first term in the RHS of (4.1) by
Sobolev inequalities and interpolation. We next estimate by Lemma 3.2

‖ [ωk, s] · ∇w′ ‖2 + ‖ (∇ · s)ωkw′ ‖2 + ‖ ωk((∇ · s)w′) ‖2
≤ C

(‖ ∇s ‖∞ ‖ ωkw′ ‖2 + ‖ ωks ‖3/δ ‖ ∇w′ ‖r + ‖ ωk(∇ · s) ‖3/δ′ ‖ w′ ‖r′
)

where 0 < δ = δ(r) ≤ [(k − 1) ∧ 3/2] and 0 < δ′ = δ(r′) ≤ [k ∧ 3/2]. Choosing
δ = [(k − 1) ∧ 1/2] and δ′ = [k ∧ 3/2] and using Sobolev inequalities, we continue
the previous estimate by

· · · ≤ C
(
‖ ∇s ‖∞ ‖ ωkw′ ‖2 + ‖ ω[k∨3/2]∇s ‖2 ‖ ω[k∧3/2]w′ ‖2

+χ(k > 3/2) ‖ ωk∇s ‖2 ‖ w′ ‖∞
)
≤ C |∇s|� |w′|k . (4.8)

We next estimate the contribution of BS to (4.6). By Lemma 3.2 and Sobolev
inequalities, we estimate

‖ [ωk, BS(w,w)]w′ ‖2
≤ C

{‖ ∇BS(w,w) ‖3‖ ωk−1w′ ‖6 + ‖ ωkBS(w,w) ‖3/δ‖ w′ ‖r
}

≤ C
{
‖ ω3/2BS(w,w) ‖2‖ ωkw′ ‖2 + ‖ ωk+3/2−δBS(w,w) ‖2‖ w′ ‖r

}
(4.9)

where 0 < δ = δ(r) ≤ 3/2. We choose δ = [k ∧ 3/2] and continue (4.9) as follows:
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If k < 3/2, so that δ = k,

· · · ≤ C ‖ ω3/2BS(w,w) ‖2 ‖ ωkw′ ‖2
≤ C t−2β(k−1) ‖ ω2k−1/2B1(w,w) ‖2 ‖ ωkw′ ‖2
≤ C t−2β(k−1)I2k−3/2

(‖ ωkw ‖22) ‖ ωkw′ ‖2
≤ C t−β1Im1

(|w|2k) |w′|k (4.10)

by Sobolev inequalities, by (3.8) (3.12) and by the definitions (4.3) (4.4).
If k = 3/2, so that δ = 3/2− ε,

· · · ≤ C ‖ ω3/2+εBS(w,w) ‖2 ‖ ω3/2−εw′ ‖2
≤ C t−β(1−2ε) ‖ ω5/2−εB1(w,w) ‖2 ‖ ω3/2−εw′ ‖2
≤ C t−β(1−2ε)I3/2−ε

(
‖ ω(3−ε)/2w ‖22

)
‖ ω3/2−εw′ ‖2

≤ C t−β1Im1

(|w|2k) |w′|k (4.11)

by Sobolev inequalities, by (3.8), by (3.12) with k = (3− ε)/2 and by (4.3) (4.4).
If k > 3/2, so that δ = 3/2 and r =∞,

· · · ≤ C ‖ ωk+1B1(w,w) ‖2
{
t−β(k−1/2) ‖ ωkw′ ‖2 +t−β ‖ w′ ‖∞

}
≤ C t−β Ik

(‖ ωkw ‖2 ‖ w ‖∞) (‖ ωkw′ ‖2 + ‖ w′ ‖∞
)

≤ C t−β1Im1

(|w|2k) |w′|k (4.12)

by (3.8) (3.10), Lemma 3.2, Sobolev inequalities and (4.3) (4.4). Substituting (4.7)
(4.8) (4.10) (4.11) (4.12) into (4.6) yields (4.1).

We now turn to the estimate of s′, namely to the proof of (4.2). For 0 ≤ m ≤ :,
we estimate∣∣∂t ‖ ωm+1s′ ‖2

∣∣ ≤ t−2
{‖ [ωm+1, s] · ∇s′ ‖2 + ‖ (∇ · s)ωm+1 s′ ‖2

}
+t−1 ‖ ωm+2BL(w,w) ‖2 . (4.13)

The first bracket in the RHS of (4.13) is estimated by Lemma 3.2 as

{·} ≤ C
(‖ ∇s ‖∞ ‖ ωm+1s′ ‖2 + ‖ ωm+1s ‖2 ‖ ∇s′ ‖∞

)
≤ C|∇s|� |∇s′|� (4.14)

by Sobolev inequalities.
The contribution of BL for m = : is estimated by (3.9) (3.10) (3.12) and

Lemma 3.2 as

‖ ω�+2BL(w,w) ‖2 ≤ C tβ(�+5/2−2k) I2k−3/2

(‖ ωkw ‖22) for k < 3/2 ,

C tβ(�+1−k) Ik
(‖ ωkw ‖2 ‖ w ‖∞)

for k > 3/2 ,

C tβ(�−1/2+ε) I3/2−ε

(
‖ ω(3−ε)/2w ‖22

)
for k = 3/2 ,

≤ C tβ2 Im1

(|w|2k) (4.15)
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in all cases. The contribution of BL for m = 0 is estimated similarly as

‖ ∇2BL(w,w) ‖2 ≤ C tβ(5/2−k) Ik−3/2

(‖ ωkw ‖2 ‖ w ‖2) for k < 3/2 ,

C tβ I0 (‖ w ‖∞ ‖ w ‖2) for k > 3/2 ,

C tβ(1+ε) I−ε

(
‖ ω3/2−εw ‖2 ‖ w ‖2

)
for k = 3/2 ,

≤ C tβ
′
2 Im1−k (‖ w ‖2 |w|k) (4.16)

in all cases, with
β′

2 = β (1 + [3/2− k]+) ≤ β2 (4.17)

since : ≥ k.
Collecting (4.14) (4.15) (4.16) yields (4.2). �
We next estimate the difference of two solutions of the linearized system

(2.21) corresponding to two different choices of (w, s). We estimate that difference
at a lower level of regularity than the solutions themselves.

Lemma 4.2 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval
and let t1 ∈ Ī. Let B0 be sufficiently regular, for instance B0 ∈ C(I,Hk

3 ). Let
(wi, si), (w′

i, s
′
i) ∈ C(I,Xk,�) with wi ∈ L∞(I,Hk), i = 1, 2, and let (w′

i, s
′
i) be so-

lutions of the system (2.21) associated with (wi, si). Define (w±, s±) = (1/2)(w1±
w2, s1 ± s2) and (w′±, s′±) = 1/2(w′

1 ± w′
2, s

′
1 ± s′2). Then the following estimates

hold for all t ∈ I:∣∣∂t ‖ w′
− ‖2

∣∣ ≤ C t−2|∇s−|�0 |w′
+|k + Ct−1−β1 It1m1−k (|w+|k ‖ w− ‖2) |w′

+|k
(4.18)∣∣∂t|∇s′−|�0 ∣∣ ≤ C t−2

(|∇s+|� |∇s′−|�0 + |∇s−|�0 |∇s′+|�
)

+ C t−1+β2 It1m1−k (|w+|k ‖ w− ‖2) (4.19)

where β1, m1 and β2 are defined by (4.3) (4.4) (4.5) and where

[3/2− k]+ ≤ :0 ≤ :− k . (4.20)

Proof. We again omit the superscript t1 in the proof. Taking the difference of the
system (2.21) for (w′

i, s
′
i), we obtain the following system for (w′

−, s
′
−):

∂tw
′
− = i(2t2)−1∆w′

− + t−2(Q(s+, w′
−) +Q(s−, w′

+)) + it−1B0w
′
−

+it−1
{
(BS(w+, w+) +BS(w−, w−))w′

− + 2BS(w+, w−)w′
+

}
∂ts

′− = t−2
(
s+ · ∇s′− + s− · ∇s′+

)− 2t−1∇BL(w+, w−) .

(4.21)

We first estimate w′
−. From (4.21) we obtain∣∣∂t ‖ w′

− ‖2
∣∣ ≤ t−2 ‖ Q(s−, w′

+) ‖2 +2t−1 ‖ BS(w+, w−)w′
+ ‖2 (4.22)
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where only those terms appear that do not preserve the L2-norm. We estimate the
first norm in the RHS by Hölder and Sobolev inequalities as follows:

If k < 3/2,

‖ Q(s−, w′
+) ‖2 ≤ C

(‖ s− ‖3/(k−1) + ‖ ∇ · s− ‖3/k
) ‖ ωkw′

+ ‖2
≤ C ‖ ω3/2−k∇s− ‖ ‖ ωkw′ ‖2 .

If k = 3/2,

‖ Q(s−, w′
+) ‖2 ≤ C ‖ ωε∇s− ‖2 ‖ ω3/2−ε w′

+ ‖2 .

If k > 3/2,

‖ Q(s−, w′
+) ‖2 ≤ C ‖ ∇s− ‖2

(‖ ∇w′
+ ‖3 + ‖ w′

+ ‖∞
)
,

and in all cases
‖ Q(s−, w′

+) ‖2 ≤ C|∇s−|�0 |w′
+|k (4.23)

provided :0 ≥ [3/2− k]+.
We estimate the second norm in the RHS of (4.22) by (3.8) (3.10), by Lemma

3.2 and by the Hölder and Sobolev inequalities as follows:
If k < 3/2,

‖ BS(w+, w−)w′
+ ‖2 ≤ C ‖ ω3/2−k BS(w+, w−) ‖2 ‖ ωkw′

+ ‖2
≤ C t−2β(k−1) ‖ ωk−1/2 B1(w+, w−) ‖2 ‖ ωkw′

+ ‖2
≤ C t−2β(k−1) Ik−3/2

(‖ ωkw+ ‖2 ‖ w− ‖2
) ‖ ωkw′

+ ‖2 .

If k = 3/2,

‖ BS(w+, w−)w′
+ ‖2 ≤ C t−β(1−2ε) I−ε

(
‖ ω3/2−εw+ ‖2 ‖ w− ‖2

)
‖ ω3/2−εw′

+ ‖2 .

If k > 3/2,

‖ BS(w+, w−)w′
+ ‖2 ≤ t−β ‖ ∇BS(w+, w−) ‖2 ‖ w′

+ ‖∞
≤ C t−β I0 (‖ w+ ‖∞ ‖ w− ‖2) ‖ w′

+ ‖∞
and in all cases

‖ BS(w+, w−)w′
+ ‖2 ≤ C t−β1Im1−k (|w+|k ‖ w− ‖2) |w′

+|k . (4.24)

with β1 and m1 defined by (4.3) (4.4). Substituting (4.23) (4.24) into (4.22) yields
(4.18).

We now turn to the estimate of s′−, namely to the proof of (4.19). From (4.21)
we estimate for m ≥ 0

∂t ‖ ωm+1s′− ‖2 ≤ t−2
{
‖ [ωm+1, s+] · ∇s′− ‖2 + ‖ (∇ · s+)ωm+1s′− ‖2

+ ‖ ωm+1(s− · ∇s′+) ‖2
}

+ 2t−1 ‖ ωm+2BL(w+, w−) ‖2 . (4.25)
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If m = 0 (a case which has to be self-estimating if :0 = 0, which is allowed if
k > 3/2), we estimate the bracket in the RHS of (4.25) directly as

{(m = 0)} ≤ ‖ ∇s+ ‖∞ ‖ ∇s′− ‖2 + ‖ ∇s− ‖2
(‖ ∇s′+ ‖∞ + ‖ ∇2s′+ ‖3

)
≤ C

(|∇s+|� ‖ ∇s′− ‖2 + ‖ ∇s− ‖2 |∇s′+|�
)

(4.26)

since : > 3/2.
If m > 0, we estimate that bracket by Lemma 3.2 and Sobolev inequalities

as

{·} ≤ C
{
‖ ∇s+ ‖∞ ‖ ωm+1s′− ‖2 + ‖ ωm+1s+ ‖3/δ ‖ ∇s′− ‖r

+ ‖ ωm+1s− ‖2 ‖ ∇s′+ ‖∞ + ‖ s− ‖r′ ‖ ωm+2s′+ ‖3/δ′
}

(4.27)

where 0 < δ = δ(r) ≤ 3/2, 0 < δ′ = δ(r′) ≤ 3/2. The first and third term in
the RHS of (4.27) are readily controlled by the corresponding terms in (4.19) for
0 < m ≤ :0 and : > 3/2. The remaining two terms are similarly controlled through
Sobolev inequalities provided

0 < δ ≤ [:0 ∧ 3/2] , m+ 3/2− δ ≤ : .

1 ≤ δ′ ≤ [(:0 + 1) ∧ 3/2] , m+ 5/2− δ′ ≤ : .

Those conditions are easily seen to be compatible in δ and δ′ for allm, 0 < m ≤ :0,
provided : ≥ [(:0 + 1) ∨ 3/2], which follows from : > 3/2 and : ≥ :0 + k.

We finally estimate the contribution of BL(w+, w−) by

‖ ωm+2BL(w+, w−) ‖2 ≤ C tβm ‖ ∇2BL(w+, w−) ‖2
by (3.9) and we estimate the last norm in exactly the same way as in (4.16),
thereby obtaining

‖ ωm+2BL(w+, w−) ‖2 ≤ C tβ
′
2+βm Im1−k (|w+|k ‖ w− ‖2) . (4.28)

Collecting (4.25) (4.26), (4.27) and the discussion that follows, and (4.28) and
noting that β′

2 + βm ≤ β2 for m ≤ :0 ≤ :− k, we obtain (4.19). �
With the estimates of Lemma 4.1 and 4.2 available, it is an easy matter to

solve the Cauchy problem globally in time for the linearized system (2.21).

Proposition 4.1 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval
and let t1 ∈ Ī. Let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k. Let (w, s) ∈
C(I,Xk,�) with w ∈ L∞(I,Hk). Let t0 ∈ I and let (w′

0, s
′
0) ∈ Xk,�. Then the system

(2.21) has a unique solution (w′, s′) ∈ C(I,Xk,�) with (w′, s′)(t0) = (w′
0, s

′
0). That

solution satisfies the estimates (4.1) (4.2) for all t ∈ I. Two such solutions (w′
i, s

′
i)

associated with (wi, si), i = 1, 2, satisfy the estimates (4.18) (4.19) for all t ∈ I.
Proof. The proof proceeds in the same way as that of Proposition 4.1 of [6], through
a parabolic regularization and a limiting procedure, with the simplification that
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the system (2.21) is linear. We define U1(t) = U(1/t), w̃′(t) = U1(t)w′(t). We first
consider the case t ≥ t0. The system (2.21) with a parabolic regularization added
is rewritten in terms of the variables (w̃′, s′) as

∂tw̃
′ = η∆w̃′ + t−2U1Q(s, U∗

1 w̃
′) + it−1U1(B0 +BS(w,w))U∗

1 w̃
′

≡ η∆w̃′ + F (w̃′)

∂ts
′ = η∆s′ + t−2s · ∇s′ − t−1∇BL(w,w) ≡ η∆s′ +G(s′)

(4.29)

where the parametric dependence of F , G on (w, s) has been omitted. The Cauchy
problem for the system (4.29) can be recast in the integral form(

w̃′

s′

)
(t) = Vη(t− t0)

(
w̃′

0

s′0

)
+

∫ t

t0

dt′ Vη(t− t′)
(
F (w̃′)
G(s′)

)
(t′) (4.30)

where Vη(t) = exp(ηt∆). The operator Vη(t) is a contraction in Xk,� and satisfies
the bound

‖ ∇Vη(t);L(Xk,�) ‖ ≤ C(ηt)−1/2 .

From those facts and from estimates on F , G similar to and mostly contained in
those of Lemma 4.1, it follows by a contraction argument that the system (4.30)
has a unique solution (w̃′

η, s
′
η) ∈ C([t0, t0 + T ], Xk,�) for some T > 0 depending

only on |w′
0|k, |s′0|˙� and η. That solution satisfies the estimates (4.1) and (4.2) and

can therefore be extended to I+ = I ∩ {t : t ≥ t0} by a standard globalisation
argument using Gronwall’s inequality.

We next take the limit η → 0. Let η1, η2 > 0 and let (w′
i, s

′
i) = (w′

ηi
, s′ηi

),
i = 1, 2 be the corresponding solutions. Let (w′−, s′−) = (1/2)(w′

1 − w′
2, s

′
1 − s′2).

By estimates similar to, but simpler than those of Lemma 4.2, since in particular
(w−, s−) = 0, we obtain{

∂t ‖ w′
− ‖22≤ |η1 − η2|

(‖ ∇w′
1 ‖22 + ‖ ∇w′

2 ‖22
)

∂t ‖ ∇s′− ‖22≤ |η1 − η2|
(‖ ∇2s′1 ‖22 + ‖ ∇2s′2 ‖22

)
+ Ct−2 ‖ ∇s+ ‖∞‖ ∇s′− ‖22 .

Those estimates imply that (w′
η, s

′
η) converges in X0,0 uniformly in time in the

compact subintervals of I+, to a solution of the original system. It follows then by
a standard compactness argument using the estimates (4.1) (4.2) that the limit
belongs to C(I+, Xk,�). This completes the proof for t ≥ t0. The case t ≤ t0 is
treated similarly. �

We now turn to the Cauchy problem for the auxiliary system (2.20). Because
of the difficulties described in Section 2, the problem of existence of solutions is
scattered with pitfalls, as the discussion below will show. On the other hand, the
uniqueness problem of suitably bounded solutions is a rather easy matter and we
consider that problem first. The proof relies entirely on Lemma 4.2 and therefore
does not require any a priori estimate on B0. The snag of course is that it is difficult
to prove the existence of solutions with the required boundedness properties.
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Proposition 4.2 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval
and let t1 ∈ Ī. Let B0 be sufficiently regular, for instance B0 ∈ C(I,Hk

3 ).
(1) Let t0 = t1 < ∞ and let (w0, s0) ∈ Xk,�. Then the system (2.20) has at

most one solution (w, s) ∈ C(I,Xk,�) with w ∈ L∞(I,Hk) and (w, s)(t0) =
(w0, s0).
Let now β2 < 1, where β2 is defined by (4.5), let :0 satisfy (4.20). Let (wi, si),
i = 1, 2 be two solutions of the system (2.20) in I such that (wi, t

η−1si) ∈
(C ∩ L∞)(I,Xk,�) for some η > 0 and let

‖ wi, L
∞(Hk) ‖ ≤ a , ‖ tη−1∇si;L∞(H�) ‖ ≤ b . (4.31)

(2) Let t0 ∈ I, t0 ≤ t1, t0 <∞ and assume that (w1, s1)(t0) = (w2, s2)(t0). Then
there exists c = c(a, b) such that if(

t
−(1−β2)
0 ∨ t−β1

0

)
(1− (t0/t1)α) ≤ c(a, b) (4.32)

where α = [k ∧ 3/2] − 1, then (w1, s1) = (w2, s2). In particular there exists
T0 = T0(a, b) such that if t0 ≥ T0, then (w1, s1) = (w2, s2).

(3) Let t1 = ∞. Assume that ‖ w1 − w2 ‖2 tβ2 and |∇(s1 − s2)|�0 tend to zero
when t→∞. Then (w1, s1) = (w2, s2).

Proof. If (wi, si), i = 1, 2 are two solutions of the system (2.20) in C(I,Xk,�),
then they satisfy the estimates (4.18) (4.19) with (w′

i, s
′
i) = (wi, si), which we

denote (4.18=) (4.19=) and refrain from rewriting for brevity. The proof consists in
exploiting those estimates to prove that (w1, s1) = (w2, s2). We define y =‖ w− ‖2
and z = |∇s−|�0 .
Part (1). With t0 = t1 <∞, the estimates (4.18=) (4.19=) take the general form

|∂ty| ≤ f1(t)z + g1(t)
∫ t

t0

dt′ h1(t′) y(t′) (4.33)

|∂tz| ≤ f2(t)z + g2(t)
∫ t

t0

dt′ h2(t′) y(t′) (4.34)

for suitable continuous nonnegative functions f1, g1, h1, f2, g2, h2 (actually h1 =
h2, but that is irrelevant). Furthermore y(t0) = z(t0) = 0. We shall reduce the
system (4.33) (4.34) to a standard form where Gronwall’s inequality is applicable.
We restrict our attention to the case t ≥ t0 for definiteness. The case t ≤ t0 can
be treated similarly. Defining z̃ by

z(t) = E(t) z̃(t) = exp
{∫ t

t0

dt′ f2(t′)
}
z̃(t) ,

we reduce the system (4.33) (4.34) for (y, z) to a similar system for (y, z̃), where
f2, g2 and f1 are replaced by 0, E−1g2 and Ef1. We can therefore assume that
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f2 = 0. Then

z(t) ≤
∫ t

t0

dt′′ g2(t′′)
∫ t′′

t0

dt′ h2(t′) y(t′) ≤ G2(t)
∫ t

t0

dt′ h2(t′) y(t′)

where

G2(t) =
∫ t

t0

dt′′ g2(t′′)

so that

∂ty ≤ f1(t)G2(t)
∫ t

t0

dt′ h2(t′)y(t′) + g1(t)
∫ t

t0

dt′ h1(t′) y(t′)

≤ (f1 G2 + g1)
∫ t

t0

dt′(h1 ∨ h2)(t′) y(t′)

which is of the same form as (4.33) with f1 = 0. Integrating the latter yields

y ≤
∫ t

t0

dt′′ g1(t′′)
∫ t′′

t0

dt′ h1(t′) y(t′) ≤ G1(t)
∫ t

t0

dt′ h1(t′) y(t′)

where

G1(t) =
∫ t

t0

dt′ g1(t′) ,

which together with y(t0) = 0 implies y(t) = 0 for all t by an easy variant of
Gronwall’s inequality. Substituting that result into (4.34) (with f2 = 0) yields
z = 0 and therefore (w1, s1) = (w2, s2).

We now turn to the proof of Parts (2) and (3). Introducing the assumption
and notation (4.31), changing the variable from ν to t′ = νt in the definition of
It1m , and omitting an absolute overall constant, we can rewrite (4.18=) (4.19=) in
the form

|∂ty| ≤ t−2 az + t−1−β1+α a2

∫ t1

t

dt′ t′−1−α y(t′) (4.35)

|∂tz| ≤ t−1−η bz + t−1+β2+α a

∫ t1

t

dt′ t′−1−α y(t′) (4.36)

where α = [k ∧ 3/2] − 1 > 0, and the goal is to prove that (4.35) (4.36) with
suitable initial conditions imply y = z = 0.
Part (2). Let Y =‖ y;L∞([t0, t1]) ‖. Then

tα
∫ t1

t

dt′ t′−1−α y(t′) ≤ Y α−1 (1− (t/t1)α)

≤ Y α−1 (1− t0/t1)α) ≡ Ȳ . (4.37)
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Substituting (4.37) into (4.36) and integrating with z(t0) = 0 yields

z ≤ exp
(
b η−1 t−η

0

)
a Ȳ β−1

2 tβ2 . (4.38)

Substituting (4.37) (4.38) into (4.35), integrating with y(t0) = 0 and taking the
Supremum over t in [t0, t1] yields

Y ≤
{
exp

(
b η−1 t−η

0

)
(1 − β2)−1 t

−(1−β2)
0 + β−1

1 t−β1
0

}
a2Ȳ

which implies Y = 0 and therefore y = z = 0 provided

a2
{
exp

(
b η−1 t−η

0

)
(1− β2)−1 t

−(1−β2)
0 + β−1

1 t−β1
0

}
α−1 (1− (t0/t1)α) < 1 ,

(4.39)
a condition which follows from (4.32) for suitable c(a, b).
Part (3). We now take t1 = ∞. The term bz in (4.36) can be exponentiated as in
the proof of Part (2). Since in addition the statement does not involve conditions
on a and b, we can and shall assume without loss of generality that b = 0 and
a = 1. Let

ε(t) =Sup
t′≥t

t′β2y(t′) . (4.40)

Then ε(t) is nonincreasing in t and tends to zero as t → ∞. Furthermore for any
t0 ∈ I ∫ ∞

t0

dt′ t′−1−α y(t′) ≤ ε(t0)(α+ β2)−1 t
−(α+β2)
0 . (4.41)

Let now t0 ∈ I (t0 will eventually tend to ∞), y0 = y(t0) and z0 = z(t0). We
estimate y and z for t ≤ t0 by integrating (4.35) (4.36) (with t1 = ∞, a = 1 and
b = 0) between t and t0. Integrating (4.36) yields

z(t) ≤ z0 + (α+ β2)−2ε(t0) +
∫ t0

t

dt′′ t′′−1+β2+α

∫ t0

t′′
dt′ t′−1−α y(t′)

≤ · · ·+
∫ t0

t

dt′ t′−1−α y(t′)
∫ t′

t

dt′ t′′−1+β2+α

≤ z0 + (α+ β2)−2 ε(t0) + (α+ β2)−1 Y (t) (4.42)

where we have used (4.41) and where

Y (t) =
∫ t0

t

dt′ t′−1+β2 y(t′) . (4.43)

Substituting (4.42) into (4.35), integrating and using the fact that Y (t) is decreas-
ing in t, we obtain

y(t) ≤ y0 + t−1
(
z0 + (α+ β2)−2ε(t0)

)
+ (α+ β2)−1 t−1Y (t) + y1(t) (4.44)
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where

y1(t) =
∫ t0

t

dt′′ t′′−1−β1+α

∫ ∞

t′′
dt′ t′−1−α y(t′) .

Substituting (4.44) into (4.43) yields

Y (t) ≤ y0 β
−1
2 tβ2

0 +
(
z0 + (α+ β2)−2ε(t0)

)
(1− β2)−1 t−(1−β2)

+ (α+ β2)−1

∫ t0

t

dt′ t′−2+β2 Y (t′) + Y1(t) (4.45)

where

Y1(t) =
∫ t0

t

dt′′′ t′′′−1+β2 y1(t′′′)

=
∫ t0

t

dt′′ t′′−1−β1+α

∫ t′′

t

dt′′′ t′′′−1+β2

∫ ∞

t′′
dt′ t′−1−α y(t′)

≤ β−1
2

∫ t0

t

dt′′ t′′−1−β1+α+β2

∫ ∞

t′′
dt′ t′−1−α y(t′)

≤ β−1
2 t−β1(α+ β2)−2 ε(t0) + β−1

2

∫ t0

t

dt′′ t′′−1−β1

∫ t0

t′′
dt′ t′−1+β2 y(t′)

≤ β−1
2 t−β1(α+ β2)−2 ε(t0) + β−1

2

∫ t0

t

dt′′ t′′−1−β1 Y (t′′) . (4.46)

Substituting (4.46) into (4.45) yields the following inequality for Y (t):

Y (t) ≤ f(t) +
∫ t0

t

dt′ g(t′) Y (t′) (4.47)

where
f(t) = β−1

2 ε(t0) + z0(1− β2)−1 t−(1−β2) + (α+ β2)−2ε(t0)(
(1− β2)−1t−(1−β2) + β−1

2 t−β1

)
g(t) = (α+ β2)−1 t−2+β2 + β−1

2 t−1−β1 .

Note that f and g are decreasing in t and that g is integrable at infinity. Let

G(t) =
∫ ∞

t

g(t′) dt′ ,

Ȳ (t) =
∫ t0

t

dt′ g(t′) Y (t′) .

Then (4.47) can be rewritten as

∂tȲ = −gY ≥ −gf − gȲ
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which is readily integrated with Ȳ (t0) = 0 to yield

Ȳ (t) ≤
∫ t0

t

dt′ g(t′) f(t′) exp

{∫ t′

t

dt′′ g(t′′)

}
≤ f(t) G(t) exp(G(t))

and therefore by (4.47) again

Y (t) ≤ f(t) {1 +G(t) exp(G(t))} .
Now G is independent of t0 while f tends to zero when t0 →∞ for fixed t under
the assumptions made. Letting t0 →∞ then shows that

Y (t) =
∫ t0

t

dt′ t′−1+β2 y(t′) −→ 0 when t0 →∞

which implies that y = 0, from which it follows easily that z = 0, and therefore
(w1, s1) = (w2, s2). �
Remark 4.1 The necessity of some condition of the type (4.32) in Part (2) is easily
understood on the simpler example

|∂ty| ≤ a2

∫ t1

t

dt′ y(t′) (4.48)

with t0 = 0 and y(0) = 0. Defining Y =‖ y;L∞([0, t1]) ‖ we obtain

|∂ty| ≤ a2(t1 − t)Y
and therefore by integration

Y ≤ a2Y Sup
0≤t≤t1

∫ t

0

dt′(t1 − t′) = (1/2)a2 t21 Y

which implies Y = 0 if at1 <
√

2. However if at1 = π/2, (4.48) admits the nonva-
nishing solution y = sin at.

We next prove another property which follows easily from estimates similar
to those of Lemma 4.2, namely the fact that for suitably bounded solutions (w, s)
of the auxiliary system, w(t) tends to a limit w+ when t→∞.

Proposition 4.3 Let k > 1, :0 ≤ [3/2 − k]+ and β > 0. Let T ≥ 1, t1 = ∞ and
I = [T,∞). Let B0 satisfy the estimate (3.17) for m = 0. Let (w, s) ∈ C(I,Xk,�0)
with (w, tη−1s) ∈ L∞(I,Xk,�0) for some η > 0 and let (w, s) satisfy the first
equation of the system (2.20). Then there exists w+ ∈ Hk such that w(t) tends to
w+ weakly in Hk and strongly in Hk′

for 0 ≤ k′ < k when t → ∞. Furthermore
the following estimate holds for all t ∈ I:

‖ w̃(t)− w+ ‖2 ≤ C t−α1 (4.49)
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where w̃(t) = U(1/t)w, and

α1 = η ∧ [1/2 ∧ k/3] ∧ (β1 + βk)

with β1 defined by (4.3).

Proof. Let t0 ∈ I, w̃0 = w̃(t0) and

a =‖ w;L∞(I,Hk) ‖ , b =‖ tη−1∇s;L∞(I,H�0) ‖ .

The first equation of the system (2.20) can be rewritten as

∂t (w̃(t)− w̃0) = t−2 U(1/t) Q(s, w) + it−1 U(1/t) (B0 +BS(w,w))w

where we have omitted the superscript ∞ in BS , and therefore

∂t ‖ w̃(t)− w̃0 ‖2 ≤ t−2 ‖ Q(s, w) ‖2 +t−1 ‖ B0w ‖2 +t−1 ‖ BS(w,w)w ‖2 .
(4.50)

By exactly the same estimate as in (4.23), we obtain

‖ Q(s, w) ‖2 ≤ C|∇s|�0 |w|k ≤ C ab t1−η . (4.51)

We next estimate

‖ B0w ‖2 ≤‖ B0 ‖3/δ ‖ w ‖r ≤ C ab0 t
−[1/2∧k/3] (4.52)

with δ = δ(r) = [k ∧ 3/2], by (3.17) and Sobolev inequalities, and

‖ BS(w,w)w ‖2 ≤ ‖ BS(w,w) ‖3/δ ‖ w ‖r
≤ C ‖ ω[3/2−k]+ BS(w,w) ‖2 |w|k (4.53)

with the same δ. The last norm of BS in (4.53) is estimated exactly as in the proof
of Lemma 4.1 (see (4.10) (4.11) (4.12)) as

‖ ω[3/2−k]+ BS(w,w) ‖2 ≤ C t−β1−βk I∞m1
(|w|2k) ≤ C a2 t−β1−βk . (4.54)

Substituting (4.51) (4.52) (4.53) (4.54) into (4.50) and integrating between t0 and
t yields

‖ w̃(t)− w̃(t0) ‖2 ≤ C
{
(t ∧ t0)−ηab+ (t ∧ t0)−[1/2∧k/3]ab0 + (t ∧ t0)−β1−βka3

}
from which it follows that w̃(t) and therefore also w(t) has a strong limit w+ in
L2 when t→∞ and that (4.49) holds. Since in addition w(t) is bounded in Hk, it
follows by a standard compactness argument that w+ ∈ Hk and that w(t) tends
to w+ in the other topologies stated in the Proposition. �
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We now turn to the problem of existence of solutions of the auxiliary system
(2.20), with the aim of proving that that system defines an asymptotic dynamics
for large times and preferably up to infinity in time. Here however, we encounter
the difficulties described in Section 2 and arising from the different propagation
properties of the Schrödinger and wave equations. First of all for t1 = t0, even
if B0 = 0, the estimates of Lemma 4.1 are insufficient to prevent blow up of the
solutions in a finite time after t0, independently of the size of t0 and of the initial
data for (w, s) at t0. In fact, if in the estimates (4.1=) (4.2=) we set b0 = 0, omit
the second inequality and take s = 0 in the first one, we obtain the following
stronger estimate for y = |w′|k = |w|k

∂t y ≤ C t−1−β1 y

∫ 1

t0/t

dν ν−1−m y(νt)p (4.55)

where m = m1 + 1/2 > β1 for β ≤ 1, and p = 2. We shall prove that (4.55) does
not prevent finite time blow up by showing that equality in (4.55) implies such a
blow up. Taking yp instead of y as the unknown function and rescaling t and y,
we can take p = 1, t0 = 1 and C = 1 without loss of generality. We are therefore
led to consider the equation

∂t y = t−1−β1 y

∫ 1

1/t

dν ν−1−m y(νt) (4.56)

or equivalently

∂t y = t−1−β1+m y

∫ t

1

dt′ t′−1−m y(t′) . (4.57)

Warning 4.1 Let 0 < β1 < m. Then the solution of the equation (4.57) with initial
data y(1) = y0 > 0 blows up in a finite time.

The proof will be given in Appendix A.
The previous result encourages us to take t1 > t0 and actually the situation

improves in that case and in particular we shall prove the existence of solutions
defined in [t0, t1] if B0 = 0 in Proposition 4.4 below. Of course for t1 < ∞, by
the previous argument, we shall be unable to exclude finite time blow up after t1.
On the other hand, if B0 �= 0, we cannot exclude finite time blow up between t0
and t1 if t1 is sufficiently large. Actually, we shall show that equality in a stronger
version of (4.1) implies such a blow up. We again drop the inequality (4.2) and
take s = 0 in (4.1). Omitting in addition the second term with b0, we are left with

∂t y = C

{
y1−1/k + t−1−β1 y

∫ t1/t

1

ν−1−m y(νt)2
}
. (4.58)

Since the solution of (4.58) is increasing in time for t ≥ t0, blow up for (4.58) is
implied by blow up for the equation

∂t y = C
{
y1−1/k + t−1−β1 y3m−1 (1− (t/t1)m)

}
. (4.59)
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Now if blow up occurs for t ≤ T ∗ for the equation

∂t y = C
(
y1−1/k + t−1−β1 y3m−1(1 − 2−m)

)
(4.60)

then a fortiori blow up will occur for the equation (4.59) if t1 ≥ 2T ∗. It is therefore
sufficient to prove blow up for (4.60), which after rescaling can be rewritten as

∂t y = k y1−1/k + t−1−β1 y3 . (4.61)

Warning 4.2 Let 2k > β1. Then the solution of the equation (4.61) with initial data
y(t0) > 0 at time t0 ≥ 1 blows up in a finite time.

The proof will be given in Appendix A. The condition 2k > β1 is always
satisfied in the present situation.

We now prove the main result of this section, namely the existence of solutions
of the auxiliary system (2.20) defined up to t1, possibly with t1 = ∞, for B0 = 0
and for initial data given at sufficiently large t0 < t1.

Proposition 4.4 Let B0 = 0. Let 1 < k ≤ :, : > 3/2 and 0 < β < 1. Let β2 < 1,
where β2 is defined by (4.5). Let (w0, s̃0) ∈ Xk,� and let y0 = |w0|k and z̃0 = |∇s̃0|�.
Then there exists T0 < ∞ depending on (y0, z̃0) such that for all t0 ≥ T0, there
exists T < t0, depending on (y0, z̃0) and on t0, such that for all t1, t0 ≤ t1 ≤ ∞,
the auxiliary system (2.20) with initial data (w, s)(t0) = (w0, t

β2
0 s̃0) has a unique

solution (w, s) in the interval I = [T, t1) such that (w, t−β2s) ∈ (C ∩L∞)(I,Xk,�).
One can take

T0 = C
{(
z̃0 + y2

0

)1/(1−β2) ∨ y2/β1
0

}
, (4.62)

T = tβ2
0 T 1−β2

0 , (4.63)

and the solution (w, s) is estimated for all t ∈ I by

|w(t)|k ≤ 2y0 , (4.64)
|∇s(t)|� ≤

(
2z̃0 + C y2

0

)
(t0 ∨ t)β2 . (4.65)

Proof. The proof consists in exploiting the estimates of Lemmas 4.1 and 4.2 in order
to show that the map Γ : (w, s) → (w′, s′), where (w′, s′) is defined from (w, s) by
Proposition 4.1, is a contraction of a suitable subset of C(I,Xk,�) for a suitably
time rescaled norm of L∞(I,X0,�0). We first consider the interval I = [t0, t1) and
we define the set

R =
{
(w, s) ∈ C(I,Xk,�) : ‖ w;L∞(I,Hk) ‖ ≤ Y, ‖ t−β2∇s;L∞(I,H�) ‖ ≤ Z

}
,

for Y > 0, Z > 0. Let (w, s) ∈ R and (w′, s′) = Γ(w, s). Let y = |w(t)|k, y′ =
|w′(t)|k, z = |∇s(t)|� and z′ = |∇s′(t)|�. From Lemma 4.1, namely (4.1) (4.2) with
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b0 = 0 and with an overall constant omitted, we obtain{
∂t y

′ ≤ t−2+β2 Zy′ + t−1−β1 Y 2y′

∂t z
′ ≤ t−2+β2 Zz′ + t−1+β2 Y 2 .

(4.66)

Integrating from t0 to t with (y′, z′)(t0) = (y, z)(t0) = (y0, z0) where z0 = z̃0t
β2
0 ,

we estimate
Y ′ =‖ y′;L∞(I) ‖ , Z ′ =‖ t−β2z′;L∞(I) ‖ (4.67)

by  Y ′ ≤ y0 exp
{
(1− β2)−1 t−1+β2

0 Z + β−1
1 t−β1

0 Y 2
}

Z ′ ≤ (
z̃0 + β−1

2 Y 2
)
exp

{
(1− β2)−1 t−1+β2

0 Z
}
.

(4.68)

We now impose {
(1 − β2) t

1−β2
0 ≥ 2(:n2)−1Z

β1 t
β1
0 ≥ 2(:n2)−1 Y 2

(4.69)

and choose
Y = 2y0 , Z =

√
2
(
z̃0 + 4β−1

2 y2
0

)
(4.70)

thereby ensuring that Y ′ ≤ Y , Z ′ ≤ Z, so that the set R is mapped into itself by
Γ. The conditions (4.69) can be rewritten as{

(1 − β2) t
1−β2
0 ≥ 2

√
2(:n2)−1

(
z̃0 + 4β−1

2 y2
0

)
β1 t

β1
0 ≥ 8(:n2)−1 y2

0

(4.71)

and hold for all t0 ≥ T0 for T0 satisfying (4.62) with suitable C.
We next show that the map Γ is a contraction on R. We use the notation of

Lemma 4.2 and in addition{
y− =‖ w−(t) ‖2 , z− = |∇s−(t)|�0 ,
Y− =‖ y−;L∞(I) ‖ , Z− =‖ t−β2 z−;L∞(I) ‖

(4.72)

and a similar notation for primed quantities. From Lemma 4.2, in particular (4.18)
(4.19), and again with an overall constant omitted, we obtain{

∂t y
′− ≤ t−2 Y z− + t−1−β1 Y 2Y−

∂t z
′
− ≤ t−2+β2 Z(z− + z′−) + t−1+β2 Y Y−

(4.73)

and by integration with (y′−, z
′
−)(t0) = 0, Y ′

− ≤ (1 − β2)−1 t−1+β2
0 Y Z− + β−1

1 t−β1
0 Y 2 Y−

Z ′
− ≤ exp

(
(1− β2)−1 t−1+β2

0 Z
){

(1− β2)−1 t−1+β2
0 ZZ− + β−1

2 Y Y−
}
.

(4.74)
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The second inequality in (4.74) reduces to

Z ′
− ≤

√
2
{
(1− β2)−1 t−1+β2

0 ZZ− + β−1
2 Y Y−

}
(4.75)

under the first condition in (4.69) imposed previously.
We now ensure that the map Γ is a contraction for the norms defined by

(4.72) in the form {
Y ′
− ≤ (c−1 Z− + Y−)/4

Z ′
− ≤ (Z− + c Y−)/4

(4.76)

which implies
Z ′
− + c Y ′

− ≤ (Z− + c Y−)/2 (4.77)

by taking c = 8β−1
2 Y and imposing the conditions{

(1 − β2)t
1−β2
0 ≥ 8Z , β1t

β1
0 ≥ 4Y 2

(1 − β2) t
1−β2
0 ≥ 4c Y = 32β−1

2 Y 2

which follow again from (4.62) for all t0 ≥ T0.
We have proved that Γ maps R into itself and is a contraction for the norms

(4.72). By a standard compactness argument, R is easily shown to be closed for
the latter norms. Therefore Γ has a unique fixed point in R, which completes the
proof for t ≥ t0.

We now turn to the case t ≤ t0, namely we consider the interval I = [T, t0] for
some T < t0. The proof proceeds in exactly the same way, with however slightly
different norms. In addition, one has to take into account the following fact: the
various integrals It1m that occur in (4.1) (4.2) and (4.18) (4.19) involve w and w1,
w2 up to time t1. In the subinterval [t0, t1], one takes w = w1 = w2 = the solution
constructed at the previous step (in particular w− = 0 for t ≥ t0, so that actually
no contribution from the interval [t0, t1] occurs in (4.18) (4.19)). In (4.1) (4.2) the
contribution of the interval [t0, t1] is taken into account by using the fact that all
the integrals over time in the relevant It1m are convergent at infinity and that we
shall eventually use the same ansatz |w(t)|k ≤ Y = 2y0 both for t ≤ t0 and t ≥ t0.
With this in mind, we complete the proof by simply giving the computational
details. We consider the set

R< =
{
(w, s) ∈ C(I,Xk,�); ‖ w;L∞(I,Hk) ‖≤ Y, ‖ ∇s;L∞(I,H�) ‖≤ Z

}
.

For (w, s) ∈ R<, (w′, s′) = Γ(w, s) and y, y′, z and z′ defined as previously, we
estimate by Lemma 4.1, again with an overall constant omitted{ |∂t y′| ≤ t−2 Zy′ + t−1−β1 Y 2y′

|∂t z′| ≤ t−2 Zz′ + t−1+β2 Y 2 (4.78)
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and by integration from t to t0 with (y′, z′)(t0) = (y, z)(t0) = (y0, z0), we obtain
y′(t) ≤ Y ′, z′(t) ≤ Z ′ with Y ′ ≤ y0 exp

(
t−1Z + β−1

1 t−β1 Y 2
)

Z ′ ≤
(
z0 + β−1

2 Y 2 tβ2
0

)
exp(t−1Z) .

(4.79)

We now impose {
t ≥ 2(:n 2)−1 Z

β1 t
β1 ≥ 2(:n 2)−1 Y 2

(4.80)

and choose
Y = 2y0 , Z =

√
2

(
z0 + 4β−1

2 y2
0 t

β2
0

)
(4.81)

thereby ensuring that Y ′ ≤ Y , Z ′ ≤ Z so that the set R< is mapped into itself by
Γ. The conditions (4.80) can be rewritten as{

β1 t
β1 ≥ 8(:n 2)−1 y2

0

t ≥ 2
√

2(:n 2)−1
(
z̃0 + 4β−1

2 y2
0

)
tβ2
0

(4.82)

and hold for all t ≥ T with T defined by (4.63) and T0 satisfying (4.62) for suitable
C.

We next prove that Γ is a contraction on R< for the norm in L∞(I,X0,�0).
With the notation of Lemma 4.2 and in addition{

y− = ‖ w−(t) ‖2 , z− = |∇s−(t)|�0
Y− = ‖ y−;L∞(I) ‖ , Z− =‖ z−;L∞(I) ‖ (4.83)

and a similar notation for primed quantities, we obtain from (4.18) (4.19){ |∂t y′−| ≤ t−2 Y z− + t−1−β1 Y 2 Y−

|∂t z′−| ≤ t−2 Z(z− + z′−) + t−1+β2 Y Y− .
(4.84)

By integration between t and t0, we deduce therefrom Y ′
− ≤ t−1Y Z− + β−1

1 t−β1 Y 2Y−

Z ′
− ≤

(
t−1ZZ− + β−1

2 tβ2
0 Y Y−

)
exp(t−1Z)

(4.85)

thereby ensuring the contraction in the form (4.76) which implies (4.77) by taking
c = 8β−1

2 Y tβ2
0 and imposing

t ≥ 8Z , β1t
β1 ≥ 4Y 2 , t ≥ 4c Y = 32β−1

2 tβ2
0 Y 2

which hold for all t ≥ T with the choice (4.81) under the conditions (4.62) (4.63).
With the previous estimates available, the proof proceeds as in the case t ≥ t0. �
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5 Asymptotics and wave operators for the linear system

In this section we study the asymptotic properties of solutions of the linear equa-
tion (2.22) in the form (2.24) at the level of regularity of Hk with k ≥ 1 for w. In
particular we solve the Cauchy problem at infinity, thereby constructing the wave
operators in Hk. For the linear equation (2.24), the wave operators in L2 can be
easily constructed by a variant of Cook’s method and the construction of the wave
operators in Hk reduces to a regularity problem for the L2 wave operators thereby
obtained. As a preliminary to that study, we shall first solve the Cauchy problem
for the equation (2.24) with finite initial time. We emphasize the fact that in this
section we do not strive after any kind of optimality in the treatment of the linear
equation, since we are mainly interested in a form of that treatment that can be
incorporated in that of the fully interacting system.

Proposition 5.1 Let I = [1,∞), let k ≥ 1 and let B0 satisfy the estimates (3.17)
for 0 ≤ m ≤ k. Let t0 ∈ I and w0 ∈ Hk. Then the equation (2.24) has a unique
solution w ∈ C(I, L2) with w(t0) = w0. Furthermore w ∈ C(I,Hk) ∩ L∞(I, L2)
and w satisfies the conservation law

‖ w(t) ‖2 = const.

and the estimate

|w(t)|k ≤
(
1 + Ck|t− t0|(t ∨ t0)k̄−1

)
|w0|k (5.1)

where k̄ = k for integer k and k̄ = k + ε with ε > 0 for noninteger k.

Proof. It follows easily from standard arguments and from Lemma 3.2 that w
exists and satisfies the properties stated except possibly the estimate (5.1), and
we concentrate on the proof of the latter, assuming without loss of generality that
|w0|k = 1. We first prove (5.1) by induction for integer k ≥ 1. Let 0 ≤ j ≤ k−1 and
yj =‖ ωjw ‖2. From (2.24) and from the Leibnitz formula and Sobolev inequalities,
we obtain

|∂t yj+1| ≤ C t−1
{
‖ ∇B0 ‖∞ ‖ ωjw ‖2 +

∑
|α|=j+1

‖ ∂αB0 ‖∞ ‖ w ‖2
}

and therefore by (3.17)

|∂t yj+1| ≤ C b0
(
yj + tj

)
. (5.2)

Substituting the induction assumption for yj and integrating (5.2) between t0 and
t, we obtain

yj+1 ≤ 1 + C b0
(
1 + (Cj + 1)(t ∨ t0)j

) |t− t0|
≤ 1 + Cj+1|t− t0|(t ∨ t0)j

with Cj+1 = Cb0(Cj + 2). This completes the proof for integer k.



570 J. Ginibre and G. Velo Ann. Henri Poincaré

Let now k = k0 + θ with integer k0 ≥ 1 and 0 < θ < 1. We estimate∣∣∂t ‖ ωkw ‖2∣∣ ≤ t−1 ‖ [ωk, B0]w ‖2
≤ Ct−1

{‖ ∇B0 ‖∞ ‖ ωk−1w ‖2 + ‖ ωkB0 ‖3/δ ‖ w ‖r
}

(5.3)

by Lemma 3.2, with 0 < δ = δ(r) ≤ 1,

· · · ≤ C b0

(
‖ ωk−1w ‖2 +tk−1−δ/3 ‖ ωδw ‖2

)
by (3.17) and Sobolev inequalities. We next interpolate and obtain

· · · ≤ C b0

(
‖ ωk0−1w ‖1−θ

2 ‖ ωk0w ‖θ2 +tk−1−δ/3 ‖ w ‖1−δ
2 ‖ ∇w ‖δ2

)
.

We finally substitute the estimate (5.1) for the integer values k0−1, k0, and 1 and
integrate between t0 and t, thereby obtaining

‖ ωkw ‖2 ≤ 1 + C b0|t− t0|(t ∨ t0)k−1+2δ/3

which yields (5.1) with ε = 2δ/3. �
The fact that a direct Hk estimate of the solution does not prevent its Hk

norm to increase as a power of t is a warning of the fact that the construction of
the wave operators at that level of regularity is not trivial. The same fact appeared
already in Section 4 above in Warning 4.2 and compelled us to assume B0 = 0 in
Proposition 4.4.

We next construct the L2-wave operators for (2.24).

Proposition 5.2 Let I = [1,∞) and let B0 satisfy the estimates (3.17) for m = 0.
(1) Let W ∈ C(I, L2) with U(1/t)W ∈ C1(I, L2), satisfying

‖ R(W ) ‖2 ≤ c0 t
−1−λ0 (5.4)

for some λ0 > 0 and for all t ∈ I. Then there exists a unique solution w ∈ C(I, L2)
of the equation (2.24), such that w(t) −W (t) tends to zero strongly in L2 when
t→∞. Furthermore, for all t ∈ I,

‖ w(t)−W (t) ‖2 ≤ c0 λ
−1
0 t−λ0 . (5.5)

The solution w is the norm limit in L∞(I, L2) as t0 →∞ of the solution wt0

of the equation (2.24) with initial condition wt0(t0) = W (t0) obtained in Proposi-
tion 5.1, and the following estimate holds for all t ∈ I:

‖ wt0(t)− w(t) ‖2 ≤ c0 λ
−1
0 t−λ0

0 . (5.6)

(2) Let in addition W ∈ L∞(I,Hk) for some k, 0 < k < 3/2. Then there
exists w+ ∈ Hk such that W (t) tends to w+ strongly in L2 and weakly in Hk when
t→∞, and the following estimate holds for all t ∈ I:

‖W (t)− w+ ‖2 ≤ C
(
t−λ0 + t−k/3

)
. (5.7)
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Conversely let w+ ∈ Hk for some k, 0 < k < 3/2, and let W1 = U∗(1/t)w+. Then
W1 satisfies the assumptions of Part (1) with λ0 = k/3.

Let W , w+ and W1 be related as above. Then the solutions of the equation
(2.24) constructed in Part (1) from W and W1 coincide.

(3) Let w+ ∈ L2. Then the equation (2.24) has a unique solution w ∈ C(I, L2)
such that w(t) tends to w+ strongly in L2 when t→∞.

Proof. Part (1). Following the sketch of Section 2, we look for w in the form
w = W + q, so that q satisfies the equation

∂t q = i(2t2)−1∆q + i t−1 B0 q −R(W ) (5.8)

and therefore the a priori estimate

|∂t ‖ q ‖2 | ≤ ‖ R(W ) ‖2 ≤ c0 λ
−1
0 t−1−λ0 . (5.9)

Define wt0 as in Part (1) and let wt0 = W + qt0 so that qt0(t0) = 0. Integrating
(5.9) between t0 and t yields

‖ qt0(t) ‖2 ≤ c0 λ
−1
0 |t−λ0 − t−λ0

0 | (5.10)

and therefore, by L2 norm conservation for the difference of two solutions

‖ qt0(t)− qt1(t) ‖2 = ‖ qt0(t1) ‖2 ≤ c0 λ
−1
0 |t−λ0

1 − t−λ0
0 | (5.11)

for any t0 and t1, 1 ≤ t0, t1 <∞. This proves convergence of qt0 and therefore of
wt0 in norm in L∞(I, L2). Let w be the limit of wt0 . Taking the limit t0 → ∞ in
(5.10) yields (5.5), while taking the limit t1 →∞ in (5.11) yields (5.6). Clearly w
satisfies the equation (2.24).
Part (2). W satisfies the equation

∂t U(1/t) W = i t−1 U(1/t) B0 W + U(1/t) R(W ) . (5.12)

From (3.17) and Sobolev inequalities, we obtain

‖ B0W ‖2 ≤ ‖ B0 ‖3/k ‖W ‖r ≤ C ab0 t
−k/3 (5.13)

where a =‖ W ;L∞(I,Hk) ‖ and k = δ(r). Integrating (5.12) between t1 and t2
and using (5.4) and (5.13), we obtain

‖ U(1/t1)W (t1)−U(1/t2)W (t2) ‖2 ≤ C
{
|t−k/3

1 − t−k/3
2 |+ |t−λ0

1 − t−λ0
2 |

}
(5.14)

for any t1 and t2, 1 ≤ t1, t2 < ∞. Therefore U(1/t)W (t) and therefore also W (t)
has a strong limit w+ in L2, and

‖ U(1/t) W (t)− w+ ‖2 ≤ C
(
t−k/3 + t−λ0

)
, (5.15)
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from which (5.7) follows. Furthermore by a standard compactness argument, w+ ∈
Hk with |w+|k ≤ a and W (t) tends to w+ weakly in Hk.

Let now w+ ∈ Hk and W1 = U∗(1/t)w+. Then

R(W1) = −it−1 B0 U
∗(1/t) w+ (5.16)

so that
‖ R(W1) ‖2 ≤ C b0|w+|k t−k/3 (5.17)

by (5.13). The last statement follows from the fact that W and W1 have the same
limit w+ in L2 and from L2 norm conservation for the equation (2.24).
Part (3) follows from Parts (1) and (2) by a standard density argument. �

We next prove that the solutions with asymptotic properties in L2 obtained
in Proposition 5.2 exhibit similar asymptotic properties in Hk under suitable ad-
ditional assumptions.

Proposition 5.3 Let I = [1,∞), let k ≥ 1 and let B0 satisfy the estimates (3.17)
for 0 ≤ m ≤ k. Let λ > 0 and λ0 > λ+ k and let U(1/t)W ∈ C1(I,Hk) satisfy the
estimates (5.4) and

‖ ωk R(W ) ‖2 ≤ c1 t
−1−λ (5.18)

for all t ∈ I.
(1) Let w be the solution of the equation (2.24) obtained in Proposition 5.2

part (1). Then w ∈ C(I,Hk) and w satisfies the estimates (5.5) and

‖ ωk(w(t) −W (t)) ‖2 ≤ C t−λ (5.19)

for all t ∈ I.
(2) Let wt0 be the solution of the equation (2.24) defined in Proposition 5.2

part (1). When t0 → ∞, wt0 converges to w strongly in L∞([1, T̄ ], Hk′
) for 0 ≤

k′ < k and in the weak ∗ sense in L∞([1, T̄ ], Hk) for any T̄ <∞.

Proof. Part (1) will be proved together with the limiting properties stated in Part
(2). We know from Proposition 5.1 that wt0 ∈ C(I,Hk). The main point of the
proof consists in estimating qt0 = wt0 −W in Hk uniformly in t0 for t ≤ t0. We
know already from (5.10) that

‖ qt0(t) ‖2 ≤ Y0 t
−λ0 (5.20)

for t ≤ t0, with Y0 = c0λ
−1
0 . We next estimate y ≡‖ ωkqt0 ‖2. From (5.8) we obtain∣∣∂t ‖ ωkqt0 ‖2∣∣ ≤ t−1 ‖ [ωk, B0]qt0 ‖2 + ‖ ωkR(W ) ‖2 (5.21)

so that by Lemma 3.2, in the same way as in (4.7),∣∣∂t ‖ ωkqt0 ‖2∣∣ ≤ Ct−1
(‖ ∇B0 ‖∞ ‖ ωk−1qt0 ‖2 + ‖ ωkB0 ‖3/δ ‖ qt0 ‖r

)
+ ‖ ωk R(W ) ‖2 (5.22)
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with 0 < δ = δ(r) < k ∧ 3/2. Using the estimates (3.17), Sobolev inequalities and
interpolation with the help of (5.20) and the assumption (5.18), we obtain

|∂ty| ≤ C b0

{
Y

1−δ/k
0 yδ/k tk−1−δ/3−λ0(1−δ/k)

+Y 1/k
0 y1−1/k t−λ0/k

}
+ c1 t

−1−λ . (5.23)

We now define Y ≡‖ tλy;L∞([1, t0]) ‖, substitute that definition into the RHS of
(5.23), integrate the latter between t and t0, and obtain

y ≤ Cb0

(
Y

1−δ/k
0 Y δ/k(λ+ ν1)−1 t−λ−ν1 + Y

1/k
0 Y 1−1/k(λ + ν2)−1 t−λ−ν2

)
+c1 λ−1 t−λ

(5.24)

where

ν1 = (λ0 − λ)(1 − δ/k)− k + δ/3 (5.25)
ν2 = (λ0 − λ)/k − 1 (5.26)

provided λ+ν1 > 0 and λ+ν2 > 0. We impose in addition ν1 ≥ 0, ν2 ≥ 0, multiply
(5.24) by tλ, take the Supremum over t and obtain

Y ≤ λ−1 C b0

(
Y

1−δ/k
0 Y δ/k + Y

1/k
0 Y 1−1/k

)
+ λ−1 c1 (5.27)

which is uniform in t0. The condition ν1 ≥ 0 reduces to

λ0 ≥ λ+ k + 2δk/3(k − δ) (5.28)

and can be satisfied for λ0 > λ+k by taking δ sufficiently small. It implies ν2 > 0.
Changing the notation to x = Y Y −1

0 , b = λ−1Cb0 and c = λ−1c1Y
−1
0 , we rewrite

(5.27) as
x ≤ b

(
xδ/k + x1−1/k

)
+ c . (5.29)

Assuming δ ≤ k − 1 without loss of generality and using

xθ ≤ εx+ ε−θ/(1−θ)

for x > 0, ε > 0 and 0 < θ < 1, we obtain from (5.29)

x ≤ 2b
(
εx+ ε1−k

)
+ c

and for ε = (4b)−1

x ≤ (4b)k + 2c

or equivalently
Y ≤ (

4Cλ−1b0
)k
Y0 + 2λ−1 c1 , (5.30)

which completes the proof of the estimate of qt0 in Hk uniformly in t0 for t ≤ t0.
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Let now T̄ < ∞ and J = [1, T̄ ]. We know from (5.30) that wt0 is estimated
in L∞(J,Hk) uniformly in t0 for t0 ≥ T̄ and that wt0 converges to w in norm in
L∞(J, L2) by Proposition 5.2 part (1). It follows therefrom by a standard com-
pactness argument that w ∈ (L∞ ∩ Cw)(J,Hk), that w also satisfies the estimate
(5.30) and that wt0 converges to w in the topologies described in Part (2). Strong
continuity of w in Hk follows from Proposition 5.1. �

In order to complete the construction of the wave operators in Hk, we now
have to construct model functions W satisfying the assumptions (5.4) and (5.18).
In view of Proposition 5.2 part (2), we restrict our attention to W of the form

W (t) = U∗(1/t)w+ (5.31)

for some fixed w+ ∈ Hk+ and we take k+ > 3/2. With that choice, we obtain

R(W ) = R(U∗(1/t)W ) = −i t−1 B0 U
∗(1/t)w+ . (5.32)

However, with no further assumptions on w+, we are restricted to λ0 ≤ 1/2 and
consequently to k < 1/2. In fact, from (3.17) we obtain

‖ R(W ) ‖2 ≤ t−1 ‖ B0 ‖2 ‖ U∗(1/t)w+ ‖∞ ≤ Cb0 t
−3/2|w+|k+ . (5.33)

Furthermore, from Lemma 3.2 and (3.17) we obtain for k < 1/2

‖ ωkR(W ) ‖2
≤ C t−1

{‖ ωkB0 ‖2 ‖ U∗(1/t)w+ ‖∞ + ‖ B0 ‖r ‖ ωkU∗(1/t)w+ ‖3/δ
}

≤ Cb0 t
−3/2+k |w+|k+ (5.34)

with 0 < δ = δ(r) ≤ 3k < 3/2. Together with an extension of Proposition 5.3 to
k ≤ 1/2, which we have not performed, the estimates (5.33) (5.34) would allow us
to complete the construction of the wave operators for 0 < k < 1/2, with λ0 = 1/2
and 0 < λ < 1/2− k.

In order to cover higher values of k, and in particular for k > 1, as will be
needed for the nonlinear system (1.1) (1.2), we shall need additional conditions on
w+ and B0. We first exhibit a set of local sufficient conditions in the form of joint
decay estimates for w+, and B0, where the nonlocal operator U∗(1/t) no longer
appears.

Lemma 5.1 Let λ0 > 0 and let m̄ be a nonnegative integer. Let B0 satisfy the
estimates (3.17) for 0 ≤ m ≤ m̄. Let w+ ∈ Hk+ with k+ ≥ 2λ0 ∨ m̄ and let
a+ = |w+|k+ . Assume that B0 and w+ satisfy the estimates

‖ (∂α1B0) (∂α2w+) ‖2 ≤ b1 t
−λ0+|α1|+|α2|/2 (5.35)

for all multi-indices α1, α2 with 0 ≤ |α1| ≤ m̄ and 0 ≤ |α2| < 2λ0, and for all
t ≥ 1. Then the following estimates hold for all m, 0 ≤ m ≤ m̄, and for all t ≥ 1

‖ ωmR(U∗(1/t)w+) ‖2 = t−1 ‖ ωm (B0 U
∗(1/t)w+) ‖2

≤ C (b1 + b0a+) t−1−λ0+m . (5.36)
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Proof. By interpolation, it is sufficient to prove (5.36) for integer m. Let α be a
multi-index with |α| = m. We estimate

‖ ∂α (B0 U
∗(1/t)w+) ‖2 ≤ C

∑
α1+α3=α

‖ (∂α1B0)U∗(1/t) ∂α3w+ ‖2 . (5.37)

If |α3| < 2λ0, we expand U∗(1/t) through the relation∣∣∣∣∣∣eix −
∑
j≤p

(j!)−1(ix)j

∣∣∣∣∣∣ ≤ 2(p!)−1 |x|p+θ

with p+ θ = λ0 − |α3|/2 and 0 < θ ≤ 1, so that

‖ (∂α1B0)U∗(1/t)∂α3w+ ‖2 ≤ C
∑

j<λ0−|α3|/2
t−j ‖ (∂α1B0)∆j ∂α3w+ ‖2

+C ‖ ∂α1B0 ‖∞ t−(λ0−|α3|/2) ‖ ω2λ0w+ ‖2
≤ C(b1 + b0a+)t−λ0+|α1|+|α3|/2 = C(b1 + b0a+)t−λ0+m−|α3|/2 (5.38)

by (5.35) and (3.17), which proves (5.36) in this case.
If |α3| ≥ 2λ0, the last norm in (5.37) is estimated by the use of (3.17) as

‖ (∂α1B0)U∗(1/t)∂α3w+ ‖2 ≤ C ‖ ∂α1B0 ‖∞ ‖ ∂α3w+ ‖2
≤ C b0 a+ t|α1| ≤ Cb0 a+ tm−2λ0 (5.39)

since |α1| = m− |α3| ≤ m− 2λ0, which completes the proof of (5.36). �
We shall apply Lemma 5.1 with m̄ = {k}, the smallest integer ≥ k. Then

(5.36) with m = 0 and m = k reduces to (5.4) and (5.18) with λ = λ0 − k
respectively. For λ0 > k ≥ 1, one can take k+ = 2λ0.

We now give sufficient conditions that ensure the assumption (5.35). We first
remark that (5.35) is trivially satisfied under suitable support properties of w+

and of the initial data (A+, Ȧ+) of the scalar field A0 at time t = 0 (see (2.3)). In
fact, assume that

Supp (A+, Ȧ+) ⊂ {x : |x| ≤ R} . (5.40)

Then, by the Huyghens principle

Supp A0 ⊂ {(x, t) : ||x| − t| ≤ R} (5.41)

so that
Supp B0 ⊂ {(x, t) : ||x| − 1| ≤ R/t} . (5.42)

If on the other hand
Supp w+ ⊂ {x : ||x| − 1| ≥ η} (5.43)

for some η, 0 < η < 1, then (∂α1B0)∂α2w+ = 0 for t ≥ R/η for any multi-indices
α1 and α2, which ensures (5.35) in a trivial way.
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We shall now give more general conditions that ensure (5.35), keeping the
support condition (5.43) on w+, and relaxing the support condition (5.40) on
(A+, Ȧ+) to space decay conditions.

Lemma 5.2 Let λ0 > 0, k+ ≥ 2λ0 and let k+ > 3/2. Let w+ ∈ Hk+ . Let α1 be a
multi-index.

(1) Let B0 satisfy (3.17) for m = |α1| and in addition

‖ χ0 ∂
α1B0 ‖2 ≤ b2 t

−λ0+|α1| (5.44)

where χ0 is the characteristic function of the support of w+. Then (5.35) holds
for any multi-index α2, 0 ≤ |α2| ≤ 2λ0. The constant in (5.35) can be taken as
b1 = C(b0 ∨ b2)a+.

(2) Let w+ satisfy the support property (5.43) and let (A+, Ȧ+) satisfy the
following conditions for all R ≥ R0 for some R0 > 0:

‖ χ(|x| ≥ R)∂α1A+ ‖2 ≤ C R−λ0+1/2 , (5.45)
‖ χ(|x| ≥ R)Ȧ+ ‖6/5 ≤ C R−λ0+1/2 if α1 = 0 , (5.46)

‖ χ(|x| ≥ R)∂α
′
1Ȧ+ ‖2 ≤ C R−λ0+1/2 if α1 �= 0 , (5.47)

where α′
1 is a multi-index satisfying α′

1 ≤ α1, |α′
1| = |α1|−1, and where χ(|x| ≥ R)

is the characteristic function of {x : |x| ≥ R}. Then (5.44) holds.

Proof. Part (1). We estimate by the Hölder inequality and interpolation between
(3.17) and (5.44)

‖ (∂α1B0) (∂α2w+) ‖2 ≤ ‖ χ0 (∂α1B0) ‖r ‖ ∂α2w+ ‖3/δ
≤ (b0 ∨ b2)t−λ0+|α1|+2λ0δ/3 ‖ ∂α2w+ ‖3/δ
= (b0 ∨ b2)t−λ0+|α1|+|α2|/2 ‖ ∂α2w+ ‖3/δ (5.48)

where δ = δ(r) = 3|α2|/4λ0, so that 0 ≤ δ ≤ 3/2. The last norm in (5.48) is
estimated by |w+|k+ through Sobolev inequalities since |α2| + 3/2 − δ ≡ 3/2 +
|α2|(1 − 3/4λ0) ranges from 3/2 to 2λ0 when |α2| ranges from 0 to 2λ0.

Part (2). Using the support properties of w+ and returning to the variable A0, we
see that (5.44) is implied by

‖ χ(||x| − t| ≥ ηt)∂α1A0(t) ‖2 ≤ b2 t
−λ0+1/2 . (5.49)

Let now R > 0, let χ1 ∈ C∞(R3), 0 ≤ χ1 ≤ 1, χ1(x) = 0 for |x| ≤ 1, χ1(x) = 1
for |x| ≥ 2 and let χR(x) = χ(x/R). Let ÃR be the solution of the wave equation
��ÃR = 0 with initial data(

ÃR, ∂tÃR

)
(0) =

(
χR ∂α1A+, χR ∂α1Ȧ+

)
at t = 0 .
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By the Huyghens principle, ÃR(t) = ∂α1A0(t) for ||x| − t| ≥ 2R so that

‖ χ(||x|−t| ≥ 2R)∂α1A0(t) ‖2 = ‖ χ(||x|−t| ≥ 2R)ÃR(t) ‖2 ≤ ‖ ÃR(t) ‖2 . (5.50)

It follows now from (3.16) that

‖ ÃR(t) ‖2 ≤ ‖ χR ∂α1A+ ‖2 + ‖ ω−1 χR ∂α1Ȧ+ ‖2 . (5.51)

If α1 = 0, we estimate the last norm in (5.51) by

‖ ω−1 χR Ȧ+ ‖2 ≤ C ‖ χR Ȧ+ ‖6/5 . (5.52)

If α1 �= 0, we rewrite ∂α1 = ∂j∂
α′

1 and estimate

‖ ω−1χR∂
α1Ȧ+ ‖2 ≤ ‖ ω−1∂jχR∂

α′
1Ȧ+ ‖2 + ‖ ω−1(∂jχR)∂α

′
1Ȧ+ ‖2

≤ ‖ χR∂α′
1Ȧ+ ‖2 +C ‖ ∂jχ1 ‖3‖ χ(|x| ≥ R)∂α

′
1Ȧ+ ‖2

(5.53)

by the Sobolev and Hölder inequalities. Collecting (5.50)–(5.53) and using the
assumption (5.45)–(5.47), we obtain

‖ χ(||x| − t| ≥ 2R)∂α1A0(t) ‖2 ≤ C R−λ0+1/2

from which (5.49) follows by taking 2R = ηt. �
Collecting the previous results essentially yields the wave operators in Hk for

the equation (2.24) in the form of Proposition 5.4 below. In that proposition, we
have kept the assumptions on B0 in the implicit form of the estimates (3.17) and
(5.35). If so desired, those assumptions can be replaced by sufficient conditions on
(w+, A+, Ȧ+) by the use of Lemmas 3.5 and 5.2.

Proposition 5.4 Let k ≥ 1, k+ > 2k, let λ0 and λ satisfy λ > 0, k+λ < λ0 ≤ k+/2.
Let w+ ∈ Hk, let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k, and let (w+, B0)
satisfy the estimates (5.35) for all multi-indices α1, α2 with 0 ≤ |α1| ≤ k̄ and
0 ≤ |α2| < 2λ0, where k̄ is the smallest integer ≥ k. Then the equation (2.24) has
a unique solution w ∈ C([1,∞), L2) such that

‖ w(t) − w+ ‖2 → 0 when t→∞ .

Furthermore w ∈ C([1,∞), Hk) and w satisfies the estimates

‖ w(t) − U∗(1/t)w+ ‖2 ≤ C t−λ0 (5.54)
‖ ωk(w(t)− U∗(1/t)w+) ‖2 ≤ C t−λ (5.55)

for all t ≥ 1.

Proof. The results follow from Propositions 5.2 and 5.3 and from Lemma 5.1. �
The existence of the wave operators for u in the usual sense at the corre-

sponding level of regularity is an easy consequence of Proposition 5.4. We refrain
from giving a formal statement at this stage. The same question will be considered
in Section 8 in the case of the interacting system (1.1) (1.2).
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6 Cauchy problem at infinity for the auxiliary system

In this section we begin the construction of the wave operators for the auxiliary
system (2.20) by solving the Cauchy problem at infinity for that system in the
difference form (2.30), for large or infinite initial time, and for a given choice
of (W,S) satisfying a number of a priori estimates. The construction of (W,S)
satisfying those estimates is deferred to the next section. In the same spirit as in
Section 4, we solve the system (2.30) in two steps. We first solve the linearized
version of that system (2.31), thereby defining a map Γ : (q, σ) → (q′, σ′). We then
show that this map is a contraction in suitable norms on a suitable set.

The basic tool of this section again consists of a priori estimates for suitably
regular solutions of the linearized system (2.31). In order to handle efficiently a
non-vanishing B0, those estimates have to be much more elaborate than those of
Section 4.

We first estimate a single solution of the linearized system (2.31) at the level
of regularity where we shall eventually solve the auxiliary system (2.30).

Lemma 6.1 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval and
let t1 ∈ Ī. Let B0 satisfy the estimates (3.17) for 0 ≤ l ≤ k. Let (U(1/t))W,S) ∈
C(I+, Xk+1,�+1) ∩ C1(I+, Xk,�) with W ∈ L∞(I+, Hk+1) and let

a =‖W ;L∞(I+, Hk+1) ‖ . (6.1)

Let (q, σ), (q′, σ′) ∈ C(I,Xk,�) with q ∈ L∞(I,Hk) ∩ L2(I, L2) if t1 = ∞, and let
(q′, σ′) be a solution of the system (2.31) in I. Then the following estimates hold
for all t ∈ I:

|∂t ‖ q′ ‖2| ≤ C
{
t−2a ‖ ∇σ ‖2 +t−1−β a2 I0 (‖ q ‖2)

+t−1 a I−1 (‖ q ‖2 ‖ q ‖3)
}
+ ‖ R1(W,S) ‖2 , (6.2)

∣∣∂t ‖ ωkq′ ‖2∣∣ ≤ C
{
b0

(
‖ ωk−1q′ ‖2 +tk−1−δ/3 ‖ q′ ‖r

)
+t−2 a

(‖ ωk∇σ ‖2 + ‖ σ ‖∞ + ‖ ∇σ ‖3
)

t−2
(
‖ ∇s ‖∞‖ ωkq′ ‖2 + ‖ ω[k∨3/2]∇s ‖2‖ ω[k∧3/2]q′ ‖2

+χ(k > 3/2) ‖ ωk∇s ‖2‖ q′ ‖∞
)

+t−1a2
(
Ik−1

(‖ ωk−1q ‖2 + ‖ q ‖2
)
+ I0 (‖ q ‖2)+ ‖ ωk−1q′ ‖2 + ‖ q′ ‖2

)
+t−1a

(
Ik−1

(‖ ωkq ‖2‖ q ‖3) + I0 (‖ ∇q ‖2‖ q ‖3)
+I1/2

(
‖ ω1/2q ‖2

)
‖ ωkq′ ‖2 + Ik−1/2

(
‖ ωk−1/2q ‖2 + ‖ q ‖2

)
‖ ∇q′ ‖2

)
+t−1

(
I1/2

(‖ ∇q ‖22) ‖ ωkq′ ‖2 +Ik−1/2

(‖ ωkq ‖2‖ ∇q ‖2) ‖ ∇q′ ‖2) }
+ ‖ ωkR1(W,S) ‖2 (6.3)
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where s = S + σ and 0 < δ = δ(r) ≤ [k ∧ 3/2],

|∂t ‖ ωm∇σ′ ‖2| ≤ C t−2
{
‖ ∇s ‖∞ ‖ ωm∇σ′ ‖2 + ‖ ωm∇s ‖2 ‖ ∇σ′ ‖∞

‖ ωm∇σ ‖2 ‖ ∇S ‖∞ + ‖ σ ‖∞ ‖ ωm∇2S ‖2
}

+C
{
t−1+β(m+1)a I0 (‖ q ‖2) + t−1+β(m+5/2) I−3/2

(‖ q ‖22) }
+ ‖ ωm∇R2(W,S) ‖2 (6.4)

for 0 ≤ m ≤ :,

|∂t ‖ ∇σ′ ‖2| ≤ Ct−2
{
‖ ∇s ‖∞‖ ∇σ′ ‖2 + ‖ ∇σ ‖2

(
‖ ∇S ‖∞ + ‖ ω3/2∇S ‖2

) }
+C

{
t−1+βa I0 (‖ q ‖2) + t−1+5β/2I−3/2

(‖ q ‖22) }
+ ‖ ∇R2(W,S) ‖2 (6.4)0

where the time parameter is t1 in all the estimating functions Im, and the super-
script t1 is omitted for brevity.

Remark 6.1. All the norms of (q, σ) and (q′, σ′) that appear in (6.2)–(6.4) are
controlled by the norms in Xk,� through Sobolev inequalities. Furthermore all the
integrals Im are convergent if t1 = ∞. This follows from boundedness of q in Hk

in all cases where m > −1/2, namely in all cases but two. The exceptions are

I−3/2

(‖ q ‖22) =
∫ ∞

1

dν ‖ q(νt) ‖22

in (6.4) and

I−1 (‖ q ‖2 ‖ q ‖3) ≤ C

∫ ∞

1

dν ν−1/2 ‖ q ‖3/22 ‖ ∇q ‖1/22

≤ C ‖ ∇q;L∞([t,∞), L2) ‖1/2 ‖ q;L2((t,∞), L2) ‖3/2

in (6.2), both of which are controlled under the additional assumption that q ∈
L2(I, L2).

Finally it is easy to see by estimates similar to, but simpler than, those of
Lemma 4.1 that all the norms of the remainders R1 and R2 that occur in (6.2)–
(6.4) are finite under the assumptions made on (W,S).

Proof of Lemma 6.1 In all the proof, the time superscript in BS , BL and in the
various Im is omitted, except in dubious cases. That time superscript is in general
t1, except in BS(W,W ) where it is ∞.

Proof of (6.2). From (2.31), we estimate
|∂t ‖ q′ ‖2| ≤
t−2 ‖ Q(σ,W ) ‖2 +t−1 ‖ (BS(q, q) + 2BS(W, q))W ‖2 + ‖ R1(W,S) ‖2 . (6.5)
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We next estimate by (3.8) (3.10) and Sobolev inequalities

‖ Q(σ,W ) ‖2≤ C ‖ ∇σ ‖2 (‖ ∇W ‖3 + ‖W ‖∞) ≤ Ca ‖ ∇σ ‖2, (6.6)
‖ BS(W, q)W ‖2≤ Ct−β ‖W ‖∞ I0 (‖W ‖∞‖ q ‖2) ≤ Ca2t−βI0 (‖ q ‖2) , (6.7)
‖ BS(q, q)W ‖2≤ C ‖W ‖∞ I−1 (‖ q ‖2‖ q ‖3) ≤ CaI−1 (‖ q ‖2 ‖ q ‖3) . (6.8)

Substituting (6.6) (6.7) (6.8) into (6.5) yields (6.2).
Proof of (6.3). From (2.31), we estimate∣∣∂t ‖ ωkq′ ‖2∣∣ ≤ t−1 ‖ [ωk, B0]q′ ‖2 +t−2

(‖ [ωk, s] · ∇q′ ‖2
+ ‖ (∇ · s)ωkq′ ‖2 + ‖ ωk ((∇ · s)q′) ‖2 + ‖ ωkQ(σ,W ) ‖2

)
t−1

(‖ [ωk, BS(w,w)]q′ ‖2 + ‖ ωk (BS(q, q) + 2BS(q,W ))W ‖2
)

+ ‖ ωk R1(W,S) ‖2 (6.9)

and we estimate the various terms in the RHS successively.
The contribution of B0 is estimated by Lemma 3.2 and by (3.17) exactly as

in Section 4 (see (4.7)) and yields

‖ [ωk, B0]q′ ‖2 ≤ C b0

(
t ‖ ωk−1q′ ‖2 +tk−δ/3 ‖ q′ ‖r

)
. (6.10)

The contribution of Q(s, q′) is estimated by (4.8) as

‖ [ωk, s] · ∇q′ ‖2 + ‖ (∇ · s)ωkq′ ‖2 + ‖ ωk ((∇ · s)q′) ‖2
≤ C

{
‖ ∇s ‖∞ ‖ ωkq′ ‖2 + ‖ ω[k∨3/2]∇s ‖2 ‖ ω[k∧3/2]q′ ‖2

+χ(k > 3/2) ‖ ωk∇s ‖2 ‖ q′ ‖∞
}
. (6.11)

The contribution of Q(σ,W ) is estimated by Lemma 3.2 and Sobolev inequal-
ities as

‖ ωkQ(σ,W ) ‖2 ≤ C
{
‖ σ ‖∞ ‖ ωk∇W ‖2 + ‖ ωkσ ‖6 ‖ ∇W ‖3

+ ‖ ωk∇σ ‖2 ‖W ‖∞ + ‖ ∇σ ‖3 ‖ ωkW ‖6
}

≤ C a
{
‖ ωk∇σ ‖2 + ‖ σ ‖∞ + ‖ ∇σ ‖3

}
. (6.12)

The contribution of BS with w = W + q yields a number of terms which we order
by increasing number of q or q′ occurring therein. We first expand

Bt1,∞
S (w,w) = B∞

S (W,W ) + 2Bt1
S (W, q) +Bt1

S (q, q) .

By Lemma 3.2 and Sobolev inequalities, we estimate

‖ [ωk, BS(W,W )]q′ ‖2 ≤ C
{
‖ ∇BS(W,W ) ‖∞ ‖ ωk−1q′ ‖2

+ ‖ ωk+3/2−δB1(W,W ) ‖2 ‖ q′ ‖r
}

(6.13)
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where we take 0 < δ = δ(r) = (k − 1) ∧ 1/2 so that

‖ q′ ‖r ≤ C
(‖ ωk−1q′ ‖2 + ‖ q′ ‖2

)
.

Furthermore

‖ ∇BS(W,W ) ‖∞ ≤ C ‖ ∇2B1(W,W ) ‖1−θ
2 ‖ ωk+3/2 B1(W,W ) ‖θ2

with θ = 1/(2k − 1), and by (3.10) and Lemma 3.2

‖ ωm+1B1(W,W ) ‖2 ≤ C Im (‖ ωmW ‖2 ‖W ‖∞) ≤ C a2

which we use with m = 1, k + 1/2 and k + 1/2− δ. Substituting those estimates
into (6.13) yields

‖ [ωk, BS(W,W )]q′ ‖2 ≤ C a2
(‖ ωk−1q′ ‖2 + ‖ q′ ‖2

)
. (6.14)

In a similar way, we estimate

‖ [ωk, BS(W, q)]q′ ‖2 ≤ C
{
‖ ω3/2B1(W, q) ‖2 ‖ ωkq′ ‖2

+ ‖ ωk+1/2B1(W, q) ‖2 ‖ ∇q′ ‖2
}
. (6.15)

By Lemma 3.2 again and by (3.10)

‖ ωm+1B1(W, q) ‖2 ≤ Im (‖ ωmWq ‖2) ,
‖ ωmWq ‖2 ≤ C

(
‖W ‖∞ ‖ ωmq ‖2 + ‖ ωm+3/2−δW ‖2 ‖ q ‖r

)
with 0 < δ = δ(r) = m ∧ 1/2, so that for m ≤ k − 1/2

‖ ωm+1B1(W, q) ‖2 ≤ C a Im (‖ ωmq ‖2 + ‖ q ‖2) , (6.16)

where ‖ q ‖2 can be omitted for m ≤ 1/2. Substituting (6.16) with m = 1/2 and
m = k − 1/2 into (6.15) yields

‖ [ωk, BS(W, q)]q′ ‖2 ≤ C a
{
I1/2

(
‖ ω1/2q ‖2

)
‖ ωkq′ ‖2

+Ik−1/2

(
‖ ωk−1/2q ‖2 + ‖ q ‖2

)
‖ ∇q′ ‖2

}
. (6.17)

By Lemma 3.2 and Sobolev inequalities again, we next estimate

‖ [ωk, BS(q, q)]q′ ‖2 ≤ C
{
‖ ω3/2B1(q, q) ‖2 ‖ ωkq′ ‖2

+ ‖ ωk+1/2B1(q, q) ‖2 ‖ ∇q′ ‖2
}

(6.18)

followed by (see also (3.10))

‖ ω3/2B1(q, q) ‖2 ≤ CI1/2
(‖ ∇q ‖22)

‖ ωk+1/2B1(q, q) ‖2 ≤ CIk−1/2

(‖ ωkq ‖2 ‖ ∇q ‖2)
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so that

‖ [ωk, BS(q, q)]q′ ‖2 ≤ C
{
I1/2

(‖ ∇q ‖22) ‖ ωkq′ ‖2
+Ik−1/2

(‖ ωkq ‖2 ‖ ∇q ‖2) ‖ ∇q′ ‖2 }
. (6.19)

We now turn to the second contribution of BS to (6.9). By Lemma 3.2 and
Sobolev inequalities again

‖ ωk(BS(W, q)W ) ‖2 ≤ C
{
‖ ωkB1(W, q) ‖2 ‖W ‖∞

+ ‖ ∇B1(W, q) ‖2 ‖ ωk+1/2W ‖2
}

(6.20)

and by (6.16) with m = k − 1 and m = 0

‖ ωk(BS(W, q)W ) ‖2 ≤ C a2
(
Ik−1

(‖ ωk−1q ‖2 + ‖ q ‖2
)
+ I0 (‖ q ‖2)

)
. (6.21)

Similarly

‖ ωk(BS(q, q)W ) ‖2 ≤ C
{
‖ ωkB1(q, q) ‖2 ‖W ‖∞

+ ‖ ∇B1(q, q) ‖2 ‖ ωk+1/2W ‖2
}

(6.22)

followed by (see the proof of (6.19))

‖ ωkB1(q, q) ‖2 ≤ C Ik−1

(‖ ωkq ‖2 ‖ q ‖3)
‖ ∇B1(q, q) ‖2 ≤ C I0 (‖ ∇q ‖2 ‖ q ‖3)

yields

‖ ωk(BS(q, q)W ) ‖2 ≤ C a
(
Ik−1

(‖ ωkq ‖2 ‖ q ‖3) + I0 (‖ ∇q ‖2 ‖ q ‖3)
)
. (6.23)

Substituting (6.10) (6.11) (6.12) (6.14) (6.17) (6.19) (6.21) and (6.23) into (6.9)
and reordering the contributions of BS by increasing powers of (q, q′) yields (6.3).
Proof of (6.4). From (2.31), we estimate∣∣∂t ‖ ωm+1σ′ ‖2

∣∣ ≤ t−2
(‖ [ωm+1, s] · ∇σ′ ‖2 + ‖ (∇ · s)ωm+1σ′ ‖2

+ ‖ ωm+1(σ · ∇S) ‖2
)
+ t−1 ‖ ωm+2 (BL(q, q) + 2BL(W, q)) ‖2

+ ‖ ωm+1 R2(W,S) ‖2 . (6.24)

We next estimate by Lemma 3.2 again

‖ [ωm+1, s] ·∇σ′ ‖2 ≤ C
(‖ ∇s ‖∞ ‖ ωm+1σ′ ‖2 + ‖ ωm+1s ‖2 ‖ ∇σ′ ‖∞

)
(6.25)

‖ ωm+1(σ · ∇S) ‖2 ≤ C
(‖ ωm+1σ ‖2 ‖ ∇S ‖∞ + ‖ σ ‖∞ ‖ ωm+1∇S ‖2

)
(6.26)
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while by (3.9) and Lemma 3.4

‖ ωm+2BL(W, q) ‖2 ≤ tβ(m+1) I0 (‖W ‖∞ ‖ q ‖2)
≤ tβ(m+1) a I0 (‖ q ‖2) , (6.27)

‖ ωm+2BL(q, q) ‖2≤ C tβ(m+5/2) I−3/2

(‖ q ‖22) . (6.28)
Substituting (6.25) (6.26) (6.27) (6.28) into (6.24) yields (6.4). For m = 0, the
term ‖ ωm∇s ‖2 ‖ ∇σ′ ‖∞ can be omitted, and the term σ · ∇S can be estimated
in a sllightly different way, thereby leading to (6.4)0. �

We next estimate the difference of two solutions of the linearized system
(2.31) corresponding to two different choices of (q, σ), but to the same choice of
(W,S). As in Section 4, we estimate that difference at a lower level of regularity
than the solutions themselves.

Lemma 6.2 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval and
let t1 ∈ Ī. Let B0 be sufficiently regular, for instance B0 ∈ C(I,Hk

3 ). Let (W,S)
satisfy the assumptions of Lemma 6.1. Let (qi, σi), (q′i, σ

′
i) ∈ C(I,Xk,�) with qi ∈

L∞(I,Hk)∩L2(I, L2), i = 1, 2, if t1 = ∞, and let (q′i, σ
′
i) be solutions of the system

(2.31) associated with (qi, σi) and (W,S). Define (q±, σ±) = (1/2)(q1±q2, σ1±σ2)
and (q′±, σ

′
±) = (1/2)(q′1 ± q′2, σ′1 ± σ′2). Then the following estimates hold for all

t ∈ I.∣∣∂t ‖ q′− ‖2∣∣ ≤ C
{
t−2 a ‖ ∇σ− ‖2 +t−2

(
‖ ω[3/2−k]+∇σ− ‖2 ‖ ω[k∧3/2]q′+ ‖2

+χ(k > 3/2) ‖ ∇σ− ‖2 ‖ q′+ ‖∞
)
+ t−1−β a2 I0 (‖ q− ‖2)

+t−1 a
(‖ q′+ ‖3 I0 (‖ q− ‖2) + I−1 (‖ q+ ‖3 ‖ q− ‖2)

)
+t−1 ‖ q′+ ‖6 I−1/2 (‖ q+ ‖6 ‖ q− ‖2)

}
, (6.29)∣∣∂t ‖ ωm∇σ′− ‖2∣∣ ≤ C t−2

{
‖ ∇s+ ‖∞ ‖ ωm∇σ′− ‖2 + ‖ ∇s′+ ‖∞ ‖ ωm∇σ− ‖2

+ ‖ ωm−m′+3/2∇s+ ‖2 ‖ ωm′∇σ′− ‖2 + ‖ ωm+5/2−δ∇s′+ ‖2 ‖ σ− ‖r
}

+C
{
t−1+β(m+1) a I0 (‖ q− ‖2) + t−1+β(m+5/2)I−3/2 (‖ q+ ‖2 ‖ q− ‖2)

}
,

(6.30)∣∣∂t ‖ ∇σ′− ‖2∣∣ ≤ C t−2
{
‖ ∇s+ ‖∞ ‖ ∇σ′− ‖2

+ ‖ ∇σ− ‖2
(
‖ ∇s′+ ‖∞ + ‖ ω3/2∇s′+ ‖2

)}
+C

{
t−1+β a I0 (‖ q− ‖2) + t−1+5β/2I−3/2 (‖ q+ ‖2 ‖ q− ‖2)

}
(6.30)0

where s+ = S + σ+, s′+ = S + σ′+,

0 ≤ m ≤ :0 , m
′ = m ∧ 1/2 , δ = δ(r) = [(m+ 1) ∧ 3/2] ,

[3/2− k]+ ≤ :0 ≤ :− 1 , (6.31)

and the superscript t1 is again omitted in the estimating functions Im.
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Remark 6.2 Under the assumptions made, all the norms in the first part of the
RHS of (6.30) are controlled by |∇s+|�, |∇s′+|�, |∇σ−|�0 and |∇σ′−|�0 .
Proof. Taking the difference of the system (2.31) for (q′i, σ

′
i), or equivalently and

more simply rewriting (4.21) with (w−, s−) = (q−, σ−), (w′
−, s

′
−) = (q′−, σ

′
−), and

accounting for the replacement of Bt1
S (w,w) by Bt1,∞

S (w,w), we obtain
∂tq

′
− = i(2t2)−1∆q′− + t−2

{
Q(s+, q′−) +Q(σ−, w′

+)
}

+ it−1B0q
′
−

+it−1
{(
Bt1,∞
S (w+, w+) +Bt1

S (q−, q−)
)
q′− + 2Bt1

S (w+, q−)w′
+

}
∂tσ

′
− = t−2

(
s+ · ∇σ′− + σ− · ∇s′+

)− 2t−1∇Bt1
L (w+, q−) .

(6.32)

We first estimate q′−. From (6.32) we obtain∣∣∂t ‖ q′− ‖2∣∣ ≤ t−2 ‖ Q(σ−, w′
+) ‖2 +2t−1 ‖ BS(w+, q−)w′

+ ‖2 . (6.33)

We expand (6.33) by using

(w+, s+) = (W,S) + (q+, σ+) , (w′
+, s

′
+) = (W,S) + (q′+, σ

′
+)

and we estimate the various terms successively.
From (6.6) we obtain

‖ Q(σ−,W ) ‖2 ≤ C a ‖ ∇σ− ‖2 . (6.34)

By the same estimates as in the proof of (4.23), we next obtain

‖ Q(σ−, q′+) ‖2 ≤ C
{
‖ ω[3/2−k]+∇σ− ‖2 ‖ ω[k∧3/2]q′+ ‖2

+χ(k > 3/2) ‖ ∇σ− ‖2 ‖ q′+ ‖∞
}
. (6.35)

We next estimate by (6.7) (6.8)

‖ BS(W, q−)W ‖2 ≤ C a2 t−β I0 (‖ q− ‖2) , (6.36)

‖ BS(q+, q−)W ‖2 ≤ C a I−1 (‖ q+ ‖3 ‖ q− ‖2) . (6.37)

The remaining terms are new. Using (3.10) and Sobolev inequalities, we obtain
successively

‖ BS(W, q−)q′+ ‖2 ≤ C a ‖ q′+ ‖3 I0 (‖ q− ‖2) , (6.38)

‖ BS(q+, q−)q′+ ‖2 ≤ C ‖ BS(q+, q−) ‖3 ‖ q′+ ‖6
≤ C I−1/2 (‖ q+ ‖6 ‖ q− ‖2) ‖ q′+ ‖6 . (6.39)

Substituting (6.34)–(6.39) into (6.33) yields (6.29).
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We next estimate σ′−. From (6.32) we obtain∣∣∂t ‖ ωm+1σ′− ‖2
∣∣ ≤ t−2

(‖ [ωm+1, s+] · ∇σ′− ‖2 + ‖ (∇ · s+)ωm+1σ′− ‖2
+ ‖ ωm+1(σ− · ∇s′+) ‖2

)
+ 2t−1 ‖ ωm+2(BL(W, q−) +BL(q+, q−)) ‖2

(6.40)

and we estimate the various terms successively.
From Lemma 3.2 and Sobolev inequalities, we obtain

‖ [ωm+1, s+] · ∇σ′− ‖2 ≤ C
(‖ ∇s+ ‖∞ ‖ ωm+1σ′− ‖2

+ ‖ ωm+1s+ ‖3/m′ ‖ ∇σ′− ‖r′
)

(6.41)

≤ C
(
‖ ∇s+ ‖∞ ‖ ωm∇σ′− ‖2 + ‖ ωm−m′+3/2∇s+ ‖2 ‖ ωm′∇σ′− ‖2

)
with m′ = δ(r′) = m ∧ 1/2, and

‖ ωm+1(σ−∇s′+) ‖2≤ C
(‖ ∇s′+ ‖∞‖ ωm∇σ− ‖2 + ‖ ωm+1∇s′+ ‖3/δ‖ σ− ‖r

)
≤ C

(
‖ ∇s′+ ‖∞‖ ωm∇σ− ‖2 + ‖ ωm+5/2−δ∇s′+ ‖2‖ σ− ‖r

)
(6.42)

with δ = δ(r) = [(m+ 1) ∧ 3/2].
The contribution of BL to (6.40) is estimated exactly as in the proof of (6.4)

(see (6.27) and (6.28)) by

‖ ωm+2 (BL(W, q−) +BL(q+, q−)) ‖2 ≤ C
(
a tβ(m+1) I0 (‖ q− ‖2)

+tβ(m+5/2) I−3/2 (‖ q+ ‖2 ‖ q− ‖2)
)
. (6.43)

Substituting (6.41) (6.42) (6.43) into (6.40) yields (6.30) and (6.300), where one
term from (6.41) can be omitted. �

We now begin the study of the Cauchy problem for the auxiliary system in
the difference form (2.30) and for that purpose we first study that problem for the
linearized version of that system. For finite initial time t0, that problem is solved
by a minor modification of Proposition 4.1. The following proposition is simply a
compilation of that result and of Lemmas 6.1 and 6.2.

Proposition 6.1 Let 1 < k ≤ :, : > 3/2 and β > 0. Let I ⊂ [1,∞) be an interval and
let t1 ∈ Ī. let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k. Let (U(1/t)W,S) ∈
C(I+, Xk+1,�+1)∩C1(I+, Xk,�) with W ∈ L∞(I+, Hk+1) and define a by (6.1). Let
(q, σ) ∈ C(I,Xk,�) with q ∈ L∞(I,Hk) ∩ L2(I, L2) if t1 = ∞. Let t0 ∈ I and let
(q′0, σ

′
0) ∈ Xk,�. Then the system (2.31) has a unique solution (q′, σ′) ∈ C(I,Xk,�)

with (q′, σ′)(t0) = (q′0, σ′0). That solution satisfies the estimates (6.2) (6.3) (6.4)
of Lemma 6.1 for all t ∈ I. Two such solutions (q′i, σ

′
i) associated with (qi, σi),

i = 1, 2 and with the same (W,S) satisfy the estimates (6.29) (6.30) of Lemma
6.2 for all t ∈ I.
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We shall be eventually interested in solving the Cauchy problem for the aux-
iliary system (2.30) with infinite initial time t0. As a preliminary, we need to solve
the same problem for the linearized system (2.31). This is done in the following
proposition, which of course requires much stronger assumptions on the asymptotic
behaviour in time of (W,S) and (q, σ). With the study of the nonlinear system
in view, we already make the assumptions that will be needed for that purpose,
although they could be slightly weakened for the linear problem. Since we want to
take t0 = ∞, we also take t1 = ∞.

Proposition 6.2 Let 1 < k ≤ :, : > 3/2. Let β, λ0 and λ satisfy

0 < β < 1 , λ > 0 , λ0 > λ+ k , λ0 > β(:+ 1) . (6.44)

Let t1 = ∞, let 1 ≤ T < ∞, and I = [T,∞). Let B0 satisfy the estimates (3.17)
for 0 ≤ m ≤ k. Let (W,S) satisfy the assumptions of Proposition 6.1 with

|W |k+1 ≤ a , (6.45)
‖ ωm∇S ‖2 ≤ b t1−η+β(m−3/2) (6.46)

for some η > 0 and for 0 ≤ m ≤ :+ 1,

‖ R1(W,S) ‖2 ≤ c0 t
−1−λ0 , ‖ ωkR1(W,S) ‖2 ≤ c1 t

−1−λ , (6.47)
‖ ωm∇R2(W,S) ‖2 ≤ c2 t

−1−λ0+β(m+1) for 0 ≤ m ≤ : , (6.48)

for all t ∈ I. Let (q, σ) ∈ C(I,Xk,�) satisfy

‖ q ‖2 ≤ Y0 t
−λ0 , ‖ ωkq ‖2 ≤ Y t−λ , (6.49)

‖ ωm∇σ ‖2 ≤ Z t−λ0+β(m+1) for 0 ≤ m ≤ : , (6.50)

for all t ∈ I. Then the system (2.31) has a (unique) solution (q′, σ′) ∈ C(I,Xk,�)
satisfying

‖ q′ ‖2 ≤ Y ′
0 t

−λ0 , ‖ ωkq′ ‖2 ≤ Y ′ t−λ , (6.51)
‖ ωm∇σ′ ‖2 ≤ Z ′ t−λ0+β(m+1) for 0 ≤ m ≤ : , (6.52)

for some Y ′
0 , Y

′, Z ′ depending on k, :, β, λ0, λ, a, b, c0, c1, c2, Y0, Y , Z and T ,
for all t ∈ I. That solution satisfies the estimates (6.2) (6.3) (6.4) of Lemma 6.1
for all t ∈ I. Two such solutions (q′i, σ

′
i) associated with (qi, σi), i = 1, 2, satisfy

the estimates (6.29) (6.30) of Lemma 6.2 for all t ∈ I. The solution (q′, σ′) is
actually unique in C(I,Xk,�) under the condition that (q′, σ′) tends to zero in X0,0

norm when t→∞.

Proof. The proof consists in showing that the solution (q′t0 , σ
′
t0) of the linearized

system (2.31) with t1 = ∞ and with initial data (q′t0 , σ
′
t0)(t0) = 0 for finite t0,

obtained from Proposition 6.1, satisfies the estimates (6.51) (6.52) uniformly in t0
for t ≤ t0 (namely with Y ′

0 , Y
′ and Z ′ independent of t0), and that when t0 →∞,
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that solution converges on the compact subintervals of I uniformly in suitable
norms.

We first derive the estimates (6.51) (6.52) for that solution, omitting the
subscript t0 for brevity in that part of the proof. Let

y′0 =‖ q′ ‖2 , y′ =‖ ωkq′ ‖2 , z′m =‖ ωm∇σ′ ‖2 . (6.53)

We first estimate y′0. Substituting (6.47) (6.49) (6.50) into (6.2), and omitting an
overall constant, we obtain

|∂t y′0| ≤ a Z t−2−λ0+β + a2 Y0 t
−1−β−λ0

+a
(
Y 3

0 Ȳ
)1/2

t−1−2λ0+(λ0−λ)/2k + c0 t
−1−λ0 (6.54)

where Ȳ = Y ∨ Y0. Integrating (6.54) from t0 to t with y′0(t0) = 0, using the fact
that λ0 > 1 and λ0 − (λ0 − λ)/2k > k − 1/2 + λ, and defining

Y ′
0 = ‖ tλ0 y′0;L

∞([T, t0]) ‖ , (6.55)

we obtain

Y ′
0 ≤ c0 + a Z T−(1−β) + a2 Y0 T

−β + a
(
Y 3

0 Ȳ
)1/2

T−(k−1/2+λ) . (6.56)

That estimate is manifestly uniform in t0.
We next estimate y′, wasting part of the time decay in order to alleviate the

computation. In particular when estimating s = S + σ, we use the fact that the
time decay of σ is better than that of S by at least a power 1−η. Furthermore in the
contributions coming from BS , we eliminate Y0 and λ0 by using Y0 ≤ Ȳ = Y ∨ Y0

and λ0 > λ+ k. In particular we estimate

‖ ωmq ‖2 ≤ ‖ q ‖1−m/k
2 ‖ ωkq ‖m/k

2

≤ Ȳ t−λ0(1−m/k)−λm/k ≤ Ȳ t−λ+m−k (6.57)

for 0 ≤ m ≤ k, and similarly

‖ ωmq′ ‖2 ≤ y′m/k (
Y ′

0 t
−λ0

)1−m/k

≤ tm−k y′m/k
(
Y ′

0 t
−λ

)1−m/k ≤ tm−k
(
y′ + Y ′

0 t
−λ

)
. (6.58)

Substituting (6.47) (6.49) (6.50) into (6.3), using (6.57) (6.58) and omitting an
overall constant, we obtain

|∂ty′| ≤ b0

{
y′1/k0 y′1−1/k + y′1−δ/k

0 y′δ/k tk−1−δ/3
}

+a Z t−2−λ−k+β(k+1) + t−1
(
bt−η + Zt−1

) (
y′ + Y ′

0 t
−λ

)
+a2 t−2

(
y′ + Y ′

0 t
−λ + Ȳ t−λ

)
+ a t−k−1/2−λ

(
y′ + Y ′

0 t
−λ + Ȳ t−λ

)
Ȳ

+t1−2k−2λ Ȳ 2
(
y′ + Y ′

0 t
−λ

)
+ c1 t

−1−λ . (6.59)
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The terms linear in y′ in the RHS of (6.59) can be eliminated by changing variables
from y′ to y′ exp(−E(t)), where

E(t) = bη−1 t−η + Zt−1 + a2t−1 + (k − 1/2 + λ)−1aȲ t−(k−1/2+λ)

+(2(k − 1 + λ))−1 Ȳ 2 t−2(k−1+λ) (6.60)

so that it is sufficient to estimate y′ from (6.59) with those terms omitted and
to multiply the end result by exp(E(t)). With those terms omitted, and with the
help of the estimate of y′0, (6.59) can be rewritten as

|∂ty′| ≤ b0

{
Y ′1−δ/k

0 y′δ/k tk−1−δ/3−λ0(1−δ/k) + Y ′1/k
0 y′1−1/k t−λ0/k

}
+t−1−λ C1(t) (6.61)

where

C1(t) = a Z t−(1−β)(k+1) +
(
b t−η + Zt−1

)
Y ′

0

+
(
a2t−1 + aȲ t−(k−1/2+λ)

) (
Y ′

0 + Ȳ
)
+ Ȳ 2Y ′

0t
−2(k−1+λ) + c1 . (6.62)

In particular C1(t) is decreasing in t.
The inequality (6.61) is essentially identical with (5.24), up to notational

change and replacement of c1 by C1(t). Proceeding as in Section 5, defining

Y ′ = ‖ tλy′;L∞([T, t0]) ‖ (6.63)

and reintroducing the factor exp(E(t)), we obtain (see (5.30))

Y ′ ≤ exp(E(T ))
{(

4λ−1b0
)k

Y ′
0 + 2λ−1 C1(T )

}
, (6.64)

an estimate which is again manifestly uniform in t0. This completes the proof of
(6.51).

We next estimate z′m for 0 ≤ m ≤ :. By interpolation, it suffices to estimate
z′0 and z′�. We define

Z ′
m = ‖ tλ0−β(m+1) z′m;L∞([T, t0]) ‖ (6.65)

and
Z ′ = Sup

0≤m≤�
Z ′
m = Z ′

0 ∨ Z ′
� . (6.66)

We first estimate z′0. Substituting (6.48) (6.49) (6.50) into (6.4)0 and omitting an
overall constant, we obtain

|∂t z′0| ≤
(
b t−1−η + Zt−2

)
z′0 + bZt−1−η−λ0+β

+a Y0 t
−1−λ0+β + Y 2

0 t−1−2λ0+5β/2 + c2 t
−1−λ0+β . (6.67)
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Integrating (6.67) from t to t0, we obtain

Z ′
0 ≤ exp

(
b η−1 T−η + Z T−1

) {
(η + λ0 − β)−1

b Z t−η

+(λ0 − β)−1
(
a Y0 + Y 2

0 T−β + c2
) }

(6.68)

where we have used again the fact that λ0 > 5β/2.
We next estimate z′�. Using the inequality

‖ ∇σ′ ‖∞ ≤ C ‖ ω�∇σ′ ‖3/2�2 ‖ ∇σ′ ‖1−3/2�
2

≤ C t3β/2
(
t−β� ‖ ω�∇σ′ ‖2 + ‖ ∇σ′ ‖2

)
, (6.69)

substituting (6.48) (6.49) (6.50) into (6.4) with m = :, and omitting again an
overall constant, we obtain

|∂t z′�| ≤
(
b t−1−η + Zt−2

) (
z′� + Z ′

0 t
−λ0+β(�+1)

)
+b Z t−1−η−λ0+β(�+1) + a Y0 t

−1−λ0+β(�+1)

+Y 2
0 t−1−2λ0+β(�+5/2) + c2 t

−1−λ0+β(�+1) . (6.70)

Integrating (6.70) as before, we obtain

Z ′
� ≤ exp

(
b η−1 T−η + Z T−1

) {
b(Z + Z ′

0)η
−1 T−η + ZZ ′

0 T
−1

+ν−1
(
a Y0 + Y 2

0 T−β + c2
) }

(6.71)

where ν = λ0 − β(: + 1) > 0, which together with (6.68) completes the proof of
(6.52).

We have proved that the solution (q′t0 , σ
′
t0) of the system (2.31), vanishing

at t0, satisfies the estimates (6.51) (6.52) for t ∈ [T, t0], with Y ′
0 , Y

′, Z ′ satisfying
(6.56) (6.64) (6.66) (6.68) (6.71), which are uniform in t0. We now prove that
(q′t0 , σ

′
t0) tends to a limit when t0 → ∞. For that purpose, we first let (q′i, σ

′
i),

i = 1, 2, be two solutions of the system (2.31) corresponding to the same (q, σ) and
defined in an interval [T, t0) for some t0 > T . Let (q′−, σ′−) = (1/2)(q′1−q′2, σ′1−σ′2).
L2 norm conservation for q′− implies

‖ q′−(t) ‖2 = ‖ q′−(t0) ‖2 for all t ∈ [T, t0] . (6.72)

Furthermore, the simple case q− = 0, σ− = 0 of (6.30)0 implies

∂t ‖ ∇σ′− ‖2 ≤ C t−1
(
b t−η + Z t−1

) ‖ ∇σ′− ‖2 (6.73)

and therefore

‖ ∇σ′−(t) ‖2 ≤ exp
(
C

(
η−1 b t−η + Z t−1

)) ‖ ∇σ′−(t0) ‖2 . (6.74)
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Let now T < t′1 < t′2 <∞ and let (q′i, σ
′
i) = (q′t′i , σ

′
t′i
), i = 1, 2. Then

‖ q′−(t) ‖2 = ‖ q′−(t′1) ‖2 = (1/2) ‖ q′2(t′1) ‖2 ≤ Y ′
0 t1

′−λ0 for all t < t′1 (6.75)

by (6.72) with t0 = t′1 and (6.51) for q′ = q′2 and t = t′1 Similarly, by (6.52) with
σ′ = σ′2 and t = t′1,

‖ ∇σ′−(t′1) ‖ = (1/2) ‖ ∇σ′2(t′1) ‖ ≤ Z ′
0 t

′−λ0+β
1

so that by (6.74) with t0 = t′1,

‖ ∇σ′−(t) ‖ ≤ exp
(
C

(
η−1 b t−η + Z t−1

))
Z ′

0 t
′−λ0+β
1 for all t < t′1 . (6.76)

From (6.75) (6.76), it follows that (q′t0 , σ
′
t0) converges to a limit (q′, σ′) ∈

C(I,X0,0) uniformly on the compact subintervals of I. From the uniform estimates
(6.51) (6.52) and from Lemma 6.1, it then follows by a standard compactness ar-
gument that (q′, σ′) ∈ C(I,Xk,�) and that (q′, σ′) also satisfies the estimates (6.51)
(6.52). Clearly (q′, σ′) satisfies the system (2.31). This completes the existence part
of the proof.

The uniqueness statement follows immediately from (6.72) (6.74) by letting
t0 →∞. �

We now turn to the main result of this section, namely the fact that for T
sufficiently large (depending on (W,S)), the auxiliary system in difference form
(2.30) has a solution (q, σ) defined for all t ≥ T and decaying at infinity in a
suitable sense. In the same spirit as for Proposition 4.4, this will be done by showing
that the map Γ : (q, σ) → (q′, σ′) defined by Proposition 6.2 is a contraction in
suitable circumstances. According to our intuition of scattering, another natural
route towards the same result would be to construct first the solution (qt0 , σt0) of
the auxiliary system (2.30) vanishing at t0 and to take the limit of that solution as
t0 →∞. That route can also be followed, but it is slightly more complicated than
the previous one. One of the complications comes from the fact that the system
(2.30) depends on t1. In view of Warning 4.2, for finite t0, we expect difficulties
if we take t1 > t0. This prompts us to take t1 = t0. The comparison of two
solutions (qt0 , σt0) corresponding to different values of t0 is then complicated by
the fact that they do not solve exactly the same system, so that Lemma 6.2 is not
directly applicable and additional terms occur in the comparison. On the other
hand, for B0 �= 0, the construction of the solution (qt0 , σt0) of (2.30) is expected to
meet difficulties for t ≥ t0 because of Warning 4.1. We shall therefore undertake
it for t ≤ t0 only, which is sufficient anyway to take the limit t0 → ∞. That
construction proceeds again by a contraction starting from the solutions obtained
for the linearized system. The corresponding proof for t0 <∞ is not significantly
simpler than for t0 =∞, which is another reason why the second method is more
complicated than the first one, since in addition to that construction, a limiting
procedure is needed.
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We now state the main result and formalize the previous heuristic discussion
in the following proposition.

Proposition 6.3 Let 1 < k ≤ : and : > 3/2. Let β, λ0 and λ satisfy (6.44) and in
addition

1 + λ > β(5/2− k) .

Let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k. Let (W,S) satisfy the assump-
tions of Proposition 6.2 in [1,∞). Then there exists T , 1 ≤ T < ∞, and positive
constants Y0, Y and Z, depending on k, :, β, λ0, λ, a, b, c0, c1 and c2, such that
the following holds.

(1) For all t0, T ≤ t0 <∞, the system (2.30) with t1 = t0 has a unique solution
(q, σ) ∈ C(I,Xk,�) with I = [T, t0] and (q, σ)(t0) = 0. That solution satisfies
the estimates (6.49) (6.50) for all t ∈ I.

(2) The system (2.30) with t1 = ∞ has a unique solution (q, σ) ∈ C(I,Xk,�),
where I = [T,∞) satisfying the estimates (6.49) (6.50) for all t ∈ I.

(3) Let (qt0 , σt0) be the solution defined in Part (1) for t0 < ∞ and let (q, σ)
be the solution defined in Part (2) for t0 = ∞. When t0 → ∞, (qt0 , σt0)
converges to (q, σ) strongly in L∞(J,Xk′,�′) for 0 ≤ k′ < k, 0 ≤ :′ < :, and
in the weak-∗ sense in L∞(J,Xk,�) for any interval J = [T, T̄ ] with T̄ <∞.

Proof. Parts (1) and (2). We prove Parts (1) and (2) together, because the proof is
exactly the same for both. It consists in showing that the map Γ : (q, σ) → (q′, σ′)
defined by solving the linearized system (2.31) is a contraction on a suitable subset
of C(I,Xk,�) in the lower norms used in Lemma 6.2. For t0 < ∞, the map Γ is
defined by Proposition 6.1, restricted to those (q, σ) satisfying (q, σ)(t0) = 0, with
the initial data (q′, σ′)(t0) = 0. For t0 = ∞, the map Γ is defined by Proposition
6.2. The relevant estimates on Γ are those derived in the proof of Proposition 6.2
in the case t1 = ∞. The same estimates also apply to the case t0 = t1 <∞, which
is relevant for Part (1) of this proposition. They are independent of t0.

We define the set

R =
{
(q, σ) ∈ C(I,Xk,�) : (q, σ)(t0) = 0 if t0 <∞ ,

‖ tλ0q;L∞(I, L2) ‖ ≤ Y0 , ‖ tλωkq;L∞(I, L2) ‖ ≤ Y ,

Sup
0≤m≤�

‖ tλ0−β(m+1)ωm∇σ;L∞(I, L2) ‖ ≤ Z
}
. (6.77)

We first show thatR is stable under Γ for suitable Y0, Y , Z and for sufficiently
large T . Let (q, σ) ∈ R and (q′, σ′) = Γ(q, σ). Then (q′, σ′) satisfies the estimates
(6.56) (6.64) (6.68) (6.71) where Y ′

0 , Y
′, Z ′

m are defined by (6.53) (6.55) (6.63)
(6.65) and/or their extension to t0 <∞. It is therefore sufficient to ensure that the
RHS of (6.56) (6.64) (6.68) (6.71) are not larger than Y0, Y , Z, and Z respectively.
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For that purpose, it is sufficient to choose
Y0 = 2c0 , Z = 2eν−1(c2 + 4ac0)

Y = e
{
(4λ−1b0)k2c0 + 4λ−1(c1 + c0)

} (6.78)

and to take T sufficiently large in the sense that
a Z T−(1−β) + a2 Y0 T

−β + a
(
Y 3

0 Ȳ
)1/2

T−(k−1/2+λ) ≤ c0 ,

η T η ≥ 8b , T ≥ 4eZ , a T β ≥ Y0 ,

E(T ) ≤ 1 , C1(T ) ≤ 2(c1 + c0) .

(6.79)

The conditions (6.79) are lower bounds on T expressed in terms of the parameters
listed in the Proposition, after substitution of (6.78).

We next show that Γ is a contraction onR in the norms considered in Lemma
6.2. Let (qi, σi) ∈ R and (q′i, σ

′
i) = Γ(qi, σi), i = 1, 2, and define (q±, σ±) and

(q′±, σ
′
±) as in Lemma 6.2. We define in addition

y− = ‖ q− ‖2 , z−m =‖ ωm∇σ− ‖2 (6.80)
Y− = ‖ tλ0y−;L∞(I) ‖ , Z− = Sup

0≤m≤�0

‖ tλ0−β(m+1)z−m;L∞(I) ‖ (6.81)

and we make similar definitions for the primed quantities. We take :0 = [3/2−k]+
and estimate y′− and z′−m by (6.29) (6.30), taking advantage of the fact that
m′ = m in (6.30) for that choice of :0. Using the fact that Γ maps R into itself
and omitting again overall constants, we obtain∣∣∂ty′−∣∣ ≤ a Z− t−2−λ0+β + Ȳ Z− t−2−λ0+β(�0+1)−λ + a2 Y− t−1−β−λ0

+a Ȳ Y− t−1−2λ0+(λ0−λ)/2k + Ȳ 2 Y− t−1−3λ0+2(λ0−λ)/k (6.82)

where Ȳ = Y ∨ Y0,∣∣∂tz′−m

∣∣ ≤ (
b t−1−η + Z t−2

) (
z′−m + Z− t−λ0+β(m+1)

)
+a Y− t−1−λ0+β(m+1) + Y0Y− t−1−2λ0+β(m+5/2) (6.83)

for 0 ≤ m ≤ :0. Integrating (6.82) (6.83) from t to t0 with (y′−, z′−m)(t0) = 0 and
using again the fact that λ0 > λ + k > 1 and λ0 > β(: + 1) > β((:0 + 2) ∨ 5/2),
we obtain

Y ′
− ≤ a Z− T−(1−β) + Ȳ Z− T−1−λ+β(�0+1)

+a2 Y− T−β + a Ȳ Y− T−(k−1/2+λ) + Ȳ 2 Y− T−2(k−1+λ) , (6.84)

Z ′
− ≤ exp

(
b η−1 T−η + Z T−1

){ (
b η−1 T−η + Z T−1

)
Z−

+β−1
(
a Y− + T−βY0 Y−

) }
. (6.85)
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We now ensure that the map Γ is a contraction for the norms defined by
(6.80) (6.81) in the form {

Y ′
− ≤

(
c−1 Z− + Y−

)
/4

Z ′
− ≤ (Z− + c Y−) /4

(6.86)

which imply
Z ′
− + c Y ′

− ≤ (Z− + c Y−) /2 (6.87)

by taking c = 8β−1a and T sufficiently large, depending on the parameters listed
in the proposition, in part explicitly and in part through Y0, Y and Z defined by
(6.78). (It is only at this point that we need the condition 1 + λ > β(5/2− k), in
order to ensure that the power of T in the second term in the RHS of (6.84) is
negative).

We have proved that for sufficiently large T , the map Γ maps R defined
by (6.77) into itself and is a contraction for the norms (6.81). By a standard
compactness argument, R is closed for the latter norms, and therefore Γ has a
unique fixed point in R, which completes the existence part of the proof of Parts
(1) and (2).

The uniqueness statement of Part (1) is a special case of Proposition 4.2 part
(1), while the uniqueness statement of Part (2) follows from Proposition 4.2 part
(3) and from the fact that λ0 > 1 > β2.
Part (3). Let T < t′1 < t′2 < ∞ and let (qi, σi), i = 1, 2, be the solutions of the
ssytem (2.30) obtained in part (1) and corresponding to t0 = t1 = t′i respectively.
Those solutions satisfy the estimates (6.49) (6.50) for t ≤ t′i. Define as before
(q±, σ±) = (1/2)(q1 ± q2, σ1 ± σ2). We shall estimate (q−, σ−) for t ≤ t′1 in the
norms considered in Lemma 6.2. In order to alleviate the notation, we omit the
prime on t1, t2 in the rest of the proof. By (6.49) (6.50), we estimate{ ‖ q−(t1) ‖2 = (1/2) ‖ q2(t1) ‖2 ≤ (1/2)Y0 t

−λ0
1

‖ ωm∇σ−(t1) ‖2 = (1/2) ‖ ωm∇σ2(t1) ‖2 ≤ (1/2)Zt−λ0+β(m+1)
1

(6.88)

for 0 ≤ m ≤ :. On the other hand (q−, σ−) satisfies a system closely related
to (6.32) where however (q′±, σ

′
±) = (q±, σ±) and where additional terms appear

because of the different values t1 and t2 occuring in BS and BL. More precisely

∂tq− = i(2t2)−1∆q− + t−2
{
Q(s+, q−) +Q(σ−, w+)

}
+ it−1B0q−

+it−1
{(
Bt1,∞
S (w+, w+) +Bt1

S (q−, q−)
)
q− + 2Bt1

S (w+, q−)w+

}
−i(2t)−1

(
Bt2
S −Bt1

S

)
(q2, q2 + 2W ) (q2 +W ) (6.89)

∂tσ− = t−2 (s+ · ∇σ− + σ− · ∇s+)− 2t−1∇Bt1
L (w+, q−)

+t−1∇ (
Bt2
L −Bt1

L

)
(q2, q2 + 2W ) .
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We first estimate the additional terms in (6.89) as compared with (6.32). From
(6.36)–(6.39) we obtain

‖ (
Bt2
S −Bt1

S

)
(q2, q2 + 2W ) (q2 +W ) ‖2

≤ C
{(
at−β+ ‖ q2 ‖3

)
a I0 (‖ q2 ‖2) + a I−1 (‖ q2 ‖2 ‖ q2 ‖3)

+ ‖ q2 ‖6 I−1/2 (‖ q2 ‖2 ‖ q2 ‖6)
}

(6.90)

where the various Im’s are taken in the interval [t1, t2]. From (6.49) and Sobolev
inequalities, we obtain

I0 (‖ q2 ‖2) ≤ Y0 t
1/2

∫ t2

t1

dt′ t′−3/2−λ0 ≤ Y0 t
1/2 t

−1/2−λ0
1 (6.91)

I−1 (‖ q2 ‖2 ‖ q2 ‖3) ≤ C Y0 Ȳ t−1/2

∫ t2

t1

dt′ t′−1/2−2λ0+(λ0−λ)/2k

≤ C Y0 Ȳ t−1/2 t
1/2−2λ0+(λ0−λ)/2k
1 (6.92)

‖ q2 ‖6 I−1/2 (‖ q2 ‖2‖ q2 ‖6) ≤ CY0Ȳ
2t−λ0+(λ0−λ)/k

×
∫ t2

t1

dt′t′−1−2λ0+(λ0−λ)/k ≤ CY0Ȳ
2t−λ0+(λ0−λ)/kt

−2λ0+(λ0−λ)/k
1 (6.93)

and therefore for t ≤ t1

‖ (
Bt2
S −Bt1

S

)
(q2, q2 + 2W ) (q2 +W ) ‖2 ≤ C t−λ0+1/2

{
a2 Y0 t

−β−1/2
1

+a Y0 Ȳ t
−λ0+(λ0−λ)/2k−1/2
1 + Y0 Ȳ

2 t
−2λ0+2(λ0−λ)/k−1/2
1

}
. (6.94)

Similarly using (6.43) and

I−3/2

(‖ q2 ‖22) ≤ Y 2
0 t−1

∫ t2

t1

dt′ t′−2λ0 ≤ Y 2
0 t−1 t1−2λ0

1

we estimate for t ≤ t1

‖ ωm+2
(
Bt2
L −Bt1

L

)
(q2, q2 + 2W ) ‖2≤ C

(
a Y0 + Y 2

0 t
3β/2−1 t1−λ0

1

)
tβ(m+1)t−λ0

1 .

(6.95)
We define y− and z−m by (6.80), we take again :0 = [3/2 − k]+, we choose λ′0
satisfying

1 ∨ (λ0 − 1/2) ∨ β (:0 + 1) < λ′0 < λ0 , (6.96)

we define (see (6.81))

Y− = ‖ tλ′
0y−;L∞([T, t1]) ‖ , Z− = Sup

0≤m≤�0

‖ tλ′
0−β(m+1)z−m;L∞([T, t1]) ‖ (6.97)
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and we estimate those quantities in the same way as in the proof of Parts (1) and
(2). From (6.89), we obtain differential inequalities for y−, z−m, very similar to
(6.82) (6.83) with y′− = y−, z′−m = z−m with however additional terms estimated
by (6.94) (6.95).

We integrate those inequalities from t to t1, with initial condition at t1 esti-
mated by (6.88). We then substitute the result in (6.97) and omitting an overall
constant, we obtain finally (see (6.84) (6.85))

Y− ≤ aZ−T−(1−β) + Ȳ Z−T−1−λ+β(�0+1) + a2Y−T−β

+aȲ Y−T−(k−1/2+λ) + Ȳ 2Y−T−2(k−1+λ)

+
{
Y0 + a2Y0t

−β
1 + aY0Ȳ t

−(k−1/2+λ)
1 + Y0Ȳ

2t
−2(k−1+λ)
1

}
t
−(λ0−λ′

0)
1 (6.98)

Z− ≤ exp
(
b η−1 T−η + Z T−1

) { (
b η−1 T−η + Z T−1

)
Z−

+β−1
(
a Y− + T−βY0 Y−

)
+

(
Z + a Y0 + Y 2

0 t−β
1

)
t
−(λ0−λ′

0)
1

}
. (6.99)

Proceeding as above, we deduce therefrom that for T sufficiently large and for a
suitable constant c

Y− + cZ− ≤ O
(
t
−(λ0−λ′

0)
1

)
. (6.100)

From (6.100) it follows that (qt0 , σt0) tends to a limit uniformly in compact subin-
tervals of [T,∞) in the norms (6.80). By a standard compactness argument, that
limit belongs to C([T,∞), Xk,�) and satisfies (6.49) (6.50). One sees easily that
the limit satisfies the system (2.30) with t1 =∞, and therefore coincides with the
solution obtained in Part (2). Actually, as mentioned before, Part (3) provides an
alternative (more complicated ) proof of Part (2). �

7 Choice of (W, S) and remainder estimates

In this section, we construct approximate solutions (W,S) of the system (2.20)
satisfying the assumptions needed for Propositions 6.2 and 6.3 and in particular
the remainder estimates (6.47) (6.48), thereby allowing for the applicability of
Proposition 6.3, namely for the construction of solutions of the system (2.30).
More general (W,S) also suitable for the same purpose, could also be constructed
by exploiting the gauge invariance of the system (2.20).

We rewrite the remainders as

R1(W,S) = U∗(1/t)∂t(U(1/t)W )− t−2Q(S,W )− it−1(B0 +BS(W,W ))W (7.1)

R2(W,S) = ∂tS − t−2S · ∇S + t−1∇BL(W,W ) . (2.29) ≡ (7.2)

We recall that t1 =∞ in R1, R2, and we omit t1 from the notation. We construct
(W,S) by solving the system (2.20) approximately by iteration. The n-th iteration
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should be sufficient to cover the case λ0 < n. Here we need λ0 > k > 1, and we
must therefore use at least the second iteration, which will allow for λ0 < 2. For
simplicity, we shall not go any further here. Accordingly we take

W = w0 + w1 , S = s0 + s1 (7.3)

where {
∂t U(1/t)w0 = 0 w0(∞) = w+ ,

∂t s0 = −t−1∇BL(w0, w0) s0(1) = 0 ,
(7.4)

so that 
w0 = U∗(1/t)w+ ,

s0(t) = −
∫ t

1

dt′ t′−1∇BL(w0(t′), w0(t′))
(7.5)

and {
∂t(U(1/t)w1) = t−2 U(1/t) Q(s0, w0) w1(∞) = 0 ,

∂t s1 = t−2s0 · ∇s0 − 2t−1∇BL(w0, w1) s1(∞) = 0 ,
(7.6)

so that
w1(t) = −U∗(1/t)

∫ ∞

t

dt′ t′−2 U(1/t′) Q(s0(t′), w0(t′))

s1(t) = −
∫ ∞

t

dt′ t′−2s0(t′) · ∇s0(t′) + 2
∫ ∞

t

dt′ t′−1∇BL(w0(t′), w1(t′)) .
(7.7)

The remainders then become
R1(W,S) = −t−2

{
Q(s0, w1) +Q(s1, w0) +Q(s1, w1)

}
−it−1(B0 +BS(W,W ))W ,

R2(W,S) = −t−2
{
s0 · ∇s1 + s1 · ∇s0 + s1 · ∇s1

}
+ t−1∇BL(w1, w1) .

(7.8)

Note that the term with B0 + BS(W,W ) in (7.1) is regarded as short range and
not included in the definition of (W,S).

We now turn to the derivation of the estimates (6.45)–(6.48). The regularity
properties of (W,S) used in Section 6 follow from similar but simpler estimates.
We first estimate all the terms not containing B0.

Lemma 7.1 Let 0 < β < 1, k+ ≥ 3, w+ ∈ Hk+ and a+ = |w+|k+ . Then the
following estimates hold:

|w0|k+ ≤ a+ (7.9)

‖ ωm s0 ‖2 ≤
{
C a2

+ :n t for 0 ≤ m ≤ k+

C a2
+ tβ(m−k+) for m > k+ ,

(7.10)
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|w1|k+−1 ≤ C a3
+ t−1(1 + :n t) , (7.11)

‖ ωm s1 ‖2 ≤


C a4

+ t−1(1 + :n t)2 for 0 ≤ m ≤ k+ − 1

C a4
+ t−1+β(m+1−k+)(1 + :n t)
for k+ − 1 < m < k+ − 1 + β−1 ,

(7.12)

‖ ωm R2(W,S) ‖2 ≤


C(a+) t−3(1 + :n t)3 for 0 ≤ m ≤ k+ − 2

C(a+) t−3+β(m+2−k+)(1 + :n t)2

for k+ − 2 < m < k+ − 2 + β−1 ,

(7.13)

‖ ωm(Q(S,w1) +Q(s1, w0)) ‖2 ≤ C(a+) t−1(1 + :n t)2 for 0 ≤ m ≤ k+ − 2
(7.14)

‖ ωm(BS(W,W )W ) ‖2 ≤ C(a+) t−β(k+−m+1) ‖ for 0 ≤ m ≤ k+ − 1 . (7.15)

Proof. (7.9) is trivial.
(7.10). By (3.10), Lemma 3.2 and (3.9) we estimate

‖ ωm s0 ‖2 ≤
∫ t

1

dt′ t′−1 ‖ ωm+1 BL(w0(t′), w0(t′)) ‖2

≤



C

∫ t

1

dt′ t′−1 Im (‖ ωmw0(t′) ‖2 ‖ w0(t′) ‖∞) ≤ Ca2
+:n t

for 0 ≤ m ≤ k+

C

∫ t

1

dt′ t′−1+β(m−k+) Ik+

(‖ ωk+w0(t′) ‖2 ‖ w0(t′) ‖∞
) ≤ Ca2

+ tβ(m−k+)

for m > k+ .

(7.11). By Lemma 3.2 and (7.10), we estimate

‖ Q(s0, w0) ‖2 ≤ C ‖ ∇s0 ‖2
(
‖ ω3/2w0 ‖2 + ‖ w0 ‖∞

)
≤ C a3

+:n t

‖ ωk+−1Q(s0, w0) ‖2 ≤ C
{
‖ ωk+s0 ‖2

(
‖ ω3/2w0 ‖2 + ‖ w0 ‖∞

)
+

(
‖ ω3/2s0 ‖2 + ‖ s0 ‖∞

)
‖ ωk+w0 ‖2

}
≤ C a3

+:n t

from which (7.11) follows by integration.
(7.12). By Lemma 3.2 and (7.10) we estimate

‖ ωm(s0 · ∇s0) ‖2 ≤ C ‖ ωm+1 s0 ‖2
(
‖ ω3/2s0 ‖2 + ‖ s0 ‖∞

)

≤
{
Ca4

+(:n t)2 for m ≤ k+ − 1

Ca4
+ tβ(m+1−k+):n t for m > k+ − 1 .

(7.16)
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On the other hand
‖ ωm+1BL(w0, w1) ‖2

≤


CIm (‖ ωmw0 ‖2 ‖ w1 ‖∞ + ‖ ωmw1 ‖2 ‖ w0 ‖∞) ≤ Ca4

+t
−1(1 + :n t)

for m ≤ k+ − 1

Ctβ(m+1−k+)Ik+−1

(‖ ωk+−1w0 ‖2 ‖ w1 ‖∞ + ‖ ωk+−1w1 ‖2 ‖ w0 ‖∞
)

≤ Ca4
+ tβ(m+1−k+)−1(1 + :n t) for m > k+ − 1 .

(7.17)
(7.12) now follows from (7.16) and (7.17) by integration provided β(m+1−k+) < 1.

(7.13). By Lemma 3.2 again, and by (7.10) (7.12) we estimate

‖ ωm (s0 · ∇s1 + s1 · ∇s0 + s1 · ∇s1) ‖2 ≤

C
{
‖ ωm+1s0 ‖2

(
‖ ω3/2s1 ‖2 + ‖ s1 ‖∞

)
+ ‖ ωm+1s1 ‖2

(
‖ ω3/2s0 ‖2 + ‖ s0 ‖∞

+ ‖ ω3/2s1 ‖2 + ‖ s1 ‖∞
)}

≤
{
C(a+) t−1(1 + :n t)3 for m ≤ k+ − 2

C(a+) t−1+β(m+2−k+)(1 + :n t)2 for k+ − 2 < m < k+ − 2 + β−1 .
(7.18)

On the other hand
‖ ωm+1BL(w1, w1) ‖2

≤


CIm (‖ ωmw1 ‖2‖ w1 ‖∞) ≤ Ca6

+t
−2(1 + :n t)2 for m ≤ k+ − 1

Ctβ(m+1−k+)Ik+−1

(‖ ωk+−1w1 ‖2‖ w1 ‖∞
) ≤ Ca6

+t
β(m+1−k+)−2(1 + :nt)2

for m > k+ − 1.
(7.19)

(7.13) now follows from (7.8) (7.18) (7.19).
(7.14). By Lemma 3.2 again, and by (7.10) (7.11) (7.12) we estimate

‖ ωm (Q(s0, w1) +Q(s1, w0) +Q(s1, w1)) ‖2

≤ C
{
‖ ωm+1s0 ‖2

(
‖ ω3/2w1 ‖2 + ‖ w1 ‖∞

)
+ ‖ ωm+1w1 ‖2

(
‖ ω3/2s0 ‖2

+ ‖ s0 ‖∞ + ‖ ω3/2s1 ‖2 + ‖ s1 ‖∞
)
+ ‖ ωm+1s1 ‖2

(
‖ ω3/2w0 ‖2 + ‖ w0 ‖∞

+ ‖ ω3/2w1 ‖2 + ‖ w1 ‖∞
)
+ ‖ ωm+1w0 ‖2

(
‖ ω3/2s1 ‖2 + ‖ s1 ‖∞

)}
≤ Ca5

+ t−1(1 + :n t)2(1 + a2 t−1(1 + :n t)) (7.20)

from which (7.14) follows.
(7.15). As previously, we estimate for 0 ≤ m ≤ k+

‖ ωmBS(W,W ) ‖2≤‖ ωmBS(w0, w0) ‖2 +2 ‖ ωmBS(w0, w1) ‖2
+ ‖ ωmBS(w1, w1) ‖2
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≤ Ctβ(m−k+)
{
t−βIk+

(‖ ωk+w0 ‖2‖ w0 ‖∞
)
+ Ik+−1

(‖ ωk+−1w0 ‖2‖ w1 ‖∞

+ ‖ ωk+−1w1 ‖2 (‖ w0 ‖∞ + ‖ w1 ‖∞)
) }

≤ Ctβ(m−k+)
{
t−β a2

+ + t−1 a4
+(1 + :n t) + t−2 a6

+(1 + :n t)2
}

(7.21)

by (7.11). Therefore

‖ BS(W,W )W ‖2 ≤ ‖ BS(W,W ) ‖2 ‖W ‖∞ ≤ C(a+) t−β(k++1)

‖ ωk+−1(BS(W,W )W ) ‖2 ≤ C
{
‖ ωk+−1BS(W,W ‖2 ‖W ‖∞

+ ‖ BS(W,W ) ‖∞ ‖ ωk+−1W ‖2
}
≤ C(a+) t−2β (7.22)

which yields (7.15) by interpolation. �
We next estimate the terms in R1 containing B0.

Lemma 7.2 Let 0 < β < 1. Let 1/2 < λ0 < 2 and k+ ≥ 2λ0 ∨ 3. Let B0 satisfy
the estimates (3.17) for 0 ≤ m ≤ 2, let w+ ∈ Hk+ and assume that B0 and w+

satisfy the estimate (5.35) for all multi-indices α1, α2 with 0 ≤ |α1| ≤ 2 and
0 ≤ |α2| < 2λ0. Then the following estimate holds for all m, 0 ≤ m ≤ 2, and all
t ≥ 1.

‖ ωm(B0 W ) ‖2 ≤ C t−λ0+m . (7.23)

Proof. The contribution of w0 to (7.23) is estimated by Lemma 5.1 with m̄ = 2.
In order to estimate the contribution of w1, we decompose w1 = w′

1 + w′′
1 where

w′
1 = −

∫ ∞

t

dt′ t′−2 Q(s0(t′), w+)

w′′
1 (t) = (1 − U∗(1/t))

∫ ∞

t

dt′ t′−2U(1/t′)Q(s0(t′), w0(t′))

+
∫ ∞

t

dt′ t′−2
{

(1− U(1/t′))Q(s0(t′), w0(t′)) +Q(s0(t′), (1 − U(1/t′))w+)
}
.

We first consider

B0(t)w′
1(t) = −

∫ ∞

t

dt′ t′−2
{
s0(t′) · B0(t)∇w+ + (1/2)(∇ · s0)(t′)B0(t)w+

}
We estimate

‖ B0(t)w′
1(t) ‖2 ≤

∫ ∞

t

dt′ t′−2
{
‖ s0(t′) ‖∞ ‖ B0(t)∇w+ ‖2

+ ‖ (∇ · s0)(t′) ‖∞ ‖ B0(t)w+ ‖2
}
≤ C t−λ0+1/2

∫ ∞

t

dt′ t′−2:n t′

≤ C t−λ0−1/2(1 + :n t) (7.24)

by (5.35) and (7.10).
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Similarly, we estimate

‖ ∆(B0(t)w′
1(t)) ‖2 ≤ C

∫ ∞

t

dt′ t′−2
{
‖ ∆s0 ‖3 ‖ B0∇w+ ‖6

+ ‖ ∇s0 ‖∞‖ ∇(B0∇w+) ‖2 + ‖ s0 ‖∞‖ ∆(B0∇w+) ‖2 + ‖ ∆∇ · s0 ‖2‖ B0w+ ‖∞
+ ‖ ∇2s0 ‖6 ‖ ∇(B0w+) ‖3 + ‖ ∇ · s0 ‖∞ ‖ ∆(B0w+) ‖2

}
(7.25)

where s0 = s0(t′) and B0 = B0(t), and therefore by (7.10)

‖ ∆(B0 w
′
1) ‖2 ≤ C a2

+ t−1(1 + :n t)
{

(‖ B0 ‖∞ + ‖ ∇B0 ‖3) a+

+ ‖ (∆B0)∇w+ ‖2 + ‖ (∆B0)w+ ‖2
}

≤ C a2
+

(
a+ b0 t

−1/3 + b1 t
−λ0+3/2

)
(1 + :n t) (7.26)

by (3.17) and (5.35).
We next estimate the contribution of w′′

1 . By the same estimates as for w1

(see the proof of (7.11)) we obtain

|w′′
1 |k+−1 ≤ C a3

+ t−1(1 + :n t)

|w′′
1 |k+−3 ≤ C a3

+ t−2(1 + :n t)

where we have used the fact that the factors (1 − U (∗)(1/t)) can be replaced by
t−1∆ for the purpose of the second estimate, and therefore

‖ ωmw′′
1 ‖2 ≤ C a3

+ t−2+m/2(1 + :n t) for 0 ≤ m ≤ k+ − 1 (7.27)

by interpolation. By Lemma 3.2 and (3.17) we then obtain

‖ ωm(B0 w
′′
1 ) ‖2 ≤ C (‖ ωmB0 ‖∞ ‖ w′′

1 ‖2 + ‖ B0 ‖∞ ‖ ωmw′′
1 ‖2)

≤ C b0 a
3
+ t−2+m (1 + :n t) . (7.28)

Collecting (7.24) (7.26) (7.28) and the estimates of B0w0 coming from Lemma 5.1
yields (7.23) for 0 ≤ m ≤ 2. �

We can now collect Proposition 6.3 and Lemmas 7.1 and 7.2 to obtain the
main technical result on the Cauchy problem for the auxiliary system in the differ-
ence form (2.30). We again keep the assumptions on B0 in the implicit form of the
estimates (3.17) and (5.35), which can however be replaced by sufficient conditions
on (w+, A+, Ȧ+) by the use of Lemmas 3.5 and 5.2.

Proposition 7.1 Let 1 < k ≤ : and : > 3/2. Let β, λ0 and λ satisfy

0 < β < 2/3 , λ > 0 , λ+ k < λ0 < 2 , λ0 > β(:+ 1) . (7.29)
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Let k+ satisfy

k+ ≥ k + 2 , k+ ≥ 2λ0 , β(k+ + 1) ≥ λ0 , β(:+ 3− k+) < 1 . (7.30)

Let w+ ∈ Hk+ , let B0 satisfy the estimates (3.17) for 0 ≤ m ≤ k and let (w+, B0)
satisfy the estimates (5.35) for all multi-indices α1, α2 with 0 ≤ |α1| ≤ 2 and
0 ≤ |α1| < 2λ0. Let (W,S) be defined by (7.3) (7.5) (7.7). Then
(1) (W,S) satisfy the estimates (6.45) (6.46) (6.47) (6.48), with 0 < η < 1−3β/2

in (6.46).
(2) All the statements of Proposition 6.3 hold.

Proof. It follows from Lemmas 7.1 and 7.2 that all the assumptions of Proposition
6.3, and in particular the estimates (6.45)–(6.48), are satisfied. �

8 Wave operators and asymptotics for (u, A)

In this section we complete the construction of the wave operators for the system
(1.1) (1.2) and we derive asymptotic properties of solutions in their range. The
construction relies in an essential way on Proposition 7.1. So far we have worked
with the system (2.20) for (w, s) and the first task is to reconstruct the phase ϕ.
Corresponding to S = s0 + s1, we define φ = ϕ0 + ϕ1 where

ϕ0 = −
∫ t

1

dt′ t′−1 B∞
L (w0(t′), w0(t′)) (8.1)

ϕ1 = −
∫ ∞

t

dt′(2t′2)−1|s0(t′)|2 + 2
∫ ∞

t

dt′ t′−1 B∞
L (w0(t′), w1(t′)) (8.2)

so that s0 = ∇ϕ0 and s1 = ∇ϕ1.
Let now (q, σ) be the solution of the system (2.30) constructed in Proposition

6.3 part (2) and let (w, s) = (W,S) + (q, σ). We define

ψ = −
∫ ∞

t

dt′(2t′2)−1 (σ · (σ + 2S) + s1 · (s1 + 2s0)) (t′)

+
∫ ∞

t

dt′ t′−1 (B∞
L (q, q) + 2B∞

L (W, q) +B∞
L (w1, w1)) (t′) (8.3)

which is taylored to ensure that ∇ψ = σ, given the fact that s0, s1 and σ are
gradients. The integral converges in Ḣ1, as follows from (6.49) (6.50) and from the
estimate (see the proof of (6.4))

∂t ‖ σ ‖2 ≤ t−2 ‖ ∇σ ‖2 (‖ s ‖∞ + ‖ ∇S ‖3) + t−1 a I0(‖ q ‖2)
+t−1+3β/2 I−3/2

(‖ q ‖22)+ ‖ R2(W,S) ‖2
≤ C

(
t−2−λ0+β(1 + :n t) + t−1−λ0 + t−1−2λ0+3β/2 + t−3(1 + :n t)3

)
≤ C t−1−λ0 . (8.4)
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Furthermore, this implies that

‖ ∇ψ ‖2 = ‖ σ ‖2 ≤ C t−λ0 . (8.5)

Finally we define ϕ = φ+ ψ so that ∇ϕ = s, and (w,ϕ) solves the system (2.18).
For more details on the reconstruction of ϕ from s, we refer to Section 7 of [6].

We can now define the wave operators for the system (1.1) (1.2) as follows.
We start from the asymptotic state (u+, A+, Ȧ+) for (u,A). We define w+ = Fu+,
we define (W,S) by (7.3) (7.5) (7.7) and B0 by (2.3) (2.13), namely

A0 = K̇(t) A+ +K(t) Ȧ+ = t−1 D0 B0 .

We next solve the system (2.30) with t1 = ∞ and with initial time t0 = ∞ for (q, σ)
by Proposition 6.3, part (2), we define (w, s) = (W,S) + (q, σ) and we reconstruct
ϕ from s as explained above, namely ϕ = ϕ0 + ϕ1 + ψ with ϕ0, ϕ1 and ψ defined
by (8.1) (8.2) (8.3). We finally substitute (w,ϕ) thereby obtained into (2.11) (2.2),
thereby obtaining a solution (u,A) of the system (1.1) (1.2). The wave operator
is defined as the map Ω : (u+, A+, Ȧ+) → (u,A).

In order to state the regularity properties of u that follow in a natural way
from the previous construction, we introduce appropriate function spaces. In addi-
tion to the operatorsM = M(t) and D = D(t) defined by (2.8) (2.9), we introduce
the operator

J = J(t) = x+ it ∇ , (8.6)

the generator of Galilei transformations. The operators M , D, J satisfy the com-
mutation relation

i M D ∇ = J M D . (8.7)

For any interval I ⊂ [1,∞) and any k ≥ 0, we define the space

X k(I) =
{
u : D∗M∗u ∈ C(I,Hk)

}
=

{
u :< J(t) >k u ∈ C(I, L2)

}
(8.8)

where < λ >= (1+λ2)1/2 for any real number or self-adjoint operator λ and where
the second equality follows from (8.7).

We now collect the information obtained for the solutions of the system (1.1)
(1.2) and state the main result of this paper as follows.

Proposition 8.1 Let 1 < k ≤ :, : > 3/2. Let β, λ0 and λ satisfy

0 < β < 2/3 , λ > 0 , λ+ k < λ0 < 2 , λ0 > β(:+ 1) . (7.29)

Let k+ satisfy

k+ ≥ k + 2 , k+ ≥ 2λ0 , β(k+ + 1) ≥ λ0 , β(:+ 3− k+) < 1 . (7.30)
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Let u+ ∈ FHk+, let w+ = Fu+ and a+ = |w+|k+ . Let (A+, Ȧ+) ∈ Hk ⊕ Hk−1.
Let A0 defined by (2.3) satisfy the estimates

‖ ωm A0(t) ‖r ≤ b0 t
2/r−1 (3.15) ≡ (8.9)

for 0 ≤ m ≤ k, 2 ≤ r ≤ ∞ and all t ≥ 1, and the estimates

‖ (∂α1A0) ((∂α2w+) (x/t)) ‖2 ≤ b1 t
−λ0+(1+|α2|)/2 (8.10)

for all multi-indices α1, α2 with 0 ≤ |α1| ≤ 2 and 0 ≤ |α2| < 2λ0. Let (W,S) be
defined by (7.3) (7.5) (7.7). Then
(1) There exists T , 1 ≤ T <∞ such that the auxiliary system (2.20) with t1 = ∞
has a unique solution (w, s) ∈ C([T,∞), Xk,�) satisfying

‖ w(t)−W (t) ‖2 ≤ C t−λ0 (8.11)

‖ ωk(w(t) −W (t)) ‖2 ≤ C t−λ (8.12)

‖ ωm(s(t) − S(t)) ‖2 ≤ C t−λ0+βm for 0 ≤ m ≤ :+ 1 . (8.13)

(2) Let φ = ϕ0 + ϕ1 be defined by (8.1) (8.2), let ϕ = φ + ψ with ψ defined by
(8.3) and (q, σ) = (w, s)− (W,S). Let

u = MD exp(−iϕ)w (2.11) ≡ (8.14)

and define A by (2.2) (2.3) (2.4) with t1 = ∞. Then u ∈ X k([T,∞)), (A, ∂tA) ∈
C([T,∞), Hk ⊕Hk−1), (u,A) solves the system (1.1) (1.2) and u behaves asymp-
totically in time as MD exp(−iφ)W in the sense that it satisfies the following
estimates:

‖ u(t)−M(t) D(t) exp(−iφ(t))W (t) ‖2 ≤ C(a+, b0, b1)t−λ0 (8.15)

‖ |J(t)|k (exp(iφ(t, x/t))u(t) −M(t) D(t) W (t)) ‖2 ≤ C(a+, b0, b1)t−λ (8.16)

‖ u(t)−M(t) D(t) exp(−iφ(t))W (t) ‖r ≤ C(a+, b0, b1)t−λ0+(λ0−λ)δ(r)/k (8.17)

for 0 ≤ δ(r) = (3/2− 3/r) ≤ [k ∧ 3/2].
Define in addition

A2 = A−A0 −A∞
1 (|DW |2) . (8.18)

Then A behaves asymptotically in time as A0 + A∞
1 (|DW |2) in the sense that A2

satisfies the following estimates:

‖ A2(t) ‖2 ≤ C(a+, b0, b1) t−λ0+1/2 . (8.19)

Furthermore, for 3/2 < k(< 2):

‖ ∇A2(t) ‖2 ≤ C(a+, b0, b1) t−λ0−1/2 (8.20)

‖ ωk∇A2(t) ‖2 ≤ C(a+, b0, b1) t−λ−k−1/2 , (8.21)
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while for (1 <)k < 3/2:

‖ ∇A2(t) ‖2 ≤ C(a+, b0, b1)
(
t−λ0−1/2 + t−2λ0−1/2+(λ0−λ)3/2k

)
(8.22)

‖ ω2k−1/2A2(t) ‖2 ≤ C(a+, b0, b1)t−λ−2k+1
(
t−λ + tk−3/2

)
. (8.23)

A similar result holds for k = 3/2 with a tε loss in the decay.

Proof. The proof follows from Propositions 6.3 part (2) and from Proposition
7.1, supplemented with the reconstruction of ϕ described above in this section,
except for the estimates (8.15)–(8.17) on u and (8.19)–(8.23) on A. In particular
the estimate (8.10) is nothing but the estimate (5.35) expressed in terms of A0

instead of B0 while the estimates (8.11) (8.12) (8.13) are essentially (6.49) (6.50)
supplemented with (8.4) (8.5).
We next prove the estimates (8.15) - (8.17) on u. From (8.14) with ϕ = φ+ψ and
from (8.7), it follows that

‖ |J |m (exp(i D0 φ)u −MDW ) ‖2 =‖ ωm (
w e−iψ −W ) ‖2 (8.24)

For m = 0, we estimate

‖ w exp(−iψ)−W ‖2 ≤ ‖ w (exp(−iψ)− 1) ‖2 + ‖ w −W ‖2
≤ ‖ w ‖3 ‖ ψ ‖6 + ‖ q ‖2 ≤ C t−λ0

by (8.5), a Sobolev inequality and (8.11). This proves (8.15). For m = k, we
estimate by Lemma 3.2

‖ ωk (exp(−iψ)w −W ) ‖2 ≤ C
{
‖ ωk (exp(−iψ)− 1) ‖3 ‖ w ‖6

+ ‖ exp(−iψ)− 1 ‖∞ ‖ ωkw ‖2 + ‖ ωk(w −W ) ‖2
≤ C ‖ ωk−1/2σ ‖2 exp (C ‖ ψ ‖∞) ‖ ∇w ‖2 +(‖ σ ‖2 ‖ ∇σ ‖2)1/2 ‖ ωkw ‖2
+ ‖ ωkq ‖2 ≤ C

(
t−λ0+β(k−1/2) + t−λ0+β/2 + t−λ

)
≤ C t−λ

by Lemma 3.3, by the Sobolev inequality

‖ ψ ‖∞ ≤ C (‖ σ ‖2 ‖ ∇σ ‖2)1/2

and by (8.12) (8.13). This proves (8.16).
The estimate (8.17) follows immediately from (8.15) (8.16) and from the

inequality

‖ f ‖r = t−δ(r) ‖ D∗M∗f ‖r ≤ C t−δ(r) ‖ ωδ(r)D∗M∗f ‖2
= C t−δ(r) ‖ |J(t)|δ(r)f ‖2 .



Vol. 3, 2002 Long Range Scattering for the Wave-Schrödinger System 605

We finally prove the estimates (8.19)–(8.23) on A. It follows from the defini-
tions (2.2) (2.3) (2.4) (8.18) and from (2.13) (2.14) that

A2 = t−1 D0 B
∞
1 (q, q + 2W ) . (8.25)

It is therefore sufficient to estimate B∞
1 (q, q + 2W ). We omit the superscript ∞

for brevity. We first estimate by (3.10)

‖ B1(q, q + 2W ) ‖2 ≤ C I−1

(‖ ω−1(q(q + 2W )) ‖2
)

≤ C I−1 (‖ q ‖2 ‖ q + 2W ‖3) ≤ C t−λ0 (8.26)

by Sobolev inequalities and by (8.11), since q+2W is bounded in Hk and a fortiori
in L3. This proves (8.19).

For k > 3/2, we estimate similarly

‖ ∇B1(q, q + 2W ) ‖2 ≤ I0 (‖ q ‖2 ‖ q + 2W ‖∞) ≤ C t−λ0 (8.27)

by (3.10) and (8.11), since q + 2W is bounded in L∞ in that case. Furthermore,
by (3.10), Lemma 3.2 and Sobolev inequalities

‖ ωk+1 B1(q, q + 2W ) ‖2 ≤ C Ik
(‖ ωkq ‖2 (‖ q ‖∞ + ‖W ‖∞)

+ ‖ ∇q ‖2 ‖ ωk+1/2W ‖2
)
≤ C t−λ (8.28)

by (8.11) (8.12). The last two inequalities imply (8.20) and (8.21) respectively.
For k < 3/2, we must estimate B1(q, q) and B1(q,W ) separately because q

is no longer controlled in L∞. We estimate as before

‖ ∇B1(q,W ) ‖2 ≤ I0 (‖ q ‖2 ‖W ‖∞) ≤ C t−λ0

by (8.11), while

‖ ∇B1(q, q) ‖2 ≤ I0
(‖ q ‖24 ) ≤ C t−2λ0+(λ0−λ)3/2k

by (8.11) (8.12), which together imply (8.22).
We next estimate by (3.12) and (8.12)

‖ ω2k−1/2 B1(q, q) ‖2 ≤ C I2k−3/2

(‖ ωkq ‖22) ≤ C t−2λ (8.29)

while by (3.10) and Lemma 3.2

‖ ω2k−1/2 B1(q,W ) ‖2 ≤ C I2k−3/2

(
‖ ω2k−3/2q ‖2 ‖W ‖∞

+ ‖ q ‖r ‖ ω2k−3/2W ‖3/δ
)

≤ C I2k−3/2

(
‖ ω2k−3/2q ‖2

(
‖W ‖∞ + ‖ ω3/2W ‖2

))
by Sobolev inequalities, with 1/2 < δ = δ(r) = 2k − 3/2 < 3/2,

· · · ≤ C t−λ−(λ0−λ)(3/2k−1) ≤ C t−λ−3/2+k (8.30)

by interpolation between (8.11) and (8.12). Now (8.23) follows from (8.29) and
(8.30). �
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We conclude this section with some remarks on variations which can be made
or attempted in the formulation of Proposition 8.1.

Remark 8.1 We have stated the assumptions on (A+, Ȧ+) in an implicit way in
the form of conditions on the solution A0 of the free wave equation that they
generate. Sufficient conditions for (8.9) and (8.10) to hold directly expressed in
terms of (A+, Ȧ+) and possibly w+ can be found in Lemma 3.5 and Lemma 5.2,
but those conditions are far from being optimal (especially those of Lemma 5.2).

Remark 8.2 The available regularity for A is stronger than stated, as follows from
the assumption (8.9) on A0, from the simple estimate on A∞

1 (|DW |2)
‖ ωmA∞

1 (|DW |2) ‖2 ≤ C(a+) t−m+1/2

for 0 ≤ m ≤ k+, and from the remainder estimates (8.19)–(8.23).

Remark 8.3 The asymptotic behaviour in time of the scalar field A differs in an
important way from that of a solution of the free wave equation. In fact A behaves
asymptotically in time as

A ∼ A0 +A∞
1 (|DW |2) .

Replacing W by w+ as a first approximation in the last term, one obtains

A∞
1 (|Dw+|2) = t−1 D0 B

∞
1 (w+, w+)

with B∞
1 (w+, w+) constant in time. This yields a contribution to A which spreads

by dilation by t and decays as t−1 in L∞ norm. That contribution can in no obvious
sense be regarded as small as compared with A0.

Remark 8.4 One might be tempted to look for simpler asymptotic forms for u and
for A by replacing for instanceW by w+ in (8.15) (8.16) (8.18) and/or by omitting
a few factors U (∗)(1/t) in (7.5) (7.7). This however would introduce errors at least
O(t−1) and spoil the t−λ0 decay in (8.11) (8.15) (8.19) (8.20) (8.22).

Acknowledgements. We are grateful to Professor Yves Meyer for enlightening con-
versations.

Appendix A

In this appendix, we prove Warnings 4.1 and 4.2.

Proof of Warning 4.1 One sees easily that (4.57) with y(1) = y0 > 0 has a unique
maximal increasing solution y ∈ C1([1, T ∗),R+) for some T ∗ > 1. We shall argue
by contradiction by showing that if T ∗ is sufficiently large, then y(t) is infinite for
some t < T ∗. By integration, (4.57) with y(1) = y0 is converted into the integral
equation

y(t) = y0 exp
{
(m− β1)−1 t−β1

∫ 1

1/t

dν y(νt)
(
ν−1−m − ν−1−β1

) }
. (A.1)
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We shall prove by induction that (A.1) implies a sequence of lower bounds y(t) ≥
an tαn with αn rapidly growing and an not too small. We start with a0 = y0,
α0 = 0. Substituting that lower bound into (A.1) yields

y ≥ y0 exp{y0 h(t)}
where

h(t) = (m− β1)−1 t−β1

∫ 1

1/t

dν
(
ν−1−m − ν−1−β1

)
= (m− β1)−1

(
m−1 tm−β1 − β−1

1

)
+m−1 β−1

1 t−β1

so that y ≥ a1t
α1 provided

:n a1/y0 ≤ (m− β1)−1
(−α1 :n τ + y0(m−1τ − β−1

1 )
)

(A.2)

where τ = tm−β1 ≥ 1. The minimum of the RHS is attained for τ = mα1/y0,
which we take > 1, and we can then take

a1 = y0 exp
{
(m− β1)−1 β−1

1 y0

}
(e y0/m α1)α1/(m−β1) . (A.3)

Here α1 is an arbitrary fixed parameter, which we take large. In particular we
impose α1 > (m−1y0 ∨ 2β1).

At the following steps of the iteration, it will be sufficient to replace (A.1) by
the lower bound obtained by letting m decrease to β1, namely

y(t) ≥ y0 exp
{
t−β1

∫ 1

1/t

dν y(νt) ν−1−β1 |:n ν|
}

(A.4)

or equivalently

y(t) ≥ y0 exp
{∫ t

1

dt′ y(t′) t′−1−β1 :n(t/t′)
}
. (A.5)

We now describe the determination of (an+1, αn+1) = (a′, α′) from (an, αn) =
(a, α). Substituting the induction assumption into (A.5), we obtain for α > β1 (a
condition that will be ensured below)

y ≥ y0 exp
{
a

∫ t

1

dt′ t′−1−β1+α :n(t/t′)
}

= y0 exp
{
a(α− β1)−2(τ − 1− :n τ)

}
where τ = tα−β1 > 1. This implies y ≥ a′tα

′
provided

:n a′/y0 ≤ a(α− β1)−2(τ − 1− :n τ) − α′(α − β1)−1:n τ

= θ (ã(τ − 1)− (ã+ 1):n τ) (A.6)
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where
θ = α′/(α− β1) , ã = a/α′(α− β1) . (A.7)

The minimum over τ of the last member of (A.6) is attained for ãτ = ã+ 1, and
it suffices to impose

:n(a′/y0) ≤ θ(1− (ã+ 1):n(ã+ 1)/ã) ≡ θ(:n ã− f(ã))
which allows us to take a′ = y0ã

θ provided

f(ã) ≡ (ã+ 1):n(ã+ 1)− ã :n ã− 1 ≤ 0

a condition which is easily seen to hold for ã ≤ 1/2.
Finally we can take

α′ = θ(α − β1) , a′ = y0
(
a/θ(α− β1)2

)θ
(A.8)

provided
a ≤ θ(α− β1)2/2 . (A.9)

So far θ is a free parameter. For definiteness we choose θ = 2, so that after coming
back to the original notation, (A.8) (A.9) become

αn+1 = 2(αn − β1) , (A.10)

an+1 = y0 a
2
n/4(αn − β1)4 , (A.11)

an ≤ (αn − β1)2 . (A.12)

(A.10) is readily solved by

αn = 2β1 + 2n−1(α1 − 2β1) .

(A.12) is harmless and holds for all n if it holds for n = 1 and if y0 ≤ 4(α1− β1)2,
which can be arranged by taking α1 sufficiently large. (A.11) can be rewritten as

an+1 y0
64(αn+1 − β1)4

=
y2
0 a

2
n

642(αn − β1)8

(
2(αn − β1)
αn+1 − β1

)4

≥
{

an y0
64(αn − β1)4

}2

(A.13)

by (A.10). Let now t ≥ 1 and define

un = an t
αn−2β1 y0/64(αn − β1)4 .

It follows from (A.10) (A.13) that un+1 ≥ u2
n and in particular un ≥ 1 for all n if

u1 ≥ 1, namely if t is sufficiently large in the sense that

tα1−2β1 ≥ (a1y0)−1 64(α1 − β1)4 . (A.14)

For such t, the condition un ≥ 1 can be rewritten as

y(t) ≥ an t
αn ≥ t2β1 y−1

0 64(αn − β1)4

≥ 4t2β1 y−1
0 24n(α1 − 2β1)4 . (A.15)

Since the last member of (A.15) tends to infinity with n, such a t cannot be smaller
than T ∗, which proves finite time blow up. �
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Remark A1. Since the RHS of (4.56) and (4.57) is decreasing in β1 and increasing
in m, blow up in finite time for (β1,m) implies blow up in finite time for (β′

1,m)
with β′

1 ≤ β1 and for (β1,m
′) with m′ ≥ m, while the opposite situation prevails

as regards the existence of global solutions. Actually it is easy to see that (4.56)
or (4.57) admits global solutions for small data if β1 > 0 and m ≤ β1. When
coming back to the original equation (4.55), the condition of small data becomes
a condition of large t0.

Proof of Warning 4.2. We want to prove finite time blow up for (4.61) with y(t0) =
y0 > 0. Omitting the second term in the RHS and integrating the remaining
inequality, we obtain

y ≥
(
y
1/k
0 + t− t0

)k

≥ (t− t0)k . (A.16)

We next keep (A.16), omit the first term in the RHS of (4.61) and change t to
t+ t0. It is then sufficient to prove blow up for{

y ≥ tk

∂ty ≥ (t+ t0)−1−β1 y3 .
(A.17)

For that purpose, we show by induction that y satisfies

y(t) ≥ yn(t) ≥ an t
αn(t+ t0)−(1+β1)γn , (A.18)

starting with a0 = 1, α0 = k and γ0 = 0 given by (A.17). We obtain

yn+1 =
∫ t

0

dt′(t0 + t′)−1−β1 y3
n(t

′)

≥ a3
n

∫ t

0

dt′(t0 + t′)−(1+β1)(3γn+1) t′3αn

≥ a3
n(t0 + t)−(1+β1)(3γn+1) t3αn+1(3αn + 1)−1

thereby ensuring (A.18) at the level n+ 1 if we choose

αn+1 = 3αn + 1 , γn+1 = 3γn + 1 , (A.19)

an+1 = a3
n/(3αn + 1) . (A.20)

(A.19) is readily solved by

αn = 3n(k + 1/2)− 1/2 , γn = (3n − 1)/2 (A.21)

so that
an+1 ≥ a3

n(k + 1/2)−1 3−(n+1) (A.22)

or equivalently
bn+1 ≥ b3n (A.23)
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where
bn = an3−n/2−3/4 (k + 1/2)−1/2 . (A.24)

Let now t > 0 and

un = bn t
αn+1/2 (t0 + t)−(1+β1)(γn+1/2) . (A.25)

It follows from (A.19) (A.23) that un+1 ≥ u3
n and in particular that un ≥ 1 for all

n if u0 ≥ 1. The condition u0 ≥ 1 reduces to

t2k+1(t0 + t)−(1+β1) ≥ 33/2(k + 1/2) (A.26)

and holds for t sufficiently large if 2k > β1. For such a t, by (A.18)

y ≥ an t
αn(t0 + t)−(1+β1)γn ≥ (k+1/2)1/2 3n/2+3/4 t−1/2(t0 + t)(1+β1)/2 . (A.27)

Since the last member of (A.27) tends to infinity with n, such a t cannot be smaller
than the maximal time T ∗ of existence of the solution y of (4.61), which proves
finite time blow up. �
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