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Modified Wave Operators for the Hartree Equation with
Data, Image and Convergence in the Same Space, II

K. Nakanishi

Abstract. We study modified wave operators for the Hartree equation with a long-
range potential |x|−ν , extending the result in [12] to the whole range of the Dollard
type 1/2 < ν < 1. We construct the modified wave operators in the whole space
of (1 + |x|)−sL2. We also have the image, strong continuity and strong asymptotic
approximation in the same space. The lower bound s > 1 − ν/2 of the weight is
sharp from the scaling argument. Those maps are homeomorphic onto open subsets,
which implies in particular asymptotic completeness for small data.

1 Introduction

In this paper, we continue the study in [12] on asymptotic behavior of solutions
for the Hartree equation with a long-range potential |x|−ν :

2iu̇−∆u+ V (u)u = 0, (1.1)

where
V (u) = KV (x) ∗ |u|2, KV (x) = λ|x|−ν , (1.2)

u = u(t, x) : R1+n → C (n ∈ N) is the unknown function and λ ∈ R is a real
constant.

The main goal in [12] was to obtain results for the modified wave operators in
the long range case that are as good as those for the ordinary wave operators in the
short range case ν > 1, especially as to the domain, the range and the topology of
convergence. In fact, such a result was obtained in [12] in the limiting case ν = 1,
which is almost the same as in the short range case except the presence of the
modification and the exclusion of the scaling critical case. Before that result, the
modified wave operators were defined under much stronger assumptions on the
data, while the range and the convergence were given in larger spaces or weaker
senses than that for the data. Actually, it was rather recent [3, 4] even that those
operators were obtained without any smallness assumption on the data and for
ν < 1.

However, the argument in [12] strongly depended on the fact that the phase
modifier diverges slower than any positive power of t, which might have the readers
wonder that the result in [12] for the long range was somewhat special for the
borderline case ν = 1 only. For more detail of known results on the modified wave
operators, see [3, 4] and the references therein.
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In this paper, we show that the same result as in [12] holds actually in the
whole range 1/2 < ν ≤ 1 where the Dollard-type first-order modification suffices.
Let U(t) = e−i∆t/2 denote the free propagator and F the Fourier transform. Hs

denotes the usual inhomogeneous Sobolev space based on L2. The main result of
this paper is the following. We do not consider the case ν = 1, which has been
solved in [12].

Theorem 1.1 Let n ≥ 3, 1/2 < ν < 1, 1 − ν/2 < s < 1 and λ ∈ R. Then, for
any ψ ∈ FHs, there exists a unique solution u of (1.1) satisfying U(−t)u(t) ∈
C(R;FHs) and

F−1 exp
(
1
2i
V (Fψ) t

1−ν

ν − 1

)
FU(−t)u(t) → ψ (1.3)

as t → ∞ in FHs. Thus we have the modified wave operator W defined by

W : ψ 
→ u(0). (1.4)

W is a homeomorphism from FHs to an open subset of FHs in the strong topology.
We have the same result for the negative time t → −∞.

This result is the same as that in [12] except the extension of the range
of ν to 1/2 < ν < 1 and the restrictions n ≥ 3 and s < 1. The exception of
lower dimensions is related to the Sobolev embedding. Actually, the case n = 2 is
required to be excluded only in one place of the estimates, and that restriction may
be hopefully avoidable. However, the one dimensional case looks more different.
That is because the homogeneous part Ḣs can not dominate any Lebesgue norm
when s > n/2, which is always the case when n = 1, while we can choose s < n/2
when n ≥ 2. The restriction s < 1 is much more technical and hardly essential. It
is required just because we estimate the Hs norm mainly by the spatial difference
and we consider only the first-order difference for the sake of simplicity.

The basic strategy to construct the modified wave operators is almost the
same as in the previous paper [12]; We transform the scattering problem to the
initial value problem by the pseudo-conformal inversion, eliminate the diverging os-
cillation by using the prescribed asymptotic states, and solve the Cauchy problem
of thereby modified equation coupled with the evolution equation of the potential
term.

The essential novelty is in the estimate for the phase terms, where we will see
that the divergence in the phases can be cancelled by each other without losing
any regularity or decay in time. Since direct calculations of Fourier transform are
not helpful for the phase terms, we estimate them in the physical space by using
some decomposition arguments in the frequency. The fractional derivative is not so
convenient by the same reason, so we will employ the difference operator instead,
which is easy to handle in the phase terms and also in the equations. Here we need
only the first order of difference, because we can choose s < 1. Other advantages
of the difference operator are that we can replace the commutator estimate in
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Hs (which played the essential role in [12]) with the trivial chain rule for the
difference, and that the difference operator effectively localizes the frequency so
that the arguments are indeed free from the particular choice of s and we can
obtain some uniform decay estimate for the higher frequency, which will play an
important role to obtain the continuity and asymptotic completeness as in [12].

Now we briefly recall our strategy used in the previous paper [12]. We use
the well-known transform of the pseudo-conformal inversion:

u 
→ u∗ = (it)−n/2e|x|
2/(2it)u(1/t, x/t). (1.5)

Then the equation (1.1) for u is transformed to the following equation for u∗:

2iu̇∗ −∆u∗ + |t|ν−2V (u∗)u∗ = 0, (1.6)

and the asymptotic behavior of u as t → ±∞ can be described by that of u∗ as
t → ±0, using the relation:

U(−1/t)u∗(1/t) = (2π)−n/2FU(−t)u(t). (1.7)

To eliminate the singularity at t = 0 of (1.6), we define the modified field w by

u∗(t) = U(t)eiΦw(t), (1.8)

where

Φ(φ) = V (φ)
|t|ν−2t

2(ν − 1)
. (1.9)

It is easy to check that eiΦ(φ)φ is the general solution to the ODE given by drop-
ping the non-singular term ∆u∗ from (1.6). It is also easy to see that the second
derivative in ∆ will create another singular term if ν ≤ 1/2, so that the above
first-order approximation can be valid only when ν > 1/2. The equation for w is
the following.

2iẇ + |t|ν−2e−iΦ{U(−t)V (u∗)U(t)− V (φ)}eiΦw = 0, (1.10)

where U(−t)V (u∗)U(t) denotes the operator defined by

U(−t)V (u∗)U(t)ϕ := U(−t)(V (u∗)U(t)ϕ). (1.11)

As was mentioned in [12], the advantage of our choice of the modification in (1.8)
is that we do not encounter any derivative loss as we do if we choose other modifi-
cations such as u∗(t) = eiΦw(t). But here we have to square up to the disadvantage
that the phase factors remain without exact cancellations, which was disposed with
in [12] by relying totally on the fact that the divergence of the phase was only log t.
Thus our main problem in this paper is to derive the cancellation estimate at t = 0
of those phase factors, without losing any (extra) regularity or any decay.
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The rest of this paper is organized as follows. First in the next Section 2, we
derive the most important estimates with respect to the control of the phase terms.
They reduce the necessary estimates on w and V to those for the equation without
the phase modifier. In Section 3, we derive several estimates that will be used after
that phase elimination. Using those estimates, we can derive some bounds on the
difference energy of the modified field in Section 4, and some bounds as well as
decay estimates at t = +0 for the potential term in Section 5. Combining those
bounds and decay estimates, we can solve the Cauchy problem for the modified
equation by the iteration argument in Section 6. These argument can yield some
uniform decay of the higher frequency in terms of energy. This uniform estimate
effectively reduces any convergence problems in Hs to those in L2. Then we can
easily show the continuity properties of the modified wave operator in Section 7,
and the openness of it in Section 8.

We conclude this introduction by giving some notations used throughout this
paper. Hs, Ḣs and Ḃs

p,q denote the inhomogeneous Sobolev space, the homoge-
neous Sobolev space and the homogeneous Besov space, respectively (see [1] for
the definition). We use the following abbreviation for the norm for the potential
term:

Bs := Ḃ
s+n/2
2,1 . (1.12)

In general, elements in this space can not be uniquely determined as usual distri-
butions when s > 0. However, we will use this space only for s < 1 and then the
elements are uniquely determined up to addition of constants. The readers need
not care about this ambiguity, since it will be clear that addition of constants
does not matter in each estimate involving this space with s > 0. We also use the
following dual space:

Bs
∗ := Ḃ

s−n/2
2,∞ . (1.13)

We will use the following notation to express polynomial bounds.

a[b,c] := max(ab, ac). (1.14)

For any spatial function u, we denote by ϕI ∗ u the Littlewood-Paley projection
on Rn to the frequency of the size |ξ| ∼ I;

ϕ =
∑

I=2j ,j∈Z

ϕI ∗ ϕ, suppF(ϕI ∗ u) ⊂ {|ξ| ∼ I}. (1.15)

δhϕ denotes the spatial difference

δhϕ(x) := ϕ(x+ h)− ϕ(x), (1.16)

with a parameter h ∈ Rn.
For any sequence a and any function F , we denote

δka := ak − ak−1, F (ak+) := F (ak) + F (ak+1),

F (ak+, ak+) :=
∑

i,j=k,k+1

F (ai, aj), etc., (1.17)



Vol. 3, 2002 Modified Wave Operators for the Hartree Equation, II 507

We will frequently use the above notation for k = 0, 1, even if ak is defined only
for k = 0, 1. In particular, we denote

δ1a = a1 − a0, F (a0+) = F (a0) + F (a1),
δ1F (a∗) := F (a1)− F (a0),
δ1F (a∗, b∗) := F (a1, b1)− F (a0, b0), etc.

(1.18)

2 Phase estimates

In this section, we derive the most important estimates on the phase terms. We
will use the following identity:

S(v, w) := (U(t)v)U(t)w = U(−t)F−1

∫
v(x + tξ)w(x)e−ixξdx, (2.1)

which is easy to verify by using the explicit formula for U(t):

U(t)ϕ = ct−n/2

∫
e|x−y|2/(2it)ϕ(y)dy. (2.2)

The effect of the phase factor is skimmed into

S0(Φ; v, w) = S0(v, w) := S(eiΦv, eiΦw)− S(v, w)

= U(−t)F−1

∫ (
eiΦ(x+tξ)−iΦ(x) − 1

)
v(x + tξ)w(x)e−ixξdx.

(2.3)

This identity suggests that we may expect the phase factors to cancel each other
in the order roughly O(tξ‖∇Φ‖L∞). However, it is not always possible to estimate
the phase term just in L∞, in particular, when v or w has frequency less than
|ξ|. Then the following Lp estimate of the phase factor plays an essential role. We
denote

Φ′(x, tξ) := Φ(x + tξ)− Φ(x), Ψ(Φ;x, tξ) := eiΦ
′(x,tξ) − 1. (2.4)

The parameter α below will be fixed as α = s − ν/2 in the later applications,
though we will ignore it for a while, since it has nothing essential to do with the
phase estimates.

Lemma 2.1 Let n ∈ N, m ≥ 1, 0 ≤ α < 1 and 0 ≤ β ≤ n/2. Assume that

(α− 1)m+ β < θ < α+ n/2, (2.5)

−α ≤ θ ≤ 1− α. (2.6)

Then we have for |ξ| ∼ N ,

‖ϕI ∗Ψ(Φ)‖Ln/β
x

� |tN2|θN−β max
1≤d≤m

(N/I)β−θ+dα(tα‖Φ‖B2α)d.
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Instead of (2.5), assume that

(α− 1)m+ β + α < θ + σ < α+ n/2. (2.7)

Then we have for |ξ| ∼ N ,

‖ϕI ∗ (Ψ(Φ1)−Ψ(Φ0))‖Ln/β
x

� |tN2|θNσ−β max
1≤d≤m+1

(N/I)β−θ+dα

× (tα‖Φ1 − Φ0‖B2α−σ )

× (tα‖Φ0‖B2α + tα‖Φ1‖B2α)d−1.

(2.8)

Proof. In this proof, we define the norm in Rd for d ∈ N by

|(x1, . . . , xd)| := |x1|+ · · ·+ |xd|. (2.9)

Denote Ψi := Ψ(Φi) and Ψ := Ψ(Φ). By convexity, it suffices to prove the estimate
in the case m ∈ N. Fix ξ ∈ Rn as |ξ| ∼ N . We estimate Ψ by taking the m-th
order difference. By the assumptions (2.5), α < 1 and 0 ≤ β ≤ n/2, we can find
β′ ∈ (β, n/2) such that

(α− 1)m+ β′ < θ < α+ β′. (2.10)

and in case we have (2.7), then we can find β′ ∈ (β, n/2) such that

(α − 1)m+ β′ + α < θ + σ < α+ β′. (2.11)

It is easy to find functions χk ∈ S(Rn), k = 1, . . . , n, satisfying

ϕ1 =
n∑

k=1

χk ∗ ϕ1 (2.12)

such that Fδh = eihξ−1 does not vanish on the support of Fχk when h is the k-th
unit vector of Rn. Then δh is invertible when restricted on the Fourier support of
ϕ1 so that ϕ1 ∗ u can be effectively dominated by (δh)mu with finitely many h of
size 1. By dilation, we have the same conclusion for any I. See [1, Lemma 6.2.6]
for more details. Thus we can estimate

‖ϕI ∗ u‖Ln/β′
x

� sup
|h|∼1/I

‖(δh)mu‖
L

n/β′
x

, (2.13)

for any function u.
By the chain rule for the difference operator, we have

‖(δh)mΨ‖Ln/β′ �
m∑
d=1

∑
a∈Nd,|a|=m

‖[(δh)a1Φ′] · · · [(δh)adΦ′]‖
L

n/β′
x

, (2.14)
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‖(δh)mδ1Ψ‖Ln/β′

�
m∑
d=1

∑
a∈Nd,|a|=m

‖[(δh)a1Φ′
0+] · · · [(δh)ad−1Φ′

0+][(δ
h)adδ1Φ′]‖

L
n/β′
x

(2.15)

+
m+1∑
d=2

∑
a∈Nd−1,|a|=m

‖[(δh)a1Φ′
0+] · · · [(δh)ad−1Φ′

0+][δ1Φ
′]‖

L
n/β′
x

, (2.16)

where we denote, for simplicity,

[ϕ] :=
m∑

k=0

|ϕ(x + kh)|. (2.17)

Let

µk ∈ [0, 1], τk ∈ (0, ak), bk ∈ [0, n/2], τk + µk = bk + γk, (2.18)

for k = 1, . . . , d, with the exceptional rule that τd = ad = 0 for (2.16). By convexity,
we can find such (µk, τk, bk) when |µ|, |τ | and |b| are given from the region

0 ≤ |µ| ≤ d, 0 < |τ | < m, 0 ≤ |b| ≤ nd/2, |µ|+ |τ | = |b|+ |γ|. (2.19)

We set

|b| = β′, |µ| = θ + αd, |τ | = β′ + |γ| − θ − αd, (2.20)

with

γ1 = · · · = γd = 2α (2.21)

for (2.14), and

γ1 = · · · = γd−1 = 2α, γd = 2α− σ (2.22)

for (2.15) and (2.16). Then the assumptions (2.6), 0 < β′ < n/2, (2.10), and (2.11)
imply that (|µ|, |τ |, |b|) is in the region (2.19) so that we can choose (µk, τk, bk) for
k = 1, . . . , d satisfying (2.18). Using the difference norm of the Besov spaces, we
can dominate the summand in (2.14) by

d∏
k=1

|h|τk‖Φ′‖Ḃτk
n/bk,∞

�
d∏

k=1

|tN |µkI−τk‖Φ‖
Ḃ

τk+µk
n/bk,∞

� |tN ||µ|I−|τ |‖Φ‖dB2α = |tN |θ+αdI−β′−αd+θ‖Φ‖dB2α

= |tN2|θ(N/I)αd−θI−β′
(|t|α‖Φ‖B2α)d.

(2.23)
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We can bound the summand in (2.15) by

|h|τd‖δ1Φ′‖Ḃτd
n/bd,∞

d−1∏
k=1

|h|τk‖Φ′
0+‖Ḃτk

n/bk,∞

� |tN |µdI−τd‖δ1Φ‖Ḃτd+µd
n/bd,∞

d−1∏
k=1

|tN |µkI−τk‖Φ0+‖Ḃτk+µk
n/bk,∞

� |tN ||µ|I−|τ |‖δ1Φ‖B2α−σ‖Φ0+‖d−1
B2α

= |tN2|θ(N/I)αd−θI−β′+σ(|t|α‖δ1Φ‖B2α−σ )(|t|α‖Φ0+‖B2α)d−1.

(2.24)

The summand in (2.16) is dominated by

‖δ1Φ′‖Ln/bd

d−1∏
k=1

|h|τk‖Φ′
0+‖Ḃτk

n/bk,∞

� |tN |µd‖δ1Φ‖Ḃµd
n/bd,∞

d−1∏
k=1

|tN |µkI−τk‖Φ0+‖Ḃτk+µk
n/bk,∞

� |tN ||µ|I−|τ |‖δ1Φ‖B2α−σ‖Φ0+‖d−1
B2α

= |tN2|θ(N/I)αd−θI−β′+σ(|t|α‖δ1Φ‖B2α−σ )(|t|α‖Φ0+‖B2α)d−1.

(2.25)

Thus we obtain

‖ϕI ∗Ψ‖
L

n/β
x

� Iβ
′−β‖ϕI ∗Ψ‖

L
n/β′
x

� Iβ
′−β

m∑
d=1

|tN2|θ(N/I)αd−θI−β′
(|t|α‖Φ‖B2α)d

� |tN2|θN−β max
1≤d≤m

(N/I)β−θ+dα(|t|α‖Φ‖B2α)d

(2.26)

‖ϕI ∗ (δ1Ψ)‖Ln/β
x

� Iβ
′−β‖ϕI ∗ (δ1Ψ)‖Ln/β′

x

� |tN2|θN−β+σ max
1≤d≤m+1

(N/I)β−θ−σ+dα

× (|t|α‖δ1Φ‖B2α−σ )(|t|α‖Φ0+‖B2α)d−1

(2.27)

�
Now we proceed to the main estimates on the bilinear operator S0. We also

need to estimate the difference of the phase term:

Sδ(Φ0,Φ1; v, w) := S0(Φ1; v, w) − S0(Φ0; v, w). (2.28)

When estimating the evolution of the potential, we need to estimate the following
variant which has an additional decay in time:

Sψ(v, w) := S0(ψv,w) − S0(v, ψw). (2.29)
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We need also to estimate the effect of phase change for this operator:

Sψ,δ(Φ0,Φ1; v, w) := Sψ(Φ1; v, w) − Sψ(Φ0; v, w). (2.30)

The following are the main estimates in this paper.

Lemma 2.2 Let 0 ≤ θ ≤ α < 1/2, β < n/2, γ < n/2, 0 < β + γ < n/2.

(i) Assume
(α− 1)n/2 + max(β, γ) < θ. (2.31)

Then we have

‖S0(Φ; v, w)‖
Ḃ

β+γ−2θ−n/2
2,1

� |t|θd(Φ)‖v‖Ḣβ‖w‖Ḣγ , (2.32)

where we denoted
d(Φ) := (|t|α‖Φ‖B2α)m + 1, (2.33)

where m > n/2 is sufficiently large depending on α, β, γ, θ.

(ii) Let σ ∈ [0, 1] satisfy

(α− 1)n/2 + max(β, γ) + α < θ + σ < α+ β + γ, (2.34)
α ≤ θ + σ. (2.35)

Then we have

‖Sδ(Φ0,Φ1; v, w)‖Ḃβ+γ−2θ−σ−n/2
2,1

� |t|θ(d(Φ0) + d(Φ1))|t|α‖Φ1 − Φ0‖B2α−σ‖v‖Ḣβ‖w‖Ḣγ .
(2.36)

(iii) Assume (2.31) and let θ′ ∈ (0, 1) and σ′ satisfy

0 < θ′ − σ′ < β + γ. (2.37)

Then we have

‖Sψ(Φ; v, w)‖
Ḃ

β+γ−2(θ+θ′)+σ′−n/2
2,1

� |t|θ+θ′
d(Φ)‖ψ‖

Ḃ
n/2+σ′
2,∞

‖v‖Ḣβ‖w‖Ḣγ .
(2.38)

(iv) Assume (2.34), (2.35), (2.37), and

θ + σ + θ′ − σ′ < α+ β + γ. (2.39)

Then we have

‖Sψ,δ(Φ0,Φ1; v, w)‖Ḃβ+γ−2(θ+θ′)+σ′−σ−n/2
2,1

� |t|θ+θ′
(d(Φ0) + d(Φ1))|t|α‖Φ1 − Φ0‖B2α−σ

× ‖ψ‖
Ḃ

n/2+σ′
2,∞

‖v‖Ḣβ‖w‖Ḣγ .

(2.40)
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Since we have to use this lemma with β = γ = s, the assumption β+γ < n/2
completely exclude possible choice of s when n ≤ 2 since s > 1−ν/2 > 1/2. When
n ≥ 3, we can choose s > 1− ν/2 < 3/4 satisfying 2s < n/2. The upper bounds in
(2.34) and (2.37) can be identified with (2.39) by regarding unused parameters as 0.
Proof. Denote

Ψ0 := Ψ, Ψδ := Ψ(Φ1)−Ψ(Φ0),

Ψψ := Ψ0ψ′, Ψψ,δ := Ψδψ′,
(2.41)

where ψ′(x, tξ) := ψ(x+ tξ)−ψ(x) and Ψ(Φ) is defined in (2.4). In this proof, we
sometimes use the superscript (ψ, 0) instead of ψ. By (2.1), we have

S∗(v, w) = U(−t)F−1

∫
Ψ∗v(x + tξ)w(x)e−ixξdx, (2.42)

for ∗ = 0, δ, ψ and (ψ, δ). First we use the Littlewood-Paley decomposition for
x to localize every function in the frequency. Let I, J,K,M,N > 0 be dyadic
parameters ∈ {2j|j ∈ Z}. For brevity, we denote vJ := ϕJ ∗ v, wK := ϕK ∗w, etc.
Then we have

S∗(v, w)

=
∑

I,J,K,N :dyadic

U(−t)ϕN ∗ F−1

∫
Ψ∗

I(x, tξ)vJ (x + tξ)wK(x)e−ixξdx, (2.43)

for ∗ = 0, δ. If the operator contains ψ, we have to decompose ψ′ also. Then we
have

Sψ,∗(v, w) =
∑

I,J,K,N,M :dyadic

U(−t)ϕN ∗ F−1

∫
Ψ∗

Iψ
′
M (x, tξ)vJ (x + tξ)wK(x)e−ixξdx, (2.44)

for ∗ = 0, δ. In the former case, we denote Ψ∗
I,M := Ψ∗

I and let M = 0. In the
latter case, we denote Ψ∗

I,M := Ψ∗
Iψ

′
M .

The estimate for the summand with the appropriate weights in the dyadic
parameters will imply the boundedness of S0 as

‖S0(v, w)‖
Ḃ

β+γ−2θ−n/2
2,∞

� |t|θd(Φ)‖v‖Ḃβ
2,1

‖w‖Ḃγ
2,1
. (2.45)

Then the desired estimate will follow from this via the bilinear real interpolation1.
Thus we need only to estimate the L2

ξ norm of

R∗ := ϕ̃N (ξ)
∫

Ψ∗
I,M (x, tξ)vJ (x+ tξ)wK(x)e−ixξdx, (2.46)

for each I, J,K,M,N , at least when ∗ = 0 or δ.
1When a bilinear operator is bounded from Xi × Yj to Zi+j for (i, j) = (0, 0), (0, 1), (1, 0),

then it is also bounded from (X0, X1)θ0,r0 × (Y0, Y1)θ1 ,r1to (Z0, Z1)θ0+θ1,r for θ0, θ1, θ ∈ (0, 1)
with θ = θ0 + θ1 and r0, r1, r ∈ [1,∞] with 1/r = 1/r0 + 1/r1. See [1, 3.13.5(b)].



Vol. 3, 2002 Modified Wave Operators for the Hartree Equation, II 513

Also in the trilinear case Sψ,∗, the original estimate will follow from that for
Rψ,∗ via the bilinear real interpolation as

(ψ, v, w) 
→ Sψ,∗(v, w),

Ḃ∗
2,1 × Ḃ∗

2,1 × Ḃ∗
2,1 → Ḃ∗

2,∞
⇒
Ḃ∗

2,∞ × Ḃ∗
2,2 × Ḃ∗

2,1 → Ḃ∗
2,2

⇒
Ḃ∗

2,∞ × Ḃ∗
2,2 × Ḃ∗

2,2 → Ḃ∗
2,1.

(2.47)

Therefore it suffices to estimate the dyadic pieces R∗ in any case.
We have to employ different arguments depending on the frequency size of

each function. In the following, we always assume that ξ has size N , i.e., |ξ| ∼ N .
Let σ′ = θ′ = M = 0 when considering R0 or Rδ. Let σ = 0 when considering R0

or Rψ.
Case I: J ∼ K � N This is the easiest case since the vw part is bounded in L1.
Let b = max(θ − α+ σ, 0). If b > 0, then we have

‖δ1Ψ‖
L

n/b
x

� ‖δ1Φ′‖
L

n/b
x

� (tN)θ+α‖δ1Φ‖Ḃθ+α
n/b,1

� |tN2|θNα−θ(tα‖δ1Φ‖B2α−σ),
(2.48)

where we used the conditions 0 ≤ θ + α ≤ 1 and b ≤ n/2. Similarly, we have

‖Ψ‖
L

n/b
x

� |tN2|θNα−θ(tα‖Φ‖B2α), (2.49)

when σ = 0. If b = 0, then we have,

‖Ψ‖L∞
x

� ‖Φ′‖θ/αL∞
x

�
{
|tN |2α‖Φ‖Ḃ2α

∞,1

}θ/α

� |tN2|θ(|t|α‖Φ‖B2α)θ/α,
(2.50)

where we need 0 ≤ θ ≤ α. Although we have a similar estimate for δ1Ψ, we avoid
to use it since it is sublinear for the difference δ1Φ. This is the reason why we
assume (2.35) when S∗ bears δ.

In both cases, we have

‖Ψ‖
L

n/b
x

� |tN2|θNσ−bd(Φ), (2.51)

when σ = 0. We estimate the ψ part by the Sobolev embedding as

‖ψ′‖
L

n/(θ′−σ′)
x

� ‖ψ′‖Bσ′−θ′ � (tN)θ
′‖ψ‖Bσ′

� |tN2|θ′
N−θ′‖ψ‖Bσ′ ,

(2.52)
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where we need 0 ≤ θ′ − σ′ ≤ n/2. Thus we obtain

‖Ψ∗
I,M‖

L
n/(b+θ′−σ′)
x

� |tN2|θ+θ′
Nσ−b−θ′

D∗, (2.53)

where we put
D0 := d(Φ), Dδ := d(Φ0+)tα‖δ1Φ‖B2α−σ ,

Dψ := ‖ψ‖Bσ′D0, Dψ,δ := ‖ψ‖Bσ′Dδ,
(2.54)

and we need 0 ≤ b + θ′ − σ′ ≤ n. Using this estimate and the Hölder and the
Sobolev inequalities, we can estimate R∗ as

‖R∗‖L2 � Nn/2‖Ψ∗
I,M (x, tξ)vJ (x + tξ)wK(x)‖L∞

|ξ|∼N
L1

x

� Nn/2 sup
|ξ|∼N

‖Ψ∗
I,M‖

L
n/(b+θ′−σ′)
x

‖vJ(x+ tξ)wK(x)‖
L

n/(n−b−θ′+σ′)
x

� Nn/2|tN2|θ+θ′
Nσ−b−θ′

D∗J−β−γ+b+θ′−σ′‖vJ‖Ḣβ‖wK‖Ḣγ

� Nn/2−β−γ+σ−σ′ |tN2|θ+θ′
D∗‖v‖Ḣβ‖w‖Ḣγ ,

(2.55)

where we used that −β− γ+ b+ θ′ −σ′ ≤ 0 and J ∼ K � N . Thus we obtain the
desired estimates in this Case I.
Case II: I +M � J,K,N This is the case where the phase term has the highest
frequency. Then we can use the full strength of the above Lemma 2.1 to have
spatial decay of Ψ. However, we have to assume β + γ ≤ n/2 here to get spatial
decay only from the phase factor. Let β′ := max(β, 0) and γ′ := max(γ, 0). By the
assumptions β < n/2, γ < n/2 and 0 < β + γ < n/2, we have 0 < β′ + γ′ < n/2.
By Hölder’s inequality and the Sobolev embedding, we have

‖R∗‖L2 � Nn/2 sup
|ξ|∼N

‖vJ‖Ḣβ′ ‖wK‖Ḣγ′ ‖Ψ∗
I,M‖

L
n/(β′+γ′)
x

� Nn/2J−β+β′
K−γ+γ′‖v‖Ḣβ‖w‖Ḣγ‖Ψ∗

I,M‖
L∞

|ξ|∼N
L

n/(β′+γ′)
x

� Nn/2(I +M)−β+β′−γ+γ′‖v‖Ḣβ‖w‖Ḣγ‖Ψ∗
I,M‖

L∞
|ξ|∼N

L
n/(β′+γ′)
x

.

(2.56)

First we consider the case M ≥ I, which can occur only for Rψ and Rψ,δ.
We estimate

‖Ψ∗
Iψ

′
M‖

L
n/(β′+γ′)
x

� ‖Ψ∗
I‖Ln/b

x
‖ψ′

M‖
L

n/(β′+γ′−b)
x

, (2.57)

where we need β′ + γ′ ≥ b. The norm for Ψ is estimated by (2.48) or (2.51), and
the norm for ψ is estimated by the Sobolev embedding as

‖ψ′
M‖

L
n/(β′+γ′−b)
x

� |tN |θ′‖ψM‖Bθ′
n/(β′+γ′−b),1

� |tN2|θ′
N−θ′

Mθ′−σ′−β′−γ′+b‖ψ‖Bσ′ ,
(2.58)

where we need β′ + γ′ − b ≤ n/2. Then we obtain

‖Ψ∗
I,M‖

L
n/(β′+γ′)
x

� |tN2|θ+θ′
Nσ−b−θ′

Mθ′−σ′−β′−γ′+bD∗. (2.59)
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After plugging this into (2.56), the exponent of M is θ′ − σ′ − β − γ + b ≤ 0, so
that we may replace M with N . Then we obtain the desired estimate in this case.

Next we consider the case I ≥ M . We estimate

‖Ψ∗
Iψ

′
M‖

L
n/(β′+γ′)
x

� ‖Ψ∗
I‖Ln/(β′+γ′)

x
‖ψ′

M‖L∞
x
. (2.60)

Then the norm for ψ is estimated by the Sobolev embedding as

‖ψ′
M‖L∞

x
� (tN)θ

′‖ψM‖Bθ′ � |tN2|θ′
N−θ′

Mθ′−σ′‖ψ‖Bσ′ ,

� |tN2|θ′
N−θ′

Iθ
′−σ′‖ψ‖Bσ′ ,

(2.61)

where we used the condition θ′ − σ′ ≥ 0. As for the Ψ part, we use Lemma 2.1
with sufficiently large m to obtain

‖δ1ΨI‖Ln/(β′+γ′)
x

� |tN2|θNσ−β′−γ′
(N/I)β

′+γ′−θ−σ+αd(Φ0+)tα‖δ1Φ‖B2α−σ ,
(2.62)

where we need β′+γ′ ≤ n/2, θ+σ < α+n/2 and θ+α ∈ [0, 1]. We have a similar
estimate for ΨI . Thus we obtain

‖Ψ∗
I,M‖

L
n/(β′+γ′)
x

� |tN2|θ+θ′
Nσ−σ′−β′−γ′

(N/I)β
′+γ′+σ′−θ−θ′−σ+αD∗.

(2.63)

When we plug this estimate into (2.56), the exponent of I becomes −α− β − γ +
θ+ θ′ − σ′ + σ ≤ 0, so that we may replace I with N . Then we obtain the desired
estimate in this case.
Case III: I, J,M � N ∼ K This is the case where only one term has the highest
frequency of size N and that term is not the phase term. Then the spatial de-
cay provided by the Sobolev embedding is too weak to treat the lower frequency
terms, and so we need further decomposition in the Fourier space. Specifically, we
decompose the high frequency term w into functions with Fourier support of size
I+M+J . More precisely, let K be the set of disjoint cubes of size I+M+J in Rn

that are parallel to the axes such that the union of those cubes covers the whole
R
n. For each κ ∈ K, wκ denotes the Fourier restriction of w onto κ, and κ̃ denotes

the cube of size 3(I +M + J) consisting 3n cubes in K with κ as its center. Then

∫
Ψ∗

I,M (x, tξ)vJ (x+ tξ)wκ
K(x)e−ixξdx, (2.64)

is supported on κ̃, which can be verified by first freezing tξ as η and putting
η = tξ after the Fourier transform. By this support property and the essential
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orthogonality of κ̃, we have

‖R∗‖2
L2 =

∥∥∥∥∥
∑
κ∈K

∫
Ψ∗

I,M (x, tξ)vJ (x+ tξ)wκ
K(x)e−ixξdx

∥∥∥∥∥
2

L2

�
∑
κ∈K

∥∥∥∥
∫

Ψ∗
I,MvJ (x+ tξ)wκ

K(x)e−ixξdx

∥∥∥∥
2

L2

�
∑
κ∈K

(I +M + J)n‖Ψ∗
I,MvJ (x+ tξ)wκ

K(x)‖2
L∞

|ξ|∼N
(L1

x).

(2.65)

First we consider the case I+M ≤ J . Then the remaining argument is almost the
same as in Case I. Indeed, by the same estimate as in (2.55), we have

‖Ψ∗
I,MvJ(x + tξ)wκ

K(x)‖L1
x

� |tN2|θ+θ′
Nσ−b−θ′

D∗Jβ′−β‖vJ‖ḢβK
γ′−γ‖wκ

K‖Ḣγ ,
(2.66)

where we choose β′, γ′ ∈ [0, n/2] such that β′ + γ′ = b + θ′ − σ′ ∈ [0, n]. Plugging
this estimate into the above, we obtain

‖R∗‖L2 � |tN2|θ+θ′
Nσ−b−θ′

D∗Jn/2+β′−βNγ′−γ

× ‖v‖Ḣβ‖wκ
K‖L2(κ∈K;Ḣγ)

� |tN2|θ+θ′
D∗Nσ−b−θ′+n/2+β′−β+γ′−γ‖v‖Ḣβ‖w‖Ḣγ ,

(2.67)

where we used that J � N ∼ K and n/2+ β′ − β ≥ 0. Since β′ + γ′ = b+ θ′ − σ′,
the above is the desired estimate in this case.

Next we consider the case J ≤ I+M . Then the remaining argument is similar
to Case II, but not quite the same. Let β′ := max(0, β) and γ′ := max(0, γ). Then
we have β ≤ β′ ≤ max(β, γ), since β + γ > 0.

Suppose thatM ≥ I, which is possible only when S∗ carries ψ. Then we have
J, I � M � N ∼ K. As in (2.56) and (2.59), we estimate

‖Ψ∗
I,MvJ (x+ tξ)wκ

K(x)‖L1
x

� ‖Ψ∗
I,M‖

L
n/(β′+γ′)
x

Jβ′−β‖v‖ḢβK
γ′−γ‖wκ

K‖Ḣγ

� |tN2|θ+θ′
Nσ−b−θ′+γ′−γMθ′−σ′−β′−γ′+bD∗Jβ′−β‖v‖Ḣβ‖wκ

K‖Ḣγ .

(2.68)

When we put this into (2.65), the power ofM becomes n/2+θ′−σ′−β′−γ′+b ≥ 0,
so that we may replaceM with N . We may replace J with N also. Then we obtain
the desired result.

Now we proceed to the final remaining case J,M � I � N ∼ K. By the
Hölder and the Sobolev inequalities, we have

‖Ψ∗
I,MvJ (x+ tξ)wκ

K(x)‖L1
x

� ‖Ψ∗
I,M‖

L∞
|ξ|∼N

L
n/β′
x

‖vJ‖L2n/(n−2β′)
x

‖wκ
K‖L2

� N−γJβ′−β‖Ψ∗
I,M‖

L
n/β′
x

‖v‖Ḣβ‖wκ
K‖Ḣγ .

(2.69)
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We estimate the ψ part in L∞
x , while we use Lemma 2.1 with m = n/2 to estimate

the Ψ part as

‖δ1ΨI‖Ln/β′
x

� |tN2|θNσ−β′
(N/I)β

′−θ−σ+αn/2Dδ, (2.70)

where we need β′ ≤ n/2, (α− 1)n/2+β′+α < θ+σ < α+n/2 and θ+α ∈ [0, 1].
We have a similar estimate for ΨI , but with the weaker lower bound condition
(α− 1)n/2 + β′ < θ. Thus we obtain

‖Ψ∗
I,M‖

L
n/β′
x

� |tN2|θ+θ′
Nσ−σ′−β′

(N/I)β
′−θ−θ′+σ′−σ+αn/2D∗, (2.71)

where we used (2.61). By (2.65), (2.69) and (2.71), we have

‖R∗‖L2 � In/2|tN2|θ+θ′
Nσ−σ′−β′−γJβ′−β(N/I)β

′−θ−θ′+σ′−σ+αn/2

×D∗‖v‖Ḣβ‖wκ
K‖L2(κ∈K;Ḣγ),

(2.72)

where the power of I is n/2(1− α) + θ− β′ + θ′ − σ′ + σ ≥ 0 by our assumptions.
So we may replace I with N and J with N . Then we obtain the desired estimate
in this case.
Case III′: I,K,M � N ∼ J This case is reduced to the previous one by the
symmetry of v and w in the operators S∗.

We have exhausted all the cases where
∫
Ψ∗

I,MvJwKe
−ixξdx interacts VN ,

which can be easily checked as follows. By the Fourier support property, we have
N � max(I, J,K,M), and if the maximum is essentially bigger than N , then it
must be essentially attained by at least two of I, J,K,M . If max(I, J,K,M) <
100(I +M), then we are in case II. Otherwise, the maximum is attained by J or
K. If it is much bigger than N , we come into the case I. If it is essentially the same
size as N , then we arrive at case III or III′, depending whether the maximum is
K or J . �

We will use the above lemma with 1/2 < ν < 1, n ≥ 3, 1 − ν/2 < s < 3/4
and α = s− ν/2. Then we have

1− ν < α < 1/2, (2.73)

so that d(Φ) can be bounded. Since we have

(α− 1)n/2 < −s, (2.74)

the lower bound of θ in (2.31) will never bother us, though it could if we would
try the lower dimensional n ≤ 2 case.

3 Phase-free estimates

In this section, we derive a few basic estimates to treat those terms that do not
include the phase function. They are actually variants of those which played the
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central roles in [12]. The main term after the phase elimination can be given by
using the following operator

TU (A) := U(−t)AU(t)−A, (3.1)

where U(−t)AU(t) is defined by U(−t)AU(t)ϕ := U(−t)(AU(t)ϕ) for any space-
time real-valued function A. Then the following multilinear operator is a counter-
part of Sψ for the phase-free part TU(A).

Tψ(A; v, w) := 〈U(−t)AU(t)v, ψw〉L2 − 〈U(−t)AU(t)ψv,w〉L2 . (3.2)

Lemma 3.1 (i) Let β, γ < n/2, β + γ > 0, θ0, θ1 ∈ [0, 1] and θ = θ0 + θ1 ≤ 1.
Then we have

‖uv‖
Ḃ

β+γ−n/2
2,1/θ

� ‖u‖Ḃβ
2,1/θ0

‖v‖Ḃγ
2,1/θ1

. (3.3)

(ii) Let σ ≤ 0 and −n/2− σ < β < n/2. Then we have

‖Au‖Ḣβ+σ � ‖A‖Bσ‖u‖Ḣβ . (3.4)

(iii) Let β ∈ R and θ ∈ [0, 1]. Then we have

‖(U(t)− I)u‖Ḣβ+2θ � |t|θ‖u‖Ḣβ . (3.5)

(iv) Let θ ∈ [0, 1], σ ≤ θ and −n/2 + 2θ − σ < β < n/2. Then we have

‖TU(A)u‖Ḣβ−2θ+σ � |t|θ‖A‖Bσ‖u‖Ḣβ (3.6)

In case σ < θ, we may replace the norm Bσ for A with Ḃ
n/2+σ
2,∞ .

(v) Let θ ∈ [0, 1], σ ≤ θ, σ′ < θ, σ + σ′ + β + γ = 2θ, and β, γ < n/2. Then we
have

|Tψ(A; v, w)| � |t|θ‖A‖Bσ‖ψ‖
B

n/2+σ′
2,∞

‖v‖Ḣβ‖w‖Ḣγ . (3.7)

Proof. (i) : By the bilinear real interpolation, it suffices to consider the dyadic pieces
of Littlewood-Paley decomposition. By the Sobolev and the Hölder inequalities,
we have

‖ϕK ∗ ((ϕI ∗ u)(ϕJ ∗ v))‖L2 � min(I, J,K)n/2‖ϕI ∗ u‖L2‖ϕJ ∗ v‖L2

� min(I, J,K)n/2I−βJ−γ‖u‖Ḣβ‖v‖Ḣγ .
(3.8)

By the Fourier support property, we have I � J ∼ K, J � K ∼ I or K � I ∼ J .
In any case, we have

min(I, J,K)n/2I−βJ−γ � Kn/2−β−γ, (3.9)

since β, γ < n/2 and β+γ > 0. Thus we obtain the desired estimate for any dyadic
pieces, from which the original estimate follows.
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(ii) : This estimate follows from (i) except the borderline case σ = 0, for
which we give another proof. By duality, it suffices to consider the case β ≥ 0. In
the Fourier space, we have

‖Au‖Ḣβ �
∥∥∥∥|ξ|β

∫
Ã(ξ − η)ũ(η)dη

∥∥∥∥
L2

ξ

. (3.10)

We split the η integral into those on the region R1 := {|ξ| � |η|} and R2 := {|η| �
|ξ| ∼ |ξ − η|}. In the region R1, we may replace the ξ weight by |η|β so that we
can estimate the above norm by

‖Ã‖L1‖|ξ|β ũ‖L2 � ‖A‖B0‖u‖Ḣβ . (3.11)

In the region R2, we may replace the ξ weight by |ξ−η|β . Then, by the generalized
Hölder and Young inequalities, we can bound the above norm by

‖|ξ|βÃ‖Ln/(n−β),∞‖ṽ‖L2n/(n+2β),2 � ‖A‖B0‖v‖Ḣβ . (3.12)

Thus we obtain the desired result.
(iii) : This estimate immediately follows from explicit calculation of the

Fourier transform.
(iv) : Let γ := 2θ − β − σ. Then we have γ < n/2 and 2θ = β + γ + σ. By

duality and the Plancherel identity, it suffices to show that

|〈TU (A)u, v〉L2 | ∼
∣∣∣∣
∫∫

(eit(|ξ|
2−|η|2)/2 − 1)Ã(ξ − η)ũ(η)ṽ(ξ)dηdξ

∣∣∣∣
� |t|θ‖A‖Bσ‖u‖Ḣβ‖v‖Ḣγ .

(3.13)

We split the double integral region into three regions: R1 := {|ξ − η| � |ξ| ∼ |η|},
R2 := {|ξ| � |ξ − η| ∼ |η|} and R3 := {|η| � |ξ| ∼ |ξ − η|}. In the first region R1,
we have

|eit(|ξ|2−|η|2)/2 − 1| � |t|θ|ξ − η|θ|ξ + η|θ � |t|θ|ξ − η|σ|η|β |ξ|γ , (3.14)

where we needed the assumption σ ≤ θ, so that the above integral can be estimated∫∫
R1

| · · · | � |t|θ‖|ξ|σÃ‖L1‖|ξ|β ũ(ξ)‖L2‖|ξ|γ ṽ(ξ)‖L2

� |t|θ‖A‖Bσ‖u‖Ḣβ‖v‖Ḣγ ,

(3.15)

as desired. In the second region R2 we have

|eit(|ξ|2−|η|2)/2 − 1| � |t|θ|ξ − η|σ+γ |η|β , (3.16)

then we obtain from the generalized Young and Hölder inequalities,∫∫
R2

| · · · | � |t|θ‖|ξ|σ+γÃ‖Ln/(n−γ),∞‖|ξ|β ũ(ξ)‖L2‖ṽ(ξ)‖L2n/(n+2γ),2

� |t|θ‖A‖Bσ‖u‖Ḣβ‖v‖Ḣγ ,

(3.17)
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if γ ≥ 0. In the case γ < 0, we have (3.14), so the above argument in the region
R1 works also in this region. The remaining region R3 is treated in the same way
as R2. Except the borderline case, we may replace the 1-Besov norm with the
∞-Besov by the bilinear real interpolation.

(v): In the Fourier space, we have

Tψ(A; v, w) = c

∫∫∫
(eit(|ξ|

2−|η|2)/2 − eit(|ζ|
2−|ζ−ξ+η|2)/2)

× Ã(ξ − η)ṽ(η)ψ̃(ζ − ξ)w̃(ζ)dξdηdζ,
(3.18)

and the phase factor can be rewritten as

eit(|ξ|
2−|η|2)/2(1− e−it(ξ−η)(ξ−ζ)), (3.19)

so that it can be bounded by

|t|θ|ξ − η|θ|ξ − ζ|θ, (3.20)

Let Â := F−1|Ã|, etc. By the above estimate on the phase, we have

|Tψ(A; v, w)| � |t|θ〈|ξ|θ|Ã| ∗ |ṽ|, |ξ|θ|ψ̃| ∗ |w̃|〉L2

� |t|θ〈(|∇|θÂ)v̂, (|∇|θψ̂)ŵ〉L2

� |t|θ
∥∥∥(|∇|θÂ)v̂

∥∥∥
Ḣβ+σ−θ

∥∥∥(|∇|θψ̂)ŵ
∥∥∥
Ḣγ+σ′−θ

� |t|θ‖Â‖Bσ‖v̂‖Ḣβ‖ψ̂‖Bn/2+σ′
2,∞

‖ŵ‖Ḣγ

� |t|θ‖A‖Bσ‖v‖Ḣβ‖ψ‖Bn/2+σ′
2,∞

‖w‖Ḣγ ,

(3.21)

as desired, where we used (i) and (ii) in the fourth inequality. �

4 Energy estimate

In this section, we derive an L2 bound of difference of the modified field w. We
consider only positive small time 0 < t � 1. Assume that w = wk (k = 0, 1) solves

2iẇ + tν−2T (A, φ)w = 0, (4.1)

with A = Ak and φ = φk, where Ak is a real-valued space-time function and

T (A, φ) = e−iΦ{U(−t)AU(t)− V (φ)}eiΦ,

Φ(φ) = V (φ)
tν−1

2(ν − 1)
.

(4.2)

We abbreviate Tk := T (Ak, φk). We decompose the operator T as

T = TΦ + TU + T V , (4.3)



Vol. 3, 2002 Modified Wave Operators for the Hartree Equation, II 521

where
TΦ := e−iΦU(−t)AU(t)eiΦ − U(−t)AU(t),
TU := U(−t)AU(t)−A,

T V := A− V (φ).

(4.4)

Then we have a general identity

〈TΦw, v〉L2 = 〈A,S0(Φ;w, v)〉L2 . (4.5)

Now the difference of the solutions w1 and w0 satisfies

2iδ1ẇ + tν−2{T0δ1w + (δ1T )w1} = 0, (4.6)

so that by the energy identity we have

∂t‖δ1w‖2
L2 = tν−2�〈i(δ1T )w1, δ1w〉L2 . (4.7)

We can rewrite this by using (4.5) as

〈(δ1T )w1, δ1w〉L2

= 〈δ1A,S0(Φ0;w1, δ1w)〉L2 + 〈A1, S
δ(Φ0,Φ1;w1, δ1w)〉L2

+ 〈TU(δ1A)w1, δ1w〉L2 + 〈(δ1A− δ1V (φ∗))w1, δ1w〉L2 .

(4.8)

We apply Lemma 2.2 (i) to the first term with θ = α− κ, β = s′, γ = 0 and
κ > 0 sufficiently small. The conditions required in the lemma can be satisfied if
n ≥ 2, α < 1/2, 0 < s′ < 1 and κ > 0 is sufficiently small. Then we obtain

|〈δ1A,S0(Φ0;w1, δ1w)〉L2 | � ‖δ1A‖B2α−s′−2κ‖S0(w1, δ1w)‖Bs′−2α+2κ
∗

� tα−κd(Φ0)‖δ1A‖B2α−s′−2κ‖w1‖Ḣs′ ‖δ1w‖L2 . (4.9)

For the second term, we take θ = α− 2κ, σ = s′ + κ, β = s′ and γ = 0 in Lemma
2.2 (ii). Then we obtain

|〈A1, S
δ(Φ0,Φ1;w1, δ1w)〉L2 |

� ‖A1‖B2α−3κ‖Sδ(Φ0,Φ1;w1, δ1w)‖B−2α+3κ
∗

� ‖A1‖B2α−3κtα−2κd(Φ0+)tα‖δ1Φ‖B2α−s′−κ‖w1‖Ḣs′ ‖δ1w‖L2 .

(4.10)

For the TU part, we have

|〈TU (δ1A)w1, δ1w〉L2 | � ‖TU(δ1A)w1‖L2‖δ1w‖L2

� tα−κ‖δ1A‖B2α−s′−2κ‖w1‖Ḣs′ ‖δ1w‖L2 ,
(4.11)

where we used Lemma 3.1 (iv) in the second inequality, so we need s′ ≥ α − κ,
which is satisfied if s′ ≥ 1/2.
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For the T V part, we use Lemma 3.1 (ii) to have

|〈(δ1T V )w1, δ1w〉L2 | � ‖(δ1A− δ1V (φ∗))w1‖L2‖δ1w‖L2

� ‖δ1A− δ1V (φ∗)‖B−s′‖w1‖Ḣs′ ‖δ1w‖L2 .
(4.12)

Putting these estimates together, we obtain

Lemma 4.1 Let 1/2 < ν < 1, n ≥ 3, 1− ν < α = s− ν/2 < 1/2, and 1/2 ≤ s′ < 1.
Assume that w = wk, k = 0, 1 satisfies (4.1) with φ = φk and real-valued A = Ak.
Let κ > 0 be sufficiently small depending on ν, α, s′ and n. Then we have for
0 < t � 1,

|∂t‖w1 − w0‖L2 |
� tν−2‖w1‖Ḣs′

{
‖A1 − V (φ1)−A0 + V (φ0)‖B−s′

+ tα−2κ(D(φ0) +D(φ1))

× (‖A1 −A0‖B2α−s′−4κ + ‖A1‖B2α−3κtα‖Φ1 − Φ0‖B2α−s′−κ)
}
,

(4.13)

where we denote
D(φ) := ‖φ‖mHs + 1, (4.14)

with sufficiently large m depending on ν, α and s′.

We can bound d(Φ) by D(φ) since

‖V (φ)‖B2α � ‖φ‖2
Ḣs (4.15)

by (3.3), if α = s− ν/2. From now on, we fix α = s− ν/2.
By the same argument, we can prove the following.

Lemma 4.2 Let 1/2 < ν < 1, n ≥ 3, 1− ν < α = s− ν/2 < 1/2, and 1/2 ≤ s′ < 1.
Then we have for 0 < t � 1,

‖T (A, φ)w‖L2

� ‖w‖Ḣs′ (tα−2κD(φ)‖A‖B2α−s′−4κ + ‖A− V (φ)‖B−s′ ),
(4.16)

where κ > 0 and D(φ) is as in the above lemma.

This implies that ẇ ∈ L1
tL

2
x.

5 Potential estimates

In this section, we derive a few estimates on the potential term V (u∗) = V (U(t)
eiΦw). As in [3, 4, 12], we should derive a decay estimate (or convergence) at
t = +0 for the potential by using the equation. Otherwise, if we would regard
V (u∗) − V (w(0)) simply as a multiplication to dominate it by w(t) − w(0), then
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we could get a closed estimate only for small data and only for ν = 1. As was
indicated by the estimates in the previous section, we need to estimate difference
of the potentials also. In this section, we fix α = s− ν/2.

Let Ak = V (U(t)eiΦkwk) for k = 0, 1, where Φk = Φ(φk). First we derive a
bound on the potential. Here we do not need the equation. We decompose A =
V (U(t)eiΦw) as

V (U(t)eiΦw) = KV ∗ S0(Φ;w,w) +KV ∗ S(w,w). (5.1)

For the difference, we have

δ1A =KV ∗ δ1S0(Φ0;w∗, w∗) +KV ∗ δ1S(w∗, w∗)

+KV ∗ Sδ(Φ0,Φ1;w1, w1).
(5.2)

For the S0 part, we use Lemma 2.2 (i) with θ = 0, β = γ = s and α = s − ν/2.
Then we obtain

‖KV ∗ S0(w,w)‖B2s−ν ∼ ‖S0(w,w)‖B2s−n � d(Φ)‖w‖2
Ḣs . (5.3)

Similarly, choosing θ = 0, β = s and γ = 0, we obtain

‖KV ∗ δ1S0(Φ0;w∗, w∗)‖B2α−s � d(Φ0)‖w0+‖Ḣs‖δ1w‖L2 . (5.4)

The S part can be easily estimated by using (3.3) as

‖KV ∗ S(w,w)‖B2α ∼ ‖S(w,w)‖B2s−n � ‖U(t)w‖2
Ḣs ∼ ‖w‖2

Ḣs , (5.5)

and similarly,

‖KV ∗ δ1S(w∗, w∗)‖B2α−s � ‖w0+‖Hs‖δ1w‖L2 . (5.6)

A lower Besov norm is easily estimated by the Sobolev embedding as

‖V (U(t)eiΦw)‖
Ḃ

n/2−ν
2,∞

� ‖V (U(t)eiΦw)‖Ḃn−ν
1,∞

�
∥∥|U(t)eiΦw|2∥∥

L1 � ‖w‖2
L2 .

(5.7)

Similarly we have

‖KV ∗ δ1S0(Φ0;w∗, w∗) +KV ∗ δ1S(w∗, w∗)‖Ḃn/2−ν
2,∞

� ‖w0+‖L2‖δ1w‖L2 .
(5.8)

For the term of the phase change, we use Lemma 2.2 (ii) with θ = 0, β =
γ = s, α = s− ν/2, σ = s to obtain

‖KV ∗ Sδ(Φ0,Φ1;w1, w1)‖B2α−s � d(Φ0+)tα‖δ1Φ‖B2α−s‖w1‖2
Ḣs

� d(Φ0+)‖φ0+‖Hs‖δ1φ‖L2‖w1‖2
Ḣs ,

(5.9)
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where we used (3.3) to estimate δ1Φ as

tα‖δ1Φ‖B2α−s � ‖(φ0 + φ1)δ1φ‖Ḃs−n/2
2,1

� ‖φ0+‖Ḣs‖δ1φ‖L2 .
(5.10)

Repeating this argument with θ = 0, β = γ = ν/4+ κ < s and σ = s, we obtain a
lower Besov bound

‖KV ∗Sδ(Φ0,Φ1;w1, w1)‖B−α−ν+2κ

� d(Φ0+)‖φ0+‖Hs‖δ1φ‖L2‖w1‖2
Ḣν/4+κ .

(5.11)

If κ is sufficiently small, we have −α− ν + 2κ < −ν.
Gathering all estimates, we obtain the following.

Lemma 5.1 Let 1/2 < ν < 1, n ≥ 3 and 1 − ν/2 < s < 3/4. Let Ak =
V (U(t)eiΦkwk) with Φk = Φ(φk) for k = 0, 1. Then we have

‖Ak‖B−ν∩B2s−ν � D(φk)‖wk‖2
Hs ,

‖A1 −A0‖B−ν∩Bs−ν

� (D(φ0) +D(Φ1))(‖w0‖Hs + ‖w1‖Hs)(‖w1 − w0‖L2 + ‖φ1 − φ0‖L2),
(5.12)

where D is as defined in (4.14).

Next we proceed to the decay estimate of the potential at t = +0. Now
suppose that wk solves

2iẇk + tν−2T (A′
k, φ

′
k)wk = 0, (5.13)

and denote Φ′
k := Φ(φ′

k). We decompose

V (U(t)eiΦw)− V (w(0)) = V Φ(Φ, w) + V U (w) + V w(w), (5.14)

where
V Φ(Φ, w) := KV ∗ S0(Φ;w,w),

V U (w) := V (U(t)w) − V (w),
V w(w) := V (w) − V (w(0)).

(5.15)

For the difference, we have

δ1A− δ1V (w∗(0)) = δ1V
Φ(Φ∗, w∗) + δ1V

U (w∗) + δ1V
w(w∗), (5.16)

where the first term is further decomposed as

δ1V
Φ(Φ∗, w∗) = KV ∗ Sδ(Φ0,Φ1;w1, w1) +KV ∗ δ1S0(Φ0;w∗, w∗). (5.17)
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We use the equation of w only for the V w part, since the other two parts already
have decay properties. In fact, we can use Lemma 2.2 (i) with θ = α − κ and
β = γ = s, where κ > 0 is sufficiently small, to obtain

‖V Φ(w)‖B2κ � ‖S0(w,w)‖
Ḃ

2κ+ν−n/2
2,1

� tα−κd(Φ)‖w‖2
Ḣs . (5.18)

For δ1V Φ, we can use Lemma 2.2 (ii) with θ = α − κ, β = γ = s − κ, σ = s for
the first term and (i) with β = s− 2κ, γ = 0 for the second term to obtain

‖δ1V Φ(Φ∗, w∗)‖B−s � tα−κd(Φ0+)tα‖δ1Φ‖B2α−s‖w1‖2
Ḣs−κ

+ tα−κd(Φ0)‖w0+‖Ḣs−2κ‖δ1w‖L2

� tα−κ(d(Φ0) + d(Φ0+)‖φ0+‖Ḣs)‖w0+‖[1,2]
Hs−κ

× (‖δ1w‖L2 + ‖δ1φ‖L2).

(5.19)

The V U part is treated by Lemma 3.1 as

‖V U (w)‖B2κ � ‖(U(t)− I)w(U(t) + I)w‖
Ḃ

2κ+ν−n/2
2,1

� ‖(U(t)− I)w‖Ḣ2κ+ν−s‖(U(t) + I)w‖Ḣs

� tα−κ‖w‖2
Ḣs .

(5.20)

We use the duality to estimate δ1V U , V w and δ1V w. For any real-valued Schwartz
function ψ ∈ S(Rn), we have

〈V (U(t)w) − V (w), ψ〉L2 = 〈TU (KV ∗ ψ)w,w〉L2 . (5.21)

So we can estimate δ1V U by using Lemma 3.1 as

|〈δ1V U (w∗), ψ〉L2 | � ‖TU (KV ∗ ψ)δ1w‖Ḣ−s‖w0+‖Ḣs

+ ‖TU(KV ∗ ψ)w0+‖L2‖δ1w‖L2

� tα‖KV ∗ ψ‖
B

n/2+s−ν
2,∞

‖w0+‖Ḣs‖δ1w‖L2

� tα‖ψ‖Bs∗‖w0+‖Ḣs‖δ1w‖L2 ,

(5.22)

which implies by duality that

‖δ1V U (w∗)‖B−s � tα‖w0+‖Ḣs‖δ1w‖L2 . (5.23)

As for V w, we have from the equation of w,

∂t|w|2 = � (2iẇ, iw)
C
= −tν−2�

(
U(−t)A′U(t)eiΦ

′
w, ieiΦ

′
w

)
C

. (5.24)

Taking the L2 coupling with the test function ψ, we obtain

∂t〈|w|2, ψ〉L2 = −tν−2�〈A′U(t)eiΦ
′
w, iU(t)(ψeiΦ

′
w)〉L2

= −tν−2�〈A′, S0(Φ′;w, iψw) + S(w, iψw)〉L2

= − tν−2

2
�〈A′, iSψ(Φ′;w,w)〉L2 − tν−2

2
�Tψ(A′;w, iw).

(5.25)
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Taking the difference for k = 0, 1, we obtain

−2t2−ν∂t〈δ1|w|2, ψ〉L2 =�〈δ1A′, iSψ(Φ′
1;w1, w1)〉L2

+ �〈A′
0, iS

ψ,δ(Φ′
0,Φ

′
1;w1, w1)〉L2

+ �〈A′
0, iδ1S

ψ(Φ′
0;w∗, w∗)〉L2

+ �Tψ(δ1A′;w1, iw1)

+ �δ1Tψ(A′
0;w∗, iw∗)

=: I1 + · · ·+ I5.

(5.26)

The Sψ part in (5.25) is estimated as

|〈A′, iSψ(w,w)〉L2 | � ‖A′‖B2s−ν‖Sψ(w,w)‖Bν−2s
∗

� t2α−κ/2d(Φ′)‖A′‖B2α‖ψ‖
Ḃ

n/2−ν−κ
2,∞

‖w‖2
Ḣs ,

(5.27)

where we applied Lemma 2.2 (iii) with θ = α, θ′ = α − κ/2, σ′ = −ν − κ and
β = γ = s. As for the term involving Tψ, we estimate it by using (3.7) as

|Tψ(A′;w, iw)| � t2α−κ‖A′‖B2α−κ‖ψ‖
Ḃ

n/2−ν−κ
2,∞

‖w‖2
Ḣs . (5.28)

For the S∗ parts in δ1|w|2, we apply Lemma 2.2 with θ = θ′ = α−κ/2, β = s
and σ′ = s− ν. We set γ = s for I1 and I2, γ = 0 for I3, and σ = s for I2. Then
we obtain

|I1| � t2α−κd(Φ′
1)‖δ1A′‖Bs−ν−2κ‖ψ‖

Ḃ
n/2+s−ν
2,∞

‖w1‖2
Ḣs ,

|I2| � t2α−κd(Φ′
0+)‖δ1φ′‖L2‖φ′

0+‖Ḣs‖A′
0‖B2α−2κ‖ψ‖

Ḃ
n/2+s−ν
2,∞

‖w1‖2
Ḣs ,

|I3| � t2α−κd(Φ′
0)‖A′

0‖B2α−2κ‖ψ‖
Ḃ

n/2+s−ν
2,∞

‖w0+‖Ḣs‖δ1w‖L2 .

(5.29)

where we used (5.10) for I2. For the remaining two terms I4 and I5, we apply (3.7)
with θ = 2α− κ. Then we get

|I4| � t2α−κ‖δ1A′‖Bs−ν−2κ‖ψ‖
Ḃ

n/2+s−ν
2,∞

‖wk‖2
Ḣs ,

|I5| � t2α−κ‖A′
0‖B2α−2κ‖ψ‖

Ḃ
n/2+s−ν
2,∞

‖w0+‖Ḣs‖δ1w‖L2 .
(5.30)

By duality, we obtain

‖∂tV (w)‖Bκ � tα−κ−1d(Φ′)‖A′‖B2α∩B2α−κ‖w‖2
Ḣs , (5.31)

‖∂tδ1V (w)‖B−s � tα−κ−1d(Φ′
0+)‖φ′

0+‖[0,1]

Ḣs
‖A′

0‖[0,1]
B2α−2κ‖w0+‖[1,2]

Ḣs

× (‖δ1A′‖Bs−ν−2κ + ‖δ1φ′‖L2 + ‖δ1w‖L2).
(5.32)

where we used that 1− ν < α. In conclusion, we have the following decay estimate
on the potential.
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Lemma 5.2 Let 1/2 < ν < 1, n ≥ 3 and 1 − ν/2 < s < 3/4. Let Ak =
V (U(t)eiΦkwk) with Φk = Φ(φk) for k = 0, 1. Assume that wk solves

2iẇk + tν−2T (A′
k, φ

′
k)wk = 0, (5.33)

with real-valued A′
k. Let κ > 0 be sufficiently small depending on ν and s. Let

α = s− ν/2. Then we have

‖Ak − V (wk(0))‖Bκ � tα−κ(D(φk) +D(φ′
k))

× sup
t

{‖A′
k‖[0,1]

B2α∩B2α−κ‖wk‖2
Ḣs

}
,

(5.34)

‖A1 − V (w1(0))−A0 + V (w0(0))‖B−s

� tα−κ(D(φ0) +D(φ1) +D(φ′
0) +D(φ′

1))

× sup
t

{‖A′
0‖[0,1]

B2α−2κ(‖w0‖Hs + ‖w1‖Hs)[1,2]

× (‖A′
1 −A′

0‖B2α−s−2κ + ‖φ1 − φ0‖L2 + ‖φ′
1 − φ′

0‖L2 + ‖w1 − w0‖L2)
}

(5.35)

where D is as defined in (4.14), and supt should be understood as the operator
defined by

(sup
t
f)(t) := sup

0<s<t
f(s). (5.36)

6 Modified wave operators

In this section, we construct modified wave operators by solving the Cauchy prob-
lem for (1.10). The iteration scheme is the same as in [12]. We may concentrate
only on very small positive time 0 < t � 1, since the continuation for larger time is
easy and well known. Let n ≥ 3, 1/2 < ν < 1 and 1− ν/2 < s < 3/4, α := s− ν/2.
We first construct the modified wave operator W for s < 3/4, and then will show
that it is also continuous in the topology of Hs, 3/4 ≤ s < 1.

Let φ ∈ Hs. Let κ > 0 be so small depending on s, ν and n that all the above
Lemmas can work and moreover we have α− 10κ > 1− ν.

We want to solve the Cauchy problem for w:

2iẇ + tν−2e−iΦ{U(−t)V (U(t)eiΦw)U(t) − V (φ)}eiΦw = 0, (6.1)

with w(0) = φ, where Φ = Φ(φ) is defined by (1.9) as before. We solve this by
iteration starting with w0 := φ and

Ak := V (U(t)eiΦwk),

2iẇk + tν−2T (Ak−1, φ)wk = 0,
wk(0) = φ,

(6.2)

where T is as defined in (4.2). In this paper, we do not use the equation for
uk := U(t)eiΦwk.
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First of all, we have D(φ) < ∞ by definition (4.14). In the following, we often
regard such a quantity (depending only on φ) as a constant. From Lemma 5.1, we
have

‖A0‖B−ν∩B2α � ‖φ‖2
Hs . (6.3)

We may drop the term V w when estimating the decay ofA0 since w0 is independent
of t. Then we obtain from the argument of Lemma 5.2,

‖A0 − V (φ)‖Bκ � tα−κ‖φ‖2
Ḣs . (6.4)

Now we can start an induction to establish uniform bounds on Ak and wk.
Let k ∈ N and suppose that we have

‖wj‖Hs ≤ C0, ‖Aj‖B−ν∩B2α ≤ C1, ‖Aj(t)− V (φ)‖Bκ ≤ C2t
α−κ, (6.5)

for any j < k. First we presume that we can solve the equation for wk such that
wk ∈ C(Hs) with wk(0) = φ. Now we apply Lemma 4.1 with w1 := wk(x+h) and
w0 := wk. Then we obtain

|∂t‖δhwk‖L2|
� tν−2‖wk‖Ḣs′

{‖δh(Ak−1 − V (φ))‖B−s′

+ tα−2κD(φ)(‖δhAk−1‖B2α−s′−4κ + ‖Ak−1‖B2α−3κtα‖δhΦ‖B2α−s′−κ)
}

� tν−2|h|s′+κ‖wk‖Ḣs′
{‖Ak−1 − V (φ)‖Bκ

+ tα−2κ(‖Ak−1‖B2α−3κ + ‖Ak−1‖B2α−3κ‖φ‖2
Hs)

}
� |h|s′+κ‖wk‖Ḣs′

{
t4κ−1‖Ak−1‖B2α−3κ + tν−2‖Ak−1 − V (φ)‖Bκ

}
,

(6.6)

where we used (5.10) in the second inequality after estimating the difference by the
Besov space B2α. Let s = s′ and use the assumed bounds (6.5). Then we obtain

|∂t‖δhwk‖L2 | � |h|s+κt4κ−1(C1 + C2)‖wk‖Ḣs . (6.7)

By (2.13) this implies

|∂t‖wk‖Ḣs | ≤ C3t
4κ−1‖wk‖Ḣs , (6.8)

where C3 depends on C0, C1, C2 and κ. On the other hand, by the L2 conservation,
we have

‖δhwk‖L2 ≤ 2‖φ‖L2. (6.9)

Then, by the Gronwall inequality, we obtain

‖wk‖Hs ≤ M0e
C4t

4κ‖φ‖Hs , (6.10)

whereM0 is an absolute constant and C4 is a constant dependent on Ci (i < 4) and
κ. If we have chosen C0 > 2M0‖φ‖Hs , then for sufficiently small time (depending
on Ci), we have

‖wk‖Hs < 2M0‖φ‖Hs < C0. (6.11)



Vol. 3, 2002 Modified Wave Operators for the Hartree Equation, II 529

Actually, we have a better regularity for the perturbation. Plugging the above
bound into (6.8) and using (2.13), we obtain

‖ϕJ ∗ wk‖Ḣs � ‖ϕJ ∗ φ‖Hs + J−κt4κC0(C1 + C2). (6.12)

Now we give a rigorous proof of that we can obtain wk solving the equation
(6.2) with wk(0) = φ and belonging to C(Hs). If we assume the initial data at
positive time t0 > 0 wk(t0) = φ, then it is easy to solve the equation for t > t0
by the standard L2 estimate since we are away from the singularity at t = 0.
Then we obtain the uniform bound (6.10) in Hs for this approximate solution.
Moreover, Lemma 4.2 implies a uniform L1+

t L2
x bound of ẇk, which yields uniform

continuity of wk in L2. Thus, by letting t0 → +0, we obtain a solution wk of (6.2)
with wk(0) = φ in L∞(Hs) and C(L2). Then the frequency-localized bound (6.12)
implies that wk is continuous also in Hs.

Next we turn to the estimate on Ak. By Lemma 5.1 we have

‖Ak‖B−ν∩B2α � ‖wk‖2
Hs , (6.13)

and from Lemma 5.2 we obtain

‖Ak − V (φ)‖Bκ � tα−κ sup
t

‖Ak−1‖[0,1]
B2α∩B2α−κ‖wk‖2

Ḣs

� tα−κ(1 + C1)‖wk‖2
Ḣs .

(6.14)

Thus, if we have chosen C0, C1 and C2 sufficiently large compared with M0‖φ‖Hs ,
then we obtain the above bounds (6.5) uniformly for k and for small t > 0 by
induction on k. In conclusion,

‖wk‖Hs , ‖Ak‖B−ν∩B2α , tκ−α‖Ak − V (φ)‖Bκ (6.15)

are bounded for small t > 0 and any k ≥ 0.
Next we consider the convergence. We will regard those bounds on wk and Ak

obtained above just as constants. We apply Lemma 4.1 with s = s′, w1 := wk+1

and w0 := wk. Then we obtain

|∂t‖δk+1w‖L2 | � t4κ−1‖δkA‖B2α−s−4κ + tν−2‖δkA‖B−s , (6.16)

and then we need to estimate δkA. Applying Lemma 5.1 with A1 := Ak and
A0 := Ak−1, we obtain

‖δkA‖B−ν∩B2α−s � ‖δkw‖L2 . (6.17)

We also use Lemma 5.2 with A1 := Ak and A0 = Ak−1. Then we obtain

‖δkA‖B−s � tα−κ(‖δk−1A‖L∞
t (B2α−s−2κ) + ‖δkw‖L∞

t (L2))

� tα−κ‖δk−1+w‖L∞
t (L2).

(6.18)

(Notice that δkV (w∗(0)) = 0 in this case.)



530 K. Nakanishi Ann. Henri Poincaré

Putting (6.16)–(6.18) together, we obtain

|∂t‖δk+1w‖L2 | � t4κ−1‖δk−1+w‖L∞
t (L2), (6.19)

By integration in time, we obtain

‖δk+1w‖L∞(0,t;L2) � t4κ‖δk−1+w‖L∞(0,t;L2), (6.20)

which implies that wk converges in L∞(0, t;L2) for sufficiently small t > 0. Since
we have additional regularity for the nonlinear term (6.12), we can enhance the L2

convergence to the Hs one. In fact, (6.12) implies that for any ε > 0, there exists
some large N depending on φ and ε such that for small t > 0 and for any k we
have

‖wk||ξ|≥N‖Hs < ε, (6.21)

where ξ denotes the Fourier variable. Then, by the Lebesgue dominant convergence
theorem, we obtain Hs convergence of wk as k → ∞. The above contraction
property (6.20) also implies the uniform continuity of wk as t → +0, first in L2,
and then by the same reasoning as above, inHs. Thus we have the strong limit w∞
of wk in C(Hs), and then by Lemma 5.1, Ak converges to A∞ = V (U(t)eiΦw∞)
in B−ν ∩B2α, which satisfies

‖A∞ − V (φ)‖Bκ � tα−κ. (6.22)

Using these convergence, it is easy to see that this limit function w∞ solves the
equation (6.1) with w∞(0) = φ as desired. The uniqueness of such a solution
follows from the estimate for the difference of two solutions by using Lemma 4.1
as above. Then we obtain the well-defined modified wave operator W via the
pseudo-conformal inversion.

Since the asymptotic behavior described in the theorem uniquely determines
the limit of V (u∗(t)) as t → +0, the injectivity of the modified wave operator W
easily follows.

Notice that the regularity gain κ in (6.12) also implies that w∞ is bounded
in Hs+κ/2 if φ belongs to this space. Then we may apply the energy estimate with
s′ = s + κ/2, getting again certain amount of regularity. It is easy to check that
the amount of regularity gain κ can be taken uniformly as long as s′ is away from
1. Therefore, if φ ∈ Hs′ with s < s′ < 1, then w is bounded also in Hs′ . Thus W
maps FHs into FHs, for any s ∈ (1 − ν/2, 1). We also obtain (6.12) for s in this
range.

Remark 6.1 In principle, we may consider Sobolev norms higher than 1 by taking
higher differences. If we want to go beyond Hn/2, then we also need to jack up the
regularity of the potential. We do not pursue this problem in this paper.



Vol. 3, 2002 Modified Wave Operators for the Hartree Equation, II 531

7 Continuity of Modified wave operators

In this section, we see the continuity of the modified wave operator in FHs. By
the local wellposedness in FHs of the original equation (1.1), it is equivalent to
the continuity of the map W ∗ : φ 
→ w(1) in Hs, where w is the solution of (6.1)
with w(0) = φ obtained above. Notice that here the phase factor Φ also changes
depending on φ, and it is the reason why the continuity is not trivial from the
above iterative construction, where Φ was fixed. However, we have already derived
the necessary estimates in Sections 4 and 5, and so we have just to check that they
work.

We will show L2 continuity ofW ∗ in a bounded set ofHs. Once it is obtained,
we can easily enhance it to the strong continuity in Hs via the frequency-localized
uniform bound (6.12), which has been extended to s ∈ (1−ν/2, 1) by the argument
at the end of the previous section.

Let φk ∈ Hs for k = 0, 1 and let wk be the solutions to (6.1) with wk(0) = φk
and Φ = Φk := Φ(φk). We assume that φk are bounded in Hs, so that we may
regard those norms are dominated by a constant. We apply Lemma 4.1 with s′ = s.
Then we obtain

|∂t‖δ1w‖L2 | � t4κ−1(‖δ1A‖B2α−s−4κ + ‖δ1φ‖L2)

+ tν−2‖δ1A− δ1V (φ∗)‖B−s ,
(7.1)

where we used (5.10) to estimate δ1Φ. Then we need to estimate δ1A. By Lemma
5.1, we have

‖δ1A‖B−ν∩B2α−s � ‖δ1w‖L2 + ‖δ1φ‖L2 . (7.2)

Next we use Lemma 5.2 with A′
k = Ak and φ′

k = φk. Then we obtain

‖δ1A− δ1V (φ∗)‖B−s � tα−κ sup
t
(‖δ1A‖B2α−s−κ + ‖δ1w‖L2 + ‖δ1φ‖L2)

� tα−κ sup
t
(‖δ1w‖L2 + ‖δ1φ‖L2),

(7.3)

where we used the above obtained bound (7.2).
In conclusion, we obtain

|∂t‖δ1w‖L2 | � t4κ−1(‖δ1w‖L∞(L2) + ‖δ1φ‖L2), (7.4)

which, through integration in time, implies that for small t > 0,

‖δ1w‖L2 � ‖δ1φ‖L2 . (7.5)

Thus we obtain L2 continuity ofW ∗ in any bounded set ofHs. It is easy to enhance
this convergence into the strong one in Hs by (6.12), which implies the following.
For any ε > 0, there exists a small ball Bε of Hs around φ0 and N ∈ N large such
that for small t > 0 (independent of ε), we have∥∥w1(t)||ξ|>N

∥∥
Hs < ε, (7.6)
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if w1(0) ∈ Bε. When combined with the L2 continuity obtained above, this implies
the strong continuity of W ∗ in Hs. Returning by the pseudo-conformal inversion,
we obtain FHs continuity of W .

8 Asymptotic completeness

In this section, we show the openness of the modified wave operatorW , which im-
plies the asymptotic completeness in a small ball of Hs around any solution having
the asymptotic profile described by the modified wave operator. Here again we in-
vert the problem by the pseudo-conformal transform. By the local wellposedness
of the Hartree equation, it suffices to show the following: Let w0 be a solution of
(6.1) with w0(0) = φ0 and Φ = Φ0 := Φ(φ0). Then for some t0 > 0 and any ψ′

sufficiently close to ψ0 := w0(t0) in Hs, there exists a solution w′ of (6.1) with
Φ = Φ′ := Φ(w′(0)), satisfying w′(t0) = ψ′. Moreover, when ψ′ converges to ψ0,
w′(0) also converges to w0(0) in Hs.

To find the solution w′, we again use the iteration method. Let w0 be given
as above. Then we define Ak, Φk and wk inductively by

Φk := Φ(φk), φk := wk(0)

Ak := V (U(t)eiΦkwk),

2iẇk + tν−2T (Ak−1, φk−1)wk = 0,
wk(t0) = ψ′.

(8.1)

We remark that for general data ψ′ at a fixed t0 > 0, this iteration can not
possibly work, since we do not have the asymptotic completeness in the whole
space in general. It is essential that we can choose t0 as small as we need and also
ψ′ close to w0(t0) (it suffices to be bounded).

First we derive uniform bounds for wk and Ak. Assume that we have

‖wj‖Hs ≤ C0, ‖Aj‖B−ν∩B2α ≤ C1, ‖Aj − V (φj)‖Bκ ≤ C2t
α−κ, (8.2)

for j < k. It is clear by the result obtained above that we have (8.2) for j = 0. So
it suffices to show (8.2) for j = k to get the uniform bounds. Applying Lemma 4.1
with w1 := wk(x+ h) and w0 = wk, we obtain

|∂t‖δhwk‖L2 | � |h|s+κtν−2‖wk‖Ḣs

{‖Ak−1 − V (φk−1)‖Bκ

+ tα−2κD(φk−1)(‖Ak−1‖B2α−3κ + ‖Ak−1‖B2α−3κtα‖Φk−1‖B2α)
}

� |h|s+κ‖wk‖Ḣst
4κ−1(C2 + C

[0,m+2]
0 C1).

(8.3)
Taking the difference norm of Ḣs, we obtain

|∂t‖wk‖Ḣs | ≤ C3t
4κ−1‖wk‖Ḣs , (8.4)
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where C3 is a constant dependent on Ci (i < 3) and κ. By the Gronwall inequality
and the L2 conservation, we obtain a uniform bound

‖wk(t)‖Hs ≤ eC4|t4κ−t4κ
0 |‖ψ′‖Hs , (8.5)

where C4 is determined by Ci (i < 4) and κ. By Lemma 5.1, we have

‖Ak‖B−ν∩B2α � D(φk)‖wk‖2
Hs , (8.6)

and by Lemma 5.2,

‖Ak − V (φk)‖Bκ � tα−κD(φk−1+) sup
t

‖Ak−1‖[0,1]
B2α∩B2α−κ‖wk‖2

Hs

� tα−κD(φk−1+)(1 + C1)‖wk‖2
L∞

t Hs .
(8.7)

Now we choose C0 sufficiently large compared with ‖w0‖L∞
t Hs , and C1 suf-

ficiently large compared with C
[0,m]
0 C2

0 , and then C2 sufficiently large compared
with C

[2,m+2]
0 (1 + C1), and finally we choose t0 sufficiently small. Then we can

make those bounds in (8.5), (8.6) and (8.7) smaller than needed to proceed the
induction for (8.2). Thus we obtain the uniform bounds (8.2) for any j.

Strictly speaking, we have to carry out this procedure first for s < 3/4 and
then extend the bound to general s < 1 in the same way as in the construction of
W (see the end of Section 6).

Next we show the convergence of wk in L2. We regard the bounds in (8.2)
just as constants. By Lemma 4.1 with w1 := wk+1 and w0 := wk, we have

|∂t‖δk+1w‖L2 | � tν−2‖δkA− δkV (φ∗)‖B−s

+ t4κ−1(‖δkA‖B2α−s−4κ + ‖δkφ‖L2),
(8.8)

where we used (5.10). Meanwhile, Lemma 5.1 with A1 := Ak and A0 := Ak−1

implies that
‖δkA‖B−ν∩B2α−s � ‖δkw‖L2 + ‖δkφ‖L2 , (8.9)

and Lemma 5.2 yields that

‖δkA− δkV (φ∗)‖B−s

� tα−κ sup
t
(‖δk−1A‖B2α−s−2κ + ‖δk−1+φ‖L2 + ‖δkw‖L2). (8.10)

Plugging these estimates into (8.8), we obtain

|∂t‖δk+1w‖L2 | � t4κ−1‖δk−1+w‖L∞
t L2 . (8.11)

By integration in time, we obtain

‖δk+1w‖L∞
t L2 � |t4κ − t4κ0 |‖δk−1+w‖L∞

t L2 . (8.12)
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In the special case k = 1, we have

‖δ2w‖L∞
t L2 � |t4κ − t4κ0 |‖δ1w‖L∞

t L2 , (8.13)

since the δk−1 parts in (8.10) disappear thanks to the equation for w0. Therefore,
if we choose t0 sufficiently small, then wk converges to some function w∞ in L2

for 0 < t < 2t0. By the same argument as for (6.12), we can derive from (8.3) that

‖ϕJ ∗ wk(t)‖Ḣs � ‖ϕJ ∗ ψ′‖Ḣs + J−κ|t4κ − t4κ0 |C3, (8.14)

which implies that the above L2 convergence is actually strong in Hs. Then w′ :=
w∞ is the desired solution of (6.1) with w′(t0) = ψ′ and Φ = Φ(w′(0)). Moreover,
the above contraction property (8.12)–(8.13) implies that if ψ′ converges to ψ0 in
L2 (in a bounded set in Hs), then w′ converges to w0 in L2 for 0 ≤ t ≤ 2t0. If ψ′

converges in Hs, then the high frequency part of ψ′ in (8.14) is uniformly bounded
(more precisely, compact in A2 for the dyadic parameter J). Hence (8.14) together
with the corresponding estimate for w0 (see (6.12)) implies the convergence of w′

to w0 in Hs for 0 ≤ t ≤ 2t0. This finishes the proof of the openness of W , and so
we have completed the proof of Theorem 1.1.
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