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Perturbations of the Wigner–Von Neumann Potential
Leaving the Embedded Eigenvalue Fixed

J. Cruz-Sampedro∗, I. Herbst† and R. Mart́ınez-Avendaño

Abstract. We investigate the Schrödinger operator H = −d2/dx2+(γ/x) sin αx+V ,
acting in Lp(R), 1 ≤ p < ∞, where γ ∈ R \ {0}, α > 0, and V ∈ L1(R). For
|γ| ≤ 2α/p we show that H does not have positive eigenvalues. For |γ| > 2α/p we
show that the set of functions V ∈ L1(R), such that H has a positive eigenvalue
embedded in the essential spectrum σess(H) = [0,∞), is a smooth unbounded
sub-manifold of L1(R) of codimension one.

Résumé. On examine l’opérateur de Schrödinger H = −d2/dx2 + (γ/x) sinαx + V
défini dans Lp(R), 1 ≤ p < ∞, où γ ∈ R \ {0}, α > 0, et V ∈ L1(R). Si |γ| ≤
2α/p, on montre que H n’a aucune valeur caractéristique positive. Si |γ| > 2α/p,
on montre que l’ensemble des fonctions V ∈ L1(R), telles que H a une valeur
caractéristique positive immergée dans le spectre essentiel σess(H) = [0,∞), est
une sous-variété lisse non-bornée de L1(R) de codimension égale à un.

1 Introduction

In this paper we consider Schrödinger operators of the form

HQ,p = − d2

dx2
+ Q, (1.1)

acting in Lp(R), 1 ≤ p < ∞, where Q = W + V , W (x) = (γ/x) sinαx, α > 0
and γ ∈ R \ {0} are constants, and V is a real-valued function in L1(R). To give
a precise definition of the operator HQ,p we use the Feynman-Kac formula. For
f ∈ ∪p≥1L

p(R) and t ≥ 0 we define

UQ(t)f(x) = Ex

(
exp

{
−

∫ t

0

Q(b(s))ds
}

f(b(t))
)

, (1.2)

where Ex denotes the expectation with respect to Brownian motion starting at x
with Brownian transition function given by

pt(x, y) =
exp

(−(x− y)2/4t
)

√
4πt

, x, y ∈ R, t ≥ 0. (1.3)
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We define HQ,p to be the negative of the infinitesimal generator of the C0- semi-
group (UQ,p(t); t ≥ 0), 1 ≤ p < ∞, defined for f ∈ Lp(R) and t ≥ 0 by
UQ,p(t)f = UQ(t)f .

Various classes of operators which contain the ones defined above have been
investigated in [6, 12, 16, 17, 18, 26, 28, 30], and it is well known that the spectrum
σ(HQ,p) is p-independent and that σess(HQ,p) = [0,∞) for all p ≥ 1.

Schrödinger operators of the form (1.1) were introduced by Wigner and Von-
Neumann [29] in order to construct an example of a Schrödinger operator, acting
in L2(R3), with a spherically symmetric potential which vanishes at infinity and
possesses a positive eigenvalue embedded in the continuum. The significance of
the Wigner-Von Neumann example lies in the fact that at the time it contradicted
physical intuition, which predicted that bound states of positive energy could not
occur if the potential tended to zero at infinity.

In this paper we study the structure of the set of functions V ∈ L1(R) for
which the operator HQ,p has a positive eigenvalue.

Our main result is:

Theorem 1.1 Let HQ,p be as in (1.1). If |γ| ≤ 2α/p, then HQ,p does not have posi-
tive eigenvalues. If |γ| > 2α/p, then the set of functions V ∈ L1(R) such that HQ,p

has a positive eigenvalue embedded in the essential spectrum σess(HQ,p) = [0,∞)
is a smooth unbounded sub-manifold of L1(R) of codimension one. In addition, if
V belongs to this sub-manifold then α2/4 is the unique positive eigenvalue of HQ,p.

It is well known that the eigenvalues in the discrete spectrum are, in an
appropriate setting, stable under perturbations. On the other hand, it is also known
that embedded eigenvalues in the continuum are rather unstable [1, 2, 9, 10, 20]. In
[2] Agmon, Herbst, and Skibsted prove that generically, in a Baire category sense,
arbitrarily small perturbations of a generalized N -body Hamiltonian remove all
non-threshold eigenvalues embedded in the continuum, and conjecture that the set
of perturbations that preserve a non-threshold embedded eigenvalue is something
like a differentiable manifold. The result presented in this paper shows that the
above conjecture is true for the simplest Schrödinger operators which possess an
eigenvalue embedded in the continuum. A similar result for p = 2 was announced
in [11] without proof.

For α > 0 and γ ∈ R \ {0}, let M(α, γ) be the set of functions V ∈ L1(R)
such that, for some k > 0, the differential equation

−ψ′′ + γ
sinαr

r
ψ + V ψ = k2ψ, r ∈ R, (1.4)

has a nonzero solution that goes to zero as |r| goes to infinity. We say that a func-
tion ψ is a solution of this differential equation if it is continuously differentiable,
ψ′ is absolutely continuous, and (1.4) holds almost everywhere. Local existence of
solutions to (1.4) is well known. We also prove
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Theorem 1.2 Let M(α, γ) be as defined above. Then M(α, γ) is a smooth un-
bounded sub-manifold of L1(R) of codimension one. In addition, if V ∈ M(α, γ)
then k = α/2.

Using the terminology of [19], M(α, γ) is the set of functions V in L1(R)
such that HQ,2 has a half-bound state of positive energy.

To prove the results stated above we determine, following Cassell [7], the
exact asymptotic behavior at infinity of the solutions to (1.4) and then identify
the set of functions V in L1(R) that produce positive eigenvalues of HQ,p with the
zero set of a smooth function on L1(R) for which zero is a regular value.

Schrödinger operators with eigenvalues in the continuous spectrum have also
been investigated in [3, 14, 23], and the asymptotic behavior of the solutions of
(1.4) for various classes of potentials has also been studied in [4, 7, 13, 15, 22].
For perturbations of embedded eigenvalues in situations which are relevant to the
automorphic Laplacian and N -body Schrödinger operators see [2, 5, 9, 10, 20, 25].
In a different context, results of the type presented here have been obtained in
[21].

This paper is organized as follows. In Section 2 we investigate the asymptotic
behavior at infinity of solutions to (1.4) and establish the existence of solutions
that vanish at infinity. In Section 3 we prove the main results. In the Appendix
we establish the connection between the eigenfuctions of HQ,p and the solutions
of (1.4) that belong to Lp(R).

Acknowledgments. We thank S. Sontz for useful comments.

2 Existence of Solutions that Vanish at Infinity

In this section we follow Cassell [7] to determine the asymptotic behavior as r goes
to infinity of the solutions to (1.4). We will prove

Theorem 2.1 For α > 0, γ ∈ R \ {0}, k > 0, and V ∈ L1(R) we have:

i) If k �= α/2, then (1.4) has solutions φ and ψ such that, as r goes to +∞,

φ(r) = cos kr + o(1) and ψ(r) = sin kr + o(1),

with
φ′(r) = −k sin kr + o(1) and ψ′(r) = k cos kr + o(1).

ii) If k = α/2, then (1.4) has solutions φ and ψ such that, as r goes to +∞,

φ(r) = r−γ/2α(cos kr + o(1)) and ψ(r) = rγ/2α(sin kr + o(1)),

with

φ′(r) = −kr−γ/2α(sin kr + o(1)) and ψ′(r) = krγ/2α(cos kr + o(1)).
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Proof. Setting ξ(r) = ψ(r/k), σ = α/k > 0, and η = γ/k ∈ R \ {0} we find that ξ
satisfies

−ξ′′ + η
sinσr

r
ξ + Wξ = ξ, (2.1)

where W (r) = V (r/k)/k2 ∈ L1(R). Using the transformation

x =
(
cos r − sin r
sin r cos r

) (
ξ
ξ′

)
,

we see that (2.1) is equivalent to

x′ = A(r)x, (2.2)

where

A(r) = a(r)
(
sin r cos r sin2 r
− cos2 r − sin r cos r

)
,

and a(r) = −η
sinσr

r
−W (r).

Next we write A(r) = (η/r)G(r) + R(r), where R(r) is the L1-matrix given
by

R(r) = −W (r)
(
sin r cos r sin2 r
− cos2 r − sin r cos r

)
, (2.3)

and

G(r) ≡
(
g1(r) g2(r)
g3(r) −g1(r)

)
, (2.4)

with
g1(r) = −1

4
(cos(σ − 2)r − cos(σ + 2)r),

g2(r) = −1
4
(2 sinσr − sin(σ + 2)r − sin(σ − 2)r),

and
g3(r) =

1
4
(2 sinσr + sin(σ + 2)r + sin(σ − 2)r).

Now we decompose G as G = G1 +G2, where G1 = 0 and G2 = G for σ �= 2, and

G1 =
(− 1

4 0
0 1

4

)

and

G2(r) =
1
4

(
cos 4r −2 sin 2r + sin 4r

2 sin 2r + sin 4r − cos 4r

)

for σ = 2.



Vol. 3, 2002 Perturbations of the Wigner–Von Neumann Potential 335

Setting S(r) = I + (η/r)G∗
2, a crude approximation to a solution of S′ =

(η/r)G2S, where

G∗
2(r) ≡

∫ r

0

G2(u)du,

we find that if a is large then S(r)−1 exists for r ≥ a and sup{‖S(r)−1‖ : r > a} <
∞. Hence setting

R̃ = S−1((η/r)2(GG∗
2 −G∗

2G1) + RS + (η/r2)G∗
2)

we have that R̃ ∈ L1(a,∞) and defining B = (η/r)G1 + R̃ we have that

SB = AS − S′. (2.5)

Therefore setting x = S(r)y and using (2.5) we find that (2.2) is equivalent to

y′ = B(r)y. (2.6)

To finish the proof we proceed as follows:

i) If σ �= 2 then B = R̃ ∈ L1(a,∞). Hence, proceeding as in the proof of
Theorem XI.65 of [22] we find that, as r goes to +∞, (2.6) has a fundamental
matrix X = I + o(1), where I denotes the 2 × 2 identity matrix. Thus (2.1) has
solutions ψ1, ψ2 such that

ψ1(r) = cos r + o(1), ψ2(r) = sin r + o(1),

ψ′
1(r) = − sin r + o(1), and ψ′

2(r) = cos r + o(1),

from which i) of Theorem 2.1 follows.

ii) If σ = 2 and γ > 0, then the change of variables τ = η log r transforms
(2.6) into

dϕ

dτ
= (G1 + L)ϕ, (2.7)

where L is in L1(τ0,∞) for some τ0 independent of V . It is easily verified that this
last system of O.D.E.s satisfies the conditions of a theorem due to Levinson. See
Theorem 8.1 in Ch. 3 of [8]. Thus, as τ goes to +∞, (2.7) has solutions ϕ1 and ϕ2

such that

lim
τ→∞ exp(τ/4)ϕ1(τ) =

(
1
0

)
, and lim

τ→∞ exp(−τ/4)ϕ2(τ) =
(
0
1

)
.

Hence (2.6) has solutions of the form

y1 = r−η/4

((
1
0

)
+ o(1)

)
, y2 = rη/4

((
0
1

)
+ o(1)

)
, (2.8)
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and therefore (2.1) has solutions ψ1, ψ2 such that

ψ1(r) = r−η/4(cos r + o(1)), ψ2(r) = rη/4(sin r + o(1)),

ψ′
1(r) = −r−η/4(sin r + o(1)), and ψ′

2(r) = rη/4(cos r + o(1)).

Changing the signs that need to be changed, we see that the same result is true
when γ < 0, and thus ii) of Theorem 2.1 follows. �
Remark. Clearly an analogous result holds in a neighborhood of −∞.

3 Proof of the main result

First we prove Theorem 1.2 and then Theorem 1.1.

Proof of Theorem 1.2. Clearly we may assume γ > 0. Let M(α, γ) be as in the
statement of Theorem 1.2. First we show that M(α, γ) is nonempty. By Theorem
2.1, for any given V ∈ L1(R) we may choose nonzero solutions ψ− and ψ+ of (1.4)
with k = α/2, such that ψ−(r) goes to zero as r goes to −∞, and ψ+(r) goes to
zero as r goes to +∞. By the same theorem we can also choose a > 0 such that
ψ−(−a)ψ+(a) > 0. Now, if we define ψ(r) = ψ−(r) for r ≤ −a, ψ(r) = ψ+(r)
for r ≥ a, and ψ(r) = ϕ(r) for |r| ≤ a, where ϕ is any C2 function of constant
sign that smoothly joins ψ− and ψ+ on [−a, a], and set Ṽ (r) = V (r) for |r| ≥ a
and Ṽ (r) = (α2/4) − (γ/r) sinαr + ϕ′′/ϕ for |r| ≤ a, then Ṽ ∈ L1(R) and ψ is
a nonzero continuously differentiable function which goes to zero as |r| goes to
infinity and satisfies

−ψ′′ + γ
sinαr

r
ψ + Ṽ ψ = (α2/4)ψ, a.e in R.

Hence Ṽ ∈ M(α, γ). In addition, it follows from the construction of Ṽ that M(α, γ)
is unbounded in L1(R). Furthermore, if V belongs to M(α, γ), then in view of
Theorem 2.1 we must have k = α/2.

To complete the proof of Theorem 1.2 we only need to show that M(α, γ) is a
smooth sub-manifold of L1(R) of codimension one. This is proved in the following
lemma.

Lemma 3.1 Let M(α, γ) be as in Theorem 1.2. Then there exists a C∞ function
F : L1(R) −→ R such that zero is a regular value of F and M(α, γ) = F−1({0}).
Proof. For every V ∈ L1(R) let ψ+ be the solution of

−ψ′′ + γ
sinαr

r
ψ + V ψ = (α2/4)ψ, r ∈ R, (3.1)

which coincides for large positive r with the function φ given in (ii) of Theorem
2.1. First we will show that ψ+ and ψ′

+ depend smoothly on V . For r0 ∈ R, let



Vol. 3, 2002 Perturbations of the Wigner–Von Neumann Potential 337

Xr0 be the Banach space of continuous functions ϕ from [r0,∞) into R2 with the
norm

‖ϕ‖r0 ≡ sup
τ≥r0

‖ϕ(τ) exp (τ/4) ‖ < ∞.

It is easy to verify that the smoothness of ψ+ and ψ′
+ with respect to V

follows from the fact that for all r0 ∈ R, the solution ϕ1 of (2.7) that satisfies

lim
τ→+∞ exp(τ/4)ϕ1 =

(
1
0

)
,

is a smooth a function of L ∈ L1(R) with values in Xr0 . To prove this last define
Φ : L1(R)×Xτ0 → Xτ0 as

Φ(L,ϕ)(τ) = ϕ(τ) − ψ1(τ) +
∫ ∞

τ

Ψ(τ)Ψ−1(s)L(s)ϕ(s)ds,

where, τ0 is as in (2.7), ψ1(τ) = exp(−τ/4)
(
1
0

)
, and

Ψ(τ) =
(
exp(−τ/4) 0

0 exp(τ/4)

)
.

Note that Φ(L,ϕ) = 0 if and only if ϕ = ϕ1. Next we fix L0 ∈ L1(R) and let
ϕ0 ∈ Xτ0 be so that Φ(L0, ϕ0) = 0. We prove that if τ0 is sufficiently large, then
Φ(L,ϕ) = 0 implicitly defines ϕ1 as a smooth function of L, with values in Xτ0 ,
on a neighborhood of L0. Since Φ(·, ·) is jointly smooth, by the implicit function
theorem it suffices to show that for τ0 sufficiently large the operator d2Φ(L0, ϕ0)
is invertible from Xτ0 onto Xτ0 . Clearly

(d2Φ(L0, ϕ0))(h) = h+ P (h), for all h ∈ Xτ0 ,

where
P (h)(τ) ≡

∫ ∞

τ

Ψ(τ)Ψ−1(s)L0(s)h(s)ds.

Using the definition of Ψ it is easily verified that

‖P (h)‖τ0 ≤ ‖h‖τ0

∫ ∞

τ0

‖L0(s)‖ds, for all h ∈ Xτ0 ,

from which the invertibility of d2Φ(L0, ϕ0) for large τ0 follows. Thus ϕ1 is smooth
in L in a neighborhood O of L0 in the Banach space Xτ0 . Since ϕ1(τ0) is smooth
in L, the smoothness of ϕ1 as a function from O to Xr0 follows from the fact that
the solutions to the initial value problem

dϕ

dτ
= (G1 + L)ϕ, ϕ(τ0) = ϕ1(τ0),
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are smooth in L and the initial value ϕ1(τ0). This last can be proved in the usual
way using the integral equation.

Analogous arguments show that the solution ψ− of (3.1) that satisfies

ψ−(r) = |r|−γ/2α(cos kr + o(1)) and ψ′
−(r) = −k|r|−γ/2α(sin kr + o(1)),

as r → −∞, is a smooth function of V and so is ψ′−.

Now we define F : L1(R) → R as

F (V ) =
∣∣∣∣ψ+(r, V ) ψ−(r, V )
ψ′

+(r, V ) ψ′
−(r, V )

∣∣∣∣ .
This function is well defined since the Wronskian of any pair of solutions of (3.1)
is constant as a function of r. Moreover V ∈ M(α, γ) if and only if F (V ) = 0; or
equivalently, if and only if ψ− = λψ+, where λ �= 0 is a function of V , constant as
a function of r. Thus M(α, γ) = F−1({0}).

Since F is a smooth function of V , to finish the proof it remains to show that
zero is a regular value of F , that is to say that for every V ∈ M(α, γ) we have
dF (V ) �= 0. Differentiating F with respect to V we find that for every V and h in
L1(R) we have

dF (V )(h) =
∣∣∣∣dψ+(r, V )(h) ψ−(r, V )
dψ′

+(r, V )(h) ψ′
−(r, V )

∣∣∣∣ +
∣∣∣∣ψ+(r, V ) dψ−(r, V )(h)
ψ′

+(r, V ) dψ′
−(r, V )(h)

∣∣∣∣ , (3.2)

where d indicates differentiation with respect to V and the prime differentiation
with respect to r, with V fixed.

In order to prove that dF (V ) is not zero we note first that, for any fixed
a ∈ R,

ψ′
+(r, V ) = ψ′

+(a, V ) +
∫ r

a

Λ(t, V )ψ+(t, V )dt,

where Λ(r, V ) ≡ (γ/r) sinαr + V − (α2/4). Using the fact that for any interval
[c, d] the map V �→ ψ+(·, V ), from L1(R) to the space C[c, d] is smooth we have

dψ′
+(r, V )(h) = dψ′

+(a, V )(h) +
∫ r

a

h(t)ψ+(t, V )dt +
∫ r

a

Λ(t, V )dψ+(t, V )(h)dt.

Thus dψ′
+(r, V )(h) is absolutely continuous with derivative

(dψ′
+(r, V )(h))′ = h(r)ψ+(r, V ) + Λ(r, V )dψ+(r, V )(h) a.e.

Now for any fixed b ∈ R and β ≥ b we consider∫ β

b

ψ+(t, V )(dψ′
+(t, V )(h))′dt

=
∫ β

b

(ψ+(t, V ))2h(t) + Λ(t, V )ψ+(t, V )dψ+(t, V )(h)dt.
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Integrating by parts we also have∫ β

b

ψ+(t, V )(dψ′
+(t, V )(h))′dt

= dψ′
+(t, V )(h)ψ+(t, V )

∣∣∣∣
β

b

−
∫ β

b

ψ′
+(t, V )dψ′

+(t, V )(h)dt.

Since ψ+(t, V ) is not a jointly C2-function of t and V , in order to perform another
integration by parts we show first that for any t ∈ R and V and h in L1(R) we
have

dψ′
+(t, V )(h) = (dψ+(t, V )(h))′. (3.3)

To prove (3.3) just note that ψ+(t, V ) = ψ+(c, V ) +
∫ t

c

ψ′
+(τ, V )dτ . Since ψ′

+(·, V )

is smooth in V as a function in C[c, d] for any d > c, we can differentiate with
respect to V under the integral sign and obtain

dψ+(t, V )(h) = dψ+(c, V )(h) +
∫ t

c

dψ′
+(τ, V )(h)dτ,

where for fixed V and h, dψ′
+(τ, V )(h) is continuous in τ . Thus (3.3) follows im-

mediately.
So another integration by parts yields∫ β

b

(ψ+(t, V ))2h(t) + Λ(t, V )ψ+(t, V )dψ+(t, V )(h))dt =

ψ+(t, V )dψ′
+(t, V )(h)

∣∣∣∣
β

b

− ψ′
+(t, V )dψ+(t, V )(h)

∣∣∣∣
β

b

+
∫ β

b

Λ(t, V )ψ+(t, V )dψ+(t, V )(h)dt,

which gives∫ β

b

ψ+(t, V )2h(t)dt =
(
ψ+(t, V )dψ′

+(t, V )(h)− ψ′
+(t, V )dψ+(t, V )(h)

) ∣∣∣∣
β

b

.

Taking β to infinity and utilizing the fact that for fixed V and h, the functions
ψ+, ψ′

+, dψ+, and dψ′
+ all approach zero at infinity we obtain∫ ∞

b

ψ+(t, V )2h(t)dt = ψ′
+(b, V )dψ+(b, V )(h)− ψ+(b, V )dψ′

+(b, V )(h).

Analogously,∫ b

−∞
ψ−(t, V )2h(t)dt = ψ−(b, V )dψ′

−(b, V )(h) − ψ′
−(b, V )dψ−(b, V )(h).
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Finally, combining (3.2) with these last two identities and using the fact that for
V ∈ M(α, γ) we have ψ− = λψ+, λ �= 0, we find that

dF (V )(h) = λ

∫ ∞

b

ψ+(t, V )2h(t)dt +
1
λ

∫ b

−∞
ψ−(t, V )2h(t)dt

=
∫ ∞

−∞
ψ−(t, V )ψ+(t, V )h(t)dt,

for all h ∈ L1(R). Therefore, if V ∈ M(α, γ) then dF (V ) is the linear functional
on L1(R) defined by the function ψ−ψ+ ∈ L∞(R) \ {0}. �
Proof of Theorem 1.1. For p ≥ 1, α > 0, and γ ∈ R \ {0}, let Mp(α, γ) be the set
of functions V ∈ L1(R) for which the operator HQ,p has a positive eigenvalue. It
follows from Theorem 2.1 and Proposition A.1 that

Mp(α, γ) =

{
∅, if |γ| ≤ 2α/p,
M(α, γ), if |γ| > 2α/p.

�

A Appendix

Here we establish the connection between the eigenfunctions of the operator HQ,p

and the decaying solutions of (1.4).
Below we use Duhamel’s formula [27] in the form

(ϕ,UQ(t)f) = (ϕ,U0(t)f)−
∫ t

0

(UQ(t− u)ϕ,QU0(u)f)du, (A.1)

for ϕ ∈ C∞
0 (R) and f ∈ L∞(R) ∩ Lp(R), where Q is as in (1.1) and UQ(t) is

as introduced in (1.2). Formula (A.1) is readily established by an approximation
argument starting with bounded Q. Here

(φ, ψ) =
∫ ∞

−∞
φ(x)ψ(x)dx.

The main result of this section is

Proposition A.1 Let p, Q, and HQ,p be as in (1.1). Then f ∈ Lp(R) is an eigen-
function of HQ,p corresponding to the eigenvalue λ ∈ R if and only if f is a dif-
ferentiable function that vanishes at infinity, such that f ′ is absolutely continuous
on every finite interval of R and

−f ′′ + Qf = λf a.e. (A.2)

Proof. Suppose f ∈ Lp(R) is a differentiable function that vanishes at infinity,
such that f ′ is absolutely continuous on every finite interval of R and that (A.2)
is satisfied. We will show that

UQ,p(t)f = exp(−λt)f, t ≥ 0. (A.3)
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For any given ϕ ∈ C∞
0 we define

g(s) = (ϕ,UQ(s)f), s ≥ 0.

We show first that for any s ≥ 0 we have

lim
t→0+

g(s+ t)− g(s)
t

= −λg(s).

Set ψ = UQ(s)ϕ. Using Duhamel’s formula and the fact [6] that (φ,UQ(s)ξ) =
(UQ(s)φ, ξ), for φ ∈ Lp(R) and ξ ∈ Lp′

(R), we find that

g(s + t)− g(s)
t

=
(
ψ,

UQ(t)− 1
t

f

)

=
(
ψ,

U0(t)− 1
t

f

)

−1
t

∫ t

0

(UQ(t− u)ψ,QU0(u)f)du. (A.4)

We show next that as t → 0+ the right side of (A.4) goes to (ψ, f ′′)− (ψ,Qf) =
−λg(s). In fact, using the kernel pt(x, y) of U0(t) introduced in (1.3) we have
(
ψ,

U0(t)− 1
t

f

)
=

(
ψ,

1
t

∫ ∞

−∞
pt(x, y)(f(y)− f(x))dy

)

=
(
ψ,

1
t

∫ ∞

−∞
pt(0, y)(f(x + y)− f(x))dy

)

=
(
ψ,

1
t

∫ ∞

−∞
pt(0, y)

∫ y

0

(y − u)f ′′(x + u)dudy
)

=
(
ψ, f ′′ +

∫ ∞

−∞
pt(0, y)

∫ y

0

(y − u)
(f ′′(x + u)− f ′′(x))

t
dudy

)
,

where in the third equality we have used Taylor’s formula

f(x+ u)− f(x) = yf ′(x) +
∫ y

0

(y − u)f ′′(x + u)du.

Setting z = y/
√
t and then u =

√
tw we find that

∫ ∞

−∞
pt(0, y)

∫ y

0

(y − u)
(f ′′(x + u)− f ′′(x))

t
dudy =∫ ∞

−∞
p1(0, z)

∫ z

0

(z − w)(f ′′(x + τw) − f ′′(x))dw dz,

where τ ≡ √
t.
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Hence∣∣∣∣
(
ψ,

∫ ∞

−∞
pt(0, y)

∫ y

0

(y − u)
(f ′′(x + u)− f ′′(x))

t
dudy

)∣∣∣∣
≤ 1√

4π

∫ ∞

−∞
|ψ(x)|

∫ ∞

−∞
exp(−z2/4)

∫ |z|

−|z|
2|z||f ′′(x + τw) − f ′′(x)|dw dz dx

≤ 1√
4π

∫ ∞

−∞
|ψ(x)|

∫ ∞

−∞

∫ ∞

|w|
2z exp(−z2/4)|f ′′(x + τw) − f ′′(x)|dz dw dx

=
2√
π

∫ ∞

−∞
|ψ(x)|

∫ ∞

−∞
exp(−w2/4)|f ′′(x + τw) − f ′′(x)|dw dx

Thus, using (A.2), the fact that f ∈ Lp(R) ∩ L∞(R), and the dominated con-
vergence theorem we see that the right side of the last inequality goes to zero as
t → 0+ and therefore

lim
t→0+

(
ψ,

U0(t)− 1
t

f

)
= (ψ, f ′′).

By the continuity of the function (UQ(u)ψ,Qf) with respect to u, the second term
on the right side of (A.4) approaches −(ψ,Qf) since

1
t

∫ t

0

(UQ(t− u)ψ,Q(U0(u)− 1)f) du

goes to zero as t → 0+. To see this last we use the fact that UQ(t) maps L∞(R)
into L∞(R) and that ‖UQ(t)‖L∞→L∞ ≤ C, for small t, that Q = W + V , with
V ∈ L1(R) and W ∈ Lp(R), for p > 1, and that (U0(t)− 1)f converges uniformly
to zero as t → 0+ since f vanishes at infinity and hence is uniformly continuous
on R.

Thus we have proved that the right derivative D+g of the function g(s)
satisfies D+g(s) = −λg(s), for all s ≥ 0. It follows that D+(exp(λs)g(s)) = 0 for
s ≥ 0 and therefore [24] that g(s) = exp(−λs)g(0), which proves (A.3).

Suppose now that f ∈ Lp(R) satisfies (A.3). Then [6, 26] f ∈ L∞(R),
f is continuous, vanishes at infinity, and f ′ exists and belongs to L2

loc(R). By
Duhamel’s formula, for every ϕ ∈ C∞

0 (R) we have

(ϕ,UQ(t)f) = (ϕ,U0(t)f)−
∫ t

0

(UQ(t− u)ϕ,QU0(u)f) du.

Differentiating this last at t = 0, using (A.3), we obtain −λ(ϕ, f) = (ϕ′′, f) −
(ϕ,Qf) and thus (ϕ′, f ′) = (ϕ, (λ − Q)f) for all ϕ ∈ C∞

0 (R). Standard approxi-
mation arguments show that f ′ is almost everywhere equal to an absolutely con-
tinuous function and that (A.2) is satisfied. �
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