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Convergent Perturbative Solutions of the
Schrödinger Equation for Two-Level Systems with
Hamiltonians Depending Periodically on Time

J. C. A. Barata

Abstract.We study the Schrödinger equation of a class of two-level systems under
the action of a periodic time-dependent external field in the situation where the
energy difference 2ε between the free energy levels is sufficiently small with respect
to the strength of the external interaction. Under suitable conditions we show that
this equation has a solution in terms of converging power series expansions in ε.
In contrast to other expansion methods, like in the Dyson expansion, the method
we present is not plagued by the presence of “secular terms”. Due to this feature
we were able to prove uniform convergence of the Fourier series involved in the
computation of the wave functions and to prove absolute convergence of the ε-
expansions leading to the “secular frequency” and to the coefficients of the Fourier
expansion of the wave function.

I Introduction

This paper is dedicated to the mathematical study of a class of periodically time-
depending two-level systems. It is well know that the usual perturbative approach,
based, f.i., on the Dyson series, leads to difficulties involving secular terms and (for
quasi-periodic interactions) small divisors. In [1] a new algorithm has been devised
to overcome the secular terms in the general case of quasi-periodic interactions.
Roughly speaking it involves an inductive “renormalization” of an effective field
introduced via an exponential Ansatz (the function g to be introduced below).
Here we apply that algorithm to the case of periodic interactions in the strong
coupling regime, a situation of particular interest in several branches of physics
(for references, see [2] or below). As we will show, our method not only recovers the
Floquet form of the solution of the time-depending Schrödinger equation, but also
allows the computation of the secular frequency and of the Fourier coefficients
in terms of explicit convergent ε-expansions, what constitutes a feature of our
algorithm, compared to other expansion methods.

Let us describe more precisely the systems we will study. Consider the fol-
lowing Hamiltonian for a two-level system under the action of an external time-
dependent field

H1(t) = H0 +HI(t) = εσ3 − f(t)σ1 (I.1)
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and the corresponding Schrödinger equation1

i∂tΨ(t) = H1(t)Ψ(t), (I.2)

with Ψ : R → C
2. Here f(t) is a function of time t and ε ∈ R is a parameter

representing half of the energy difference between the “free” (i.e., for f ≡ 0)
energy levels. The symbols σ1, σ2 and σ3 denote the Pauli matrices in their usual
representations: σ1 =

(
0
1

1
0

)
, σ2 =

(
0
i

−i
0

)
and σ3 =

(
1
0

0
−1

)
. The “interaction

Hamiltonian” HI(t) := −f(t)σ1 represents a time-dependent external interaction
coupled to the system inducing transitions between the two eigen-states of the free
Hamiltonian H0 := εσ3.

Since the Schrödinger equation (I.2) can be read as

i∂τΨ0(τ) =
[
σ3 − ε−1f

(
ε−1τ
)
σ1
]
Ψ0(τ), (I.3)

where τ ≡ εt and Ψ0(t) ≡ Ψ(ε−1t), the situation where ε is “small” characterizes
the “strong coupling” and, for periodic f , “large frequency” regime [3, 4].

The system described above is certainly one of the simplest non-trivial time-
depending quantum systems and the study of the solutions of (I.2) is of basic
importance for many physical applications as, e.g., in quantum optics, in the theory
of spin resonance or in problems of quantum tunneling.

Equation (I.2) has been analyzed by many authors in various approxima-
tions. In the wide literature on the subject of time-depending two-level systems
we mention the pioneering works of Rabi [5], of Bloch and Siegert [6] and of Autler
and Townes [7]. In [7] the authors studied the solutions of (I.2) for the case where,
in our notation, f(t) = −2β cos(ωt), β ∈ R. Their work is exact but non-rigorous
and involved a combination of the method of continued fractions, for relating the
coefficients the Fourier decomposition of the wave functions, with numerical analy-
sis. No proof has been exhibited that the continued fractions converge and further
unjustified restrictions have been made in order to transform some transcendental
equations into low order algebraic equations, which are then solved either exactly
or, specially for strong fields, numerically.

For related treatments using different approaches and for related systems,
see [8, 9, 10, 11, 12, 13, 14] and other references therein. For a recent review on
the mathematical theory of quantum systems submitted to time-depending peri-
odic and quasi-periodic perturbations see [3]. For an introduction to the subjects
of “quantum chaos” and quantum stability, two subjects strongly linked to the
problems considered here, see [15]. See also [4] for results on the spectral analysis
of the quasi-energy operator for two-level atoms in the quasi-periodic case.

In [1] we studied the system described by (I.2) in the situation where f is a
quasi-periodic function of time and a special perturbative expansion (power series
expansion in ε) has been developed. Its main virtue is to be free of the so-called
“secular terms”, i.e., polynomials in t that appear order by order in perturbation

1For simplicity we shall adopt here a system of units with ~ = 1.
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theory and that spoil the analysis of convergence of the series and the proofs of
quasi-periodicity of the perturbative terms. Although we have not been able to
prove convergence of our power series expansion in the general case where f is
quasi-periodic it has been established that the coefficients of the expansion are
indeed quasi-periodic functions of time.

One of the obstacles found in the attempt to prove convergence of our expan-
sion in the general case of quasi-periodic f is the presence of “small denominators”.
This typical feature of perturbative approximations for solutions of differential
equations with quasi-periodic coefficients is well known as one of the main sources
of problems in the mathematically precise treatment of such equations. On what
concerns proofs of convergence it should, therefore, be expected that better results
could be obtained if the function f were restricted to be periodic since, in this case,
no problems with small denominators should afflict our expansions.

In the present paper we show how the difficulties analyzed in [1] can be cir-
cumvented in the case of periodic f and establish convergence of our perturbative
expansion for that case.

*

By a time-independent unitary transformation, representing a rotation of π/2
around the 2-axis, we may replace H1(t) by

H2(t) :=
(
e−iπσ2/4

)
H1(t)

(
eiπσ2/4

)
= εσ1 + f(t)σ3 (I.4)

and the Schrödinger equation becomes

i∂tΦ(t) = H2(t)Φ(t), (I.5)

with
Φ(t) := e−iπσ2/4Ψ(t). (I.6)

The theorem below, proven in [1], presents the solution of the Schrödinger
equation (I.5) in terms of particular solutions of a generalized Riccati equation.

Theorem I.1 Let f : R→ R, f ∈ C1(R) and ε ∈ R and let g : R→ C, g ∈ C1(R),
be a particular solution of the generalized Riccati equation

G′ − iG2 − 2ifG+ iε2 = 0. (I.7)

Then, the function Φ : R→ C
2 given by

Φ(t) =
(
φ+(t)
φ−(t)

)
= U(t)Φ(0) = U(t, 0)Φ(0), (I.8)

where

U(t) :=



R(t) (1 + ig(0)S(t)) −iεR(t)S(t)

−iεR(t) S(t) R(t)
(
1− i g(0) S(t)

)

 , (I.9)
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with

R(t) := exp
(
−i
∫ t

0

(f(τ) + g(τ)) dτ
)

(I.10)

and

S(t) :=
∫ t

0

R(τ)−2 dτ (I.11)

is a solution of (I.5) with initial value Φ(0) =
(
φ+(0)
φ−(0)

)
∈ C

2.

For a proof of Theorem I.1, see [1]. Let us briefly describe some of the ideas
leading to Theorem I.1 and to other results of [1]. As we saw in [1], the solutions
of the Schrödinger equation (I.5) can be studied in terms of the solutions of a
particular complex version of Hill’s equation:

φ′′(t) +
(
if ′(t) + ε2 + f(t)2

)
φ(t) = 0. (I.12)

In fact, a simple computation (see [1]) shows that the components φ± of Φ(t)
satisfy precisely

φ′′+ +
(
+if ′ + ε2 + f2

)
φ+ = 0

φ′′− +
(−if ′ + ε2 + f2

)
φ− = 0

. (I.13)

As a side remark we note that equations (I.13) are simpler and more conve-
nient than the equations obtained by separating ψ+ and ψ− from (I.2):

fψ′′
+ − f ′ψ′

+ +
(
ε2f + f3 − iεf ′)ψ+ = 0

fψ′′
− − f ′ψ′

− +
(
ε2f + f3 + iεf ′

)
ψ− = 0

. (I.14)

These equations, mentioned (but not used) in [7], are mathematically less conve-
nient because they may be non-regular, since f may have zeros in typical cases,
like the simple monochromatic case f(t) = −2β cos(ωt), analyzed in [7].

In [1] we attempted to solve (I.12) using the Ansatz

φ(t) = exp
(
−i
∫ t

0

(f(τ) + g(τ))dτ
)
. (I.15)

It follows that g has to satisfy the generalized Riccati equation (I.7) and we tried
to find solutions for g in terms of a power expansion in ε like

g(t) = q(t)
∞∑
n=1

εn cn(t), (I.16)

where

q(t) := exp
(
i

∫ t

0

f(τ)dτ
)
. (I.17)
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The heuristic idea behind the Ansätze (I.15) and (I.16) is the following. For
ε ≡ 0 a solution for (I.12) is given by exp

(
−i ∫ t

0
f(τ)dτ

)
. Thus, in (I.15) and (I.16)

we are searching for solutions in terms of an “effective external field” of the form
f + g, with g vanishing for ε = 0.

Note that a solution of the form (I.15) leads to only one of the two indepen-
dent solutions of the second order Hill’s equation (I.12). The complete solution
of the Schrödinger equation (I.5) in terms of solutions of the generalized Riccati
equation (I.7) is that described in Theorem I.1.

As mentioned above, perturbative solutions of quasi-periodically time-depen-
dent systems are usually plagued by small denominators and by the presence of
the so-called “secular terms”. In [1] we discovered a particular way to eliminate
completely the secular terms from the perturbative expansion of g (see Appendix
A for a brief description of the strategy developed in [1]) and we were able to
show, under some special assumptions, that the coefficients cn(t) are all quasi-
periodic functions. In [1] we proved convergence of our perturbative solution in the
somewhat trivial case where f(t) is a non-zero constant function. Unfortunately
no conclusion could be drawn about the convergence of the perturbative expansion
for g in the general case of quasi-periodic f . We conjectured, however, that our
expansion is uniformly convergent in the situation where f(t) has small fluctuations
about its mean value.

The technically central result of the present paper is the proof that, under
suitable assumptions, the series (I.16) converges uniformly on R as a function of
time for |ε| small enough and f periodic. This is the content of Theorem III.1.
Moreover, we show that the functions cn and, hence, g, have uniformly converging
Fourier series representations. We use this fact together with the solution (I.9)
to find the Floquet representation of the components φ± of the wave function in
terms of uniformly converging Fourier series representations. This is the content
of Theorem I.2. Absolutely converging power series in ε for the Fourier coefficients
and for the secular frequency are also presented.

We believe that the methods employed in this paper are also of importance
for the general theory of Hill’s equation. It would be of great interest to know
whether the ideas described in [1] and here can be generalized and applied to a
larger class of Hill’s equations than those we studied so far.

I.1 The Main Result

On what concerns the solutions of the Schrödinger equation (I.5) the next theorem
summarizes our main results.

Theorem I.2 Let f be a real Tω-periodic function of time (Tω := 2π/ω) whose
Fourier decomposition

f(t) =
∑
n∈Z

Fne
inωt, (I.18)
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with ω > 0, contains only a finite number of terms, i.e., the set of integers {n ∈
Z| Fn �= 0} is a finite set. We also assume that either F0 = 0 or 2F0 ∈ R\{kω, k ∈
Z}.

Consider the two following mutually exclusive conditions on f :
I) M(q2) �= 0.
II) M(q2) = 0 but M(Q1) �= 0, where

Q1(t) := q(t)2
∫ t

0

q−2(τ)dτ. (I.19)

Then, for each f as above, satisfying condition I or II, there exists a constant
K > 0 (depending on the Fourier coefficients {Fn, n ∈ Z , n �= 0} and on ω > 0)
such that, for each ε with |ε| < K, there exist Ω ∈ R and Tω-periodic functions u±11
and u±12 such that the propagator U(t) of (I.8) can be written as

U(t) =


 U11(t) U12(t)

U21(t) U22(t)


 =


 U11(t) U12(t)

−U12(t) U11(t)


 , (I.20)

with

U11(t) = e−iΩt u−11(t) + e
iΩt u+11(t), (I.21)

U12(t) = e−iΩt u−12(t) + e
iΩt u+12(t). (I.22)

The functions u±11 and u±12 have absolutely and uniformly converging Fourier ex-
pansions

u±11(t) =
∑
n∈Z

U±
11(n)e

inωt,

u±12(t) =
∑
n∈Z

U±
12(n)e

inωt.

Moreover, under the same assumptions, Ω and the Fourier coefficients U±
11(n) and

U±
12(n) can be expressed in terms of absolutely converging power series on ε.

Remarks on Theorem I.2

1. Expressions (I.21) and (I.22) represent the so-called “Floquet form” of the
matrix elements U11(t) and U12(t). The frequency Ω is sometimes called
the “secular frequency”. The existence of the Floquet form is, of course,
guaranteed by the well known Floquet’s theorem. Hence, our algorithm not
only recovers the Floquet form but also allows the explicit computation of
the secular frequency and the Fourier coefficients in terms of convergent ε-
expansions.

2. For a discussion of some physical implications of the solution described in
the last theorem, see [2].
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3. The physically realistic condition that the Fourier decomposition of f con-
tains only a finite number of terms can be weakened. The only condition
we use is the fast decay for |m| → ∞ of the Fourier coefficients Qm of the
function q(t) (defined in (I.17)), as found in Proposition II.2.

4. The second equality in (I.20) is due to (I.9).

5. It is important to stress that conditions I and II are restrictions on the
function f and not on the parameter ε.

6. Possibly there are other conditions beyond I and II which could be consid-
ered, but they have not been explored so far. They are relevant in some
cases. Theorem I.2 still does not provide a complete solution of (I.5) for all
possible periodic functions f , but examples and some qualitative arguments
show that the remaining cases are rather exceptional. For instance, for the
monochromatic case where f(t) = ϕ1 cos(ωt) + ϕ2 sin(ωt) condition I covers
all pairs (ϕ1, ϕ2) ∈ R2, except the countable family of circles centered at the
origin with radius xaω/2, a = 1, 2, . . ., where xa if the a-th zero of J0 in R+

(J0 is the Bessel function of order zero). However, in these circles condition
II is nowhere fulfilled. See the discussion in Section VI.

7. From the computational point of view the solution given by our method
can be easily implemented in numerical programs and has been successfully
tested, providing ways to study our two-level system for large times with
controllable errors (due to the uniform convergence).

8. Unitarity of U(t) for all t ∈ R is a well known consequence of Dyson’s
expansion (see f.i. [18]).

9. Conditions I and II define, in principle, distinct solutions of the generalized
Riccati equation (I.7) and, hence, of the Schrödinger equation (I.5). To fix a
name we will call these solutions “classes” of solutions.

10. As we will discuss, condition I is mostly important for the case F0 = 0, while
condition II is mostly important for the case F0 �= 0. There are, however,
particular cases where condition I holds for F0 �= 0 and condition II for
F0 = 0, but examples indicate that such situations are rather exceptional.
See Section VI.1.

For the proof of Theorem I.2 we have to consider two distinct cases, the case
where F0 = 0 and the case where F0 �= 0. The former will be considered in Section
III and the later in Section IV.
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I.2 Some Definitions and Some Remarks on the Notation

Let us make some remarks on the notation we use here and recall the notation
used in [1]. Given the Fourier representation2

f(t) =
∑
m
˜
∈ZB

Fm
˜
eim˜

·ω
˜

f t (I.23)

of a quasi-periodic function f , we denote (as in [1]) by ω the vector of frequencies
defined by

ω :=



ω
˜
f ∈ RB , if F0

˜
= 0

(ω
˜
f , F0

˜
) ∈ R

B+1, if F0
˜
�= 0,

. (I.24)

Since we assume that ω
˜
f ∈ RB

+, the definition above says that all components of
ω are always non-zero. Moreover, we denote

A :=



B, if F0

˜
= 0

B + 1, if F0
˜
�= 0

. (I.25)

We will frequently use F0 ≡ F0
˜
.

We will denote vectors in ZB (or RB) by v
˜
and vectors in ZA (or RA) by

v. The symbol |n| denotes the l1(ZA) norm of a vector n = (n1, . . . , nA) ∈ Z
A:

|n| := |n1|+ · · ·+ |nA|.
We denote by �x� the largest integer lower or equal to x ∈ R and by �x� the

smallest integer larger or equal to x ∈ R

For m ∈ Z we denote by �m� the following function:

�m� :=
{ |m|, for m �= 0

1, for m = 0 . (I.26)

In the case where f is a quasi-periodic function as in (I.23) we will denote by
Qm the Fourier coefficients of the function q, defined in (I.17):

q(t) =
∑
m∈ZA

Qme
im·ωt, (I.27)

and by Q(2)
m the Fourier coefficients of the function q2:

q(t)2 =
∑
m∈ZA

Q(2)
m e

im·ωt. (I.28)

2For convenience we adopt here a different notation of that found in [1], where the Fourier

decomposition of f was written as f(t) =
X

m
˜
∈ZB

fm
˜

eim
˜
·ω
˜

f t.
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Finally, for an almost periodic function h we denote by M(h) its “mean
value”, defined as

M(h) := lim
T→∞

1
2T

∫ T

−T
h(t) dt.

See, e.g. [16, 17]. The mean value M(h) equals the constant term in the Fourier
expansion of h. One has, for instance, M(q2) = Q(2)

0 .

II Some Previous Results

In [1] some results could be proven about the nature of some particular solutions of
(I.7) for the case where f is a quasi-periodic function subjected to some additional
restrictions. These results are described in Theorem II.1.

Theorem II.1 Let f : R→ R be quasi-periodic with

f(t) =
∑
n
˜
∈ZB

Fn
˜
eiω˜

f ·n
˜
t,

and such that the sum above contains only a finite number of terms. Assume that
the vector ω (defined in (I.24)) satisfies Diophantine conditions, i.e., assume the
existence of constants ∆ > 0 and σ > 0 such that, for all n ∈ ZA, n �= 0,

|n · ω| ≥ ∆−1|n|−σ.

I. Assume that f satisfies the condition M(q2) �= 0. Then, there exists a formal
power series

g(t) = q(t)
∞∑
n=1

cn(t)εn, (II.1)

representing a particular solution of the generalized Riccati equation (I.7) such that
all coefficients cn can be chosen to be quasi-periodic and can be represented as

cn(t) =
∑
m∈ZA

C(n)
m eim·ωt, (II.2)

where, for the Fourier coefficients C(n)
m , we have

|C(n)
m | ≤ Kne−χ0|m|,

where χ0 > 0 is a constant and Kn ≥ 0.
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II. Assume that f satisfies the conditions

M(q2) = 0 and M(Q1) �= 0,

where Q1 is defined in (I.19). Then, there exists a formal power series

g(t) = q(t)
∞∑
n=1

en(t)ε2n, (II.3)

representing a particular solution of the generalized Riccati equation (I.7) such that
all coefficients en can be chosen to be quasi-periodic and can be represented as

en(t) =
∑
m∈ZA

E(n)
m eim·ωt, (II.4)

where, for the Fourier coefficients E(n)
m , we have

|E(n)
m | ≤ Lne−χ0|m|,

where χ0 > 0 is a constant and Ln ≥ 0.
There are other conditions beyond I and II which could be considered, but

they have not been explored so far. See the discussion in Section VI.
The statements of this last theorem are not sufficient for proving convergence

of the power series expansions in ε for g in the general case of quasi-periodic f .
Unfortunately, as discussed in [1], the behavior for large n of the constants Kn and
Ln is too bad to guarantee absolute convergence of the formal power series above.

For the restricted case were f is periodic we will in the present paper prove
stronger results (Theorem III.1 below) than that implied by Theorem II.1. As we
will see, these stronger results, in contrast, imply convergence of the ε-power series
for g (Theorem III.3 below).

Some of the more technical results of [1] have been obtained through the
analysis of the Fourier coefficients of the functions cn and en defined in Theorem
II.1 above. Specially important for us are the recursion relations found in [1] for the
Fourier coefficients C(n)

m and E(n)
m defined in (II.2) and (II.4), respectively. Those

recursion relations follow by imposing the generalized Riccati equation (I.7) to the
power expansions (II.1) and (II.3). In Appendix A we reproduce some of the main
ideas of [1] leading to a power series expansion for g free of secular terms and
leading to the recursion relations below.

It is important for our present purposes to reproduce those recursive relations
here, what we shall do now.

As in (I.27)–(I.28), we denote by Qm the Fourier coefficients of the function q
and by Q(2)

m the Fourier coefficients of the function q2. For the Fourier coefficients
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of the functions cn we have the following relations:

C(1)
m = α1Qm, (II.5)

C(2)
m =

∑
n∈ZA

n�=0

(
α2

1Q
(2)
n −Q(2)

−n
)

n · ω

[
Qm−n −

QmQ(2)
−n

Q(2)
0

]
, (II.6)

C(n)
m =

∑
n1, n2∈ZA

n1+n2 �=0

1
(n1 + n2) · ω

[
Qm−(n1+n2)

− QmQ(2)
−n1−n2

Q(2)
0

]
n−1∑
p=1

C(p)
n1

C(n−p)
n2

− Qm

2α1Q
(2)
0

∑
n∈ZA

n−1∑
p=2

C(p)
n C(n+1−p)

−n , for n ≥ 3. (II.7)

Above m ∈ ZA, α2
1 =

M(q2)
M(q2)

. For the Fourier coefficients of the functions en we

have the following relations.

E(1)
m =

∑
n∈ZA

n �=0

Qm+nQ
(2)
n

n · ω +
Qm

2iM(Q1)

∑
n1, n2∈ZA

n1 �=0, n2 �=0

Q(2)
n1+n2

Q(2)
n1

Q(2)
n2

(n1 · ω)(n2 · ω)
, (II.8)

E(n)
m =

∑
n1, n2∈ZA

n1+n2 �=0


Qm−n1−n2

+
Qm

iM(Q1)


Q(2)

−n1−n2
R+
∑

n∈ZA

n �=0

Q(2)
n−n1−n2

Q(2)
n

n · ω






×

n−1∑
p=1

E(p)
n1

E(n−p)
n2

(n1 + n2) · ω
+

Qm

2iM(Q1)

∑
n∈ZA

n−1∑
p=2

E(p)
n E(n+1−p)

−n , n ≥ 2. (II.9)

Above m ∈ ZA, Q1 is defined in (I.19) and

R :=
1

2iM(Q1)

∑
n1, n2∈ZA

n1 �=0, n2 �=0

Q(2)
n1+n2

Q(2)
n1

Q(2)
n2

(n1 · ω)(n2 · ω)
. (II.10)

The above expressions for the Fourier coefficients are somewhat complex but
two important features can be distinguished. The first is the inevitable presence
of “small denominators”, represented by the various factors of the form (n · ω)−1

(with n �= 0) appearing above. The second is the presence of convolution products
(a consequence, lately, of the quadratic character of the generalized Riccati equa-
tion). The presence of the later is the additional source of complications mentioned
before, for they also, together with the small denominators, contribute to spoil the
decay of the Fourier coefficients needed to prove convergence of the ε-expansions.
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II.1 The Fourier Coefficients Qm and Q(2)
m

For future purposes, it is important now to look more closely at the Fourier coef-
ficients Qm and Q(2)

m .
By assumption, the set {n

˜
∈ ZB, n

˜
�= 0

˜
| Fn
˜
�= 0

˜
} is a finite set and, by the

condition that f is real, it contains an even number of elements, say 2J with J ≥ 1.
Let us write this set as {n

˜
1, . . . , n

˜
2J} with the convention n

˜
a = −n

˜
2J−a+1 �= 0

˜
,

1 ≤ a ≤ J , and let us write f in the form

f(t) = F0 +
2J∑
a=1

fae
in
˜

a·ω
˜

f t, (II.11)

with fa ≡ Fn
˜

a
. Clearly fa = f2J−a+1, 1 ≤ a ≤ J , since f is real.

A simple computation [1] shows that

q(t) = eiγf

∞∑
p1, ..., p2J=0

exp

(
i

(
F0 + ω

˜
f ·

2J∑
b=1

pb n
˜
b

)
t

)
2J∏
a=1

[
1
pa!

(
fa

n
˜
a · ω

˜
f

)pa
]
,

(II.12)
with

γf := i
2J∑
a=1

fa
n
˜
a · ω

˜
f
. (II.13)

One sees that γf ∈ R. The function q2 is obtained by the replacement f → 2f :

q(t)2 = ei2γf

∞∑
p1, ..., p2J=0

exp

(
i

(
2F0 + ω

˜
f ·

2J∑
b=1

pb n
˜
b

)
t

)
2J∏
a=1

[
1
pa!

(
2fa
n
˜
a · ω

˜
f

)pa
]
.

From (II.12) we conclude that, if F0 is not of the form F0 = ω
˜
f ·k

˜
, for some vector

of integers k
˜
, one has

q(t) =
∑
m∈ZA

Qme
im·ωt

with ω defined in (I.24) and

Qm = eiγf

∞∑
p1, ..., p2J=0

δ (P , m)
2J∏
a=1

[
1
pa!

(
fa

n
˜
a · ω

˜
f

)pa
]
, (II.14)

where

P ≡ P (p1, . . . , p2J , n
˜

1, . . . , n
˜

2J) :=




2J∑
b=1

pbn
˜
b ∈ Z

B, if F0 = 0,

(
2J∑
b=1

pbn
˜
b, 1

)
∈ Z

B+1, if F0 �= 0.
(II.15)
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and where

δ (P , m) :=
{
1, if P = m,
0, else. (II.16)

For q2, and if F0 is not of the form 2F0 = ω
˜
f · k

˜
, for some vector of integers k

˜
, we

have
q2(t) =

∑
m∈ZA

Q(2)
m e

im·ωt,

where

Q(2)
m = ei2γf

∞∑
p1, ..., p2J=0

δ
(
P (2), m

) 2J∏
a=1

[
1
pa!

(
2fa
n
˜
a · ω

˜
f

)pa
]
, (II.17)

with

P (2) ≡ P (2)(p1, . . . , p2J , n
˜

1, . . . , n
˜

2J ) :=




2J∑
b=1

pbn
˜
b ∈ Z

B, if F0 = 0,

(
2J∑
b=1

pbn
˜
b, 2

)
∈ Z

B+1, if F0 �= 0.

Let us now study the condition M(q2) = Q(2)
0 = 0 for F0 �= 0, F0 not of the

form 2F0 = ω
˜
f · k

˜
, for some vector of integers k

˜
. We have from (II.17)

M(q2) = ei2γf

∞∑
p1, ..., p2J=0

δ
(
P (2), 0

) 2J∏
a=1

[
1
pa!

(
2fa
n
˜
a · ω

˜
f

)pa
]
. (II.18)

Since the last component of P (2) equals 2 for F0 �= 0, we always have δ(P (2), 0) = 0
in the sum above and, hence, M(q2) = 0. This means that, for F0 �= 0 condition
I never happens, except perhaps for the case where 2F0 = ω

˜
f · k

˜
, k
˜
∈ ZB , much

in contrast to the case F0 = 0, where condition I holds almost everywhere in the
space of the functions f (see Section VI.1).

From (II.14) and (II.17) it is clear that for F0 �= 0, and 2F0 �= ω
˜
f · k

˜
, with

k
˜
∈ Z

B , one has, writing m = (m
˜
, mA),

Qm = Qm
˜
δmA, 1 and Q(2)

m = Q(2)
m
˜
δmA, 2, (II.19)

where δ is the usual Krönecker delta and where

Qm
˜
:= eiγf

∞∑
p1, ..., p2J=0

δ (P
˜
, m
˜
)

2J∏
a=1

[
1
pa!

(
fa

n
˜
a · ω

˜
f

)pa
]
, (II.20)

and

Q(2)
m
˜
:= e2iγf

∞∑
p1, ..., p2J=0

δ (P
˜
, m
˜
)

2J∏
a=1

[
1
pa!

(
2fa
n
˜
a · ω

˜
f

)pa
]
, (II.21)
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with

P
˜
:=

2J∑
b=1

pbn
˜
b ∈ Z

B. (II.22)

The observation taken from (II.19) that Qm and Q(2)
m are zero except if

mA = 1, respectively, if mA = 2, will be of crucial importance for the analysis of
the case F0 �= 0, given in Section IV. This is because these restrictions propagate
in a specific way to the Fourier coefficients E(n)

m .
Below we will make use of the following proposition on the decay of the

coefficients Qm and Q(2)
m :

Proposition II.2 Let f : R → R be periodic and be represented by a finite Fourier
series as in (I.18). Then, for any χ > 0 there is a positive constant Q ≡ Q(χ)
such that

|Qm| ≤ Q e
−χ|m|

�m�2
and |Q(2)

m | ≤ Q
e−χ|m|

�m�2
(II.23)

for all m ∈ Z, where the symbol �m� is defined in (I.26).

The proof is found in Appendix B. Finally, we mention the following impor-
tant lemma, whose proof is given in Appendix C.

Lemma II.3 For χ > 0 and m ∈ Z define

B(m) ≡ B(m, χ) :=
∑
n∈Z

e−χ(|m−n|+|n|)

�m− n�2 �n�2
. (II.24)

Then one has

B(m) ≤ B0
e−χ|m|

�m�2
, (II.25)

for some constant B0 ≡ B0(χ) > 0 and for all m ∈ Z.

We are ready now to start the analysis of the recursion relations (II.5)–(II.7)
and (II.8)–(II.9) for the periodic case. As already mentioned, we have to consider
two separated cases: the case where F0 = 0, we will deal with now, and the case
F0 �= 0, which will be treated in Section IV.

III The Periodic Case With F0 = 0

In [1] the recursion relations (II.5)–(II.7) and (II.8)–(II.9) have been used to prove
inductively exponential bounds for the Fourier coefficients. As mentioned before
two main difficulties have to be faced in this enterprise: the presence of “small
denominators” and of convolution products in the recursion relations. Both are re-
sponsible for reducing the rate of decay of the Fourier coefficients at each induction
step.
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Let us consider the origin of the “small denominators problem” in our expan-
sions. It comes from the many factors of the form (n ·ω)−1 (with n �= 0) appearing
in the recursion relations. In the case where f is a periodic function with frequency
ω with F0 �= 0, we have A = 2, n = (n1, n2) ∈ Z2 and n ·ω = n1ω+n2F0. On the
other hand, in the case where f is a periodic function with frequency ω and with
F0 = 0, we have A = 1, n = n ∈ Z and n · ω = nω. To avoid the quasi-resonant
situation where n1ω + n2F0 is small we will first consider the case where F0 = 0.

III.1 The Recursive Relations in the Periodic Case for F0 = 0

Under the hypothesis, the recursive relations for the Fourier coefficients of the
functions cn become

C(1)
m = α1Qm, (III.1)

C(2)
m =

∑
n1∈Z

n1 �=0

(
α2

1Q
(2)
n1 −Q(2)

−n1

)
n1ω

[
Qm−n1 −

QmQ
(2)
−n1

Q
(2)
0

]
, (III.2)

C(n)
m =

∑
n1, n2∈Z

n1+n2 �=0

1
(n1 + n2) · ω

[
Qm−(n1+n2) −

QmQ
(2)
−n1−n2

Q
(2)
0

]
n−1∑
p=1

C(p)
n1
C(n−p)
n2

− Qm

2α1Q
(2)
0

∑
n1∈Z

n−1∑
p=2

C(p)
n1
C

(n+1−p)
−n1

, for n ≥ 3. (III.3)

Above m ∈ Z and α2
1 =
Q

(2)
0

Q
(2)
0

.

For the Fourier coefficients of the functions en we have:

E(1)
m =

∑
n1∈Z

n1 �=0

Qm+n1Q
(2)
n1

n1ω
+

Qm
2iM(Q1)

∑
n1, n2∈Z

n1 �=0, n2 �=0

Q
(2)
n1+n2

Q
(2)
n1 Q

(2)
n2

(n1ω)(n2ω)
(III.4)

E(n)
m =

∑
n1, n2∈Z

n1+n2 �=0


Qm−n1−n2 +

Qm
iM(Q1)


Q(2)

−n1−n2
R+
∑
n3∈Z

n3 �=0

Q
(2)
n3−n1−n2

Q
(2)
n3

n3ω






×

n−1∑
p=1

E(p)
n1
E(n−p)
n2

(n1 + n2)ω
+

Qm
2iM(Q1)

n−1∑
p=2

∑
n1∈Z

E(p)
n1
E

(n+1−p)
−n1

, n ≥ 2. (III.5)

It is clear here that no “small denominators” appear in this case, since now
|(n·ω)−1| ≤ ω−1 for n �= 0. Hence, the convolution products are the only remaining
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factors eventually forcing the reduction of the decay rate of the Fourier coefficients
at the successive induction steps.

In the Section III.2 we will show how the effect of the convolution products
can be taken under control. The result is expressed in the following three theorems.

Theorem III.1 Let f : R → R be periodic with a finite Fourier decomposition as
in (I.18) and with F0 = 0.

Case I. Consider the Fourier coefficients C(n)
m satisfying the recursion rela-

tions (III.1), (III.2) and (III.3). Under the hypothesis that M(q2) �= 0 we have

|C(n)
m | ≤ Kn

e−χ|m|

�m�2
(III.6)

for all n ∈ N, and all m ∈ Z, where χ > 0 is a constant and �m� is defined in
(I.26). Above, the coefficients Kn do not depend on m and satisfy the recursion
relation

Kn = C2
[(

n−1∑
p=1

KpKn−p

)
+

(
n−1∑
p=2

KpKn+1−p

)]
, (III.7)

with K1 = K2 = C1, where C1 and C2 are positive constants which can be chosen
larger than or equal to 1.

Case II. Consider the Fourier coefficients E(n)
m satisfying the recursion rela-

tions (III.4) and (III.5). Under the hypothesis that M(q2) = 0 and M(Q1) �= 0 we
have

|E(n)
m | ≤ K ′

n

e−χ|m|

�m�2
(III.8)

for all n ∈ N, and all m ∈ Z, where χ > 0 is a constant. Above, the coefficients
K ′
n do not depend on m and satisfy the recursion relation

K ′
n = E2

[(
n−1∑
p=1

K ′
pK

′
n−p

)
+

(
n−1∑
p=2

K ′
pK

′
n+1−p

)]
, (III.9)

with K ′
1 = K

′
2 = E1, where E1 and E2 are positive constants which can be chosen

larger than or equal to 1.

Theorem III.1 will be proven in Section III.2. The importance of the recursive
definition of the constantsKn given in (III.7) or (III.9) is expressed in the following
crucial theorem, which says that the constants Kn grow at most exponentially
with n.

Theorem III.2 Let the constants Kn be defined through the recurrence relations
(III.7) or (III.9). Then there exist constants K > 0 and K0 > 0 (depending
eventually on f) such that Kn ≤ K0K

n for all n ∈ N.
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The proof of Theorem III.2 is found in Appendix D and makes interesting use
of properties of the Catalan sequence. Theorems III.1 and III.2 have the following
immediate corollary:

Theorem III.3 The power series expansions in (II.1) and (II.3) are absolutely con-
vergent for all ε ∈ C with |ε| < K−1 for all t ∈ R and, hence, (II.1) and (II.3)
define particular solutions of the generalized Riccati equation (I.7) in cases I and
II, respectively, of Theorem III.1. The function g can be expressed in terms of
an absolutely and uniformly converging Fourier series whose coefficients can be
expressed in terms of absolutely converging power series in ε for all ε ∈ C with
|ε| < K−1.

Proof of Theorem III.3. We prove the statement for case I. Case II is analogous.
The first step is to determine the Fourier expansion of the function g, as given in
(I.16), and to study some of their properties. One clearly has

g(t) =
∑
m∈Z

Gme
imωt, (III.10)

with

Gm ≡ Gm(ε) =
∞∑
n=1

εnG(n)
m , (III.11)

where
G(n)
m :=

∑
l∈Z

Qm−lC
(n)
l . (III.12)

We have the following proposition:

Proposition III.4 For all χ > 0 there exists a constant Cg ≡ Cg(χ) > 0 such that

|G(n)
m | ≤ CgKn

e−χ|m|

�m�2
(III.13)

for all m ∈ Z and all n ∈ N. Consequently, for |ε| < K one has

|Gm| ≤ C′g
e−χ|m|

�m�2
(III.14)

for some constant C′g(χ, ε) > 0 and for all m ∈ Z.

Proof of Proposition III.4. Inserting (II.23) and (III.6) into (III.12) we have, for
any χ > 0, ∣∣∣G(n)

m

∣∣∣ ≤ QKn B(m, χ), (III.15)

where B(m, χ) is defined in (II.24). Relation (III.13) follows now from Lemma
II.3. �

From this, the proof of Theorem III.3 follows immediately. �
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The solutions for the generalized Riccati equation (I.7) mentioned in Theorem
III.3 are, through (I.9), the main ingredient for the solution of the Schrödinger
equation (I.5). This will be further discussed in Section V. Now we have to prove
Theorem III.1.

III.2 Inductive Bounds for the Fourier Coefficients

In this section we will prove Theorem III.1 in cases I and II. We will make use
of Proposition II.2 on the decay of the Fourier coefficients Qm and Q(2)

m of the
functions q and q2, respectively.

III.2.1 Case I

In this section we will prove Theorem III.1 in case I. Making use of Proposition
II.2 and of relations (III.1)–(III.3) we easily derive the following estimates:

|C(1)
m |≤Q

e−χ|m|

�m�2
, (III.16)

|C(2)
m |≤

2Q
ω

∑
n1∈Z

e−χ|n1|

�n1�2

[
e−χ|m−n1|

�m− n1�2
+
Q
|Q(2)

0 |
e−χ(|m|+|n1|)

�m�2 �n1�2

]
, (III.17)

|C(n)
m |≤

Q
ω

∑
n1, n2∈Z

(
n−1∑
p=1

|C(p)
n1
| |C(n−p)

n2
|
)
×

×
[
e−χ|m−(n1+n2)|

�m− (n1 + n2)�2
+
Q
|Q(2)

0 |
e−χ(|m|+|n1+n2|)

�m�2 �n1 + n2�2

]

+
Q

2|Q(2)
0 |
e−χ|m|

�m�2

∑
n1∈Z

n−1∑
p=2

|C(p)
n1
| |C(n+1−p)

−n1
|, for n ≥ 3. (III.18)

It follows from (III.17), from the definition of B(m) in (II.24) and from Lemma
II.3 that

|C(2)
m | ≤ 2ω−1Q

(
B(m) + Q

|Q(2)
0 |
e−χ|m|

�m�2

∑
n1∈Z

e−2χ|n1|

�n1�4

)
≤ K2

e−χ|m|

�m�2
(III.19)

for some convenient choice of the constant K2.
Now, we will use an induction argument to establish (III.6) for all n ≥ 3. Let

us assume that, for a given n ∈ N, n ≥ 3, one has

|C(p)
m | ≤ Kp

e−χ|m|

�m�2
, ∀m ∈ Z, (III.20)

for all p such that 1 ≤ p ≤ n − 1, for some convenient constants Kp. We will
establish that this implies the same sort of bound for p = n. Note, by taking
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K1 ≥ Q, that relation (III.16) guarantees (III.20) for p = 1 and that relation
(III.19) guarantees the case p = 2.

From (III.18) and from the induction hypothesis,

|C(n)
m | ≤ ω−1Q

(
n−1∑
p=1

KpKn−p

)[ ∑
n1, n2∈Z

e−χ(|m−(n1+n2)|+|n1|+|n2|)

�m− (n1 + n2)�2 �n1�2 �n2�2

+
Q
|Q(2)

0 |
e−χ|m|

�m�2

∑
n1, n2∈Z

e−χ(|n1+n2|+|n1|+|n2|)

�n1 + n2�2 �n1�2 �n2�2

]

+
Q

2|Q(2)
0 |
e−χ|m|

�m�2

(
n−1∑
p=2

KpKn+1−p

) ∑
n1∈Z

e−2χ|n1|

�n1�4
. (III.21)

Now, ∑
n1, n2∈Z

e−χ(|n1+n2|+|n1|+|n2|)

�n1 + n2�2 �n1�2 �n2�2

and ∑
n1∈Z

e−2χ|n1|

�n1�4

are just finite constants and

∑
n1, n2∈Z

e−χ(|m−(n1+n2)|+|n1|+|n2|)

�m− (n1 + n2)�2 �n1�2 �n2�2
=
∑
n1∈Z

e−χ|n1|

�n1�2
B(m− n1)

≤ B0

∑
n1∈Z

e−χ(|n1|+|m−n1|)

�n1�2 �m− n1�2

= B0B(m)

≤ (B0)2
e−χ|m|

�m�2
, (III.22)

where we again used Lemma II.3. Therefore, we conclude

|C(n)
m | ≤

[
Ca
(
n−1∑
p=1

KpKn−p

)
+ Cb
(
n−1∑
p=2

KpKn+1−p

)]
e−χ|m|

�m�2
, (III.23)

for two positive constants Ca and Cb. Taking C2 := max{Ca, Cb, 1} relation (III.7)
is proven with C2 ≥ 1.

Note that, without loss, we are allowed to choose K1 = K2 ≥ 1 by choosing
both equal to max{K1, K2, 1}. �
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III.2.2 Case II

In this section we will prove Theorem III.1 in case II. From (III.4)–(III.5), from
Proposition II.2 and from the assumption (III.8) we have

∣∣∣E(1)
m

∣∣∣ ≤ Q2

ω

∑
n1∈Z

e−χ(|m+n1|+|n1|)

�m+ n1�2�n1�2

+
Q4e−χ|m|

2�m�2 ω2|M(Q1)|
∑

n1, n2∈Z

e−χ(|n1+n2|+|n1|+|n2|)

�n1 + n2�2�n1�2�n2�2
,

∣∣∣E(n)
m

∣∣∣ ≤ 1
ω

∑
n1, n2∈Z

[
Q e−χ(|m−n1−n2|+|n1|+|n2|)

�m− n1 − n2�2�n1�2�n2�2

+
Q2e−χ|m|

|M(Q1)| �m�2

(
e−χ(|n1+n2|+|n1|+|n2|)|R|

�n1 + n2�2�n1�2�n2�2

+
Q
ω

∑
n3∈Z

e−χ(|n1+n2+n3|+|n1|+|n2|+|n3|)

�n1 + n2 + n3�2�n1�2�n2�2�n3�2

)]
n−1∑
p=1

K ′
pK

′
n−p

+
Qe−χ|m|

2|M(Q1)| �m�2

(∑
n1∈Z

e−2χ|n1|

�n1�4

) (
n−1∑
p=2

K ′
pK

′
n+1−p

)
, n ≥ 2.

Since sums like ∑
n1, n2∈Z

e−χ(|n1+n2|+|n1|+|n2|)

�n1 + n2�2�n1�2�n2�2

and ∑
n1, n2, n3∈Z

e−χ(|n1+n2+n3|+|n1|+|n2|+|n3|)

�n1 + n2 + n3�2�n1�2�n2�2�n3�2

are just finite constants, and by applying Lemma II.3 we get

|E(1)
m | ≤ Ea e

−χ|m|

�m�2
,

|E(n)
m | ≤

e−χ|m|

�m�2

[
Eb
(
n−1∑
p=1

K ′
pK

′
n−p

)
+ Ec
(
n−1∑
p=2

K ′
pK

′
n+1−p

)]
, n ≥ 2,

where Ea, Eb and Ec are constants. The rest of the proof follows the same steps of
the proof of Theorem III.1 in case I. �

IV The Periodic Case With F0 �= 0

Now we will consider the case where f is periodic with F0 �= 0, for which we have
A = 2. The denominators n · ω are of the form n1ω + n2F0, with n1, n2 ∈ Z,
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and one has to fear the presence of small denominators in the recursion relations
if both n1 and n2 can be arbitrarily large. Due to (II.19), we will see, however,
that the range of values of n2 is limited one single value. Hence, no small divisors
appear and we are back to a situation analogous to the case F0 = 0.

IV.1 The Structure of the Coefficients E(n)
m

Let us now return to the periodic case with B = 1, F0 �= 0 and 2F0 �= kω for any
k ∈ Z. Recalling relations (II.19) let us first prove the following theorem:

Theorem IV.1 For periodic f with a finite Fourier decomposition as above and
with F0 �= 0 and 2F0 �= kω, k ∈ Z, the Fourier coefficients E(n)

m , n ≥ 1, are given
by

E(n)
m = E(n)

m1
δm2, −1, (IV.1)

for all m = (m1, m2) ∈ Z2, where, for m ∈ Z,

E(1)
m :=

∑
a1∈Z

Qm+a1Q
(2)
a1

a1ω + 2F0
, (IV.2)

and

E(n)
m :=

n−1∑
p=1

∑
a1, b1∈Z

Qm−a1−b1 E
(p)
a1 E

(n−p)
b1

(a1 + b1)ω − 2F0
, n ≥ 2. (IV.3)

Proof. Let us first consider the case n = 1. The other cases will follow by induction.
From (II.8), using (II.19) and writing a = (a1, a2), b = (b1, b2) and c = (c1, c2) ∈
Z2, we get

E(1)
m =

∑
a∈Z2
a�=0

Qm1+a1Q
(2)
a1

a · ω (δm2+a2, 1 δa2, 2)

+
Qm1δm2, 1

2iM(Q1)

∑
b, c∈Z2

b�=0, c �=0

Q
(2)
b1+c1

Q
(2)
b1
Q

(2)
c1

(b · ω)(c · ω) (δb2+c2, 2 δb2, 2 δc2, 2)

=


∑
a1∈Z

Qm1+a1Q
(2)
a1

a1ω + 2F0


 δm2, −1, (IV.4)

since δb2+c2, 2 δb2, 2 δc2, 2 = δ4, 2 δb2, 2 δc2, 2 = 0. This proves Theorem IV.1 for
n = 1.
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For any n ≥ 2 relation (II.9) is very much simplified with the observation
that, for F0 as above, one has R = 0. To see this, write R according to the
definition (II.10) and use (II.19) to get

R =
1

2iM(Q1)

∑
a, b∈ZA

a �=0, b�=0

Q
(2)
a1+b1

Q
(2)
a1 Q

(2)
b1

(a · ω)(b · ω) (δa2+b2, 2 δa2, 2 δb2, 2) = 0, (IV.5)

since δa2+b2, 2 δa2, 2 δb2, 2 = δ4, 2 δa2, 2 δb2, 2 = 0.
The proof is now done by induction. Let n ≥ 2 and assume that for all p with

1 ≤ p ≤ n− 1 one has
E(p)
m = E(p)

m1
δm2, −1 (IV.6)

for all m = (m1, m2) ∈ Z2. According to (II.9) we have

E(n)
m =

n−1∑
p=1

(
A(n, p)
m +

Qm

iM(Q1)
B(n, p)

)
+

Qm

2iM(Q1)

n−1∑
p=2

C(n, p), (IV.7)

where

A(n, p)
m :=

∑
a, b∈Z2
a+b�=0

Qm−a−b
E(p)
a E(n−p)

b

(a+ b) · ω , (IV.8)

B(n, p) :=
∑
a∈Z2
a�=0

∑
b, c∈Z2
b+c�=0

Q(2)
a−b−cQ

(2)
a E(p)

b E(n−p)
c

(a · ω)((b + c) · ω) , (IV.9)

and

C(n, p) :=
∑
a∈Z2

E(p)
a E(n+1−p)

−a . (IV.10)

By (II.19) and by the induction hypothesis,

A(n, p)
m =

∑
a, b∈Z2
a+b�=0

Qm1−a1−b1
E

(p)
a1 E

(n−p)
b1

[δm2−a2−b2, 1 δa2, −1 δb2, −1]
(a1 + b1)ω + (a2 + b2)F0

=


 ∑
a1, b1∈Z

Qm1−a1−b1 E
(p)
a1 E

(n−p)
b1

(a1 + b1)ω − 2F0


 δm2, −1. (IV.11)
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Moreover,

B(n, p) =
∑
a∈Z2
a�=0

∑
b, c∈Z2
b+c �=0

Q
(2)
a1−b1−c1Q

(2)
a1 E

(p)
b1
E

(n−p)
c1 [δa2−b2−c2, 2 δa2, 2 δb2, −1 δc2, −1]

(a1ω + a2F0)((b1 + c1)ω + (b2 + c2)F0)

equals to zero, since δa2−b2−c2, 2 δa2, 2 δb2, −1 δc2, −1 = δ4, 2 δa2, 2 δb2, −1 δc2, −1 = 0.
Finally,

C(n, p) =
∑
a∈Z2

E(p)
a1
E

(n+1−p)
−a1

(δa2, −1 δ−a2, −1) = 0. (IV.12)

Hence, for n ≥ 2,

E(n)
m =

n−1∑
p=1

A(n, p)
m =


n−1∑
p=1

∑
a1, b1∈Z

Qm1−a1−b1 E
(p)
a1 E

(n−p)
b1

(a1 + b1)ω − 2F0


 δm2, −1, (IV.13)

completing the proof of Theorem IV.1. �

IV.2 Inductive Upper Bounds and Convergence

Theorem IV.1 is of crucial importance, since it shows that actually no problems
with small denominators are present in the recursion relations defining the Fourier
coefficients E(n)

m . This allows to find upper bounds for the absolute values of the
coefficients E(n)

m in essentially the same way as performed in for the case F0 = 0.
This is what we do now.

As we already mentioned, the coefficients Qm and Q
(2)
m can be bounded as in

Proposition II.2. Moreover, we have

|a1ω + 2F0| ≥ min
a∈Z

| |a|ω − 2|F0| | =: η > 0. (IV.14)

Note that η = 2|F0| for |F0| ≤ ω/2 and, hence, η → 0 when F0 → 0. This remark
will be relevant in Section VI.3. Using Proposition II.2 and Lemma II.3,

∣∣∣E(1)
m

∣∣∣ =

∣∣∣∣∣∣
∑
a1∈Z

Qm1+a1Q
(2)
a1

a1ω + 2F0

∣∣∣∣∣∣ δm2, −1

≤ Q2

η
B(m1) δm2, −1 ≤

(Q2B0

η

)
e−χ|m1|

�m1�2
δm2, −1, (IV.15)

where B(m) is defined in (II.24). Defining K ′′
1 := Q2B0/η, taking n ≥ 2 and

assuming the induction hypothesis

∣∣∣E(p)
m

∣∣∣ ≤ K ′′
p

e−χ|m1|

�m1�2
δm2, −1, (IV.16)
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for all p with 1 ≤ p ≤ n− 1, where K ′′
p are constants independent of m, we have

from (IV.13),

∣∣∣E(n)
m

∣∣∣ ≤ 1
η


n−1∑
p=1

∑
a1, b1∈Z

|Qm1−a1−b1 |
∣∣∣E(p)

a1

∣∣∣ ∣∣∣E(n−p)
b1

∣∣∣

 δm2, −1

≤ Q
η


 ∑
a1, b1∈Z

e−χ(|m1−a1−b1|+|a1|+|b1|)

�m1 − a1 − b1�2�a1�2�b1�2


 n−1∑
p=1

K ′′
pK

′′
n−p δm2, −1

≤ QB2
0

η

(
n−1∑
p=1

K ′′
pK

′′
n−p

)
e−χ|m1|

�m1�2
δm2, −1, (IV.17)

where, above, we used Lemma II.3. Defining inductively

K ′′
n :=

QB2
0

η

(
n−1∑
p=1

K ′′
pK

′′
n−p

)
(IV.18)

we have proven that ∣∣∣E(n)
m

∣∣∣ ≤ K ′′
n

e−χ|m1|

�m1�2
δm2, −1, (IV.19)

for all n ∈ N and all m = (m1, m2) ∈ Z2. With the same methods employed
Appendix D, we can show that K ′′

n ≤ K ′′
0 (K

′′)n for all n ∈ N, where K ′′
0 and K

′′

are positive constants.
From all this, it follows that, for all n,

|en(t)| ≤ K ′′
0 (K

′′)n
∑
m1∈Z

e−χ|m1|

�m1�2
= K ′′′

0 (K
′′)n (IV.20)

where K ′′′
0 is a constant and

|g(t)| ≤ K ′′′
0

∞∑
n=1

|ε2|n(K ′′)n. (IV.21)

We have thus established that the Fourier series of the functions en converge
absolutely and uniformly and that, for |ε|2 < (K ′′)−1, the power series (II.3),
which defines the solution g, is absolutely convergent. The Fourier expansion for
g is also absolutely and uniformly convergent.

We conclude from the lines above that the true radius of convergence Rε
of the ε-expansion of g is bounded from below by (K ′′)−1/2. Note that K ′′ is
proportional to η−1 and, hence, (K ′′)−1/2 shrinks to zero when F0 → 0 (see the
definition of η in equation (IV.14)). As we will remark in Section VI.3, there are
indications that Rε also shrinks o zero when F0 → 0.
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Let us finish this section with a closer look at the Fourier expansion of g.
Theorem IV.1 says that the functions en have the following Fourier decomposition:

en(t) = e−iF0t
∑
m∈Z

E(n)
m e

imωt, (IV.22)

while for q(t) we have
q(t) = eiF0t

∑
m∈Z

Qme
imωt. (IV.23)

Thus,
g(t) =

∑
m∈Z

Gme
imωt (IV.24)

where

Gm ≡ Gm(ε) =
∞∑
n=1

λnG(n)
m (IV.25)

with λ = ε2 and
G(n)
m =

∑
l∈Z

Qm−lE
(n)
l . (IV.26)

Note by (IV.24) that F0 is present in g only in the Fourier coefficients Gm and not
in the frequencies.

For the coefficients G(n)
m we have the following expressions, which will need

when we discuss the ε-expansion of Ω in Section VI.3:

G(1)
m =

∑
a1∈Z

Q
(2)
m+a1

Q
(2)
a1

a1ω + 2F0
(IV.27)

and

G(n)
m =

n−1∑
p=1

∑
a1, b1∈Z

Q
(2)
m−a1−b1 E

(p)
a1 E

(n−p)
b1

(a1 + b1)ω − 2F0
, n ≥ 2. (IV.28)

V The Fourier Expansion for the Wave Function

Now we return to the discussion of the solution (I.9) of the Schrödinger equation
(I.5). Our intention is to find the Fourier expansion of the wave function Φ(t).

V.1 The Floquet Form of the Wave Function. The Fourier Decomposition
and the Secular Frequency

As explained in [1] and in Section I, the components φ± of the wave function
Φ(t) are solutions of Hill’s equation (I.13). For periodic f the classical theorem
of Floquet (see e.g. [21] and [22]) claims that there are particular solutions of
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equations like (I.13) with the general form eiΩtu(t), where u(t) is periodic with
the same period of f . In order to preserve unitarity we must have Ω ∈ R. This
form of the particular solutions is called the “Floquet form” and the frequencies
Ω are called “secular frequencies”.

In this section we will recover the Floquet form of the wave function in terms
of Fourier expansions and we will find out expansions for the secular frequencies
as converging power series expansions in ε.

According to the solution expressed in relation (I.8) and (I.9), we have first
to find out the Fourier expansion for the functions R and S defined in (I.10) and
(I.11), respectively.

We start with the function R. The Fourier expansion of the function f + g is

f(t) + g(t) = Ω +
∑
n∈Z

n �=0

(Fn +Gn(ε)) einωt, (V.1)

where
Ω ≡ Ω(ε) := F0 +G0(ε). (V.2)

One has,

R(t) = e−iγf (ε) e−iΩt exp

(
−
∑
n∈Z

Hne
inωt

)
(V.3)

with

Hn ≡ Hn(ε) :=



Fn +Gn(ε)
nω

, for n �= 0

0, for n = 0

, (V.4)

and
γf (ε) := i

∑
m∈Z

Hm. (V.5)

Note that γf (0) = γf , where γf is defined in (B.4).
Since we are assuming that there are only finitely many non-vanishing coeffi-

cients Fn, we have the following proposition as an obvious corollary of Proposition
III.4:

Proposition V.1 For all χ > 0 and |ε| small enough, there exists a constant CH ≡
CH(χ, ε) > 0 such that

|Hm| ≤ CH e
−χ|m|

�m�2
(V.6)

for all m ∈ Z.

Writing now the Fourier expansion of R(t) in the form

R(t) = e−iΩt
∑
n∈Z

Rne
inωt (V.7)
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we find from (V.3)

R0 = e−iγf (ε)


1 + ∞∑

p=1

(−1)p+1

(p+ 1)!

∑
n1,..., np∈Z

Hn1 · · ·HnpH−Np


 , (V.8)

Rn = e−iγf (ε)


−Hn + ∞∑

p=1

(−1)p+1

(p+ 1)!

∑
n1,..., np∈Z

Hn1 · · ·HnpHn−Np


 ,(V.9)

for n �= 0, with

Np :=
p∑

a=1

na, (V.10)

for p ≥ 1.
In order to compute the Fourier expansion of S we have to compute first

the Fourier expansion of R−2. This is now an easy task, since the replacement
R(t) → R(t)−2 corresponds to the replacement (f + g) → −2(f + g) and, hence,
to Hn → −2Hn. We get

R(t)−2 = e2iΩt
∑
n∈Z

R(−2)
n einωt, (V.11)

with

R
(−2)
0 = e2iγf (ε)


1 + ∞∑

p=1

2p+1

(p+ 1)!

∑
n1,..., np∈Z

Hn1 · · ·HnpH−Np


 ,

R(−2)
n = e2iγf (ε)


2Hn + ∞∑

p=1

2p+1

(p+ 1)!

∑
n1,..., np∈Z

Hn1 · · ·HnpHn−Np


 ,

for n �= 0.
The following proposition will be used below.

Proposition V.2 For all χ > 0 and |ε| small enough, there exist constants CR ≡
CR(χ, ε) > 0 and CR(−2) ≡ CR(−2)(χ, ε) > 0 such that

|Rm| ≤ CR e
−χ|m|

�m�2
(V.12)

|R(−2)
m | ≤ CR(−2)

e−χ|m|

�m�2
(V.13)

for all m ∈ Z.
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Proof of Proposition V.2. Using Proposition V.1 we have, for any p ≥ 1,∣∣∣∣∣∣
∑

n1,..., np∈Z

Hn1 · · ·Hnp Hn−Np

∣∣∣∣∣∣ ≤
(CH)p+1

∑
n1,..., np∈Z

exp (−χ(|n1|+ · · ·+ |np|+ |n− n1 − · · · − np|))
(�n1� · · · �np��n− n1 − · · · − np�)2

.

Making repeated use of Lemma II.3, we get∣∣∣∣∣∣
∑

n1,..., np∈Z

Hn1 · · ·Hnp Hn−Np

∣∣∣∣∣∣ ≤
(CHB0)p+1

B0

e−χ|n|

�n�2
. (V.14)

Inserting this into (V.8)–(V.9) gives (since B0 > 1)

|Rn| ≤
(
e|Im(γf (ε))|+CHB0

B0

)
e−χ|n|

�n�2
(V.15)

for all n ∈ Z, as desired. The proof for R(−2)
n is analogous. �

Assuming for a while

nω + 2Ω �= 0 for all n ∈ Z, (V.16)

we have3

S(t) = σ0 + e2iΩt
∑
n∈Z

Sne
inωt (V.17)

with

Sn := −i R
(−2)
n

nω + 2Ω
and σ0 := −

∑
n∈Z

Sn. (V.18)

Assumption (V.16 ) is actually a consequence of unitarity, as will be discussed in
Section V.2.

The following proposition is an elementary corollary of Proposition V.2:

Proposition V.3 For all χ > 0 and |ε| small enough, there exists a constant CS ≡
CS(χ, ε) > 0 such that

|Sm| ≤ CS e
−χ|m|

�m�2
(V.19)

for all m ∈ Z.

3For the case n = 0, (V.16) says that Ω �= 0. This must hold except for ε = 0 when Ω = 0.
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Writing

U(t) =


 U11(t) U12(t)

U21(t) U22(t)


 =


 U11(t) U12(t)

−U12(t) U11(t)


 , (V.20)

we have for U11 and U12:

U11(t) = e−iΩt u−11(t) + e
iΩt u+11(t) (V.21)

U12(t) = e−iΩt u−12(t) + e
iΩt u+12(t) (V.22)

with

u−11(t) := (1 + ig(0)σ0) r(t), u+11(t) := ig(0) v(t),

u−12(t) := −iεσ0 r(t), u+12(t) := −iε v(t),
(V.23)

for
r(t) :=

∑
n∈Z

Rn e
inωt and v(t) :=

∑
n∈Z

Vn e
inωt, (V.24)

with
Vn :=

∑
m∈Z

Sn−mRm. (V.25)

This provides the desired Floquet form for the components of the wave func-
tion Φ(t). We note from the expressions above that the secular frequencies are ±Ω.
For Ω we have the ε-expansion

Ω =
∞∑
n=1

εnG
(n)
0 , (V.26)

for F0 = 0 or

Ω = F0 +
∞∑
n=1

ε2nG
(n)
0 , (V.27)

for F0 �= 0, where the coefficients G(n)
0 are given by (III.12) or (IV.26), according

to the case. Analogously, we have for g(0)

g(0) =
∑
m∈Z

Gm =
∞∑
n=1

εn
∑
m∈Z

G(n)
m , (V.28)

for F0 = 0 or

g(0) =
∑
m∈Z

Gm =
∞∑
n=1

ε2n
∑
m∈Z

G(n)
m , (V.29)

for F0 �= 0. All these series converge absolutely for |ε| small enough.
As before, we have the following corollary of Propositions V.2, V.3 and

Lemma II.3:
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Proposition V.4 For all χ > 0 and |ε| small enough, there exists a constant CV ≡
CV (χ, ε) > 0 such that

|Vm| ≤ CV e
−χ|m|

�m�2
(V.30)

for all m ∈ Z.

This last proposition closed the proof of Theorem I.2.

V.2 Remarks on the Unitarity of the Propagator. Crossings

The unitarity of the propagator U(t) means U(t)∗U(t) = 1l. After (V.20), this
means

|U11(t)|2 + |U12(t)|2 = 1. (V.31)

Looking at relations (V.21) and (V.22) two conclusions can be drawn from
(V.31). The first is the following proposition:

Proposition V.5 For ε ∈ R and under the hypothesis leading to (V.21) and (V.22)
one has Ω ∈ R.

The proof follows from the obvious observation that (V.31) would be violated
for |t| large enough if Ω had a non-vanishing imaginary part. Unfortunately a proof
of this fact using directly the ε-expansions of Ω, (V.26) or (V.27), is difficult and
has not been found yet.

The second conclusion is that (V.16) must indeed hold. For, without this
assumption there would be a term linear in t in (V.17), violating (V.31) for large
|t|.

As in the case of Proposition V.5, no direct proof of this fact out of the ε-
expansions for Ω, (V.26) or (V.27), has been found yet. The proof will probably
follow the fact that |Ω| had to be smaller than 2ω in the region of convergence.

Finally, note that on results say that the spectrum of the quasi-energy oper-
ator is a subset of {±Ω+kω| k ∈ Z}. Hence, the condition (V.16) 2Ω �= kω, k ∈ Z,
implies the absence of crossings in the spectrum of the quasi-energy operator when
ε varies within the convergence region. This is, of course, relevant for the adiabatic
limit of systems where ε is a slowly varying function of time.

VI Discussion on the Classes of Solutions

Let us now discuss some aspects of conditions I and II of Theorem I.2 for the case
F0 = 0.

As in (II.11) or (B.1), let us write the Fourier decomposition of f as

f(t) =
2J∑
a=1

fae
inaωt, (VI.1)
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with na = −n2J−a+1 and fa = f2J−a+1 for all a with 1 ≤ a ≤ J . Comparing with
(I.18) one has fa ≡ Fna , 1 ≤ a ≤ J .

Hence, for F0 = 0 and for fixed J and ω, there are J independent complex
coefficients fa and we can identify the parameter space R2J with the set FJ, ω of
all possible functions f with a given J and ω.

Condition M(q2) = 0 determines a (2J − 1) or (2J − 2)-dimensional subset
of FJ, ω and there condition II applies. It is also on this subset that the more
restrictive condition M(q2) = M(Q1) = 0 should hold, restricting the parameter
space of f to a (2J−2), (2J−3) or (2J−4)-dimensional subset. Hence, successive
conditions like I and II would eventually exhaust completely the parameter space
FJ, ω.

Conditions beyond I and II have not been yet analyzed and many questions
concerning the classes of solutions are still open. For instance, will further condi-
tions like I and II really exhaust the parameter space of the functions f? Will the
subtraction method of [1] and the convergence proofs of the present paper also
work under these further conditions? What are the physically qualitative distinc-
tions between the classes? Are these classes of solutions in some sense analytic
continuations of each other? In Section VI.3 we give indications that the answer
to the last question is no.

A distinction between class I and II may be pointed out with the observation
that in class I we have power expansions in ε while in II we have power expansions
in ε2. Compare relations (II.1) and (II.3) of Theorem II.1. See also Section VI.3.

VI.1 An Explicit Example

In order to illustrate these ideas and point to some problems let us consider the
important example where f represents a monochromatic interaction given by

f(t) = ϕ1 cos(ωt) + ϕ2 sin(ωt), (VI.2)

ϕ1, ϕ2 ∈ R. We have f(t) = f1e−iωt + f2eiωt with f1 = (ϕ1 + iϕ2)/2, f2 = f1,
J = 1, n1 = −1, n2 = 1. Applying now (II.17) for this case with m = 0 we get

M(q2) = Q(2)
0 = e2iγf

∞∑
p=0

(−1)p
(p!)2

(
4|f1|
2ω

)2p

= e2iγfJ0

(
2ϕ0

ω

)
, (VI.3)

where ϕ0 :=
√
ϕ2

1 + ϕ
2
2 and where J0 is the Bessel function of first kind and order

zero. In this case γf = ϕ2/ω.
Relation (VI.3) shows that condition I is not empty and that the locus in

the (ϕ1, ϕ2)-space of the condition M(q2) = 0 (necessary for condition II) is the
countable family of circles centered at the origin with radius xaω/2, a = 1, 2, . . .,
where xa if the a-th zero of J0 in R+.

One shows analogously that

Qm = eiγf

(
f1
|f1|
)m
Jm

(
2|f1|
ω

)
(VI.4)
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and

Q(2)
m = e2iγf

(
f1
|f1|
)m
Jm

(
4|f1|
ω

)
, (VI.5)

for all m ∈ Z, where Jm is the Bessel function of first kind and order m.
For Q(2)

0 = 0 the function Q1 is periodic and we have in general

M(Q1) =
i

ω

∑
m∈Z

m �=0

∣∣∣Q(2)
m

∣∣∣2
m

=
i

ω

∞∑
m=1



∣∣∣Q(2)

m

∣∣∣2 − ∣∣∣Q(2)
−m
∣∣∣2

m


 . (VI.6)

Since |Jm(x)| = |J−m(x)| for all x ∈ R, ∀m ∈ Z, it follows that |Q(2)
m | =

|Q(2)
−m|, ∀m ∈ Z. Hence, for functions f like (VI.2)

M(Q1) = 0. (VI.7)

Therefore, condition II is nowhere fulfilled. For a complete solution of the
problem for functions like (VI.2), including the circles mentioned above, higher
restrictions than that implied by condition II are necessary.

VI.2 A Second Example

For functions f with J > 1 the situation leading to (VI.7) is not expected in
general and condition II, and eventually others, may hold in non-empty regions of
the parameter space of f . This can be seen in the following example with J = 2.
Let us take

f(t) = f1(t) + f2(t)

with

f1(t) = f1e
−iωt + f1eiωt

f2(t) = f2e
−i2ωt + f2ei2ωt

fi ∈ C, i = 1, 2. We have q(t) = q1(t)q2(t), where

q1(t) := eiγf1

∑
n∈Z

einζ1Jn

(
2|f1|
ω

)
einωt,

q2(t) := eiγf2

∑
n∈Z

einζ2Jn

( |f2|
ω

)
ein2ωt,

with

eiζi =
fi
|fi| , i = 1, 2.
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It follows that

Qm = ei(γf1+γf2)
∑
k∈Z

ei((m−2k)ζ1+kζ2)Jm−2k

(
2|f1|
ω

)
Jk

( |f2|
ω

)
,

Q(2)
m = e2i(γf1+γf2)

∑
k∈Z

ei((m−2k)ζ1+kζ2)Jm−2k

(
4|f1|
ω

)
Jk

(
2|f2|
ω

)
.

From this we see (using J−n(x) = (−1)nJn(x)) that

Q
(2)
−m = (−1)me−4i(γf1+γf2 )

×
{
e2i(γf1+γf2 )

∑
k∈Z

(−1)kei((m−2k)ζ1+kζ2)Jm−2k

(
4|f1|
ω

)
Jk

(
2|f2|
ω

)}
.

The factor between brackets differs from Q(2)
m due to the presence of the factor

(−1)k in the sum over k ∈ Z. Hence, we should rather expect |Q(2)
m | �= |Q(2)

−m|
in this case, what most likely implies M(Q1) �= 0 for M(q2) = 0, leading to a
non-empty condition II.

VI.3 The Secular Frequency

For F0 = 0, case I, relation (V.26) says that

Ω = ε
∣∣∣Q(2)

0

∣∣∣+ ε2G(2)
0 +

∞∑
n=3

εnG
(n)
0 . (VI.8)

Because of condition I, the first order contribution in ε is non-vanishing. However,
as one easily checks, G(2)

0 = 0 and, hence, the second order contribution to Ω is
always zero. As we will see, this no longer happens in the case F0 �= 0.

For F0 �= 0 we have from (V.27), (IV.27) and (IV.28)

Ω = F0 +
∞∑
n=1

ε2nG
(n)
0

= F0 + ε2


∑
a1∈Z

∣∣∣Q(2)
a1

∣∣∣
a1ω + 2F0




+
∞∑
n=2

ε2n


n−1∑
p=1

∑
a1, b1∈Z

Q
(2)
−a1−b1 E

(p)
a1 E

(n−p)
b1

(a1 + b1)ω − 2F0


 . (VI.9)

It is interesting to study the limit F0 → 0 of Ω given in (VI.9). If Q(2)
0 �= 0 the

limit F0 → 0 of Ω given in (VI.9) is termwise singular, in contrast to the expression
for Ω obtained under the condition F0 = 0.
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For Q(2)
0 = 0 the situation is analogous, as we discuss briefly now. For E(1)

m

we have

E(1)
m :=

∑
a1∈Z

a1 �=0

Qm+a1Q
(2)
a1

a1ω + 2F0
=⇒ lim

F0→0
E(1)
m = E(1)

m :=
∑
a1∈Z

a1 �=0

Qm+a1Q
(2)
a1

a1ω
,

(VI.10)
and hence lim

F0→0
E(1)
m exists and is well defined for all m ∈ Z. However, for E(2)

m ,

we have

E(2)
m =

∑
a1, b1∈Z

Qm−a1−b1
(a1 + b1)ω − 2F0

E(1)
a1
E

(1)
b1

= S0 + S1 (VI.11)

with

S0 := −Qm2F0

∑
a1∈Z

E(1)
a1
E

(1)
−a1
, S1 :=

∑
a1, b1∈Z

a1+b1 �=0

Qm−a1−b1
(a1 + b1)ω − 2F0

E(1)
a1
E

(1)
b1
.

(VI.12)
The limit F0 → 0 exists for S1, but not for S0.

One easily sees that

lim
F0→0

G
(1)
0 =

∑
a1∈Z

|Q(2)
a1 |
a1ω

(VI.13)

and that

lim
F0→0

G
(2)
0 =

∑
a1, b1∈Z

a1+b1 �=0

Q
(2)
−a1−b1 E

(1)
a1 E(1)

b1

(a1 + b1)ω
, (VI.14)

where E(1)
m is defined in (VI.10). However,

G
(3)
0 =

∑
a1, b1∈Z

Q
(2)
−a1−b1 E

(1)
a1 E

(2)
b1

(a1 + b1)ω − 2F0
(VI.15)

and the limit F0 → 0 of the right hand side does not exist, since it does not exist
for E(2)

b1
. The same must hold for G(n)

0 with n > 3. The conclusion is, thus, the

same as in the case Q(2)
0 �= 0.

The remarks above indicate that the limit F0 → 0 of the solution of (I.5)
obtained here is singular and does not converge to the solution corresponding to
the case F0 = 0. All this strongly suggests that the radius of convergence of the ε-
expansions for the case F0 �= 0 shrinks to zero when the limit F0 → 0 is performed.
An indication to this was already discussed in the paragraphs following equation
(IV.19). More generally, the same must happen when 2F0 approaches an integer
multiple of ω.
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All this should not be surprising since there is no reason to expect analyticity
or even continuity of, for instance, the secular frequency Ω as a function of the
parameters defining f . Recall that, generically, we have Q(2)

0 �= 0 for F0 = 0
but, generically, Q(2)

0 = 0 for F0 �= 0 and, hence, both expansions can be rather
different.

Appendices

A Short Description of the Strategy Followed in [1]

For convenience of the reader we reproduce the main steps of the strategy devel-
oped in [1] for finding a power series solution of the generalized Riccati equation
(I.7) without secular terms.

As discussed in Section I, a natural proposal is to express g, a particular
solution of (I.7), as a formal power expansion on ε which vanishes at ε = 0. For
convenience, we write this expansion as in (I.16) where q(t) is defined in (I.17).
This would give the desired solution, provided the infinite sum converges. Inserting
(I.16) into (I.7) leads to

∞∑
n=1

(
(qcn)′ − i

n−1∑
p=1

q2cpcn−p − 2ifqcn
)
εn + iε2 = 0. (A.1)

Assuming that the coefficients vanish order by order we conclude

(qc1)′ − 2ifqc1 = 0, (A.2)
(qc2)′ − iq2c21 − 2ifqc2 + i = 0, (A.3)

(qcn)′ − i
n−1∑
p=1

q2cpcn−p − 2ifqcn = 0, n ≥ 3. (A.4)

The solutions of (A.2)–(A.3) are

c1(t) = α1 q(t), (A.5)

c2(t) = q(t)
[
i

∫ t

0

(
α2

1q(t
′)2 − q(t′)−2

)
dt′ + α2

]
, (A.6)

cn(t) = q(t)

[
i

(
n−1∑
p=1

∫ t

0

cp(t′)cn−p(t′) dt′
)
+ αn

]
, for n ≥ 3, (A.7)

where the αn’s above, n = 1, 2, . . . , are arbitrary integration constants.
The key idea is to fix the integration constants αi in such a way as to eliminate

the constant terms from the integrands in (A.6) and (A.7). The remaining terms
involve sums of exponentials like einωt, n �= 0, which do not develop secular terms
when integrated, in contrast to the constant terms. For instance, fixing α1 such
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thatM(α2
1q

2−q−2) = 0, that means, α2
1 =M(q

−2)/M(q2), prevents secular terms
in (A.6).

As shown in [1] this procedure can be implemented in all orders, fixing all
constants αi and preventing secular terms in all functions cn(t). In case I, relations
(II.5)–(II.7) represent precisely relations (A.5)–(A.7) in Fourier space with the
integration constants fixed as explained above. Case II is analogous.

B The Decay of the Fourier Coefficients of q and q2

To prove our main results on the Fourier coefficients of the functions cn and en we
have to establish some results on the decay of the Fourier coefficients of q and q2.

For periodic f we write the Fourier series (I.18) in the form

f(t) = F0 +
∑
n∈Z

n �=0

Fne
inωt,

with Fn = F−n, since f is real. In order to simplify our analysis we will consider
here the case where the sum above is a finite sum. This situation is physically
more realistic anyway.

By assumption, the set of integers {n ∈ Z, n �= 0| Fn �= 0} is a finite set and,
by the condition that f is real and F0 = 0, it contains an even number of elements,
say 2J with J ≥ 1. Let us write this set of integers as {n1, . . . , n2J} and write

f(t) = F0 +
2J∑
a=1

fae
inaωt, (B.1)

with the convention that na = −n2J−a+1, for all 1 ≤ a ≤ J , with fa ≡ Fna .
Clearly fa = f2J−a+1, 1 ≤ a ≤ J . Relation (II.20) becomes

Qm = eiγf

∞∑
p1, ..., p2J=0

δ (P, m)
2J∏
a=1

[
1
pa!

(
fa
naω

)pa
]
, (B.2)

where

P ≡ P (p1, . . . , p2J , n1, . . . , n2J) :=
2J∑
b=1

pbnb ∈ Z, (B.3)

and where

γf := i
2J∑
a=1

fa
naω
. (B.4)

As one easily sees, γf ∈ R. Above δ (P, m) is the Krönecker delta:

δ (P, m) :=
{
1, if P = m,
0, else.
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Relation (II.21) becomes

Q(2)
m = e2iγf

∞∑
p1, ..., p2J=0

δ (P, m)
2J∏
a=1

[
1
pa!

(
2fa
naω

)pa
]
. (B.5)

The coefficients Qm and Q
(2)
m can also be expressed in terms of Bessel functions of

the first kind and integer order. See Section VI for some examples.
As in [1], define

ϕ := max
1≤a≤2J

∣∣∣∣ fanaω
∣∣∣∣ and N :=

2J∑
b=1

|nb|.

Note that, since the nb’s are fixed by the choice of f , N is non-zero.
The following important bounds have been proven in [1], Appendix D:

|Qm| ≤
(
2Je(2J−1)ϕ

) ϕ�N−1|m|�

�N−1|m|�!
(
1− ϕ

�N−1|m|�+ 1
)−1

, (B.6)

and

|Q(2)
m | ≤

(
2Je(2J−1)2ϕ

) (2ϕ)�N−1|m|�

�N−1|m|�!
(
1− 2ϕ
�N−1|m|�+ 1

)−1

, (B.7)

for all m with �N−1|m|�+ 1 > 2ϕ. Above �x� is the lowest integer larger than or
equal to x.

In [1] we derived from (B.6) a simple exponential bound for |Qm|, namely,
|Qm| ≤ Q e−χ|m|, (B.8)

where Q and χ are some positive constants. For the purposes of this paper a
sharper bound than (B.8) is needed and we have to study relation (B.6) more
carefully. The result is expressed in Proposition II.2 whose proof we present now.

Proof of Proposition II.2. Let us consider first the coefficients Qm. Due to the
dominating factor �N−1|m|�!, one has

lim
|m|→∞

�m�2

e−χ|m|
ϕ�N

−1|m|�

�N−1|m|�! = 0.

for any constant χ > 0. Hence, one can choose a constant M1 > 0 depending on χ
such that

ϕ�N
−1|m|�

�N−1|m|�! ≤M1
e−χ|m|

�m�2

for all m ∈ Z. Therefore, there exists a positive constant Q1 > 0 (depending on χ)
such that |Qm| ≤ Q1 �m�−2 e−χ|m| for all m ∈ Z. For Q(2)

m we proceed in the
same way and get the bound |Q(2)

m | ≤ Q2 �m�−2 e−χ|m| for all m ∈ Z. In (II.23)
we adopt Q = max{Q1, Q2}. �
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C Bounds on Convolutions

Here we will prove Lemma II.3. Consider for χ > 0 and m ∈ Z

B(m) ≡ B(m, χ) :=
∑
n∈Z

e−χ(|m−n|+|n|)

�m− n�2 �n�2
. (C.1)

First, note that B(m) = B(−m) for all m ∈ Z. Choosing B0 to be such that

B0 ≥
∑
n∈Z

e−2χ|n|

�n�4

the statement of the lemma becomes trivially correct form = 0. Hence, it is enough
to consider the case where m > 0.

In (C.1), the sum over all n ∈ N can be split into three sums:

B(m) = e−χm
−1∑

n=−∞

e2χn

(m− n)2n2
+ e−χm

m∑
n=0

1
�m− n�2 �n�2

+ eχm
∞∑

n=m+1

e−2χn

(m− n)2n2
. (C.2)

In the first sum above we perform the change of variables n→ −n and in the third
sum we perform the change of variables n→ n+m. The result is

B(m) = e−χm
(
2

∞∑
n=1

e−2χn

(m+ n)2n2
+

m∑
n=0

1
�m− n�2 �n�2

)
(C.3)

Now we will study separately each of the sums in (C.3). Since for n ≥ 1 one
has m+ n ≥ �m� one has for the first sum

∞∑
n=1

e−2χn

(m+ n)2n2
≤ B1

�m�2
(C.4)

where B1 :=
∞∑
n=1

e−2χn

n2
.

The second sum in (C.3) is a little more involving. We have

m∑
n=0

1
�m− n�2 �n�2

=

�m/2�∑
n=0

1
�m− n�2 �n�2

+
m∑

n=�m/2�+1

1
�m− n�2 �n�2

. (C.5)
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For the first sum in the right hand side of (C.5) we have �m − n� ≥ m − n ≥
m − �m/2� ≥ m/2. For the second sum in the right hand side of (C.5) we have
n ≥ �m/2�+ 1 ≥ m/2. Hence, for m > 0,

m∑
n=0

1
�m− n�2 �n�2

≤
(
2
m

)2

�m/2�∑

n=0

1
�n�2

+
m∑

n=�m/2�+1

1
�m− n�2




≤ 2
(

2
�m�

)2 ∞∑
n=0

1
�n�2

. (C.6)

Therefore, choosing

B0 = 2B1 + 8
∞∑
n=0

1
�n�2

(C.7)

the lemma is proven. �

D Catalan Numbers. Bounds on the Constants Kn

Here we will prove the crucial Theorem III.2. Let us start recalling that we have
chosen K1 = K2 = C1 for some constant C1 which, in turn, can be chosen without
loss to be larger than or equal to 1. The proof of Theorem III.2 will be presented
on four steps.
Step 1. In this step we show that the sequence Kn, defined in (III.7), is an increas-
ing sequence.

First, note that K3 = C2(2K1K2 + (K2)2) = 3C2(K2)2. Since K1 = K2 ≥ 1
and C2 ≥ 1, we have K1 = K2 < K3.

Let us now suppose that

K1 = K2 < K3 < · · · < Kn (D.1)

for some n ≥ 3. We will show that Kn+1 > Kn. We have

Kn+1 −Kn =

C2
[

n∑
p=1

KpKn−p+1 +
n∑
p=2

KpKn−p+2 −
n−1∑
p=1

KpKn−p −
n−1∑
p=2

KpKn−p+1

]
=

C2
[
2K1Kn +

n∑
p=2

KpKn−p+2 −
n−1∑
p=1

KpKn−p

]
=

C2 [2K1Kn + (Kn −Kn−2)K1 + (K3 −K1)Kn−1 + · · ·+ (Kn −Kn−2)K2] ,

where in the last equality we used K1 = K2. Now, from hypothesis (D.1) we
conclude that Kn+1 > Kn, thus proving that Kn is an increasing sequence.



1002 J. C. A. Barata Ann. Henri Poincaré

Step 2. Here we show that the sequence Kn defined in (III.7) satisfies

Kn ≤ 3C2
n−1∑
p=2

KpKn−p+1 (D.2)

for all n ≥ 3.
We have already shown that K3 = 3C2(K2)2. Hence, (D.2) is obeyed for

n = 3.
Assume now that (D.2) is satisfied for all Kp with p ∈ {1, . . . , n − 1}, for

some n ≥ 4. We will show that it is also satisfied for Kn. In fact, we have from
(III.7)

Kn = C2
[
K1Kn−1 +

n−1∑
a=2

Ka(Kn−a +Kn−a+1)

]
. (D.3)

From this and from the fact proven in step 1 that the sequence Kn is increasing,
it follows that

Kn ≤ C2
[
K1Kn−1 + 2

n−1∑
a=2

KaKn−a+1

]
. (D.4)

Now, using the obvious relation

K1Kn−1 = K2Kn−1 ≤
n−1∑
a=2

KaKn−a+1

we get finally from (D.4)

Kn ≤ 3C2
n−1∑
p=2

KpKn−p+1, (D.5)

thus proving (D.2).
Step 3. Here we will prove the following statement. Let Ln be defined as the
sequence such that L1 = L2 = K1 = K2 = C1 and

Ln = 3C2
n−1∑
p=2

LpLn−p+1. (D.6)

Then, one has
Kn ≤ Ln, ∀n ∈ N. (D.7)

First, note that K3 = 3C2(K1)2 = 3C2(L1)2 = L3. Hence, (D.7) is valid for
n ∈ {1, 2, 3}. Now suppose Kp ≤ Lp for all p ∈ {1, . . . , n − 1} for some n ≥ 4.
One has from (D.2)

Kn ≤ 3C2
n−1∑
p=2

KpKn−p+1 ≤ 3C2
n−1∑
p=2

LpLn−p+1 = Ln, (D.8)

thus proving (D.7).
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Step 4. Consider the sequence cn defined as follows: c1 = c2 = 1 and

cn =
n−1∑
p=2

cpcn−p+1 (D.9)

for n ≥ 3. The so defined numbers cn are called “Catalan numbers”, after the
mathematician Eugène C. Catalan. The Catalan numbers arise in several com-
binatorial problems (for a historical account with proofs, see [19]) and can be
expressed in a closed form as

cn =
(2n− 4)!

(n− 1)!(n− 2)! , n ≥ 2. (D.10)

(see, f.i, [19] or [20]). Using Stirling’s formula we get the following asymptotic
behaviour for the Catalan numbers:

cn ≈ 1
16
√
π

4n

n3/2
, n large. (D.11)

The existence of a connection between the Catalan numbers and the sequence
Ln defined above is evident. Two distinctions are the factor 3C2 appearing in (D.6)
and the fact that L1 = L2 = C1 is not necessarily equal to 1. Nevertheless, using
the definition of the Catalan numbers in (D.9), it is easy to prove the following
closed expression for the numbers Ln:

Ln = (C1)n−1 (3C2)n−2 (2n− 4)!
(n− 1)!(n− 2)! , n ≥ 2. (D.12)

We omit the proof here. Hence, the following asymptotic behaviour can be estab-
lished:

Ln ≈ 1
144C1C2

2

√
π

(12C1C2)n
n3/2

, n large. (D.13)

From the inequality Kn ≤ Ln, proven in step 3, it follows that Kn ≤
K0(12C1C2)n for some constant K0 > 0, for all n ∈ N. Theorem III.2 is now
proven. �
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References

[1] J. C. A. Barata, On Formal Quasi-Periodic Solutions of the Schrödinger
Equation for a Two-Level System with a Hamiltonian Depending Quasi-
Periodically on Time, Rev. Math. Phys. 12, 25–64 (2000).

[2] J. C. A. Barata and W. F. Wreszinski. Strong Coupling Theory of Two Level
Atoms in Periodic Fields, Phys. Rev. Lett. 84, 2112–2115 (2000).

[3] W. F. Wreszinski, Atoms and Oscillators in Quasi-Periodic External Fields,
Helv. Phys. Acta 70, 109–123 (1997).

[4] W. F. Wreszinski and S. Casmeridis, Models of Two Level Atoms in Quasi-
periodic External Fields, J. Stat. Phys. 90, 1061 (1998).

[5] I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Phys. Rev. 31,
652–654 (1937).

[6] F. Bloch and A. Siegert, Magnetic Resonance for Nonrotating Fields, Phys.
Rev. 57, 522–527 (1940).

[7] S. H. Autler and C. H. Townes, Stark Effect in Rapidly Varying Fields, Phys.
Rev. 100, 703–722 (1955).

[8] L. H. Eliasson, Absolutely Convergent Series Expansions for Quasi Periodic
Motions, Mathematical Physics Electronic Journal 2, No. 4 (1996). URL:
http://www.ma.utexas.edu/mpej/MPEJ.html

[9] L. H. Eliasson, Floquet Solutions for the 1-Dimensional Quasi-Periodic
Schrödinger Equation, Comm. Math. Phys. 146, 447–482 (1992).

[10] G. Gentile and V. Mastropietro, Methods for the Analysis of the Lindstedt
Series for KAM Tori and Renormalizability in Classical Mechanics. A Review
with Some Applications, Rev. Math. Phys. 8, 393–444 (1996).

[11] G. Benfatto, G. Gentile and V. Mastropietro, Electrons in a Lattice with an
Incommensurate Potential, J. Stat. Phys. 89, 655–708 (1997).

[12] M. Frasca, Duality in Perturbation Theory and the Quantum Adiabatic Ap-
proximation, Phys. Rev. A. 58, 3439–3442 (1998).

[13] W. Scherer, Superconvergent Perturbation Method in Quantum Mechanics,
Phys. Rev. Lett. 74, 1495 (1995).

[14] J. Feldman and E. Trubowitz, Renormalization in Classical Mechanics and
Many Body Quantum Field Theory, Journal d’Analyse Mathématique 58, 213
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