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Nonrelativistic Limit of the Dirac-Fock Equations

M. J. Esteban and E. Séré

Abstract. In this paper, the Hartree-Fock equations are proved to be the non rel-
ativistic limit of the Dirac-Fock equations as far as convergence of “stationary
states” is concerned. This property is used to derive a meaningful definition of
“ground state” energy and “ground state” solutions for the Dirac-Fock model.

1 Introduction

In this paper we prove that solutions of Dirac-Fock equations converge, in a certain
sense, towards solutions of the Hartree-Fock equations when the speed of light
tends to infinity.

This limiting process allows us to define a notion of ground state for the
Dirac-Fock equations, valid when the speed of light is large enough.

First of all, we choose units for which m = � = 1, where m is the mass of the
electron, and � is Planck’s constant. We also impose e2

4πε0
= 1, with −e the charge

of an electron, ε0 the permittivity of the vacuum.

The Dirac Hamiltonian can be written as

Hc = −i c α · ∇+ c2β, (1)

where c > 0 is the speed of light in the above units, β =
(

1I 0
0 −1I

)
,

αk =
(

0 σk
σk 0

)
(k = 1, 2, 3) and the σk are the well known Pauli matrices.

The operator Hc acts on 4-spinors, i.e. functions from R3 to C4, and it is self-
adjoint in L2(R3,C4), with domain H1(R3,C4) and form-domain H1/2(R3,C4).
Its spectrum is (−∞,−c2] ∪ [c2,+∞).

Let us consider a system of N electrons coupled to a fixed nuclear charge
density eZµ, where e is the charge of the proton, Z > 0 the total number of
protons and µ is a probability measure defined on R3. Note that in the particular
case ofm point-like nuclei, each one having atomic number Zi at a fixed location xi,

eZµ =
m∑
i=1

eZiδxi and Z =
m∑
i=1

Zi .
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In our system of units, the Dirac-Fock equations for such a molecule are given
by 

Hc,Ψ ψk := Hc ψk − Z(µ ∗ 1
|x| )ψk + (ρΨ ∗ 1

|x| )ψk

−
∫

R3

RΨ(x, y)ψk(y)
|x− y| dy = εck ψk (k = 1, ...N),

Gram
L2 Ψ = 1IN (i.e

∫
R3
ψ∗

kψl = δkl , 1 ≤ k, l ≤ N).

(DFc)

Here, Ψ = (ψ1, · · · , ψN ) , each ψk is a 4-spinor inH1/2(R3,C4) (by bootstrap,
ψk is also in any W 1,p(R3) space, 1 ≤ p < 3/2), and

ρΨ(x) :=
N∑
k=1

ψ∗
k(x)ψk(x), RΨ(x, y) :=

N∑
k=1

ψk(x) ⊗ ψ∗
k(y) . (2)

We have denoted ψ∗ the complex line vector whose components are the conjugates
of those of a complex (column) vector ψ, and ψ∗

1ψ2 is the inner product of two
complex (column) vectors ψ1, ψ2. The n × n matrix Gram

L2 Ψ is defined by the
usual formulas

(Gram
L2 Ψ)

kl
:=
∫

R3

ψ∗
k(x)ψl(x) dx . (3)

Finally, εc1 ≤ ... ≤ εcN are eigenvalues of Hc,Ψ . Each one represents the energy
of one of the electrons, in the mean field created by the molecule. For physical
reasons, we impose 0 < εck < c2 . Note that the scalars εck can also be seen as
Lagrange multipliers. Indeed, the Dirac-Fock equations are the Euler-Lagrange
equations of the Dirac-Fock energy functional

Ec(Ψ) =
N∑
k=1

∫
R3

ψ∗
kHcψk − Z

(
µ ∗ 1

|x|
)
ψ∗
kψk

+
1
2

∫∫
R3×R3

ρΨ(x)ρΨ(y) − tr
(
RΨ(x, y)RΨ(y, x)

)
|x− y| dxdy

under the constraints
∫

R3
ψ∗
kψl = δkl .

In [6] we proved that under some assumptions on N and Z, there exists an
infinite sequence of solutions of (DFc). More precisely:

Theorem 1 [6] Let N < Z + 1. For any c > π/2+2/π
2 max(Z, 3N − 1) , there exists

a sequence of solutions of (DFc),
{

Ψc,j
}
j≥0

⊂
(
H1/2(R3)

)N
, such that

(i) 0 < Ec(Ψc,j) < Nc2 ,



Vol. 2, 2001 Nonrelativistic Limit of the Dirac-Fock Equations 943

(ii) lim
j→+∞

Ec(Ψc,j) = Nc2,

(iii) 0 < c2−µj < εc,j

1 ≤ ... ≤ εc,j

N < c2−mj , with µj > mj > 0 independent of c.

The constant π/2+2/π
2 is related to a Hardy-type inequality obtained indepen-

dently by Tix and Burenkov-Evans (see [15, 3, 16]), and which plays an important
role in the proof of Theorem 1. With the physical value c = 137.037... and Z
an integer (the total number of protons in the molecule), our conditions become
N ≤ Z, N ≤ 41, Z ≤ 124 . The constraint N ≤ 41 is technical, and has no
physical meaning.

Our result was recently improved by Paturel [13], who relaxed the condition
on N . Paturel obtains the same multiplicity result, assuming only that N < Z+ 1
and π/2+2/π

2 max(Z,N) < c. Taking c = 137.037..., Paturel’s conditions are N ≤
Z ≤ 124 : they cover all existing neutral atoms. This is an important improvement.

In [6], the critical points Ψc,j are obtained by a complicated min-max argu-
ment involving a family of min-max levels cν,p(Fj) (see [6] p. 511). Note that the
expression ”the critical points” is misleading. Indeed, for each j we can define the
min-max level Ecj,DF := lim infν→0,p→∞ cν,p(Fj), and there exists a critical point
Ψc,j such that Ecj,DF = Ec(Ψc,j) ; but we do not know whether this critical point is
unique. In the present paper, we do not write the definition of the min-max levels
cν,p(Fj) in its full detail (the reader is referred to [6] for a complete definition).
We just state the minimal information on Ecj,DF needed in the present paper.

Let us denote E := H1/2(R3,C 4). Since

σ(Hc) = (−∞,−c2] ∪ [c2,+∞) ,

the Hilbert space E can be split as

E = E+
c ⊕ E−

c ,

where E±
c := Λ±

c E, and Λ±
c := χ

R± (Hc). The projectors Λ±
c have a simple expres-

sion in the Fourier domain : Λ̂±
c ψ(ξ) = Λ̂±

c (ξ) ψ̂(ξ), with

Λ̂
±
c (ξ) :=

1
2

(
1I

C4 ±
cα · ξ + c2β√

c4 + c2|ξ|2

)
. (4)

Proposition 2 [6, 13] For every j ≥ 0, let V be any (N + j) dimensional complex
subspace of E+

c . Then, taking the notation of Theorem 1, we have

Ecj,DF = Ec(Ψc,j) ≤ sup
Ψ∈(E−

c ⊕V )
N

Gram
L2 Ψ≤ 1IN

Ec(Ψ). (5)
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In the present paper, we prove three main theorems. We first consider a
sequence cn → +∞ and a sequence {Ψn}

n
of solutions of (DFcn). For all n, Ψn =

(ψn1 , ..., ψ
n
N ), each ψnk is in H1/2(R3,C4), with

∫
R3
ψ∗
kψl dx = δkl and H

cn,Ψnψnk =

εnkψ
n
k . Using the standard Hardy inequality, one can prove that the functions ψnk

are in H1(R3,C4) for cn large enough. We assume that

−∞ < lim
n→+∞

(εn1 − c2n) ≤ lim
n→+∞

(εnN − c2n) < 0 . (6)

A (column) vector ψ ∈ C4 can be written in block form ψ =
(
ϕ
χ

)
where ϕ ∈ C 2

(respectively χ ∈ C 2) consists of the two upper (resp. lower) components of ψ. This
gives the splitting ψnk =

(
ϕn

k
χn

k

)
with ϕnk and χnk in H1(R3,C 2). Finally, Ψn splits

as
(
Φn

χn

)
, where Φn := (ϕn1 , ..., ϕnN ) and χn := (χn1 , ..., χnN ). Our first result is that

Ψn =
(
Φn

χn

)
has a subsequence converging, in H1 norm, towards Ψ̄ =

(
Φ̄
0

)
, where

Φ̄ = (ϕ̄1, · · · , ϕ̄N ) ∈ (H1(R3,C 2)
)N

is a solution of the Hartree-Fock equations:


HΦϕk = −∆ϕk

2
− Z

(
µ ∗ 1

|x|
)
ϕk +

(
ρΦ ∗ 1

|x|
)
ϕk

−
∫

R3

RΦ(x, y)ϕk(y)
|x− y| dy = λ̄kϕk, k = 1, ...N,∫

R3
ϕ∗
kϕl dx = δkl , λ̄k = lim

n→+∞(εnk − c2n) .

(HF)

Here (as in the Dirac-Fock equations),

ρΦ(x) =
N∑
l=1

ϕ∗
l (x)ϕl(x) , RΦ(x, y) =

N∑
l=1

ϕl(x) ⊗ ϕ∗
l (y) .

Note that the Hartree-Fock equations are the Euler-Lagrange equations cor-

responding to critical points in
(
H1(R3,C 2)

)N
of the Hartree-Fock energy:

EHF (Φ) :=
N∑
k=1

1
2
||∇ϕk||2

L2
− Z

∫
R3

(
µ ∗ 1

|x|
)
|ϕk|2dx

(7)

+
1
2

∫∫
R3×R3

ρΦ(x)ρΦ(y) − tr (RΦ(x, y)RΦ(y, x))
|x− y| dxdy ,

under the constraint ∫
R3
ϕ∗
kϕl = δkl, i, j = 1, ...N.
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Theorem 3 Let N < Z+ 1. Consider a sequence cn → +∞ and a sequence {Ψn}n
of solutions of (DFcn), i.e. Ψn = (ψn1 , · · · , ψnN), each ψnk being in H1/2(R3,C4) ,

with
∫

R3
ψ∗
kψl dx = δkl and Hcn,Ψnψnk = εnkψ

n
k . Assume that the multipliers εnk ,

k = 1, . . . , N, satisfy (6). Then for n large enough, ψnk is in H1(R3,C4) , and there
exists a solution of (HF), Φ̄ = (ϕ̄1, · · · , ϕ̄N ), with negative multipliers, λ̄1, ..., λ̄N ,
such that, after extraction of a subsequence,

λnk := εnk − (cn)2 −→
n→+∞ λ̄k , k = 1, ..., N , (8)

ψnk =
(
ϕnk
χnk

)
−→

n→+∞

(
ϕ̄k
0

)
in H1(R3,C 2) ×H1(R3,C 2), (9)

∥∥∥∥χnk +
i

2cn
(σ · ∇)ϕnk

∥∥∥∥
L2(R3,C 2)

= O(1/(cn)3), (10)

and

Ecn(Ψn) −Nc2n −→
n→+∞ EHF (Φ̄). (11)

As a particular case, we have

Corollary 4 If cn → +∞ and N, Z, µ are fixed, then for any j ≥ 0 the sequence
{Ψcn,j}

n
of Theorem 1 satisfies the assumptions of Theorem 3 (see (iii) in Theorem

1). So it is precompact in
(
H1(R3,C4)

)N . Up to extraction of subsequences,

λ
cn,j

k := ε
cn,j

k − c2n −→ λ̄jk < 0 , k = 1, ..., N (12)

Ψcn,j −→
(

Φ̄j

0

)
in

(
H1(R3,C 2)

)N × (H1(R3,C 2)
)N

(13)

and Φ̄j =
(
ϕ̄j1, · · · , ϕ̄jn

)
is a solution of the Hartree-Fock equations with multipliers

λ̄j1, · · · , λ̄jN . Moreover,

Ecn(Ψcn,j) −Nc2n −→
n→+∞ EHF (Φ̄j). (14)

Particular solutions of the Hartree-Fock equations are the minimizers of
EHF (Φ) under the constraints Gram

L2 Φ = 1IN . They are called ground states.
Their existence was proved by Lieb and Simon [10] under the assumption N <
Z+1, but the uniqueness question remains unsolved (see also [11] for the existence
of excited states).

It is difficult to define the notion of ground state for the Dirac-Fock model,
since Ec has no minimum under the constraints

∫
R3 ψ

∗
kψl = δkl . Our second main
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result asserts that ”the” first solution Ψc,0 of (DFc) found in [6], whose energy
level is denoted Ec0,DF , can be considered, in some (weak) sense, as a ground state
for (DFc). Indeed, Ec0,DF − Nc2 converges to the minimum of EHF as c goes to
infinity. Moreover, for c large the multipliers εc,0k associated to Ψc,0 are the N
smallest positive eigenvalues of the mean-field operator Hc,Ψc,0 .

Theorem 5 Let N < Z + 1 and c sufficiently large. With the above notations,

Ec0,DF = min
Gram

L2 Φ=1IN

EHF (Φ) +Nc2 + o(1)c→+∞ . (15)

Moreover, for any subsequence {Ψcn,0}
n

converging in
(
H1(R3,C4)

)N to some(
Φ̄0

0

)
, Φ̄0 is a ground state of the Hartree-Fock model, i.e.

EHF (Φ̄0) = min
Gram

L2 Φ=1IN

EHF (Φ). (16)

Furthermore, for c large, the eigenvalues corresponding to Ψc,0 in (DFc),
εc,01 , . . . , εc,0N are the smallest positive eigenvalues of the linear operator Hc,Ψc,0

and the (N + 1)-th positive eigenvalue of this operator is strictly larger than εc,0N .

Finally, we are able to show that, for c large enough, the function Ψc,0 can be
viewed as an electronic ground state for the Dirac-Fock equations in the following
sense: it minimizes the Dirac-Fock energy among all electronic configurations which
are orthogonal to the “Dirac sea”.

Theorem 6 Fix N,Z with N < Z + 1 and take c sufficiently large. Then Ψc,0 is a
solution of the following minimization problem:

inf{Ec(Ψ) ; Gram
L2 Ψ = 1IN , Λ

−
Ψ Ψ = 0 } (17)

where Λ
−
Ψ = χ(−∞,0)(Hc,Ψ) is the negative spectral projector of the operator Hc,Ψ,

and Λ
−
Ψ Ψ := (Λ

−
Ψ ψ1, · · · ,Λ−

Ψ ψN ) .

The constraint Λ
−
Ψ Ψ = 0 has a physical meaning. Indeed, according to

Dirac’s original ideas, the vacuum consists of infinitely many electrons which com-
pletely fill up the negative space of Hc,Ψ : these electrons form the “Dirac sea”.
So, by the Pauli exclusion principle, additional electronic states should be in the
positive space of the mean-field Hamiltonian Hc,Ψ . The proof of Theorem 6 will
be given in Section 4. This proof uses some other interesting min-max characteri-
zations of Ψc,0 (see Lemma 9).
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2 The nonrelativistic limit

This section is devoted to the proof of Theorem 3. We first notice that when
N < Z+ 1, N,Z fixed, and c is sufficiently large, any solution of (DFc) is actually
in (H1(R3))

N

. This follows from the fact that for ν small, the operator H1 − ν

|x|
is essentially self-adjoint with domain H1(R3) (see [14]).

We can also obtain a priori estimates on H1 norms:

Lemma 7 . Fix N,Z ∈ Z+, take c large enough, and let Ψc be a solution of (DFc).
If the multipliers εck associated to Ψc satisfy 0 ≤ εck ≤ c2 (k = 1, . . . , N) , then
Ψc ∈ (H1(R3,C

4
))N , and the following estimate holds

||Ψc||2
2

+ ||∇Ψc||2
2
≤ K .

The constant K is independent of c (for c large).

Proof. The normalization constraint Gram
L2 Ψc = 1IN implies

||Ψc||2
2

= N . (18)

Using the (DFc) equation and the standard Hardy inequality∫
R3

u2

|x|2 ≤ 4
∫

R3
|∇u|2 , (19)

one easily proves that Ψc is in H1 , and satisfies:

(HcΨc, HcΨc) = c4||Ψc||2
2

+ c2||∇Ψc||2
2

(20)

≤ c4||Ψc||2
2

+ +(Z2 +N2) ||∇Ψc||2
2

+ +c2 max(N,Z) ||∇Ψc||2 ,

for some + > 0 independent of N,Z and c. The estimates (18) and (20) prove the
lemma. ��

Proof of Theorem 3. Let us split the spinors ψnk : R3 → C 4 in blocks of upper and
lower components:

ψnk =
(
ϕnk
χnk

)
, with ϕnk , χ

n
k : R3 → C 2.
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We denote L := −i (σ · ∇) . Then we can rewrite (DFcn) in the following way:

cnLχ
n
k − Z

(
µ ∗ 1

|x|
)
ϕnk +

( N∑
l=1

(|ϕnl |
2

+ |χnl |
2
) ∗ 1

|x|
)
ϕnk + (cn)2ϕnk

−
N∑
l=1

ϕnl (x)
∫

R3

(ϕnl )∗(y)ϕnk (y) + (χnl )∗(y)χnk (y)
|x− y| dy = εnkϕ

n
k

cnLϕ
n
k − Z

(
µ ∗ 1

|x|
)
χnk +

( N∑
l=1

(|ϕnl |
2

+ |χnl |
2
) ∗ 1

|x|
)
χnk − (cn)2χnk

−
N∑
l=1

χnl (x)
∫

R3

(ϕnl )∗(y)ϕck(y) + (χcl )
∗(y)χck(y)

|x− y| dy = εnkχ
n
k

∫
R3

(ϕnk )∗ϕnl + (χnl )∗χnl dx = δkl .

(21)

Note that ‖Lχ‖
L2 = ‖∇χ‖

L2 for all χ ∈ H1(R3,C
2
) . So, dividing by cn the first

equation of (21), we get

‖∇χnk‖L2(R3,C 2)
= O(1/cn) . (22)

Dividing by 2(cn)2 the second equation of (21), and using the fact that εnk −
(cn)2 is a bounded sequence, we get∥∥∥∥χnk − 1

2cn
Lϕnk

∥∥∥∥
L2(R3,C 2)

=
1

(cn)2
O

(
N∑
l=1

‖χnl ‖H1(R3,C 2)

)
. (23)

The estimate (23) together with Lemma 7 implies

‖χnk‖L2(R3,C 2)
= O(1/cn) . (24)

Combining this with (22), we obtain

‖χnk‖H1(R3,C 2)
= O(1/cn) . (25)

So
N∑
l=1

‖χnl ‖H1(R3,C 2)
= O(1/cn), and (23) gives the estimate

∥∥∥∥χnk − 1
2cn

Lϕnk

∥∥∥∥
L2(R3,C 2)

= O(1/(cn)3) . (26)
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Now, the first equation of (21), combined with (26), implies

−∆ϕnk
2

− Z(µ ∗ 1
|x| )ϕ

n
k +

( N∑
l=1

|ϕnl |
2 ∗ 1

|x|
)
χnk

−
N∑
l=1

ϕnl (x)
∫

R3

(ϕnl )∗(y)ϕnk (y)
|x− y| dy = λnkϕ

n
k + hnk ,

∫
R3

(ϕnk )∗ϕnl = δkl + rnkl ,

with λnk := εnk − (cn)2, and

lim
n→+∞ ||hnk ||H−1(R3)

= 0 , lim
n→+∞ |rnkl| = 0 for all k, l ∈ {1, . . . , N}.

Therefore Φ
n

:= (ϕn1 , . . . , ϕ
n
N ) is a Palais-Smale sequence for the Hartree-

Fock problem, and the multipliers λnk satisfy limn→+∞ λnk < 0 . At this point,
we just invoke an argument used in [11] to obtain the convergence in H1 norm of
some subsequence {Φ

n′} towards Φ̄ = (ϕ̄1, · · · , ϕ̄N ), a solution of the Hartree-Fock
equations 

H
Φ̄
ϕ̄k = λ̄k ϕ̄k , k = 1, ...N∫

R3
ϕ̄∗
k ϕ̄l = δkl ,

where λ̄k = lim
n′→+∞

λ
n′

k .

Finally, let us prove that Ecn′ (Ψn
′
) − N(cn′)2 converges to EHF (Φ̄) . From

Lemma 7 and the estimate (26), one easily gets

Ecn(Ψn) −Nc2n = EHF (Φn) +O(1/(cn)2) . (27)

Since Φn
′

converges in H1 norm to Φ̄, the energy level EHF (Φn
′
) converges

to EHF (Φ̄) . So (27) implies the desired convergence. This ends the proof of The-
orem 3. ��

3 Ground state for Dirac-Fock equations in the nonrelativistic limit

The aim of this section is to prove Theorem 5. The estimate given in Proposition
2 on the energy Ec(Ψc,j) and the expression of Λ̂±

c given in (4), will be crucial.

Proof of Theorem 5. By Corollary 4, for any sequence cn going to infinity, Ψcn,0

is precompact in H1 norm. If it converges, its limit is of the form (Φ̄0

0 ), and
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Ecn(Ψcn,0) −N(cn)2

)
converges to EHF (Φ̄0) . As a consequence,

lim
c→+∞

(
Ec(Ψc,0) −Nc2

)
≥ inf

Gram
L2 Φ=1IN

EHF (Φ). (28)

In order to prove (15) and (16) of Theorem 5, we just have to show that

lim
c→+∞

(
Ec(Ψc,0) −Nc2

)
≤ inf

Gram
L2 Φ=1IN

EHF (Φ). (29)

Take Φ = (ϕ1, · · · , ϕN ) ∈
(
H1(R3,C 2)

)N
, with Gram

L2 Φ = 1IN . Let Vc be

the complex subspace of E+
c defined by

Vc := Span {Λ+
c (ϕ1

0 ), ...,Λ+
c (ϕN

0 )} . (30)

From formula (4) and Lebesgue’s convergence theorem, one easily gets, for k =
1, . . . , N ,

lim
c→+∞ ‖Λ−

c (ϕk
0 )‖

H1 = 0 . (31)

So, for c sufficiently large, we have

dim Vc = N . (32)

Hence, by (5),

Ec0,DF = Ec(Ψc,0) ≤ sup
Ψ∈(E−⊕Vc)

N

Gram
L2 Ψ≤ 1IN

Ec(Ψ) . (33)

Let Ψ+ ∈ (E+
c )

N

, Ψ− ∈ (E−
c )

N

such that Gram
L2 (Ψ+ + Ψ−) ≤ 1IN . By the

concavity property of Ec in the E−
c direction (see [6], Lemma 2.2), if c is large

enough, we have

Ec(Ψ+ + Ψ−) ≤ Ec(Ψ+) + E ′
c(Ψ

+) · Ψ− − 1
4

N∑
k=1

(ψ−
k ,
√
−c2∆ + c4 ψ−

k )

≤ Ec(Ψ+) +M ||Ψ−||
L2 −

c2

4
||Ψ−||2

L2
, (34)

for some constant M > 0 independent of c . Hence, for c large,

Ec0,DF ≤ sup
Ψ+∈D(Vc)

Ec(Ψ+) + ◦(1)c→+∞ , (35)

where D(Vc) :=
{

Ψ+ ∈ (Vc)N ; Gram
L2 Ψ+ ≤ 1IN

}
.
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If c is large enough, it follows from Hardy’s inequality (19) that the map
Ψ+ → Ec(Ψ+) is strictly convex on the convex set

A+ := {Ψ+ ∈ (E+
c )N ; Gram

L2 Ψ+ ≤ 1IN} .
Indeed, its second derivative at any point Ψ+ of A+ is of the form

E ′′
c (Ψ+)[dΨ+]2 = 2

N∑
k=1

(dψk,
√
c4 − c2∆ dψk)L2 +Q(dΨ+)

with Q a quadratic form on (H1/2(R3,C4))N bounded independently of c and
Ψ+ ∈ A+ .
As a consequence, sup

Ψ+∈D(Vc)

Ec(Ψ+) is achieved by an extremal point Ψ+
max of

the convex set D(Vc) = A+ ∩ (Vc)N . Being extremal in D(Vc) , the point Ψ+
max

satisfies
Gram

L2 Ψ+
max = 1IN . (36)

Since ψ+
k,max ∈ Vc , there is a matrix A = (akl)1≤k,l≤N

such that, for all l , ψ+
l,max =∑

1≤k≤N
akl Λ+

c (ϕk
0 ) . Then

A∗ Gram
L2

(
Λ+
c (Φ

0)
)
A = Gram

L2 Ψ+
max = 1IN . (37)

Using the U(N) invariance ofD(Vc) and Ec , and the polar decomposition of square
matrices, one can assume, without restricting the generality, that A = A∗ and
A is positive definite. Recalling that Gram

L2 Φ = 1IN , we see, from (31), that
Gram

L2 (Λ+
c

(
Φ
0

)
) = 1IN+o(1) . So (37) implies A2 = 1IN+o(1) , hence A = 1IN+o(1) .

Combining this with (31), we get

‖ψ+
k,max − (ϕk

0 )‖
H1 = o(1)c→+∞ .

Now, since ψ+
k,max ∈ E+

c , Hc ψ
+
k,max =

√
c4 − c2∆ ψ+

k,max . But√
c4 − c2∆ ≤ c2 − ∆

2
.

This inequality is easily obtained in the Fourier domain: it follows from
√

1 + x ≤
1 + x

2 (∀x ≥ 0) . So we get

N∑
k=1

(Hcψ+
k,max , ψ

+
k,max)L2 ≤ Nc2 +

1
2

N∑
k=1

‖∇ψ+
k,max‖2

L2
.

Combining this with (31), we find

Ec(Ψ+
max) ≤ Nc2 + EHF (Φ) + ◦(1)c→+∞ . (38)
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Finally, (35) and (38) imply

Ec0,DF ≤ Ec(Ψ+
max) + ◦(1)c→+∞

≤ Nc2 + EHF (Φ) + ◦(1)c→+∞ . (39)

Since Φ is arbitrary, (39) implies (29). The formulas (15), (16) of Theorem 5 are
thus proved.

We now check the last assertion about the εc,0k , k = 1, . . . , N, being the
smallest eigenvalues of the operator Hc,Ψc,0 for c large. By Corollary 4, we can
translate this statement in the language of sequences. We take a sequence cn →
+∞ such that {Ψcn,0}n converges in

(
H1(R3,C4)

)N to some
(

Φ̄0

0

)
, for n large

enough. Let Hn := Hcn,Ψcn,0 and H∞ := HΦ̄0 . We have Hn ψ
cn,0
k = εnkψ

cn,0
k and

H∞ ϕ̄0
k = λ̄kϕ̄

0
k , with

0 < εn1 ≤ · · · ≤ εnN < (cn)2 , λ̄1 ≤ · · · ≤ λ̄N < 0 , λ̄k = lim
n→+∞(εnk − (cn)2) .

Let us denote en1 ≤ · · · ≤ eni ≤ · · · the sequence of eigenvalues of Hn , in the
interval (0, c2n) , counted with multiplicity. Similarly, we shall denote ν̄1 ≤ · · · ≤
ν̄i ≤ · · · the sequence of eigenvalues of H∞ in the interval (−∞, 0) , counted with
multiplicity. Let z ∈ C \ σ(H∞) . Then for n large enough, z + (cn)2 ∈ C \ σ(Hn) ,
and the resolvent

Rn(z + (cn)2) :=
(

(z + (cn)2)I −Hn
)−1

converges in norm towards the operator L(z) :
(
ϕ
χ

) → (
R̄(z)ϕ

0

)
, where R̄(z) :=(

z I − H∞
)−1

is the resolvent of H∞ . So, by the standard spectral theory,

lim
n→+∞(eni − (cn)2) = ν̄i for all i ≥ 1 .

We know that Φ̄0 is a ground state of the Hartree-Fock model. So a result
proved in [1] tells us that ν̄k = λ̄k for all 1 ≤ k ≤ N , and ν̄N+1 > λ̄N . But
(εnN − (cn)2) converges to λ̄N , and (enN+1 − (cn)2) converges to ν̄N+1 , as n goes
to infinity. So, for n large enough, enN+1 > ε

n
N , hence εnk = enk for all 1 ≤ k ≤ N .

This ends the proof of Theorem 5. ��

4 Proof of Theorem 6.

In this section, both Φ and Ψ will denote N -uples of 4-spinors (i.e. N -uples of
functions from R3 into C4). As explained in the Introduction of the present paper,
”the” solution Ψc,0 was obtained in [6] by a complicated min-max argument. Note
that we are not able to prove that this min-max argument leads to a unique critical
point (this is not surprising: even in the simpler case of nonrelativistic Hartree-
Fock, no uniqueness result is known for ”the” ground state). However, the min-max
level Ec0,DF = Ec(Ψc,0) is well defined and unique. For c large, we will show that
the definition of Ec0,DF can be simplified.
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First of all, we introduce the notion of projector “ε-close to Λ+
c ”, where

Λ+
c =

1
2

∣∣Hc∣∣−1(
Hc +

∣∣Hc∣∣) is the positive free-energy projector.

Definition 8 Let P+ be an orthogonal projector in L2(R3,C4), whose restriction
to H

1
2 (R3,C4) is a bounded operator on H

1
2 (R3,C4) .

Given ε > 0, P+ is ε-close to Λ+
c if and only if, for all ψ ∈ H 1

2 (R3,C4),∥∥∥(−c2∆ + c4
) 1

4
(
P+ − Λ+

c

)
ψ
∥∥∥
L2(R3,C4)

≤ ε
∥∥∥(−c2∆ + c4

) 1
4
ψ
∥∥∥
L2(R3,C4)

.

An obvious example of projector ε-close to Λ+
c is Λ+

c itself. More interesting
examples will be given below. Let us now give a min-max principle associated to
P+ :

Lemma 9 Fix N,Z with N < Z + 1. Take c > 0 large enough, and P+ a projector
ε-close to Λ+

c , for ε > 0 small enough. Let P− = 1I
L2 − P+, and define

E(P+) := inf
Φ+∈(P+H

1
2 )

N

Gram
L2 Φ+=1IN

sup
Ψ∈(P−H

1
2 ⊕ Span(Φ+))N

Gram
L2 Ψ=1IN

Ec(Ψ) .

Then E(P+) does not depend on P+ and Ec(Ψc,0) ≤ E(P+).

Remark In the case N = 1 , Ec is the quadratic form (ψ,Hψ)
L2 associated to the

operator H = Hc−Zµ∗ 1
|x| . Then E(Λ+

c ) coincides with the min-max level λ1(V )

defined in [4], for V = −Zµ ∗ 1
|x| . By Theorem 3.1 of [4], if c >

π/2 + 2/π
2

,

then λ1(V ) is the first positive eigenvalue of H .

Proof of Lemma 9. The idea behind this lemma is inspired by [2]. Note that, under
our assumptions, E(P+) < Nc2(1 +Kε) for some K > 0 independent of c and ε.
This follows from arguments similar to those used in the proof of Lemma 5.3 of
[6]. In [6] the free energy projectors Λ±

c were used. With these projectors, it was
seen that E(Λ+

c ) < Nc2 (thanks to a careful choice of Φ+). When P+ is ε-close
to Λ+

c , we then get E(P+) < Nc2(1 +Kε).
To continue the proof of the lemma we perform a change of physical units.

In mathematical language, this change corresponds to a dilation in space by the
factor c, and to dividing the energies by c2. Let (dcϕ)(x) = c3/2ϕ(cx) and

Ẽc(Φ) : = 1
c2 Ec

(
dcΦ

)
=

N∑
k=1

∫
R3

(
ϕk, (−iα · ∇ + β)ϕk

)
− Z

c

(
µ̃ ∗ 1

|x|
)
|ϕk|2

+
1
2c

∫∫
R3×R3

ρΦ(x)ρΦ(y)− ‖RΦ(x, y)‖2

|x− y| d3xd3y

(40)

where µ̃(E) = µ(c−1E) for any Borel subset E of R3.
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The interest of this rescaled energy Ẽc is that for c large and Gram
L2 Ψ ≤ 1IN , we

have

Ẽc(Ψ) =
N∑
k=1

∫
R3

(
ψk, (−iα∇ + β)ψk

)
+O

(1
c
||Ψ||2

(H1/2)N

)
. (41)

Let us denote P̃± := dc−1 ◦ P± ◦ dc , Λ̃± := dc−1 ◦ Λ±
c ◦ dc = χ

R±

(
−iα.∇ + β

)
.

Note that Λ̃± does not depend on c. Now, P+ is ε-close to Λ+
c if and only if

∥∥∥(−∆ + 1
) 1

4
(
P̃+ − Λ̃+

)
ψ
∥∥∥
L2(R3,C4)

≤ ε
∥∥∥(−∆ + 1

) 1
4
ψ
∥∥∥
L2(R3,C4)

, ∀ψ ∈ H 1
2 (R3,C4) .

(42)

We denote Φ • A the right action of an N ×N matrix A = (akl)1≤k,l≤N
on

an N -uple Φ = (ϕ1, . . . , ϕN ) ∈ (L2(R3,C 4))N . More precisely,

(Φ •A) := (
N∑
k=1

ak1ϕk, . . . ,

N∑
k=1

akNϕk) . (43)

Given Φ+ = (ϕ+
1 , . . . , ϕ

+
N ) ∈

(
P̃+H1/2

)N
such that Gram

L2 Φ+ = 1IN , and

Φ− ∈
(
P̃−H1/2

)N
, we define

g
Φ+ (Φ−) := (Φ+ + Φ−) •

[
Gram

L2 (Φ+ + Φ−)
]− 1

2

= (Φ+ + Φ−) •
[
1IN + Gram

L2 Φ−
]− 1

2
.

(44)

We obtain a smooth map g
Φ+ , from

(
P̃− H

1
2

)N
to

Σ
Φ+ :=

{
Ψ ∈

(
P̃−H

1
2 ⊕ Span (ϕ+

1 , . . . , ϕ
+
N )
)N
/ Gram

L2 Ψ = 1IN
}
.

In fact, the values of g
Φ+ lie in the following subset of Σ

Φ+ :

Σ′
Φ+

:=
{

Ψ ∈ Σ
Φ+/ Gram

L2

(
P̃+Ψ

)
> 0
}
.

Now, take an arbitrary Ψ ∈ Σ′
Φ+ . Then there is an invertible N ×N matrix

B such that P̃+Ψ = Φ+ •B . So we may write

Ψ •B−1 = Φ+ + P̃−Ψ •B−1 .

As a consequence,

g
Φ+ (P̃−Ψ •B−1) = (Ψ •B−1) •

[
Gram

L2 (Ψ •B−1)
]− 1

2
.
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One easily computes

Gram
L2 (Ψ •B−1) = (B∗)−1

(
Gram

L2 Ψ
)
B−1 = (BB∗)−1 .

Hence

g
Φ+ (P̃−Ψ •B−1) = (Ψ •B−1) • (BB∗)1/2 = Ψ • (B−1(B B∗)1/2) ,

and finally
Ψ = g

Φ+ (P̃−Ψ •B−1) • U ,
where U := (BB∗)−1/2B ∈ U(N) is the unitary matrix appearing in the polar
decomposition of B . So we have proved that

Σ′
Φ+ =

⋃
Φ−∈( eP−H

1
2 )N

U ∈ U(N)

g
Φ+ (Φ−) • U .

Now, Ec is invariant under the U(N) action “ • ” , and Σ′
Φ+ is dense in Σ

Φ+

for the norm of (H1/2(R3,C4))N . Hence

sup
Ψ∈( eP−H

1
2 ⊕ Span(Φ+))N

Gram
L2 Ψ = 1IN

Ẽc(Ψ) = sup
Φ−∈( eP−H

1
2 )N

Ẽc
(
g

Φ+ (Φ−)
)
. (45)

We now prove Lemma 9 in three steps.

Step 1. Let Φ+ ∈ (P̃+H1/2)N be such that Gram
L2 Φ+ = 1IN and such that

Ẽc(Φ+) ≤ N + δ, for some δ > 0 small. For ε small and c large, there is a

unique Φ− ∈
(
P̃− H1/2

)N
maximizing Ẽc ◦gΦ+ and lying in a small neighborhood

of 0 . If we denote k(Φ+) this maximizer, the map k is smooth from

S+
δ =

{
Φ+ ∈

(
P̃+H1/2

)N /
Gram

L2 Φ+ = 1IN , Ẽc(Φ+) ≤ N + δ
}

to
(
P̃−H1/2

)N
, and equivariant for the U(N) action.

Proof of Step 1. Take r > 0. For ε , δ small and c large, if Φ+ ∈ S+
δ , Φ− ∈

(P̃−H1/2)N , and ‖Φ−‖
H1/2 is not smaller than r, then

Ẽc
(
g

Φ+ (Φ−)
)
< N − δ ,

by (41). On the other hand, for c large enough, using (41) once again, one has

Ẽc
(
g

Φ+ (0)
)

= Ẽc(Φ+) ≥ N − δ

2
.
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So, if we define Vr :=
{

Φ− ∈
(
P̃−H1/2

)N / ‖Φ−‖
H1/2 ≤ r

}
, no maximizer of

Ẽc ◦ gΦ+ can be outside Vr. Moreover, choosing r small, and then taking c large
and ε small, the map

Φ− ∈ Vr "−→ Ẽc ◦ gΦ+ (Φ−)

is strictly concave. Indeed, its second derivative at Φ− ∈ Vr is very close in norm
to the negative form

Ψ− ∈ (P̃−H1/2)N "−→ −2
N∑
i=1

‖ψ−
i ‖2

H1/2
− 2

∑
1≤i,j≤N

(ϕ+
j , ϕ

+
i )

H1/2 (ψ−
i , ψ

−
j )

L2 .

Step 1 immediately follows from these facts. ��
Step 2. The min-max level E(P+) does not depend on P+.

Proof of Step 2. Take two projectors P+
1 , P+

2 , both ε-close to Λ+
c . For i = 1, 2, and

Φ+
i ∈

(
P̃+
i H

1/2
)N

, with Gram
L2 Φ+

i = 1IN and Ẽc(Φ+
i ) ≤ N + δ , let

J i(Φ+
i ) := max

Φ−∈(P̃−
i H

1/2)N

Gram
L2 Φ−=1IN

Ẽc
(
gi
Φ+

i

(Φ−)
)

= Ẽc ◦ giΦ+
i

(
ki(Φ+

i )
)
.

(46)

Here, giΦ+ and ki are the maps associated to P+
i in Step 1.

By Ekeland’s variational principle [5], there is a minimizing sequence
(

Φ+
1,n

)
n≥0

for J1, such that (J1)′
(

Φ+
1,n

)
−→

n−→+∞ 0 in
(
H−1/2

)N
. Let Ψn := g1

Φ+
1,n

(
k1(Φ+

1,n)
)

.

Then Ψn is a Palais-Smale sequence for Ẽc in the manifold

Σ :=
{

Ψ ∈
(
H1/2

)N /
Gram

L2 Ψ = 1IN
}
,

with Ẽc
(

Ψn
)
≥ N − δ

2
, where δ > 0 is the constant of the first step. So

Gram
L2

(
P̃+

2 Ψn
)
> 0 . We denote

Φ+
2,n := P̃+

2 Ψn •
[
Gram

L2

(
P̃+

2 Ψn
)]− 1

2
,

Φ−
2,n := P̃−

2 Ψn •
[
Gram

L2

(
P̃+

2 Ψn
)]− 1

2
.

(47)

One easily checks that Ψn = g2
Φ+

2,n

(Φ−
2,n) . Since Ẽc

(
Ψn
)
≥ N − δ

2
, we have

‖Φ−
2,n‖H1/2 ≤ r , where r > 0 is the same as in the proof of step 1. Since Ψn
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is a Palais-Smale sequence for Ẽc , the derivative of Ẽc ◦ g2
Φ+

2,n

at the point Φ−
2,n

converges to 0 as n goes to infinity. So, by the concavity properties of Ẽc ◦ g2
Φ+

2,n

in

the domain

V2,r :=
{

Φ− ∈
(
P̃−

2 H
1/2
)N / ‖Φ−‖

H1/2 ≤ r
}

(see the proof of step 1), we get

‖Φ−
2,n − k2(Φ+

2,n)‖
H1/2 −→

n→+∞ 0 and Ẽc
(

Ψn
)
− J2

(
Φ+

2,n

)
−→

n→+∞ 0 .

As a consequence,

E(P+
1 ) = inf

Φ+
1 ∈(P̃+

1 H
1/2)N

Gram
L2 Φ+

1 =1IN

J1
(

Φ+
1

)
≥ inf

Φ+
2 ∈(P̃+

2 H
1/2)N

Gram
L2 Φ+

2 =1IN

J2(Φ+
2 ) = E(P+

2 ) .

Since 1, 2 play symmetric roles in the above arguments, we conclude that
E(P+) does not depend on P+, for c large enough and ε small enough. ��

Step 3. Ec
(

Ψc,0
)
≤ E

(
Λ+
c

)
, where Ψc,0 is ”the” first solution of (D-F) found in

[E-S].

Proof of Step 3. For c large enough, if Ψ− ∈ Λ−
c H

1/2 satisfies Gram
L2 Ψ− ≤ 1IN ,

it follows from Hardy’s inequality that the map Ψ+ → Ec(Ψ+ + Ψ−) is strictly
convex on

W (Ψ−) := {Ψ+ ∈ (Λ+
c H

1/2)N ; Gram
L2 (Ψ+ + Ψ−) ≤ 1IN} .

As a consequence, for an arbitrary N -dimensional subspace V of Λ+
c H

1/2 ,
SV (Ψ−) := sup

Ψ+∈W (Ψ−)∩V N

Ec(Ψ+ +Ψ−) is achieved by an extremal point Ψ+
max of

the convex set W (Ψ−)∩ V N . Being extremal, Ψ+
max must satisfy the constraints

Gram
L2 (Ψ+

max + Ψ−) = 1IN .
So we have

sup
Ψ∈(Λ−

c H
1/2⊕V )N

Gram
L2 Ψ≤1IN

Ec(Ψ) = sup
Ψ−∈(Λ−

c H
1/2)N

Gram
L2 Ψ−≤1IN

SV (Ψ−) = sup
Ψ∈(Λ−

c H
1/2⊕V )N

Gram
L2 Ψ=1IN

Ec(Ψ) .

By proposition 2,

Ec
(

Ψc,0
)
≤ sup

Ψ∈(Λ−
c H

1/2⊕V )N

Gram
L2 Ψ≤1IN

Ec
(

Ψ
)
.
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Finally we get, for c large,

Ec(Ψc,0) ≤ inf
Φ+∈(Λ+

c H
1/2)N

Gram
L2 Φ+=1IN

sup
Ψ∈(Λ−

c H
1/2⊕ Span(Φ+))N

Gram
L2 Ψ=1IN

Ec(Ψ) = E(Λ+
c ) .

(The correspondence between Φ+ and V is V = Span(Φ+) ). This ends the proof
of Step 3 and of Lemma 9. ��

Thanks to Lemma 9, we are able to write the following inequalities for c large,
and P+ ε-close to Λ+

c , ε small :

E(P+) = E(Λ+
c ) ≥ Ec(Ψc,0)

≥ inf
Ψ solution of (DFc)

Λ−
ΨΨ = 0

Ec(Ψ)

≥ inf8>><
>>:

Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ) .

(48)

As announced before, we now give some important examples of projectors ε-close
to Λ+

c :

Lemma 10 Fix N,Z, and take c large enough. Then, for any Φ ∈
(
H1/2

)N
, with

Gram
L2 Φ ≤ 1IN , the projector Λ+

Φ = χ(0,+∞)

(
Hc,Φ

)
is ε-close to Λ+

c .

Proof of Lemma 10. We adapt a method of Griesemer, Lewis, Siedentop [7] to the
Hamiltonian Hc,Φ. Once again, it is more convenient to work in a system of units
such that Hc,Φ becomes

H̃c,Φ̃ : ψ "→ dc−1 ◦Hc,Φ ◦ dc(ψ) =
(
−iα · ∇ + β

)
ψ − Z

c

(
µ̃ ∗ 1

|x|
)
ψ

+
1
c

(
ρΦ̃ ∗ 1

|x|
)
ψ − 1

c

∫
R3
RΦ̃(x, y)

ψ(y)
|x − y|dy

with µ̃(E) = µ(c−1E), Φ̃(x) = c−3/2Φ(c−1x).
Denoting H1 := −iα ·∇+β, Λ̃+

Φ̃
:= χ(0,∞)

(
H̃c,Φ̃

)
, Λ̃+ := χ(0,∞)(H1), KΦ̃ :=

c
(
H̃c,Φ̃ −H1

)
, we find, as in the proof of Lemma 1 of [7],

(
Λ̃+

Φ̃
−Λ̃+

)
ψ =

1
πc

∫ +∞

0

dz
[
H2

1 +z2
]−1(

H1KΦ̃H̃c,Φ̃−z2KΦ̃

)[(
H̃c,Φ̃

)2

+z2
]−1

ψ ,
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and for any χ ∈ L2(R3,C4), following [7] (proof of Lemma 3), we get(
χ , (−∆ + 1)1/4(Λ̃+

Φ̃
− Λ̃+)ψ

)
L2

≤ M

c
‖χ‖

L2‖(−∆ + 1)1/4ψ‖
L2

for c large enough (M is a constant independent of c). As a consequence, if c is

large enough and bigger than
M

ε
, then Λ+

Φ is ε-close to Λ+
c . This ends the proof

of Lemma 10. ��

Now, to end the proof of Theorem 6, we just need the following result :

Lemma 11 Fix N, Z and take c > 0 large enough. If Φ ∈
(
H1/2

)N
, Gram

L2 Φ =

1IN , Λ−
ΦΦ = 0 and Ec(Φ) ≤ Nc2, then

Ec(Φ) = max
{
Ec(Ψ) ; Ψ ∈

[
Λ−

ΦH
1/2 ⊕ Span(Φ)

]N
, Gram

L2 Ψ = 1IN
}
.

Proof of Lemma 11. If Λ−
ΦΦ = 0 and Gram

L2 Φ = 1IN , then 0 is a critical point of
the map

Ψ− ∈
(

Λ−
ΦH

1/2
)N

"−→ Ec
(
gΦ(Ψ−)

)
,

with gΦ(Ψ−) =
(

Φ + Ψ−
)
•
[
1IN + Gram

L2 Ψ−
]−1/2

. Take ε > 0 small. By Lemma

10, Λ+
Φ is ε-close to Λ+

c for c large enough. From the proof of Lemma 9 (Step 1),
there is a unique critical point of Ec ◦ gΦ in a small neighborhood Vr of 0 in
Λ−

Φ(H1/2) and this critical point is the unique maximizer of Ec ◦ gΦ in Λ−
Φ(H1/2).

So, 0 is this maximizer. This proves Lemma 11. ��

Let us explain why Theorem 6 is now proved. We know that, for c large
enough,

Nc2 > E
(

Λ+
c

)
≥ Ec(Ψc,0) ≥ inf8>><

>>:
Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ) ,

hence
inf8>><

>>:
Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ) = inf8>>>>><
>>>>>:

Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ)≤Nc2

Ec(Ψ) .

Take ε > 0. By Lemma 10, for any Ψ ∈ (H1/2)N with Gram
L2 Ψ = 1IN , the

projector Λ+
Ψ is ε-close to Λ+

c , if c is large. Hence E(Λ+
Ψ) = E(Λ+

c ) (by Lemma 9),
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if we have chosen ε small enough. But if Ψ also satisfies Λ−
ΨΨ = 0 and Ec(Ψ) ≤

Nc2, then, from Lemma 11 and from the definition of E(Λ+
Ψ), we have E(Λ+

c ) =
E(Λ+

Ψ) ≤ Ec(Ψ). So

E
(

Λ+
c

)
≤ inf8>><
>>:

Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ) ,

and therefore,

E
(

Λ+
c

)
= Ec(Ψc,0) = inf8>><

>>:
Ψ∈(H1/2)N

Gram
L2 Ψ=1IN

Λ−
Ψ Ψ=0

Ec(Ψ)

and Theorem 6 is proved. ��
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