Nonrelativistic Limit of the Dirac-Fock Equations

M. J. Esteban and E. Séré

Abstract. In this paper, the Hartree-Fock equations are proved to be the non relativistic limit of the Dirac-Fock equations as far as convergence of "stationary states" is concerned. This property is used to derive a meaningful definition of "ground state" energy and "ground state" solutions for the Dirac-Fock model.

1 Introduction

In this paper we prove that solutions of Dirac-Fock equations converge, in a certain sense, towards solutions of the Hartree-Fock equations when the speed of light tends to infinity.

This limiting process allows us to define a notion of ground state for the Dirac-Fock equations, valid when the speed of light is large enough.

First of all, we choose units for which $m = \hbar = 1$, where *m* is the mass of the electron, and \hbar is Planck's constant. We also impose $\frac{e^2}{4\pi\varepsilon_0} = 1$, with -e the charge of an electron, ε_0 the permittivity of the vacuum.

The Dirac Hamiltonian can be written as

$$H_c = -i c \alpha \cdot \nabla + c^2 \beta, \qquad (1)$$

where c > 0 is the speed of light in the above units, $\beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}$, $\alpha_k = \begin{pmatrix} 0 & \sigma_k \\ \sigma_k & 0 \end{pmatrix}$ (k = 1, 2, 3) and the σ_k are the well known Pauli matrices. The operator H_c acts on 4-spinors, i.e. functions from \mathbb{R}^3 to \mathbb{C}^4 , and it is selfadjoint in $L^2(\mathbb{R}^3, \mathbb{C}^4)$, with domain $H^1(\mathbb{R}^3, \mathbb{C}^4)$ and form-domain $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$. Its spectrum is $(-\infty, -c^2] \cup [c^2, +\infty)$.

Let us consider a system of N electrons coupled to a fixed nuclear charge density $eZ\mu$, where e is the charge of the proton, Z > 0 the total number of protons and μ is a probability measure defined on \mathbb{R}^3 . Note that in the particular case of m point-like nuclei, each one having atomic number Z_i at a fixed location x_i ,

$$eZ\mu = \sum_{i=1}^{m} eZ_i \delta_{x_i}$$
 and $Z = \sum_{i=1}^{m} Z_i$.

In our system of units, the Dirac-Fock equations for such a molecule are given

by

$$\begin{cases} \overline{H}_{c,\Psi} \ \psi_{k} := H_{c} \ \psi_{k} - Z(\mu * \frac{1}{|x|})\psi_{k} + (\rho_{\Psi} * \frac{1}{|x|})\psi_{k} \\ -\int_{\mathbb{R}^{3}} \frac{R_{\Psi}(x,y) \ \psi_{k}(y)}{|x-y|} \ dy = \varepsilon_{k}^{c} \ \psi_{k} \quad (k = 1, ...N), \\ \text{Gram}_{_{\mathbf{L}^{2}}} \Psi = \mathbb{1}_{_{\mathbf{N}}} \quad (\text{i.e} \ \int_{_{\mathbb{R}^{3}}} \psi_{k}^{*} \psi_{l} = \delta_{\mathbf{k}\mathbf{l}} \ , \ 1 \le \mathbf{k}, \mathbf{l} \le \mathbf{N}). \end{cases}$$
(DF_c)

Here, $\Psi = (\psi_1, \dots, \psi_N)$, each ψ_k is a 4-spinor in $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$ (by bootstrap, ψ_k is also in any $W^{1,p}(\mathbb{R}^3)$ space, $1 \leq p < 3/2$), and

$$\rho_{\Psi}(x) := \sum_{k=1}^{N} \psi_{k}^{*}(x)\psi_{k}(x), \ R_{\Psi}(x,y) := \sum_{k=1}^{N} \psi_{k}(x) \otimes \psi_{k}^{*}(y) \ . \tag{2}$$

We have denoted ψ^* the complex line vector whose components are the conjugates of those of a complex (column) vector ψ , and $\psi_1^*\psi_2$ is the inner product of two complex (column) vectors ψ_1 , ψ_2 . The $n \times n$ matrix $\operatorname{Gram}_{L^2} \Psi$ is defined by the usual formulas

$$(\operatorname{Gram}_{L^{2}} \Psi)_{kl} := \int_{\mathbb{R}^{3}} \psi_{k}^{*}(x)\psi_{l}(x) \, dx \, . \tag{3}$$

Finally, $\varepsilon_1^c \leq \ldots \leq \varepsilon_N^c$ are eigenvalues of $\overline{H}_{c,\Psi}$. Each one represents the energy of one of the electrons, in the mean field created by the molecule. For physical reasons, we impose $0 < \varepsilon_k^c < c^2$. Note that the scalars ε_k^c can also be seen as Lagrange multipliers. Indeed, the Dirac-Fock equations are the Euler-Lagrange equations of the Dirac-Fock energy functional

$$\begin{split} \mathcal{E}_{c}(\Psi) &= \sum_{k=1}^{N} \quad \int_{\mathbb{R}^{3}} \psi_{k}^{*} H_{c} \psi_{k} - Z \Big(\mu * \frac{1}{|x|} \Big) \psi_{k}^{*} \psi_{k} \\ &+ \frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y) - \operatorname{tr} \Big(R_{\Psi}(x, y) R_{\Psi}(y, x) \Big)}{|x - y|} \, dx dy \end{split}$$

under the constraints $\int_{\mathbb{R}^3} \psi_k^* \psi_l = \delta_{kl}$.

,

In [6] we proved that under some assumptions on N and Z, there exists an infinite sequence of solutions of (DF_c) . More precisely:

Theorem 1 [6] Let N < Z + 1. For any $c > \frac{\pi/2 + 2/\pi}{2} \max(Z, 3N - 1)$, there exists a sequence of solutions of (DF_c) , $\left\{\Psi^{c,j}\right\}_{j\geq 0} \subset \left(H^{1/2}(\mathbb{R}^3)\right)^N$, such that

(i)
$$0 < \mathcal{E}_c(\Psi^{c,j}) < Nc^2$$

Vol. 2, 2001 Nonrelativistic Limit of the Dirac-Fock Equations

(ii)
$$\lim_{j \to +\infty} \mathcal{E}_c(\Psi^{c,j}) = Nc^2,$$

(iii) $0 < c^2 - \mu_j < \varepsilon_1^{c,j} \le \dots \le \varepsilon_N^{c,j} < c^2 - m_j$, with $\mu_j > m_j > 0$ independent of c.

The constant $\frac{\pi/2+2/\pi}{2}$ is related to a Hardy-type inequality obtained independently by Tix and Burenkov-Evans (see [15, 3, 16]), and which plays an important role in the proof of Theorem 1. With the physical value c = 137.037... and Z an integer (the total number of protons in the molecule), our conditions become $N \leq Z$, $N \leq 41$, $Z \leq 124$. The constraint $N \leq 41$ is technical, and has no physical meaning.

Our result was recently improved by Paturel [13], who relaxed the condition on N. Paturel obtains the same multiplicity result, assuming only that N < Z + 1 and $\frac{\pi/2+2/\pi}{2} \max(Z,N) < c$. Taking c = 137.037..., Paturel's conditions are $N \leq Z \leq 124$: they cover all existing neutral atoms. This is an important improvement.

In [6], the critical points $\Psi^{c,j}$ are obtained by a complicated min-max argument involving a family of min-max levels $c_{\nu,p}(F_j)$ (see [6] p. 511). Note that the expression "the critical points" is misleading. Indeed, for each j we can define the min-max level $E_{j,DF}^c := \liminf_{\nu \to 0, p \to \infty} c_{\nu,p}(F_j)$, and there exists a critical point $\Psi^{c,j}$ such that $E_{j,DF}^c = \mathcal{E}_c(\Psi^{c,j})$; but we do not know whether this critical point is unique. In the present paper, we do not write the definition of the min-max levels $c_{\nu,p}(F_j)$ in its full detail (the reader is referred to [6] for a complete definition). We just state the minimal information on $E_{j,DF}^c$ needed in the present paper.

Let us denote $E := H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$. Since

$$\sigma(H_c) = (-\infty, -c^2] \cup [c^2, +\infty) ,$$

the Hilbert space E can be split as

$$E = E_c^+ \oplus E_c^-$$

where $E_c^{\pm} := \Lambda_c^{\pm} E$, and $\Lambda_c^{\pm} := \chi_{\mathbb{R}_{\pm}}(H_c)$. The projectors Λ_c^{\pm} have a simple expression in the Fourier domain : $\widehat{\Lambda_c^{\pm}\psi}(\xi) = \widehat{\Lambda_c^{\pm}}(\xi) \ \widehat{\psi}(\xi)$, with

$$\widehat{\Lambda}_{c}^{\pm}(\xi) := \frac{1}{2} \left(\mathbb{I}_{c^{4}} \pm \frac{c \,\alpha \cdot \xi + c^{2} \beta}{\sqrt{c^{4} + c^{2} |\xi|^{2}}} \right) \,. \tag{4}$$

Proposition 2 [6, 13] For every $j \ge 0$, let V be any (N + j) dimensional complex subspace of E_c^+ . Then, taking the notation of Theorem 1, we have

$$E_{j,DF}^{c} = \mathcal{E}_{c}(\Psi^{c,j}) \leq \sup_{\substack{\Psi \in (E_{c}^{-} \oplus V)^{N} \\ \operatorname{Gram}_{L^{2}} \Psi \leq \mathbb{1}_{N}}} \mathcal{E}_{c}(\Psi).$$
(5)

In the present paper, we prove three main theorems. We first consider a sequence $c_n \to +\infty$ and a sequence $\{\Psi^n\}_n$ of solutions of (DF_{c_n}) . For all $n, \Psi^n = (\psi_1^n, ..., \psi_N^n)$, each ψ_k^n is in $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$, with $\int_{\mathbb{R}^3} \psi_k^* \psi_l \, dx = \delta_{kl}$ and $\overline{H}_{c_n, \Psi^n} \psi_k^n = \varepsilon_k^n \psi_k^n$. Using the standard Hardy inequality, one can prove that the functions ψ_k^n are in $H^1(\mathbb{R}^3, \mathbb{C}^4)$ for c_n large enough. We assume that

$$-\infty < \lim_{n \to +\infty} (\varepsilon_1^n - c_n^2) \le \lim_{n \to +\infty} (\varepsilon_N^n - c_n^2) < 0.$$
(6)

A (column) vector $\psi \in \mathbb{C}^4$ can be written in block form $\psi = \begin{pmatrix} \varphi \\ \chi \end{pmatrix}$ where $\varphi \in \mathbb{C}^2$ (respectively $\chi \in \mathbb{C}^2$) consists of the two upper (resp. lower) components of ψ . This gives the splitting $\psi_k^n = \begin{pmatrix} \varphi_k^n \\ \chi_k^n \end{pmatrix}$ with φ_k^n and χ_k^n in $H^1(\mathbb{R}^3, \mathbb{C}^2)$. Finally, Ψ^n splits as $\begin{pmatrix} \Phi^n \\ \chi^n \end{pmatrix}$, where $\Phi^n := (\varphi_1^n, ..., \varphi_N^n)$ and $\chi^n := (\chi_1^n, ..., \chi_N^n)$. Our first result is that $\Psi^n = \begin{pmatrix} \Phi^n \\ \chi^n \end{pmatrix}$ has a subsequence converging, in H^1 norm, towards $\bar{\Psi} = \begin{pmatrix} \bar{\Phi} \\ 0 \end{pmatrix}$, where $\bar{\Phi} = (\bar{\varphi}_1, \cdots, \bar{\varphi}_N) \in \left(H^1(\mathbb{R}^3, \mathbb{C}^2)\right)^N$ is a solution of the Hartree-Fock equations:

$$\begin{cases} \mathcal{H}_{\Phi}\varphi_{k} = -\frac{\Delta\varphi_{k}}{2} - Z\left(\mu * \frac{1}{|x|}\right)\varphi_{k} + \left(\rho_{\Phi} * \frac{1}{|x|}\right)\varphi_{k} \\ -\int_{\mathbb{R}^{3}} \frac{R_{\Phi}(x, y)\varphi_{k}(y)}{|x-y|} dy = \bar{\lambda}_{k}\varphi_{k}, \quad k = 1, ...N, \\ \int_{\mathbb{R}^{3}} \varphi_{k}^{*}\varphi_{l} dx = \delta_{kl} , \quad \bar{\lambda}_{k} = \lim_{n \to +\infty} (\varepsilon_{k}^{n} - c_{n}^{2}) . \end{cases}$$
(HF)

Here (as in the Dirac-Fock equations),

$$\rho_{\Phi}(x) = \sum_{l=1}^{N} \varphi_l^*(x) \varphi_l(x) , \quad R_{\Phi}(x,y) = \sum_{l=1}^{N} \varphi_l(x) \otimes \varphi_l^*(y) .$$

Note that the Hartree-Fock equations are the Euler-Lagrange equations corresponding to critical points in $(H^1(\mathbb{R}^3, \mathbb{C}^2))^N$ of the Hartree-Fock energy:

$$\mathcal{E}_{HF}(\Phi) := \sum_{k=1}^{N} \frac{1}{2} ||\nabla \varphi_k||_{L^2}^2 - Z \int_{\mathbb{R}^3} \left(\mu * \frac{1}{|x|}\right) |\varphi_k|^2 dx + \frac{1}{2} \iint_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\rho_{\Phi}(x) \rho_{\Phi}(y) - \operatorname{tr}\left(R_{\Phi}(x, y) R_{\Phi}(y, x)\right)}{|x - y|} \, dx dy ,$$
(7)

under the constraint

$$\int_{\mathbb{R}^3} \varphi_k^* \varphi_l = \delta_{kl}, \qquad i, j = 1, \dots N.$$

Theorem 3 Let N < Z + 1. Consider a sequence $c_n \to +\infty$ and a sequence $\{\Psi^n\}_n$ of solutions of (DF_{c_n}) , i.e. $\Psi^n = (\psi_1^n, \dots, \psi_N^n)$, each ψ_k^n being in $H^{1/2}(\mathbb{R}^3, \mathbb{C}^4)$, with $\int_{\mathbb{R}^3} \psi_k^* \psi_l \, dx = \delta_{kl}$ and $\overline{H}_{c_n,\Psi^n} \psi_k^n = \varepsilon_k^n \psi_k^n$. Assume that the multipliers ε_k^n , $k = 1, \dots, N$, satisfy (6). Then for n large enough, ψ_k^n is in $H^1(\mathbb{R}^3, \mathbb{C}^4)$, and there exists a solution of (HF), $\overline{\Phi} = (\overline{\varphi}_1, \dots, \overline{\varphi}_N)$, with negative multipliers, $\overline{\lambda}_1, \dots, \overline{\lambda}_N$, such that, after extraction of a subsequence,

$$\lambda_k^n := \varepsilon_k^n - (c_n)^2 \quad \underset{n \to +\infty}{\longrightarrow} \quad \bar{\lambda}_k \; , \quad k = 1, ..., N \; , \tag{8}$$

$$\psi_k^n = \begin{pmatrix} \varphi_k^n \\ \chi_k^n \end{pmatrix}_{n \to +\infty} \begin{pmatrix} \bar{\varphi}_k \\ 0 \end{pmatrix} \quad \text{in} \quad H^1(\mathbb{R}^3, \mathbb{C}^2) \times H^1(\mathbb{R}^3, \mathbb{C}^2), \tag{9}$$

$$\left\|\chi_k^n + \frac{i}{2c_n} (\sigma \cdot \nabla) \varphi_k^n \right\|_{L^2(\mathbb{R}^3, \mathbb{C}^2)} = O(1/(c_n)^3), \tag{10}$$

and

$$\mathcal{E}_{c_n}(\Psi^n) - Nc_n^2 \xrightarrow[n \to +\infty]{} \mathcal{E}_{HF}(\bar{\Phi}).$$
(11)

As a particular case, we have

Corollary 4 If $c_n \to +\infty$ and N, Z, μ are fixed, then for any $j \ge 0$ the sequence $\{\Psi^{c_n,j}\}_n$ of Theorem 1 satisfies the assumptions of Theorem 3 (see (iii) in Theorem 1). So it is precompact in $(H^1(\mathbb{R}^3, \mathbb{C}^4))^N$. Up to extraction of subsequences,

$$\lambda_k^{c_{n,j}} \coloneqq \varepsilon_k^{c_{n,j}} - c_n^2 \longrightarrow \bar{\lambda}_k^j < 0 \ , \ k = 1, ..., N$$
(12)

$$\Psi^{c_n,j} \longrightarrow \begin{pmatrix} \bar{\Phi}^j \\ 0 \end{pmatrix} \quad \text{in} \quad \left(H^1(\mathbb{R}^3, \mathbb{C}^2)\right)^N \times \left(H^1(\mathbb{R}^3, \mathbb{C}^2)\right)^N \tag{13}$$

and $\bar{\Phi}^j = \left(\bar{\varphi}_1^j, \cdots, \bar{\varphi}_n^j\right)$ is a solution of the Hartree-Fock equations with multipliers $\bar{\lambda}_1^j, \cdots, \bar{\lambda}_N^j$. Moreover,

$$\mathcal{E}_{c_n}(\Psi^{c_n,j}) - Nc_n^2 \xrightarrow[n \to +\infty]{} \mathcal{E}_{HF}(\bar{\Phi}^j).$$
(14)

Particular solutions of the Hartree-Fock equations are the minimizers of $\mathcal{E}_{HF}(\Phi)$ under the constraints $\operatorname{Gram}_{L^2} \Phi = \mathbb{1}_{\mathbb{N}}$. They are called ground states. Their existence was proved by Lieb and Simon [10] under the assumption N < Z+1, but the uniqueness question remains unsolved (see also [11] for the existence of excited states).

It is difficult to define the notion of ground state for the Dirac-Fock model, since \mathcal{E}_c has no minimum under the constraints $\int_{\mathbb{R}^3} \psi_k^* \psi_l = \delta_{kl}$. Our second main

result asserts that "the" first solution $\Psi^{c,0}$ of (DF_c) found in [6], whose energy level is denoted $E^c_{0,DF}$, can be considered, in some (weak) sense, as a ground state for (DF_c) . Indeed, $E^c_{0,DF} - Nc^2$ converges to the minimum of \mathcal{E}_{HF} as c goes to infinity. Moreover, for c large the multipliers $\varepsilon^{c,0}_k$ associated to $\Psi^{c,0}$ are the Nsmallest positive eigenvalues of the mean-field operator $\overline{H}_{c,\Psi^{c,0}}$.

Theorem 5 Let N < Z + 1 and c sufficiently large. With the above notations,

$$E_{0,DF}^{c} = \min_{\text{Gram}_{L^{2}} \Phi = \mathbf{1}_{N}} \mathcal{E}_{HF}(\Phi) + Nc^{2} + o(1)_{c \to +\infty} .$$
(15)

Moreover, for any subsequence $\{\Psi^{c_n,0}\}_n$ converging in $(H^1(\mathbb{R}^3,\mathbb{C}^4))^N$ to some $\begin{pmatrix} \Phi^0\\ 0 \end{pmatrix}$, $\bar{\Phi}^0$ is a ground state of the Hartree-Fock model, i.e.

$$\mathcal{E}_{HF}(\bar{\Phi}^0) = \min_{\text{Gram}_{L^2}\Phi = \mathbf{1}_N} \mathcal{E}_{HF}(\Phi).$$
(16)

Furthermore, for c large, the eigenvalues corresponding to $\Psi^{c,0}$ in (DF_c) , $\varepsilon_1^{c,0}, \ldots, \varepsilon_N^{c,0}$ are the smallest positive eigenvalues of the linear operator $\overline{H}_{c,\Psi^{c,0}}$ and the (N+1)-th positive eigenvalue of this operator is strictly larger than $\varepsilon_N^{c,0}$.

Finally, we are able to show that, for c large enough, the function $\Psi^{c,0}$ can be viewed as an electronic ground state for the Dirac-Fock equations in the following sense: it minimizes the Dirac-Fock energy among all electronic configurations which are orthogonal to the "Dirac sea".

Theorem 6 Fix N, Z with N < Z + 1 and take c sufficiently large. Then $\Psi^{c,0}$ is a solution of the following minimization problem:

$$\inf\{\mathcal{E}_c(\Psi); \operatorname{Gram}_{\Psi^2} \Psi = \mathbb{1}_{\mathbb{N}}, \Lambda_{\Psi} \Psi = 0\}$$
(17)

where $\Lambda_{\Psi}^{-} = \chi_{(-\infty,0)}(\overline{H}_{c,\Psi})$ is the negative spectral projector of the operator $\overline{H}_{c,\Psi}$, and $\Lambda_{\Psi}^{-}\Psi := (\Lambda_{\Psi}^{-}\psi_1, \cdots, \Lambda_{\Psi}^{-}\psi_N)$.

The constraint $\Lambda_{\Psi}^{-}\Psi = 0$ has a physical meaning. Indeed, according to Dirac's original ideas, the vacuum consists of infinitely many electrons which completely fill up the negative space of $\overline{H}_{c,\Psi}$: these electrons form the "Dirac sea". So, by the Pauli exclusion principle, additional electronic states should be in the positive space of the mean-field Hamiltonian $\overline{H}_{c,\Psi}$. The proof of Theorem 6 will be given in Section 4. This proof uses some other interesting min-max characterizations of $\Psi^{c,0}$ (see Lemma 9). Vol. 2, 2001 Nonrelativistic Limit of the Dirac-Fock Equations

2 The nonrelativistic limit

This section is devoted to the proof of Theorem 3. We first notice that when N < Z + 1, N, Z fixed, and c is sufficiently large, any solution of (DF_c) is actually in $(H^1(\mathbb{R}^3))^N$. This follows from the fact that for ν small, the operator $H_1 - \frac{\nu}{|x|}$ is essentially self-adjoint with domain $H^1(\mathbb{R}^3)$ (see [14]).

We can also obtain a priori estimates on H^1 norms:

Lemma 7. Fix $N, Z \in \mathbb{Z}^+$, take c large enough, and let Ψ^c be a solution of (DF_c) . If the multipliers ε_k^c associated to Ψ^c satisfy $0 \le \varepsilon_k^c \le c^2$ (k = 1, ..., N), then $\Psi^c \in (H^1(\mathbb{R}^3, \mathbb{C}^4))^N$, and the following estimate holds

$$||\Psi^{c}||_{_{2}}^{^{2}}+||\nabla\Psi^{c}||_{_{2}}^{^{2}} \leq K \; .$$

The constant K is independent of c (for c large).

Proof. The normalization constraint $\operatorname{Gram}_{L^2} \Psi^c = \mathbb{1}_N$ implies

$$||\Psi^{c}||_{2}^{2} = N . (18)$$

Using the (DF_c) equation and the standard Hardy inequality

$$\int_{\mathbb{R}^3} \frac{u^2}{|x|^2} \le 4 \int_{\mathbb{R}^3} |\nabla u|^2,$$
(19)

one easily proves that Ψ^c is in H^1 , and satisfies:

$$(H_c \Psi^c, H_c \Psi^c) = c^4 ||\Psi^c||_2^2 + c^2 ||\nabla \Psi^c||_2^2$$
(20)

$$\leq c^{4} ||\Psi^{c}||_{_{2}}^{^{2}} + \ell(Z^{2} + N^{2}) ||\nabla\Psi^{c}||_{_{2}}^{^{2}} + \ell c^{2} \max(N, Z) ||\nabla\Psi^{c}||_{_{2}} ,$$

for some $\ell > 0$ independent of N, Z and c. The estimates (18) and (20) prove the lemma.

Proof of Theorem 3. Let us split the spinors $\psi_k^n : \mathbb{R}^3 \to \mathbb{C}^4$ in blocks of upper and lower components:

$$\psi_k^n = \begin{pmatrix} \varphi_k^n \\ \chi_k^n \end{pmatrix}, \quad \text{with} \quad \varphi_k^n, \ \chi_k^n : \mathbb{R}^3 \to \mathbb{C}^2.$$

We denote $L := -i \left(\sigma \cdot \nabla \right)$. Then we can rewrite (DF_{c_n}) in the following way:

$$\begin{cases} c_n L\chi_k^n - Z\left(\mu * \frac{1}{|x|}\right)\varphi_k^n + \left(\sum_{l=1}^N (|\varphi_l^n|^2 + |\chi_l^n|^2) * \frac{1}{|x|}\right)\varphi_k^n + (c_n)^2\varphi_k^n \\ -\sum_{l=1}^N \varphi_l^n(x) \int_{\mathbb{R}^3} \frac{(\varphi_l^n)^*(y)\varphi_k^n(y) + (\chi_l^n)^*(y)\chi_k^n(y)}{|x-y|} dy = \varepsilon_k^n\varphi_k^n \\ c_n L\varphi_k^n - Z\left(\mu * \frac{1}{|x|}\right)\chi_k^n + \left(\sum_{l=1}^N (|\varphi_l^n|^2 + |\chi_l^n|^2) * \frac{1}{|x|}\right)\chi_k^n - (c_n)^2\chi_k^n \qquad (21) \\ -\sum_{l=1}^N \chi_l^n(x) \int_{\mathbb{R}^3} \frac{(\varphi_l^n)^*(y)\varphi_k^c(y) + (\chi_l^c)^*(y)\chi_k^c(y)}{|x-y|} dy = \varepsilon_k^n\chi_k^n \\ \int_{\mathbb{R}^3} (\varphi_k^n)^*\varphi_l^n + (\chi_l^n)^*\chi_l^n dx = \delta_{kl} . \end{cases}$$

Note that $\|L\chi\|_{L^2} = \|\nabla\chi\|_{L^2}$ for all $\chi \in H^1(\mathbb{R}^3, \mathbb{C}^2)$. So, dividing by c_n the first equation of (21), we get

$$\|\nabla \chi_k^n\|_{L^2(\mathbb{R}^3,\mathbb{C}^2)} = O(1/c_n) .$$
(22)

Dividing by $2(c_n)^2$ the second equation of (21), and using the fact that $\varepsilon_k^n - (c_n)^2$ is a bounded sequence, we get

$$\left\|\chi_{k}^{n} - \frac{1}{2c_{n}}L\varphi_{k}^{n}\right\|_{L^{2}(\mathbb{R}^{3},\mathbb{C}^{2})} = \frac{1}{(c_{n})^{2}} O\left(\sum_{l=1}^{N} \|\chi_{l}^{n}\|_{H^{1}(\mathbb{R}^{3},\mathbb{C}^{2})}\right) .$$
(23)

The estimate (23) together with Lemma 7 implies

$$\|\chi_k^n\|_{L^2(\mathbb{R}^3,\mathbb{C}^2)} = O(1/c_n) .$$
(24)

Combining this with (22), we obtain

$$\|\chi_k^n\|_{H^1(\mathbb{R}^3,\mathbb{C}^2)} = O(1/c_n) .$$
(25)

So
$$\sum_{l=1}^{N} \|\chi_{l}^{n}\|_{H^{1}(\mathbb{R}^{3},\mathbb{C}^{2})} = O(1/c_{n})$$
, and (23) gives the estimate
 $\left\|\chi_{k}^{n} - \frac{1}{2c_{n}}L\varphi_{k}^{n}\right\|_{L^{2}(\mathbb{R}^{3},\mathbb{C}^{2})} = O(1/(c_{n})^{3}).$ (26)

Now, the first equation of (21), combined with (26), implies

$$\begin{cases} -\frac{\Delta \varphi_k^n}{2} - Z(\mu * \frac{1}{|x|})\varphi_k^n + \left(\sum_{l=1}^N |\varphi_l^n|^2 * \frac{1}{|x|}\right)\chi_k^n \\ -\sum_{l=1}^N \varphi_l^n(x) \int_{\mathbb{R}^3} \frac{(\varphi_l^n)^*(y)\varphi_k^n(y)}{|x-y|} dy = \lambda_k^n \varphi_k^n + h_k^n , \\ \int_{\mathbb{R}^3} (\varphi_k^n)^* \varphi_l^n = \delta_{kl} + r_{kl}^n , \end{cases}$$

with $\lambda_k^n := \varepsilon_k^n - (c_n)^2$, and

$$\lim_{n \to +\infty} ||h_k^n||_{H^{-1}(\mathbb{R}^3)} = 0, \quad \lim_{n \to +\infty} |r_{kl}^n| = 0 \quad \text{for all} \quad k, l \in \{1, \dots, N\}.$$

Therefore $\Phi^n := (\varphi_1^n, \dots, \varphi_N^n)$ is a Palais-Smale sequence for the Hartree-Fock problem, and the multipliers λ_k^n satisfy $\overline{\lim}_{n \to +\infty} \lambda_k^n < 0$. At this point, we just invoke an argument used in [11] to obtain the convergence in H^1 norm of some subsequence $\{\Phi^{n'}\}$ towards $\overline{\Phi} = (\overline{\varphi}_1, \dots, \overline{\varphi}_N)$, a solution of the Hartree-Fock equations

$$\begin{cases} \mathcal{H}_{\bar{\Phi}}\bar{\varphi}_k = \bar{\lambda}_k \ \bar{\varphi}_k \ , \quad k = 1, \dots N \\ \int_{\mathbb{R}^3} \bar{\varphi}_k^* \ \bar{\varphi}_l \ = \ \delta_{kl} \ , \end{cases}$$

where $\bar{\lambda}_k = \lim_{n' \to +\infty} \lambda_k^{n'}$.

Finally, let us prove that $\mathcal{E}_{c_{n'}}(\Psi^{n'}) - N(c_{n'})^2$ converges to $\mathcal{E}_{HF}(\bar{\Phi})$. From Lemma 7 and the estimate (26), one easily gets

$$\mathcal{E}_{c_n}(\Psi^n) - Nc_n^2 = \mathcal{E}_{HF}(\Phi^n) + O(1/(c_n)^2) .$$
(27)

Since $\Phi^{n'}$ converges in H^1 norm to $\overline{\Phi}$, the energy level $\mathcal{E}_{HF}(\Phi^{n'})$ converges to $\mathcal{E}_{HF}(\overline{\Phi})$. So (27) implies the desired convergence. This ends the proof of Theorem 3.

3 Ground state for Dirac-Fock equations in the nonrelativistic limit

The aim of this section is to prove Theorem 5. The estimate given in Proposition 2 on the energy $\mathcal{E}_c(\Psi^{c,j})$ and the expression of $\hat{\Lambda}_c^{\pm}$ given in (4), will be crucial.

Proof of Theorem 5. By Corollary 4, for any sequence c_n going to infinity, $\Psi^{c_n,0}$ is precompact in H^1 norm. If it converges, its limit is of the form $\begin{pmatrix} \bar{\Phi}^0 \\ 0 \end{pmatrix}$, and

 $\left(\mathcal{E}_{c_n}(\Psi^{c_n,0})-N(c_n)^2\right)$ converges to $\mathcal{E}_{HF}(\bar{\Phi}^0)$. As a consequence,

$$\lim_{c \to +\infty} \left(\mathcal{E}_c(\Psi^{c,0}) - Nc^2 \right) \geq \inf_{\operatorname{Gram}_{L^2} \Phi = \mathbf{I}_N} \mathcal{E}_{HF}(\Phi).$$
(28)

In order to prove (15) and (16) of Theorem 5, we just have to show that

$$\overline{\lim}_{c \to +\infty} \left(\mathcal{E}_c(\Psi^{c,0}) - Nc^2 \right) \leq \inf_{\operatorname{Gram}_{L^2} \Phi = \mathbf{I}_N} \mathcal{E}_{HF}(\Phi).$$
(29)

Take $\Phi = (\varphi_1, \cdots, \varphi_N) \in (H^1(\mathbb{R}^3, \mathbb{C}^{-2}))^N$, with $\operatorname{Gram}_{L^2} \Phi = \mathbb{I}_{\mathbb{N}}$. Let V_c be the complex subspace of E_c^+ defined by

$$V_c := \operatorname{Span} \left\{ \Lambda_c^+ \begin{pmatrix} \varphi_1 \\ 0 \end{pmatrix}, \dots, \Lambda_c^+ \begin{pmatrix} \varphi_N \\ 0 \end{pmatrix} \right\} \,. \tag{30}$$

From formula (4) and Lebesgue's convergence theorem, one easily gets, for $k=1,\ldots,N$,

$$\lim_{c \to +\infty} \left\| \Lambda_c^- \begin{pmatrix} \varphi_k \\ 0 \end{pmatrix} \right\|_{H^1} = 0 .$$
(31)

So, for c sufficiently large, we have

$$\dim V_c = N . (32)$$

Hence, by (5),

$$E_{0,DF}^{c} = \mathcal{E}_{c}(\Psi^{c,0}) \leq \sup_{\substack{\Psi \in (E^{-} \oplus V_{c})^{N} \\ \operatorname{Gram}_{L^{2}} \Psi \leq \mathbf{I}_{N}}} \mathcal{E}_{c}(\Psi) .$$
(33)

Let $\Psi^+ \in (E_c^+)^N$, $\Psi^- \in (E_c^-)^N$ such that $\operatorname{Gram}_{L^2}(\Psi^+ + \Psi^-) \leq \mathbb{1}_N$. By the concavity property of \mathcal{E}_c in the E_c^- direction (see [6], Lemma 2.2), if c is large enough, we have

$$\mathcal{E}_{c}(\Psi^{+} + \Psi^{-}) \leq \mathcal{E}_{c}(\Psi^{+}) + \mathcal{E}_{c}^{'}(\Psi^{+}) \cdot \Psi^{-} - \frac{1}{4} \sum_{k=1}^{N} (\psi_{k}^{-}, \sqrt{-c^{2}\Delta + c^{4}} \psi_{k}^{-}) \\
\leq \mathcal{E}_{c}(\Psi^{+}) + M ||\Psi^{-}||_{L^{2}} - \frac{c^{2}}{4} ||\Psi^{-}||_{L^{2}}^{2},$$
(34)

for some constant M > 0 independent of c. Hence, for c large,

$$E_{0,DF}^c \leq \sup_{\Psi^+ \in D(V_c)} \mathcal{E}_c(\Psi^+) + \circ(1)_{c \to +\infty} , \qquad (35)$$

where $D(V_c) := \left\{ \Psi^+ \in (V_c)^N \ ; \ \operatorname{Gram}_{{}_{\mathrm{L}^2}} \Psi^+ \leq \mathbb{1}_{{}_{\mathrm{N}}} \right\}$.

Vol. 2, 2001 Nonrelativistic Limit of the Dirac-Fock Equations

If c is large enough, it follows from Hardy's inequality (19) that the map $\Psi^+ \to \mathcal{E}_c(\Psi^+)$ is strictly convex on the convex set

$$\mathcal{A}^+ := \left\{ \Psi^+ \in (E_c^+)^N \, ; \, \operatorname{Gram}_{L^2} \Psi^+ \le \mathbb{1}_{N} \right\}.$$

Indeed, its second derivative at any point Ψ^+ of \mathcal{A}^+ is of the form

$$\mathcal{E}_{c}^{\prime\prime}(\Psi^{+})[d\Psi^{+}]^{2} = 2\sum_{k=1}^{N} (d\psi_{k}, \sqrt{c^{4} - c^{2}\Delta} \, d\psi_{k})_{L^{2}} + Q(d\Psi^{+})$$

with Q a quadratic form on $(H^{1/2}(\mathbb{R}^3, \mathbb{C}^4))^N$ bounded independently of c and $\Psi^+ \in \mathcal{A}^+$.

As a consequence, $\sup_{\Psi^+ \in D(V_c)} \mathcal{E}_c(\Psi^+)$ is achieved by an extremal point Ψ^+_{max} of the convex set $D(V_c) = \mathcal{A}^+ \cap (V_c)^N$. Being extremal in $D(V_c)$, the point Ψ^+_{max} satisfies

$$\operatorname{Gram}_{L^2} \Psi_{max}^+ = \mathbb{1}_{N} . \tag{36}$$

Since $\psi_{k,max}^+ \in V_c$, there is a matrix $A = (a_{kl})_{1 \le k,l \le N}$ such that, for all l, $\psi_{l,max}^+ = \sum_{1 \le k \le N} a_{kl} \Lambda_c^+ {\varphi_k \choose 0}$. Then

$$A^* \operatorname{Gram}_{L^2}\left(\Lambda_c^+ \left(\begin{smallmatrix} \Phi \\ 0 \end{smallmatrix}\right)\right) A = \operatorname{Gram}_{L^2} \Psi_{max}^+ = \mathbb{I}_{\mathbb{N}} .$$
(37)

Using the U(N) invariance of $D(V_c)$ and \mathcal{E}_c , and the polar decomposition of square matrices, one can assume, without restricting the generality, that $A = A^*$ and A is positive definite. Recalling that $\operatorname{Gram}_{L^2} \Phi = \mathbb{I}_N$, we see, from (31), that $\operatorname{Gram}_{L^2}(\Lambda_c^+\begin{pmatrix} \Phi \\ 0 \end{pmatrix}) = \mathbb{I}_N + o(1)$. So (37) implies $A^2 = \mathbb{I}_N + o(1)$, hence $A = \mathbb{I}_N + o(1)$. Combining this with (31), we get

$$\begin{split} \|\psi_{k,max}^{+} - \binom{\varphi_{k}}{0}\|_{H^{1}} &= o(1)_{c \to +\infty} \,. \end{split}$$

Now, since $\psi_{k,max}^{+} \in E_{c}^{+}$, $H_{c} \psi_{k,max}^{+} = \sqrt{c^{4} - c^{2}\Delta} \psi_{k,max}^{+}$. But
 $\sqrt{c^{4} - c^{2}\Delta} \leq c^{2} - \frac{\Delta}{2}$.

This inequality is easily obtained in the Fourier domain: it follows from $\sqrt{1+x} \le 1 + \frac{x}{2}$ ($\forall x \ge 0$). So we get

$$\sum_{k=1}^{N} (H_c \psi_{k,max}^+, \psi_{k,max}^+)_{L^2} \le Nc^2 + \frac{1}{2} \sum_{k=1}^{N} \|\nabla \psi_{k,max}^+\|_{L^2}^2$$

Combining this with (31), we find

$$\mathcal{E}_c(\Psi_{max}^+) \le Nc^2 + \mathcal{E}_{HF}(\Phi) + \circ(1)_{c \to +\infty} .$$
(38)

Finally, (35) and (38) imply

$$\begin{aligned}
E_{0,DF}^{c} &\leq \mathcal{E}_{c}(\Psi_{max}^{+}) + \circ(1)_{c \to +\infty} \\
&\leq Nc^{2} + \mathcal{E}_{HF}(\Phi) + \circ(1)_{c \to +\infty}.
\end{aligned}$$
(39)

Since Φ is arbitrary, (39) implies (29). The formulas (15), (16) of Theorem 5 are thus proved.

We now check the last assertion about the $\varepsilon_k^{c,0}$, $k = 1, \ldots, N$, being the smallest eigenvalues of the operator $\overline{H}_{c,\Psi^{c,0}}$ for c large. By Corollary 4, we can translate this statement in the language of sequences. We take a sequence $c_n \to +\infty$ such that $\{\Psi^{c_n,0}\}_n$ converges in $(H^1(\mathbb{R}^3,\mathbb{C}^4))^N$ to some $(\overline{\Phi}^0)$, for n large enough. Let $\overline{H}_n := \overline{H}_{c_n,\Psi^{c_n,0}}$ and $\mathcal{H}_\infty := \mathcal{H}_{\overline{\Phi}^0}$. We have $\overline{H}_n \psi_k^{c_n,0} = \varepsilon_k^n \psi_k^{c_n,0}$ and $\mathcal{H}_\infty \overline{\varphi}_k^0 = \overline{\lambda}_k \overline{\varphi}_k^0$, with

$$0 < \varepsilon_1^n \le \dots \le \varepsilon_N^n < (c_n)^2, \quad \bar{\lambda}_1 \le \dots \le \bar{\lambda}_N < 0, \quad \bar{\lambda}_k = \lim_{n \to +\infty} (\varepsilon_k^n - (c_n)^2).$$

Let us denote $e_1^n \leq \cdots \leq e_i^n \leq \cdots$ the sequence of eigenvalues of \overline{H}_n , in the interval $(0, c_n^2)$, counted with multiplicity. Similarly, we shall denote $\overline{\nu}_1 \leq \cdots \leq \overline{\nu}_i \leq \cdots$ the sequence of eigenvalues of \mathcal{H}_∞ in the interval $(-\infty, 0)$, counted with multiplicity. Let $z \in \mathbb{C} \setminus \sigma(\mathcal{H}_\infty)$. Then for *n* large enough, $z + (c_n)^2 \in \mathbb{C} \setminus \sigma(\overline{H}_n)$, and the resolvent

$$R_n(z + (c_n)^2) := \left((z + (c_n)^2)I - \overline{H}_n \right)^{-1}$$

converges in norm towards the operator L(z) : $\binom{\varphi}{\chi} \to \binom{\bar{R}(z)\varphi}{0}$, where $\bar{R}(z) := \left(zI - \mathcal{H}_{\infty}\right)^{-1}$ is the resolvent of \mathcal{H}_{∞} . So, by the standard spectral theory, $\lim_{n \to +\infty} (e_i^n - (c_n)^2) = \bar{\nu}_i$ for all $i \ge 1$.

We know that $\overline{\Phi}^0$ is a ground state of the Hartree-Fock model. So a result proved in [1] tells us that $\overline{\nu}_k = \overline{\lambda}_k$ for all $1 \le k \le N$, and $\overline{\nu}_{N+1} > \overline{\lambda}_N$. But $(\varepsilon_N^n - (c_n)^2)$ converges to $\overline{\lambda}_N$, and $(e_{N+1}^n - (c_n)^2)$ converges to $\overline{\nu}_{N+1}$, as n goes to infinity. So, for n large enough, $e_{N+1}^n > \varepsilon_N^n$, hence $\varepsilon_k^n = e_k^n$ for all $1 \le k \le N$. This ends the proof of Theorem 5.

4 Proof of Theorem 6.

In this section, both Φ and Ψ will denote *N*-uples of 4-spinors (i.e. *N*-uples of functions from \mathbb{R}^3 into \mathbb{C}^4). As explained in the Introduction of the present paper, "the" solution $\Psi^{c,0}$ was obtained in [6] by a complicated min-max argument. Note that we are not able to prove that this min-max argument leads to a unique critical point (this is not surprising: even in the simpler case of nonrelativistic Hartree-Fock, no uniqueness result is known for "the" ground state). However, the min-max level $E_{0,DF}^c = \mathcal{E}_c(\Psi^{c,0})$ is well defined and unique. For *c* large, we will show that the definition of $E_{0,DF}^c$ can be simplified.

First of all, we introduce the notion of projector " ε -close to Λ_c^+ ", where $\Lambda_c^+ = \frac{1}{2} |H_c|^{-1} (H_c + |H_c|)$ is the positive free-energy projector.

Definition 8 Let P^+ be an orthogonal projector in $L^2(\mathbb{R}^3, \mathbb{C}^4)$, whose restriction to $H^{\frac{1}{2}}(\mathbb{R}^3, \mathbb{C}^4)$ is a bounded operator on $H^{\frac{1}{2}}(\mathbb{R}^3, \mathbb{C}^4)$.

Given $\varepsilon > 0$, P^+ is ε -close to Λ_c^+ if and only if, for all $\psi \in H^{\frac{1}{2}}(\mathbb{R}^3, \mathbb{C}^4)$,

$$\left\| \left(-c^2 \Delta + c^4 \right)^{\frac{1}{4}} \left(P^+ - \Lambda_c^+ \right) \psi \right\|_{L^2(\mathbb{R}^3, \mathbb{C}^4)} \le \varepsilon \left\| \left(-c^2 \Delta + c^4 \right)^{\frac{1}{4}} \psi \right\|_{L^2(\mathbb{R}^3, \mathbb{C}^4)}$$

An obvious example of projector ε -close to Λ_c^+ is Λ_c^+ itself. More interesting examples will be given below. Let us now give a min-max principle associated to P^+ :

Lemma 9 Fix N, Z with N < Z + 1. Take c > 0 large enough, and P^+ a projector ε -close to Λ_c^+ , for $\varepsilon > 0$ small enough. Let $P^- = \mathbb{1}_{r^2} - P^+$, and define

$$E(P^+) := \inf_{\substack{\Phi^+ \in (P^+ H^{\frac{1}{2}})^N \\ \operatorname{Gram}_{\mathfrak{l}_2} \Phi^+ = \mathbf{I}_N}} \sup_{\substack{\Psi \in (P^- H^{\frac{1}{2}} \oplus \operatorname{Span}(\Phi^+))^N \\ \operatorname{Gram}_{\mathfrak{l}_2} \Psi = \mathbf{I}_N}} \mathcal{E}_c(\Psi) .$$

Then $E(P^+)$ does not depend on P^+ and $\mathcal{E}_c(\Psi^{c,0}) \leq E(P^+)$.

Remark In the case N = 1, \mathcal{E}_c is the quadratic form $(\psi, H\psi)_{_{L^2}}$ associated to the operator $H = H_c - Z\mu * \frac{1}{|x|}$. Then $E(\Lambda_c^+)$ coincides with the min-max level $\lambda_1(V)$ defined in [4], for $V = -Z\mu * \frac{1}{|x|}$. By Theorem 3.1 of [4], if $c > \frac{\pi/2 + 2/\pi}{2}$, then $\lambda_1(V)$ is the first positive eigenvalue of H.

Proof of Lemma 9. The idea behind this lemma is inspired by [2]. Note that, under our assumptions, $E(P^+) < Nc^2(1 + K\varepsilon)$ for some K > 0 independent of c and ε . This follows from arguments similar to those used in the proof of Lemma 5.3 of [6]. In [6] the free energy projectors Λ_c^{\pm} were used. With these projectors, it was seen that $E(\Lambda_c^+) < Nc^2$ (thanks to a careful choice of Φ^+). When P^+ is ε -close to Λ_c^+ , we then get $E(P^+) < Nc^2(1 + K\varepsilon)$.

To continue the proof of the lemma we perform a change of physical units. In mathematical language, this change corresponds to a dilation in space by the factor c, and to dividing the energies by c^2 . Let $(d_c\varphi)(x) = c^{3/2}\varphi(cx)$ and

$$\widetilde{\mathcal{E}}_{c}(\Phi) := \frac{1}{c^{2}} \mathcal{E}_{c}\left(d_{c}\Phi\right) \\
= \sum_{k=1}^{N} \int_{\mathbb{R}^{3}} \left(\varphi_{k}, \left(-i\alpha \cdot \nabla + \beta\right)\varphi_{k}\right) - \frac{Z}{c} \left(\widetilde{\mu} * \frac{1}{|x|}\right) |\varphi_{k}|^{2} \qquad (40) \\
+ \frac{1}{2c} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho_{\Phi}(x)\rho_{\Phi}(y) - \|R_{\Phi}(x,y)\|^{2}}{|x-y|} d^{3}x d^{3}y$$

where $\tilde{\mu}(E) = \mu(c^{-1}E)$ for any Borel subset E of \mathbb{R}^3 .

The interest of this rescaled energy $\widetilde{\mathcal{E}}_c$ is that for c large and $\operatorname{Gram}_{L^2}\Psi \leq 1\!\!1_N$, we have

$$\widetilde{\mathcal{E}}_{c}(\Psi) = \sum_{k=1}^{N} \int_{\mathbb{R}^{3}} \left(\psi_{k}, (-i\alpha\nabla + \beta)\psi_{k} \right) + O\left(\frac{1}{c} ||\Psi||_{(H^{1/2})^{N}}^{2}\right).$$
(41)

Let us denote $\widetilde{P}^{\pm} := d_{c^{-1}} \circ P^{\pm} \circ d_c$, $\widetilde{\Lambda}^{\pm} := d_{c^{-1}} \circ \Lambda_c^{\pm} \circ d_c = \chi_{\mathbb{R}_{\pm}} \left(-i\alpha.\nabla + \beta \right)$. Note that $\widetilde{\Lambda}^{\pm}$ does not depend on c. Now, P^+ is ε -close to Λ_c^+ if and only if

$$\begin{cases}
\left\| \left(-\Delta + 1 \right)^{\frac{1}{4}} \left(\widetilde{P}^{+} - \widetilde{\Lambda}^{+} \right) \psi \right\|_{L^{2}(\mathbb{R}^{3}, \mathbb{C}^{4})} \\
\leq \varepsilon \left\| \left(-\Delta + 1 \right)^{\frac{1}{4}} \psi \right\|_{L^{2}(\mathbb{R}^{3}, \mathbb{C}^{4})}, \quad \forall \psi \in H^{\frac{1}{2}}(\mathbb{R}^{3}, \mathbb{C}^{4}).
\end{cases}$$
(42)

We denote $\Phi \bullet A$ the right action of an $N \times N$ matrix $A = (a_{kl})_{1 \leq k, l \leq N}$ on an N-uple $\Phi = (\varphi_1, \ldots, \varphi_N) \in (L^2(\mathbb{R}^3, \mathbb{C}^4))^N$. More precisely,

$$(\Phi \bullet A) := \left(\sum_{k=1}^{N} a_{k1}\varphi_k, \dots, \sum_{k=1}^{N} a_{kN}\varphi_k\right).$$
(43)

Given $\Phi^+ = (\varphi_1^+, \dots, \varphi_N^+) \in \left(\widetilde{P}^+ H^{1/2}\right)^N$ such that $\operatorname{Gram}_{L^2} \Phi^+ = \mathbb{I}_{\mathbb{N}}$, and $\Phi^- \in \left(\widetilde{P}^- H^{1/2}\right)^N$, we define

$$g_{\Phi^{+}}(\Phi^{-}) := (\Phi^{+} + \Phi^{-}) \bullet \left[\operatorname{Gram}_{L^{2}}(\Phi^{+} + \Phi^{-})\right]^{-\frac{1}{2}} \\ = (\Phi^{+} + \Phi^{-}) \bullet \left[\operatorname{I\!I}_{N} + \operatorname{Gram}_{L^{2}}\Phi^{-}\right]^{-\frac{1}{2}}.$$
(44)

We obtain a smooth map $g_{_{\Phi^+}}$, from $\left(\widetilde{P}^- \ H^{\frac{1}{2}} \right)^N$ to

$$\Sigma_{\Phi^+} := \left\{ \Psi \in \left(\widetilde{P}^- H^{\frac{1}{2}} \oplus \operatorname{Span}\left(\varphi_1^+, \dots, \varphi_N^+\right) \right)^N / \operatorname{Gram}_{L^2} \Psi = \mathbb{1}_{N} \right\} \,.$$

In fact, the values of $g_{_{\Phi^+}}\,$ lie in the following subset of $\Sigma_{_{\Phi^+}}\,$:

$$\Sigma_{\Phi^+}' := \left\{ \Psi \in \Sigma_{\Phi^+} / \operatorname{Gram}_{{}_{\mathbf{L}^2}} \left(\widetilde{P}^+ \Psi \right) > 0 \right\} \,.$$

Now, take an arbitrary $\Psi \in \Sigma'_{\Phi^+}$. Then there is an invertible $N \times N$ matrix B such that $\widetilde{P}^+\Psi = \Phi^+ \bullet B$. So we may write

$$\Psi \bullet B^{-1} = \Phi^+ + \widetilde{P}^- \Psi \bullet B^{-1} .$$

As a consequence,

$$g_{{}_{\Phi^+}}(\widetilde{P}^-\Psi \bullet B^{-1}) \ = \ (\Psi \bullet B^{-1}) \bullet \left[\operatorname{Gram}_{{}_{\mathrm{L}^2}} \ (\Psi \bullet B^{-1})\right]^{-\frac{1}{2}} \ .$$

One easily computes

$$\operatorname{Gram}_{_{\mathrm{L}^2}} \ (\Psi \bullet B^{-1}) = (B^*)^{-1} \left(\operatorname{Gram}_{_{\mathrm{L}^2}} \ \Psi \right) B^{-1} \ = (B \ B^*)^{-1} \ .$$

Hence

$$g_{{}_{\Phi^+}}\big(\widetilde{P}^-\Psi \bullet B^{-1}\big) \;=\; (\Psi \bullet B^{-1}) \bullet (B\,B^*)^{1/2} \;=\; \Psi \bullet (B^{-1}(B\,B^*)^{1/2}) \;,$$

and finally

$$\Psi = g_{_{\Phi^+}}(\widetilde{P}^-\Psi \bullet B^{-1}) \bullet U\,,$$

where $U := (B B^*)^{-1/2} B \in \mathcal{U}(N)$ is the unitary matrix appearing in the polar decomposition of B. So we have proved that

$$\begin{split} \Sigma'_{\Phi^+} \;=\; \bigcup_{\substack{\Phi^- \in (\tilde{P}^- H^{\frac{1}{2}})^N \\ U \in \mathcal{U}(N)}} g_{\Phi^+}(\Phi^-) \bullet U \;. \end{split}$$

Now, \mathcal{E}_c is invariant under the $\mathcal{U}(N)$ action "•", and Σ'_{Φ^+} is dense in Σ_{Φ^+} for the norm of $(H^{1/2}(\mathbb{R}^3, \mathbb{C}^4))^N$. Hence

$$\sup_{\substack{\Psi \in (\tilde{P}^{-}H^{\frac{1}{2}} \oplus \operatorname{Span}(\Phi^{+}))^{N} \\ \operatorname{Gram}_{r,2}\Psi = \mathbf{1}_{N}}} \widetilde{\mathcal{E}}_{c}(\Psi) = \sup_{\Phi^{-} \in (\tilde{P}^{-}H^{\frac{1}{2}})^{N}} \widetilde{\mathcal{E}}_{c}(g_{\Phi^{+}}(\Phi^{-})) .$$
(45)

We now prove Lemma 9 in three steps.

Step 1. Let $\Phi^+ \in (\widetilde{P}^+ H^{1/2})^N$ be such that $\operatorname{Gram}_{L^2} \Phi^+ = \mathbb{1}_N$ and such that $\widetilde{\mathcal{E}}_c(\Phi^+) \leq N + \delta$, for some $\delta > 0$ small. For ε small and c large, there is a unique $\Phi^- \in \left(\widetilde{P}^- H^{1/2}\right)^N$ maximizing $\widetilde{\mathcal{E}}_c \circ g_{\Phi^+}$ and lying in a small neighborhood of 0. If we denote $k(\Phi^+)$ this maximizer, the map k is smooth from

$$\mathcal{S}_{\delta}^{+} = \left\{ \Phi^{+} \in \left(\widetilde{P}^{+} H^{1/2} \right)^{N} / \operatorname{Gram}_{L^{2}} \Phi^{+} = \mathbb{I}_{N}, \ \widetilde{\mathcal{E}}_{c}(\Phi^{+}) \leq N + \delta \right\}$$

to $\left(\widetilde{P}^{-}H^{1/2}\right)^{N}$, and equivariant for the $\mathcal{U}(N)$ action. Proof of Step 1. Take r > 0. For $\varepsilon = \delta$ small and c lar

Proof of Step 1. Take r > 0. For ε , δ small and c large, if $\Phi^+ \in \mathcal{S}^+_{\delta}$, $\Phi^- \in (\widetilde{P}^- H^{1/2})^N$, and $\|\Phi^-\|_{H^{1/2}}$ is not smaller than r, then

$$\widetilde{\mathcal{E}}_c \Big(g_{\Phi^+}(\Phi^-) \Big) \ < \ N - \delta \ ,$$

by (41). On the other hand, for c large enough, using (41) once again, one has

$$\widetilde{\mathcal{E}}_c \Big(g_{\Phi^+}(0) \Big) = \widetilde{\mathcal{E}}_c(\Phi^+) \geq N - \frac{\delta}{2} .$$

So, if we define $\mathcal{V}_r := \left\{ \Phi^- \in \left(\widetilde{P}^- H^{1/2} \right)^N / \|\Phi^-\|_{H^{1/2}} \leq r \right\}$, no maximizer of $\widetilde{\mathcal{E}}_c \circ g_{\Phi^+}$ can be outside \mathcal{V}_r . Moreover, choosing r small, and then taking c large and ε small, the map

$$\Phi^- \in \mathcal{V}_r \longmapsto \mathcal{E}_c \circ g_{\Phi^+}(\Phi^-)$$

is strictly concave. Indeed, its second derivative at $\Phi^- \in \mathcal{V}_r$ is very close in norm to the negative form

$$\Psi^{-} \in (\widetilde{P}^{-}H^{1/2})^{N} \longmapsto -2\sum_{i=1}^{N} \|\psi_{i}^{-}\|_{H^{1/2}}^{2} - 2\sum_{1 \le i,j \le N} (\varphi_{j}^{+},\varphi_{i}^{+})_{H^{1/2}} (\psi_{i}^{-},\psi_{j}^{-})_{L^{2}}$$

Step 1 immediately follows from these facts.

Step 2. The min-max level $E(P^+)$ does not depend on P^+ .

Proof of Step 2. Take two projectors P_1^+ , P_2^+ , both ε -close to Λ_c^+ . For i = 1, 2, and $\Phi_i^+ \in \left(\widetilde{P}_i^+ H^{1/2}\right)^N$, with $\operatorname{Gram}_{L^2} \Phi_i^+ = \mathbb{I}_N$ and $\widetilde{\mathcal{E}}_c(\Phi_i^+) \leq N + \delta$, let

$$J^{i}(\Phi_{i}^{+}) := \max_{\substack{\Phi^{-} \in (\tilde{P}_{i}^{-}H^{1/2})^{N} \\ \operatorname{Gram}_{L^{2}} \Phi^{-} = \mathbf{I}_{N}}} \widetilde{\mathcal{E}}_{c} \left(g^{i}_{\Phi_{i}^{+}}(\Phi^{-}) \right)$$
(46)

$$= \widetilde{\mathcal{E}}_c \circ g^i_{\Phi^+_i} \left(k^i(\Phi^+_i) \right) \,.$$

Here, $g_{\Phi^+}^i$ and k^i are the maps associated to P_i^+ in Step 1.

By Ekeland's variational principle [5], there is a minimizing sequence $\left(\Phi_{1,n}^{+}\right)_{n\geq 0}$ for J^{1} , such that $(J^{1})'\left(\Phi_{1,n}^{+}\right)_{n\to+\infty} = 0$ in $\left(H^{-1/2}\right)^{N}$. Let $\Psi_{n} := g_{\Phi_{1,n}^{+}}^{1}\left(k^{1}(\Phi_{1,n}^{+})\right)$. Then Ψ_{n} is a Palais-Smale sequence for $\widetilde{\mathcal{E}}_{c}$ in the manifold

$$\Sigma := \left\{ \Psi \in \left(H^{1/2} \right)^N / \operatorname{Gram}_{L^2} \Psi = \mathbb{I}_N \right\}$$

with $\widetilde{\mathcal{E}}_c(\Psi_n) \geq N - \frac{\delta}{2}$, where $\delta > 0$ is the constant of the first step. So $\operatorname{Gram}_{L^2}(\widetilde{P}_2^+\Psi_n) > 0$. We denote

$$\begin{cases} \Phi_{2,n}^{+} := \widetilde{P}_{2}^{+} \Psi_{n} \bullet \left[\operatorname{Gram}_{L^{2}} \left(\widetilde{P}_{2}^{+} \Psi_{n} \right) \right]^{-\frac{1}{2}}, \\ \Phi_{2,n}^{-} := \widetilde{P}_{2}^{-} \Psi_{n} \bullet \left[\operatorname{Gram}_{L^{2}} \left(\widetilde{P}_{2}^{+} \Psi_{n} \right) \right]^{-\frac{1}{2}}. \end{cases}$$

$$\tag{47}$$

One easily checks that $\Psi_n = g_{\Phi_{2,n}^+}^2(\Phi_{2,n}^-)$. Since $\widetilde{\mathcal{E}}_c(\Psi_n) \ge N - \frac{\delta}{2}$, we have $\|\Phi_{2,n}^-\|_{H^{1/2}} \le r$, where r > 0 is the same as in the proof of step 1. Since Ψ_n

is a Palais-Smale sequence for $\widetilde{\mathcal{E}}_c$, the derivative of $\widetilde{\mathcal{E}}_c \circ g^2_{\Phi^+_{2,n}}$ at the point $\Phi^-_{2,n}$ converges to 0 as n goes to infinity. So, by the concavity properties of $\widetilde{\mathcal{E}}_c \circ g^2_{\Phi_{\Phi_n}^+}$ in the domain

$$\mathcal{V}_{2,r} := \left\{ \Phi^- \in \left(\widetilde{P}_2^- H^{1/2} \right)^N / \left\| \Phi^- \right\|_{H^{1/2}} \le r \right\}$$

(see the proof of step 1), we get

$$\left\|\Phi_{2,n}^{-}-k^{2}(\Phi_{2,n}^{+})\right\|_{H^{1/2}} \xrightarrow[n \to +\infty]{} 0 \quad \text{and} \quad \widetilde{\mathcal{E}}_{c}\left(\Psi_{n}\right)-J^{2}\left(\Phi_{2,n}^{+}\right) \xrightarrow[n \to +\infty]{} 0.$$

As a consequence,

$$\begin{split} E(P_1^+) = & \inf_{\substack{\Phi_1^+ \in (\tilde{P}_1^+ H^{1/2})^N \\ \text{Gram}_{L^2} \Phi_1^+ = \mathbb{1}_N}} J^1 \Big(\Phi_1^+ \Big) \geq & \inf_{\substack{\Phi_2^+ \in (\tilde{P}_2^+ H^{1/2})^N \\ \text{Gram}_{L^2} \Phi_1^+ = \mathbb{1}_N}} J^2 (\Phi_2^+) = E(P_2^+) \;. \end{split}$$

Since 1,2 play symmetric roles in the above arguments, we conclude that $E(P^+)$ does not depend on P^+ , for c large enough and ε small enough. Π

Step 3. $\mathcal{E}_c(\Psi^{c,0}) \leq E(\Lambda_c^+)$, where $\Psi^{c,0}$ is "the" first solution of (D-F) found in [E-S].

Proof of Step 3. For c large enough, if $\Psi^- \in \Lambda_c^- H^{1/2}$ satisfies $\operatorname{Gram}_{L^2} \Psi^- \leq \mathbb{1}_N$, it follows from Hardy's inequality that the map $\Psi^+ \to \mathcal{E}_c(\Psi^+ + \Psi^-)$ is strictly convex on

$$W(\Psi^{-}) := \{\Psi^{+} \in (\Lambda_{c}^{+}H^{1/2})^{N} ; \operatorname{Gram}_{_{\mathbf{L}^{2}}}(\Psi^{+} + \Psi^{-}) \leq \mathrm{I\!I}_{_{\mathbf{N}}} \} .$$

As a consequence, for an arbitrary N-dimensional subspace V of $\Lambda_c^+ H^{1/2}$, $S_V(\Psi^-) := \sup_{\Psi^+ \in W(\Psi^-) \cap V^N} \mathcal{E}_c(\Psi^+ + \Psi^-)$ is achieved by an extremal point Ψ_{max}^+ of

the convex set $W(\Psi^{-}) \cap V^{N}$. Being extremal, Ψ^{+}_{max} must satisfy the constraints $\begin{array}{c} \operatorname{Gram}_{_{\mathrm{L}^2}}(\Psi^+_{max}+\Psi^-) = 1 \hspace{-0.5mm} 1_{_{\mathrm{N}}} \\ \text{So we have} \end{array} .$

$$\begin{array}{lll} \sup_{\Psi \in (\Lambda_c^- H^{1/2} \oplus V)^N} & \mathcal{E}_c(\Psi) \ = \ \sup_{\Psi^- \in (\Lambda_c^- H^{1/2})^N} & S_V(\Psi^-) \ = \ \sup_{\Psi \in (\Lambda_c^- H^{1/2} \oplus V)^N} & \mathcal{E}_c(\Psi) \ . \\ \operatorname{Gram}_{L^2} \Psi \leq \mathbf{1}_{\mathrm{N}} & \operatorname{Gram}_{L^2} \Psi^- \leq \mathbf{1}_{\mathrm{N}} & \operatorname{Gram}_{L^2} \Psi = \mathbf{1}_{\mathrm{N}} \end{array}$$

By proposition 2,

$$\mathcal{E}_{c}\left(\Psi^{c,0}\right) \leq \sup_{\substack{\Psi \in (\Lambda_{c}^{-}H^{1/2} \oplus V)^{N} \\ \operatorname{Gram}_{L^{2}} \Psi \leq \mathbf{I}_{N}}} \mathcal{E}_{c}\left(\Psi\right) \,.$$

Finally we get, for c large,

$$\mathcal{E}_{c}(\Psi^{c,0}) \leq \inf_{\substack{\Phi^{+} \in (\Lambda_{c}^{+}H^{1/2})^{N} \\ \operatorname{Gram}_{L^{2}} \Phi^{+} = \mathbb{I}_{N}}} \sup_{\substack{\Psi \in (\Lambda_{c}^{-}H^{1/2} \oplus \operatorname{Span}(\Phi^{+}))^{N} \\ \operatorname{Gram}_{L^{2}} \Psi^{+} = \mathbb{I}_{N}}} \mathcal{E}_{c}(\Psi) = E(\Lambda_{c}^{+}) \cdot \mathcal{E}_{c}(\Psi)$$

(The correspondence between Φ^+ and V is $V = \text{Span}(\Phi^+)$). This ends the proof of Step 3 and of Lemma 9.

Thanks to Lemma 9, we are able to write the following inequalities for c large, and $P^+ \varepsilon$ -close to Λ_c^+ , ε small :

$$E(P^{+}) = E(\Lambda_{c}^{+}) \geq \mathcal{E}_{c}(\Psi^{c,0})$$

$$\geq \inf_{\substack{\Psi \text{ solution of } (DF_{c}) \\ \Lambda_{\Psi}^{-}\Psi = 0}} \mathcal{E}_{c}(\Psi)$$

$$\geq \inf_{\substack{\Psi \in (H^{1/2})^{N} \\ \text{Gram}_{L^{2}}\Psi = \mathbf{I}_{N} \\ \Lambda_{\Psi}^{-}\Psi = 0}} \mathcal{E}_{c}(\Psi) .$$
(48)

As announced before, we now give some important examples of projectors $\varepsilon\text{-close}$ to Λ_c^+ :

Lemma 10 Fix N, Z, and take c large enough. Then, for any $\Phi \in (H^{1/2})^N$, with $\operatorname{Gram}_{L^2} \Phi \leq \mathbb{1}_N$, the projector $\Lambda_{\Phi}^+ = \chi_{(0,+\infty)} (\overline{H}_{c,\Phi})$ is ε -close to Λ_c^+ .

Proof of Lemma 10. We adapt a method of Griesemer, Lewis, Siedentop [7] to the Hamiltonian $\overline{H}_{c,\Phi}$. Once again, it is more convenient to work in a system of units such that $\overline{H}_{c,\Phi}$ becomes

$$\begin{split} \widetilde{H}_{c,\tilde{\Phi}} : \psi \mapsto d_{c^{-1}} \circ \overline{H}_{c,\Phi} \circ d_{c}(\psi) = & \left(-i\alpha \cdot \nabla + \beta \right) \psi - \frac{Z}{c} \Big(\widetilde{\mu} * \frac{1}{|x|} \Big) \psi \\ & + \frac{1}{c} \Big(\rho_{\tilde{\Phi}} * \frac{1}{|x|} \Big) \psi - \frac{1}{c} \int_{\mathbb{R}^{3}} R_{\tilde{\Phi}}(x,y) \frac{\psi(y)}{|x-y|} dy \end{split}$$

with $\widetilde{\mu}(E) = \mu(c^{-1}E), \ \widetilde{\Phi}(x) = c^{-3/2} \Phi(c^{-1}x).$

Denoting $H_1 := -i\alpha \cdot \nabla + \beta$, $\tilde{\Lambda}^+_{\tilde{\Phi}} := \chi_{(0,\infty)} \left(\tilde{H}_{c,\tilde{\Phi}} \right)$, $\tilde{\Lambda}^+ := \chi_{(0,\infty)}(H_1)$, $K_{\tilde{\Phi}} := c \left(\tilde{H}_{c,\tilde{\Phi}} - H_1 \right)$, we find, as in the proof of Lemma 1 of [7],

$$\left(\tilde{\Lambda}_{\tilde{\Phi}}^{+}-\tilde{\Lambda}^{+}\right)\psi = \frac{1}{\pi c}\int_{0}^{+\infty}dz\left[H_{1}^{2}+z^{2}\right]^{-1}\left(H_{1}K_{\tilde{\Phi}}\tilde{H}_{c,\tilde{\Phi}}-z^{2}K_{\tilde{\Phi}}\right)\left[\left(\tilde{H}_{c,\tilde{\Phi}}\right)^{2}+z^{2}\right]^{-1}\psi,$$

and for any $\chi \in L^2(\mathbb{R}^3, \mathbb{C}^4)$, following [7] (proof of Lemma 3), we get

$$\left(\chi\,,\,(-\Delta+1)^{1/4}(\widetilde{\Lambda}^+_{\tilde{\Phi}}-\widetilde{\Lambda}^+)\psi\right)_{L^2} \leq \frac{M}{c} \|\chi\|_{_{L^2}} \|(-\Delta+1)^{1/4}\psi\|_{_{L^2}}$$

for c large enough (M is a constant independent of c). As a consequence, if c is large enough and bigger than $\frac{M}{\varepsilon}$, then Λ_{Φ}^+ is ε -close to Λ_c^+ . This ends the proof of Lemma 10.

Now, to end the proof of Theorem 6, we just need the following result :

Lemma 11 Fix N, Z and take c > 0 large enough. If $\Phi \in (H^{1/2})^N$, $\operatorname{Gram}_{L^2} \Phi = \mathbb{1}_N$, $\Lambda_{\Phi}^- \Phi = 0$ and $\mathcal{E}_c(\Phi) \leq Nc^2$, then

$$\mathcal{E}_{c}(\Phi) = \max \left\{ \mathcal{E}_{c}(\Psi) \, ; \, \Psi \in \left[\Lambda_{\Phi}^{-} H^{1/2} \oplus \operatorname{Span}(\Phi) \right]^{N}, \, \operatorname{Gram}_{_{\mathrm{L}^{2}}} \Psi = \mathbb{1}_{_{\mathrm{N}}} \right\}$$

Proof of Lemma 11. If $\Lambda_{\Phi}^{-}\Phi = 0$ and $\operatorname{Gram}_{L^{2}}\Phi = \mathbb{1}_{N}$, then 0 is a critical point of the map

$$\Psi^{-} \in \left(\Lambda_{\Phi}^{-} H^{1/2}\right)^{N} \longmapsto \mathcal{E}_{c}\left(g_{\Phi}(\Psi^{-})\right),$$

with $g_{\Phi}(\Psi^{-}) = (\Phi + \Psi^{-}) \bullet \left[\mathbbm{1}_{\mathbb{N}} + \operatorname{Gram}_{\mathbbm{L}^2} \Psi^{-}\right]^{-1/2}$. Take $\varepsilon > 0$ small. By Lemma 10, Λ_{Φ}^+ is ε -close to Λ_c^+ for c large enough. From the proof of Lemma 9 (Step 1), there is a unique critical point of $\mathcal{E}_c \circ g_{\Phi}$ in a small neighborhood \mathcal{V}_r of 0 in $\Lambda_{\Phi}^-(H^{1/2})$ and this critical point is the unique maximizer of $\mathcal{E}_c \circ g_{\Phi}$ in $\Lambda_{\Phi}^-(H^{1/2})$. So, 0 is this maximizer. This proves Lemma 11.

Let us explain why Theorem 6 is now proved. We know that, for c large enough,

$$\begin{split} Nc^2 > E\left(\Lambda_c^+\right) \ \ge \ \mathcal{E}_c(\Psi^{c,0}) \ \ge & \inf_{\substack{\Psi \in (H^{1/2})^N \\ \text{Gram}_{L^2}\Psi = \mathbb{1}_N \\ \Lambda_{\Psi}^- \ \Psi = 0}} \mathcal{E}_c(\Psi) \quad , \end{split}$$

hence

$$\inf_{\substack{\Psi \in (H^{1/2})^N \\ \operatorname{Gram}_{L^2} \Psi = \mathbf{1}_N \\ \Lambda_{\Psi}^- \Psi = 0 } \mathcal{E}_c(\Psi) = \inf_{\substack{\Psi \in (H^{1/2})^N \\ \operatorname{Gram}_{L^2} \Psi = \mathbf{1}_N \\ \Lambda_{\Psi}^- \Psi = 0 \\ \mathcal{E}_c(\Psi) \le Nc^2 } \mathcal{E}_c(\Psi)$$

Take $\varepsilon > 0$. By Lemma 10, for any $\Psi \in (H^{1/2})^N$ with $\operatorname{Gram}_{L^2} \Psi = \mathbb{1}_N$, the projector Λ_{Ψ}^+ is ε -close to Λ_c^+ , if c is large. Hence $E(\Lambda_{\Psi}^+) = E(\Lambda_c^+)$ (by Lemma 9),

if we have chosen ε small enough. But if Ψ also satisfies $\Lambda_{\Psi}^{-}\Psi = 0$ and $\mathcal{E}_{c}(\Psi) \leq Nc^{2}$, then, from Lemma 11 and from the definition of $E(\Lambda_{\Psi}^{+})$, we have $E(\Lambda_{c}^{+}) = E(\Lambda_{\Psi}^{+}) \leq \mathcal{E}_{c}(\Psi)$. So

$$E\left(\Lambda_{c}^{+}\right) \leq \inf_{\substack{\Psi \in (H^{1/2})^{N} \\ \text{Gram}_{L^{2}}\Psi = \mathbb{1}_{N} \\ \Lambda_{\Psi}^{-}\Psi = 0}} \mathcal{E}_{c}(\Psi),$$

and therefore,

$$E\left(\Lambda_{c}^{+}\right) = \mathcal{E}_{c}(\Psi^{c,0}) = \inf_{\substack{\Psi \in (H^{1/2})^{N} \\ \operatorname{Gram}_{L^{2}}\Psi = \mathbf{1}_{N} \\ \Lambda_{\Psi}^{-} \Psi = 0}} \mathcal{E}_{c}(\Psi)$$

and Theorem 6 is proved.

5 Acknowledgements

The authors are grateful to Boris Buffoni for explaining to them the work [2], and suggesting that it might be useful in the study of the Dirac-Fock functional. The proof of Lemma 9 is inspired by this paper.

References

- V. Bach, E.H. Lieb, M. Loss, J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory, *Phys. Rev. Lett.* 72(19), 2981–2983 (1994).
- [2] B. Buffoni, L. Jeanjean, Minimax characterization of solutions for a semilinear elliptic equation with lack of compactness, Ann. Inst. H. Poincaré 10(4), 377–404 (1993).
- [3] V.I. Burenkov, W.D. Evans, On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms. *Proc. Roy. Soc.* Edinburgh, sect. A **128** (5), 993–1005 (1998).
- [4] J. Dolbeault, M.J. Esteban, E. Séré, Variational characterization for eigenvalues of Dirac operators, *Cal. Var. and PDE* **10 (4)**, 321–347 (2000).
- [5] I. Ekeland, On the variational principle, J. Math. Anal. 47, 324–353 (1974).
- [6] M.J. Esteban, E. Séré, Solutions for the Dirac-Fock equations for atoms and molecules, *Comm. Math. Phys.* 203, 499–530 (1999).
- [7] M. Griesemer, R.T. Lewis, H. Siedentop, A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials, *Doc. Math.* 4, 275–283 (1999).

Vol. 2, 2001 Nonrelativistic Limit of the Dirac-Fock Equations

- [8] I.W. Herbst, Spectral theory of the operator $(p^2 + m^2)^{1/2} ze^2/r$, Comm. Math. Phys. 53, 285–294 (1977).
- [9] Y.-K. Kim, Relativistic self-consistent field theory for closed-shell atoms *Phys. Rev.* 154, 17–39 (1967).
- [10] E. H. Lieb, B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys. 53, 185–194 (1977).
- [11] P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109, 33–97 (1987).
- [12] A. Messiah, Mécanique quantique. Dunod, 1965.
- [13] E. Paturel, Solutions of the Dirac-Fock Equations without Projector Ann. Henri Poincaré 1, 1123–1157 (2000).
- [14] B. Thaller, The Dirac equation. Springer-Verlag, 1992.
- [15] C. Tix, Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall, Bull. London Math. Soc. 30(3), 283–290 (1998).
- [16] C. Tix, Lower bound for the ground state energy of the no-pair Hamiltonian, *Phys. Lett. B* 405, 293–296 (1997).

Maria J. Esteban and Eric Séré CEREMADE (UMR C.N.R.S. 7534) Université Paris IX-Dauphine Place du Maréchal de Lattre de Tassigny F-75775 Paris Cedex 16 France email: esteban@ceremade.dauphine.fr email: sere@ceremade.dauphine.fr

Communicated by Rafael D. Benguria submitted 3/01/01, accepted 15/05/01

To access this journal online: http://www.birkhauser.ch