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Nonrelativistic Limit of the Dirac-Fock Equations

M. J. Esteban and E. Séré

Abstract. In this paper, the Hartree-Fock equations are proved to be the non rel-
ativistic limit of the Dirac-Fock equations as far as convergence of “stationary
states” is concerned. This property is used to derive a meaningful definition of
“ground state” energy and “ground state” solutions for the Dirac-Fock model.

1 Introduction

In this paper we prove that solutions of Dirac-Fock equations converge, in a certain
sense, towards solutions of the Hartree-Fock equations when the speed of light
tends to infinity.

This limiting process allows us to define a notion of ground state for the
Dirac-Fock equations, valid when the speed of light is large enough.

First of all, we choose units for which m = A = 1, where m is the mass of the

electron, and & is Planck’s constant. We also impose 4;250 =1, with —e the charge
of an electron, g the permittivity of the vacuum.
The Dirac Hamiltonian can be written as
H, = —ica-V+c*3, (1)

where ¢ > 0 is the speed of light in the above units, § = < g _0]1 ),

ap = ( UO Uok > (k = 1,2,3) and the o are the well known Pauli matrices.
k

The operator H. acts on 4-spinors, i.e. functions from R3 to C*, and it is self-
adjoint in L?(R?,C*), with domain H'(R?, C*) and form-domain H'/?(R?,C*).
Its spectrum is (—oo, —c?] U [c?, +00).

Let us consider a system of N electrons coupled to a fixed nuclear charge
density eZu, where e is the charge of the proton, Z > 0 the total number of
protons and y is a probability measure defined on R3. Note that in the particular
case of m point-like nuclei, each one having atomic number Z; at a fixed location z;,

m m
eZu = Z €0y, and Z = Z Z; .
i=1

i=1



942 M. J. Esteban and E. Séré Ann. Henri Poincaré

In our system of units, the Dirac-Fock equations for such a molecule are given

by
Fc,‘ll Y = He . — Z(N * %)wk + (p\p * ﬁ)wk
R\p(xay)w (y) c
\/R:s ?yfdy:&:kwk (k:].,N), (DFC)

Gram , U =1 (ie fm Pir =0, 1 <k,1<N).

Here, U = (¢1,--- ,%n) , each ¢y, is a 4-spinor in H'/2(R3,C*) (by bootstrap,
Yy, is also in any W1P(R3) space, 1 < p < 3/2), and

z) =Y Pi(@)yn(a), R Zwk ) @y (y) - (2)

k=1

We have denoted ¥* the complex line vector whose components are the conjugates
of those of a complex (column) vector 1, and ¥, is the inner product of two
complex (column) vectors 1, ¥9. The n X n matrix Gram , ¥ is defined by the
usual formulas

(Gram_, ¥),, / i () (z (3)

Finally, € < ... < e%, are eigenvalues of H ¢, v . Each one represents the energy
of one of the electrons, in the mean field created by the molecule. For physical
reasons, we impose 0 < €} < c? . Note that the scalars €, can also be seen as
Lagrange multipliers. Indeed, the Dirac-Fock equations are the Euler-Lagrange
equations of the Dirac-Fock energy functional

0-y [ e = 2 (o i
k=1 R3

. pu(@)p, (4) = tr( Ry (2.) R, (3, ) iy

|z -y

under the constraints f . iy = Oy -
R

In [6] we proved that under some assumptions on N and Z, there exists an
infinite sequence of solutions of (DF.). More precisely:
Theorem 1 [6] Let N < Z + 1. For any ¢ > w max(Z,3N — 1), there exists

, N
a sequence of solutions of (DF.), {\IIC’J} . C (HI/Q(Rg)) , such that
3>

(i) 0 < &(¥) < Ne? |,
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(i) lim E.(VU%9) = N2,

j—+o0

(i) 0 <c®—p; <ey’ <..<ey <c2—mj , with p; > m; > 0 independent of c.
The constant % is related to a Hardy-type inequality obtained indepen-
dently by Tix and Burenkov-Evans (see [15, 3, 16]), and which plays an important
role in the proof of Theorem 1. With the physical value ¢ = 137.037... and Z
an integer (the total number of protons in the molecule), our conditions become
N < Z, N <41, Z < 124 . The constraint N < 41 is technical, and has no
physical meaning.

Our result was recently improved by Paturel [13], who relaxed the condition
on N. Paturel obtains the same multiplicity result, assuming only that N < Z +1
and w max(Z, N) < c. Taking ¢ = 137.037..., Paturel’s conditions are N <
Z <124 : they cover all existing neutral atoms. This is an important improvement.

In [6], the critical points W7 are obtained by a complicated min-max argu-
ment involving a family of min-max levels ¢, ,(F}) (see [6] p. 511). Note that the
expression ” the critical points” is misleading. Indeed, for each j we can define the
min-max level EY ,p := lim inf, o p—oo Cu,p(F;), and there exists a critical point
¥ such that B pp = E(¥7) ; but we do not know whether this critical point is
unique. In the present paper, we do not write the definition of the min-max levels
cup(F;) in its full detail (the reader is referred to [6] for a complete definition).
We just state the minimal information on EY pp needed in the present paper.

Let us denote E := H'/2(R3,C*). Since
o(H,) = (—o0,—c|U[c? 400),
the Hilbert space E can be split as
E = EfoE;,

where EFX := AT E, and AT = Xe, (Hc). The projectors AF have a simple expres-

sion in the Fourier domain : AZ¢(€) = AE(€) (€), with

— 1 ca-£+c2p
A (§) = B <]IC4 + \/W) . (4)

Proposition 2 [6, 13] For every j > 0, let V be any (N + j) dimensional complex
subspace of Ef . Then, taking the notation of Theorem 1, we have

ESpp = E(TT) < sup E(T). (5)
ve(E;av)"
GramL2 U<y
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In the present paper, we prove three main theorems. We first consider a
sequence ¢, — +00 and a sequence {¥"}  of solutions of (DF., ). For all n, ™ =

(Y7, .oy W), each 7 is in HY2(R3,C*), with / Yithrde = by and H 0 =
R3 '

epyp . Using the standard Hardy inequality, one can prove that the functions 7

are in H1(R? C*) for ¢, large enough. We assume that

—c0< lim (e} —c2) < lim (e% —c2)<0. (6)
n—-+00 n—-+00

A (column) vector 1 € C* can be written in block form ¢ = (i) where ¢ € C?

(respectively x € C?) consists of the two upper (resp. lower) components of t. This

gives the splitting ¢} = (‘;,’;) with ¢} and x? in H'(R3,C?2). Finally, U™ splits
k

as (;IZ:), where " := (¥, ..., %) and x™ := (X7, ..., Xv)- Our ﬁrft resu}t is that
yn = (‘i) has a subsequence converging, in H' norm, towards ¥ = (‘(1;), where
— N

®=(p1, - ,pn) € (H(R?C?)) is a solution of the Hartree-Fock equations:

A 1 1
Hayoh =~ — (u*—)cpk+(pq>*—)<pk
2 ||
f/ Mdy:%gok, k=1,..N, (HF)
R3 |z =y
/ prprde =0k, A= lim (ef —c}) .
R3 n—-—4oo

Here (as in the Dirac-Fock equations),

N N
pa(x) =Y @i (@)ei(z), Relz,y) =Y @) @@ (y).
=1 =1

Note that the Hartree-Fock equations are the Euler-Lagrange equations cor-

N
responding to critical points in (H H(R3, (CQ)> of the Hartree-Fock energy:

1
1902, =2 [ (s )l

||

DN | =

N

Enr(®) = >
k=1

(7)

pa(x)pa(y) —tr (Re(z,y)Ra(y, z))
+ //]RSX]RS dxdy ,

1
2 |z -y

under the constraint
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Theorem 3 Let N < Z +1. Consider a sequence ¢, — 400 and a sequence {¥"},
of solutions of (DF,, ), i.e. O™ = (Y7, - ,¥}), each ¥} being in H'Y2(R3,CY) ,

with / Yibrde = 0 and H, . 0p = gy . Assume that the multipliers €7},
R3

k=1,...,N, satisfy (6). Then for n large enough, ¥} is in HY(R3,C*) , and there
exists a solution of (HF), ® = (@1, -+ , @N), with negative multipliers, A1, ..., An ,
such that, after extraction of a subsequence,

Z = EZ - (Cn)2 nS¥oo j‘k , k=1,..,N, (8)
wg _ SDZ N @k in HI(RS (C2) % HI(RS (CQ) (9)
v )=\ 0 | o

L2(R3,C2)

7
Xk + 2%(0 )Pk

and

E., (I") = N2  —  Epp(P). (11)

n—+oo
As a particular case, we have

Corollary 4 If ¢, — 400 and N, Z, u are fized, then for any j > 0 the sequence
{Wemi} of Theorem 1 satisfies the assumptions of Theorem 3 (see (iii) in Theorem

1). So it is precompact in (HI(R3, (C4))N. Up to extraction of subsequences,

M= N <0, k=1, N (12)
enii oI . 1m3 2\ 13 2\

Ponsd 0 in (H (R°,C )) X (H (R%,C )) (13)
and I = (95]1 e ,@%) 18 a solution of the Hartree-Fock equations with multipliers
M, ,5\5\,. Moreover,

£, (V) = Ney  —  Enp(®). (14)

n— +4o0o

Particular solutions of the Hartree-Fock equations are the minimizers of
Epr(®) under the constraints Gram , ® = T . They are called ground states.
Their existence was proved by Lieb and Simon [10] under the assumption N <
Z+1, but the uniqueness question remains unsolved (see also [11] for the existence
of excited states).

It is difficult to define the notion of ground state for the Dirac-Fock model,
since &£, has no minimum under the constraints fR3 Yry = g . Our second main
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result asserts that "the” first solution %0 of (DF.) found in [6], whose energy
level is denoted Ef -, can be considered, in some (weak) sense, as a ground state
for (DF.). Indeed, E§ pr — Nc? converges to the minimum of g as ¢ goes to

infinity. Moreover, for ¢ large the multipliers 5;’0 associated to Ul are the N
smallest positive eigenvalues of the mean-field operator H. ge.o .

Theorem 5 Let N < Z 4+ 1 and c sufficiently large. With the above notations,

E§pp = min ~ Epp(®) + Ne +0(1)eioo - (15)

G.ramL2 O=1

Moreover, for any subsequence {¥°9}  converging in (Hl(Rs,(C‘l))N to some

(%0), @0 is a ground state of the Hartree-Fock model, i.e.

Enr(®°) = oo min Eur(®). (16)

Furthermore, for c large, the eigenvalues corresponding to W° in (DF,.),
c,0 c,0 .. . . 7
€7, ...,en are the smallest positive eigenvalues of the linear operator H . geo

and the (N 4+ 1)-th positive eigenvalue of this operator is strictly larger than 5}2\’,0 .

Finally, we are able to show that, for ¢ large enough, the function ¥*° can be
viewed as an electronic ground state for the Dirac-Fock equations in the following
sense: it minimizes the Dirac-Fock energy among all electronic configurations which
are orthogonal to the “Dirac sea”.

Theorem 6 Fiz N,Z with N < Z + 1 and take c sufficiently large. Then U is q
solution of the following minimization problem:

inf{€(¥); Gram ,¥ =1, Ay ¥ =01} (17)

where Ay, = X (=o0,0) (FC\;,) is the negative spectral projector of the operator Fc,\p,
and Ny U = (Ay 1, -+ , Ay ¥n) -

The constraint Ay, ¢ = 0 has a physical meaning. Indeed, according to
Dirac’s original ideas, the vacuum consists of infinitely many electrons which com-
pletely fill up the negative space of FC,\;, : these electrons form the “Dirac sea”.
So, by the Pauli exclusion principle, additional electronic states should be in the
positive space of the mean-field Hamiltonian H. g . The proof of Theorem 6 will
be given in Section 4. This proof uses some other interesting min-max characteri-
zations of U0 (see Lemma 9).
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2 The nonrelativistic limit
This section is devoted to the proof of Theorem 3. We first notice that when

N < Z+1, N, Z fixed, and c is sufficiently large, any solution of (DF.) is actually
in (HI(R3))N. This follows from the fact that for v small, the operator Hy — s

]

is essentially self-adjoint with domain H'(R?) (see [14]).

We can also obtain a priori estimates on H' norms:

Lemma 7 . Fiz N, Z € Z*, take c large enough, and let W€ be a solution of (DF.).
If the multipliers €5 associated to U° satisfy 0 < e{ <c¢* (k=1,...,N), then
Ve e (HI(R3,(C4))N , and the following estimate holds
c 2 c 2
e+ ([T < K
The constant K is independent of ¢ (for ¢ large).
Proof. The normalization constraint Gram , V¢ = T implies
2
wefl, = N (18)

Using the (DF.) equation and the standard Hardy inequality

u? 9
- W <4 o |Vul, (19)

one easily proves that W€ is in H' , and satisfies:

2 2
(HWC, He W) = H|Wel], + e[| Veell, (20)

< A0S + (22 + N [V + ¢ max(N, Z) ||V, ,

for some ¢ > 0 independent of N, Z and c. The estimates (18) and (20) prove the
lemma. O

Proof of Theorem 3. Let us split the spinors ;! : R3 — C* in blocks of upper and
lower components:

n
wg(ﬁ’z]} > with @, xj R = C?
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We denote L := —i (o - V). Then we can rewrite (DF., ) in the following way:

N

' 2 n 2 1 n n

entog = 2 (e )i+ (006 + i) = o)k + (e
=1

-3 er@) /]er ()" Wek(y) + (x?)*(y)xﬁ(y)dy g

lz -yl

enLip = Z(u ) (i (el + hal’) * ﬁ)x}i — (e (2
=1

Y = pXk

-3 @) /}RS (@) (W)eiy) + ()" )XE)

|z -y

/Rg(saﬁ)*ﬁﬂx?)*x?d:c = Ok .

Note that || Lx||,, = [|[Vx||,, for all x € HY(R3,C"). So, dividing by ¢, the first
equation of (21), we get

IV 2 s o0, = O(1/c) - (22)

Dividing by 2(c;,)? the second equation of (21), and using the fact that e} —
(¢n)? is a bounded sequence, we get

1 N
| -0 (Z ||x7|H1<K3,C2)> o
" =1

The estimate (23) together with Lemma 7 implies

n L n

— L
Xk %, Pk

L2R3,C2)

22 2, = OC1 /) (24)
Combining this with (22), we obtain

Xk N 1 s o2y = O/ €n) - (25)

N
So Z XTIl 1 g3 c2) = O(1/cn), and (23) gives the estimate

1
n _ _L n
Xk 2%, Pk

=0(1/(cn)’) - (26)

L2(R3,C2)
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Now, the first equation of (21), combined with (26), implies

_Agpy

E— Z(ux (ﬁm )z

- (@) /R (<P?)*(y)</>7$(y)dy Vs

/11@3(@2)*907 = O+ 7y,

with A} := el — (¢,)?, and

nhr}rloo [l - L =0 ngrfoo |ryl =0 forall kle{l,...,N}.
Therefore ®" := (¢},..., %) is a Palais-Smale sequence for the Hartree-

Fock problem, and the multipliers A} satisfy Enéﬁw AR < 0. At this point,
we just invoke an argument used in [11] to obtain the convergence in H* norm of

some subsequence {®" } towards ® = (@1, - -, @n), a solution of the Hartree-Fock
equations

Hé@kzxk o, k=1..N

/ Pk Pt = Ol
R3

Finally, let us prove that EC",(\I/"/) — N(cn)? converges to Egr(®) . From
Lemma 7 and the estimate (26), one easily gets

where A\, = lim )\k
n’——+oo

Ec, (V") = Nej, = Enp(2") + 0(1/(cn)?) - (27)

Since " converges in H' norm to ®, the energy level Exp (<I>"/) converges
to Eur(P) . So (27) implies the desired convergence. This ends the proof of The-
orem 3. 0O

3 Ground state for Dirac-Fock equations in the nonrelativistic limit

The aim of this section is to prove Theorem 5. The estimate given in Proposition
2 on the energy &£.(¥*7) and the expression of AF given in (4), will be crucial.

Proof of Theorem 5. By Corollary 4, for any sequence ¢,, going to infinity, W9
is precompact in H! norm. If it converges, its limit is of the form (%0), and
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(ECWV(\I/C”’O) - N(cn)2> converges to Egr(P°) . As a consequence,

lim (gc(q/C»O)_NCQ) > inf Exp(d). (28)

c—too G.ra,mL2 O=1
In order to prove (15) and (16) of Theorem 5, we just have to show that

Tim (gc(q/C»O)_NCQ) < inf  Eup(d). (29)

c— o0 - GramL2 &I>=IN

N
Take & = (01, -+, pn) € (Hl(R3,(C 2)) , with Gram ,® = T . Let V, be
the complex subspace of Ef defined by

Ve :=Span {A}(%),..., AT (v} . (30)
From formula (4) and Lebesgue’s convergence theorem, one easily gets, for k =
1,...,N,
i A ()], = 0. (31)
So, for ¢ sufficiently large, we have
dimV, = N . (32)
Hence, by (5),
ES,DF = gc(\Ilc’O) < sup gc(\Il) : (33)
ve(E- V)N

GramL2 U<y

Let U+ € (ES)" , ¥~ € (E;)" such that Gram , (U + ¥~) < L. By the
concavity property of & in the E_ direction (see [6], Lemma 2.2), if ¢ is large
enough, we have

N
E(UT+U7) < E(UH)+E(UT) .U — EZ(%—, V—C2A +ct o)
k=1

2
_ c _
< L)+ M|, = IR, (34)

for some constant M > 0 independent of ¢ . Hence, for c¢ large,

E§pr < sup  E(TF)+0(1)cmtoo (35)
v+eD(V.)

where D(V,) := {‘I/+ € (Ve)N 5 Gram , U+ < ]IN} :
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If ¢ is large enough, it follows from Hardy’s inequality (19) that the map
Ut — &.(UT) is strictly convex on the convex set

t= {0t e (ENY; Gram ,U* < 1}.

Indeed, its second derivative at any point ¥+ of AT is of the form

EN(UH)[dwt]? = Z dib, Vet — 2A dify) , + Q(dTT)

k=

with () a quadratic form on (H1/2(R3,(C4))N bounded independently of ¢ and

Ut eAt.

As a consequence, sup &.(UT) is achieved by an extremal point W} = of
w+teD(Ve)

the convex set D(V.) = AT N (V.)" . Being extremal in D(V.), the point ¥}
satisfies
Gram , ¥}, =1 . (36)

Since ¢ .. € Ve, there is a matrix A = (ap),_, . such that, forall I, ;" =

Z ar Af(%F) . Then

1<k<N
A* Gram , (Aj(‘é’)) A = Gram U} =1, . (37)

Using the U (V) invariance of D(V,) and &, , and the polar decomposition of square
matrices, one can assume, without restricting the generality, that A = A* and
A is positive definite. Recalling that Gram ,® = 1, we see, from (31), that

Gram , (AF (%))) = I +o(1) . So (37) implies A% = T, +0o(1) , hence A = T +o(1).
Combining this with (31), we get

||w]j,ma93 - (‘Pok)HHl = O(l)c—>+oo .

. + + = VAZEA g}
Now, since ¢, .. € B, Hey 0, = Vet =AY But

Vet —c2A < ché .
- 2
This inequality is easily obtained in the Fourier domain: it follows from /1 4+ x <
+5 (Vo >0). So we get

1 N

N
2
Z(ch]::maxv w}j;:ma;c)L2 S C §Z|‘Vw]imag,”LQ
k

k=1

Combining this with (31), we find

Ec(Wihaz) S N2+ Exp(®) +0(1)eioo - (38)
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Finally, (35) and (38) imply

IN

EC(‘II;;MC) + 0(1)C—>+oo
N+ Epr(®) +o(1)emtoo - (39)

Since ® is arbitrary, (39) implies (29). The formulas (15), (16) of Theorem 5 are
thus proved.

We now check the last assertion about the EZ’O,kJ = 1,..., N, being the
smallest eigenvalues of the operator H,. geo for ¢ large. By Corollary 4, we can
translate this statement in the language of sequences. We take a sequence ¢, —

400 such that {We9}  converges in (Hl(R3,C4))N to some (%O), for n large

enough. Let Hy, := H., wen0o and Hoo := Hgo . We have Hy, g”’o = Eﬁwz"’o and
Hoo @9 = M@}, with

(&
ES.pr

IN

0<ef < - <el < (cn)?, M<---<AN<O, S\kzngrfoo(sz—(cn)% :
Let us denote e} <--- <el <--- the sequence of eigenvalues of H, ,in the
interval (0,c2) , counted with multiplicity. Similarly, we shall denote 3 < --- <
p; < --- the sequence of eigenvalues of H, in the interval (—oo,0) , counted with
multiplicity. Let 2 € C\ 0(Hs) . Then for n large enough, 2 + (c,)? € C\ o(H,),
and the resolvent

Ra(e+ (en?) 1= (o4 (en))T = Fa)

converges in norm towards the operator L(z) : (i) — (R(S)‘p) , where R(z) :=
~1
(zl — Hoo) is the resolvent of H., . So, by the standard spectral theory,

lim (e — (cn)?) =1; foralli>1.
n—-+oo

We know that ®° is a ground state of the Hartree-Fock model. So a result
proved in [1] tells us that 7, = A for all 1 < k& < N, and oy > Ay . But
(% — (cn)?) converges to Ay, and (e}, — (ca)?) converges to Un41, as n goes
to infinity. So, for n large enough, e}, ; > €}, hence g} = ¢} forall 1 <k < N.
This ends the proof of Theorem 5. O

4 Proof of Theorem 6.

In this section, both ® and ¥ will denote N-uples of 4-spinors (i.e. N-uples of
functions from R? into C*). As explained in the Introduction of the present paper,
"the” solution ¥° was obtained in [6] by a complicated min-max argument. Note
that we are not able to prove that this min-max argument leads to a unique critical
point (this is not surprising: even in the simpler case of nonrelativistic Hartree-
Fock, no uniqueness result is known for ”the” ground state). However, the min-max
level ES pp = E.(¥*0) is well defined and unique. For ¢ large, we will show that
the definition of Ef pp can be simplified.
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First of all, we introduce the notion of projector “e-close to AF”, where
1 _
A = §‘HC‘ 1(Hc + ‘HCD is the positive free-energy projector.
Definition 8 Let Pt be an orthogonal projector in L*(R3,C*), whose restriction

to Hz (R3,CY) is a bounded operator on Hz(R® C*) .
Given £ > 0, PT is e-close to A} if and only if, for all ¥ € Hz (R3,C4),

[+’ (- 30)o] oy =2 ()1

L2(R3,C4) L2(R3,C4)

An obvious example of projector e-close to AT is AT itself. More interesting
examples will be given below. Let us now give a min-max principle associated to
Pt

Lemma 9 Fiz N, Z with N < Z +1. Take ¢ > 0 large enough, and P a projector
e-close to Af, for e > 0 small enough. Let P~ =1 , — P, and define

E(P) = inf sup E(T) .
>Te(PTHZ) Ye(P~HZ @ Span(@+))N
GramL2 dt=1y GramL2 \I/:IN

Then E(PY) does not depend on P and E.(9¢°) < E(PT).

Remark In the case N =1, &, is the quadratic form (¢, Hw)L2 associated to the
operator H = H. — Zp ﬁ . Then E(A}) coincides with the min-max level A\ (V)
2+2

defined in [4], for V = —Zp = ‘71‘ By Theorem 3.1 of [4], if ¢ > Lﬂ ,
then A1 (V) is the first positive eigenvalue of H .
Proof of Lemma 9. The idea behind this lemma is inspired by [2]. Note that, under
our assumptions, E(Pt) < Nc?(1+ Ke) for some K > 0 independent of ¢ and &.
This follows from arguments similar to those used in the proof of Lemma 5.3 of
[6]. In [6] the free energy projectors AT were used. With these projectors, it was
seen that E(AF) < Nc? (thanks to a careful choice of ®+). When PT is e-close
to A}, we then get E(PT) < Nc*(1 + Ke).

To continue the proof of the lemma we perform a change of physical units.
In mathematical language, this change corresponds to a dilation in space by the
factor ¢, and to dividing the energies by ¢. Let (d.@)(z) = ¢*/?p(cx) and

E(d): = L& (dﬂ))

_ é/ﬂ@(%(m~v+6)¢k) %(ﬁ*ﬁ)lw (40)

+i// pa(x)pa(y) — || Ra(x, y)||” Prdy
2¢ JJrsxms |z —y

where ji(E) = u(c'E) for any Borel subset E of R3.
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The interest of this rescaled energy gc is that for ¢ large and Gram ,V <1, we
have

. ol 1
&) = Y [ (sliavesu) <o (FI0E,, ). @)

k=1"“r3
Let us denote Pt = d.—10P*od,, AT = de1oAfod. = Xey (fz‘a.V + ﬂ) .

Note that A% does not depend on c. Now, Pt is e-close to A} if and only if

(o) (P =Ry

LE(R:",C‘I) (42)
<ell(=a 1) . Vo e H3(R3,CY) .
<e|[(a+1) Y gy WS HHEECY
We denote ® e A the right action of an N x N matrix A = (an),_, ,.x o0
an N-uple ® = (¢1,...,pn) € (L2(R3,C*))V . More precisely,
N N
(@OA) = (Zaklcpk,...,Zachpk) . (43)
k=1 k=1
- N
Given @ = (pf,...,0%) € (P+H1/2) such that Gram ,®* = I, and
~ N
e (P*Hl/Q) , we define
g, (@7) = (BT +D)e {GramL2 (O + &~ ]72 (1)

1
2

= (Pt +D )e []IN + Gram,, (I)f]
~ AN
We obtain a smooth map g, , from (P* Hi) to

~ N
B, = {\If € (P H> @Span(gof,...,go})) / Gram ,¥ = ]IN} .
In fact, the values of g_, lie in the following subset of ¥_
v, ={wes,, / Gram,(P'v)>o0}.

Now, take an arbitrary ¥ € X7, . Then there is an invertible N x N matrix
B such that PT¥ = &* e B . So we may write
VeB l=0"4+P VeB L.

As a consequence,

N

9ot (P~UeB™ ') = (LeB e [GramL2 (VeB™ 1) B
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One easily computes
Gram, , (Ve B™) = (B")"" (GramL2 \1/) B! =(BB*).
Hence
9,,(P"TeB™") = (FeB)e(BB*)/? = Te (B (BB*)"?),
and finally B
V=g (P VeB helU,

where U := (BB*)~'/2B € U(N) is the unitary matrix appearing in the polar
decomposition of B. So we have proved that

iI>+ = U g¢+(q)7).U'
e c(P-HI)N

U € U(N)

Now, & is invariant under the U(N) action “e” , and X7, is dense in X_,
for the norm of (H'/2(R3,C*))N . Hence

sup E(V) = sup gc(g<I>+ (Q)_)) . (45)
Ve (P~ H3 @ Span(@+))N d-e(P-HH)N
GramL2\I/ =1

We now prove Lemma 9 in three steps.

Step 1. Let @+ € (PTHY2)N be such that Gram ,®t = M, and such that

E(PT) < N + 4, for some § > 0 small. For ¢ small and c large, there is a
~ N ~
unique P~ € (P_ H1/2) mazimizing E.og_, and lying in a small neighborhood

of 0. If we denote k(®™) this maximizer, the map k is smooth from
~ N ~
S = {qﬁ € (P+H1/2) J/Gram , ® =T, &(®T) <N +5}

~ N
to (P_H1/2) , and equivariant for the U(N) action.

Proof of Step 1. Take r > 0. For ¢, § small and ¢ large, if ®+ € S;', P €

(P~HY%)N and @[ ,,,» is not smaller than r, then

gc(gw(cb’)) < N-§,
by (41). On the other hand, for ¢ large enough, using (41) once again, one has

E(0,.0) = E(@%) > N2
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~ N
So, if we define V,. := {CIF € (P*HI/Q) / 27,0 < 7’}, no maximizer of

&cog,, can be outside V;. Moreover, choosing r small, and then taking c large
and ¢ small, the map _
" eVrr—Eeog,  (O7)

is strictly concave. Indeed, its second derivative at &~ € V). is very close in norm
to the negative form

N
Ve (PTHYAN v 23 T2, = 2 Y (0 @) e (05, -
i=1

1<i,j<N
Step 1 immediately follows from these facts. O
Step 2. The min-maz level E(P) does not depend on PT.
Proof of Step 2. Take two projectors P1+, P2+, both e-close to Af. For i = 1,2, and
of e (B Hl/z)N7 with Gram_, ®; = 1, and £,(&}) < N + 4, let

i(HF) o (i -
F@h= | max &g (@)
GramL2 o7 =1 (46)

=& g;f (kl(@j)) .

Here, gfb+ and k' are the maps associated to Pf in Step 1.

By Ekeland’s variational principle [5], there is a minimizing sequence (CIDfn)n>O

for J*, such that (Jl)’(qnﬁn)ij 0 in (H*I/Q)N. Let U, := g}, (kl(@;n)).

1,n

Then W, is a Palais-Smale sequence for gc in the manifold
N
Y= {‘Il € (H1/2) /GramLz‘I/ = ]IN} ,

= 1)
with &, (\I/n) > N — 3 where 6 > 0 is the constant of the first step. So
Gram , (]5;@") > 0. We denote

[N

& = Pf W, e |Gram (P} ¥,)| ,
b= 7 v e, 75 0] .
Q= Py Upe {GramL2 (P2Jr ‘I/nﬂ
One easily checks that ¥,, = 92+ (®5,,) - Since Ec (\I/n) > N — g, we have
® ,

2,n

95, ., < r, where r > 0 is the same as in the proof of step 1. Since ¥y,
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is a Palais-Smale sequence for g'c, the derivative of gc o 92+ at the point &,
Lo n ’

converges to 0 as n goes to infinity. So, by the concavity properties of Ec o 92+ in
Pon

the domain v
Vo= {0 € (B HY2) [ )o7),,, <7}

(see the proof of step 1), we get

15, — K2(®5,)] 0 and gc(\II,L)fJQ(cI){n) 0.

n—+4oo

—
Hl/2 notoo

As a consequence,

B(P) = inf Jl(cbf) > inf J2(®F) = E(P}).
o e(PrHY )N of (B HY )N
GramL2 <I>f:IN GramL2 @;:IN

Since 1,2 play symmetric roles in the above arguments, we conclude that
E(P*) does not depend on P*, for ¢ large enough and & small enough. a

Step 3. Ec<\IIC’O) < E(Aj), where W0 is “the” first solution of (D-F) found in
[E-S].

Proof of Step 3. For c large enough, if ¥~ € Ang/2 satisfies Gram , ¥~ < T,
it follows from Hardy’s inequality that the map ¥+ — E. (U + ¥) is strictly
convex on

W(U™) = {¥" e (AFHY?)N ; Gram , (I" +¥7) < L} .

As a consequence, for an arbitrary N-dimensional subspace V of ATH 172
Sy (¥7) = sup E.(UT 4T 7) is achieved by an extremal point W  — of
vtew (wo)nv
the convex set W (¥~)N VY . Being extremal, ¥
Gram , (U}, +¥7) =1 .

» must satisfy the constraints

So we have
sup E(P) = sup Sy(P7) = sup E(D) .
ve(A; HY 2@Vv)N Vo e(AHYHN Ve(A; HY 2@V)N
GramL2 U<I GramL2 v <Iy GramL2 =1,

By proposition 2,

g, (\1/0) < sup &, (\I/) :
ve(A; HY 2@v)N
GramL2 U<I
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Finally we get, for c large,

E(TY) < inf sup E(V) = E(A}) .
ere(ATHYHN  ye(As HY2@ Span(et))N

+_
GramL2 [ _IN GramL2 \I,:IN

(The correspondence between ® and V is V' = Span(®™") ). This ends the proof
of Step 3 and of Lemma 9. m]

Thanks to Lemma 9, we are able to write the following inequalities for ¢ large,
and P* e-close to A, £ small :

E(PT)=EAY) = £(¥°9)

> inf £.(1)
¥ solution of (DF,)
AgW =0 (48)
> inf E(D) .
Ve(HY )N

GramL2 =1y

Ay =0
As announced before, we now give some important examples of projectors e-close
to AF :
N
Lemma 10 Fiz N, Z, and take c large enough. Then, for any ® € (HI/Q) , with
Gram , ® < 1, the projector A$ = X(0,400) (FC,.@) is e-close to A}.
Proof of Lemma 10. We adapt a method of Griesemer, Lewis, Siedentop [7] to the

Hamiltonian H. . Once again, it is more convenient to work in a system of units
such that H. s becomes

Aoy des o Tewode) =( i V+ 0)0 = (7 1o
(s )=+ [ Raten 2y

with fi(E) = u(c ™ E), ®(z) = ¢=3/20(c 12).
Denoting Hy := —ia -V + 3, Ag = X(0,00) (Hc,é)a AT = X(0,00)(H1), K :=
c(ﬁc’&) — Hl), we find, as in the proof of Lemma 1 of [7],
1 [t

(Rg-A*)p=— dz |H}+ 22| - (HiKsH, 5K [(ﬁc@f +22] 'y,

T Jo
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and for any x € L?(R?,C*), following [7] (proof of Lemma 3), we get

~ o~ M
(¢ A+ DA -ED9) < =LA+ 14,

L2
for ¢ large enough (M is a constant independent of ¢). As a consequence, if ¢ is

M

large enough and bigger than —, then A;ﬁ is e-close to A}. This ends the proof
€

of Lemma 10. g

Now, to end the proof of Theorem 6, we just need the following result :

N
Lemma 11 Fiz N, Z and take ¢ > 0 large enough. If ® € (H1/2> , Gram ,® =
I, Az® =0 and E.(P) < Nc2, then

(D) = max{c‘,’c(‘ll); v e [A;H1/2@Span(®)}N, Gram ,¥ = ]IN} .

Proof of Lemma 11. If Ag® = 0 and Gram_,® = 1, then 0 is a critical point of
the map

U~ e (A;HW)N — 5c(9<1>(‘117)),

—1/2
with gp(¥~) = (@ + \1/*) . []IN +Gram \1/*} . Take ¢ > 0 small. By Lemma

10, Aj}f is e-close to A} for ¢ large enough. From the proof of Lemma 9 (Step 1),
there is a unique critical point of £. o g in a small neighborhood V. of 0 in
A (H'/?) and this critical point is the unique maximizer of £.0 g in Ay (HY?).
So, 0 is this maximizer. This proves Lemma 11. a

Let us explain why Theorem 6 is now proved. We know that, for ¢ large
enough,

N > E(Aj) > £.(T0) > inf £(T) |
\PG(H1/2)N
GramL2\I/=IN
Ag U=0
hence
inf E(P) = inf E(T) .

‘I,E(Hl/2)N \I,G(Hl/2)N

GramL2 =1 GramL2 =1y

Ag ¥=0 Ay =0

E(¥) < NP

Take £ > 0. By Lemma 10, for any ¥ € (H'/?)" with Gram ,¥ = 1, the
projector AJ, is e-close to Af, if ¢ is large. Hence E(AY) = E(A}) (by Lemma 9),
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if we have chosen ¢ small enough. But if ¥ also satisfies Ag ¥ = 0 and &(¥) <
Nec?, then, from Lemma 11 and from the definition of E(Ay), we have E(A}) =
E(AS) < £.(1). So

E(Aj) < inf £(D),
Ve (HY )N
GramL2 \I/=IN
Ay =0
and therefore,
E(Aj) = £.(T0) inf £.(T)
\I’E(H1/2)
GramL2 =1y
Ay =0
and Theorem 6 is proved. a
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