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On Birkhoff Coordinates for KdV

T. Kappeler and M. Makarov

Abstract. We prove that on the Sobolev spaces HYY (N > 0) of 1-periodic functions
in HZJZC(R) with average 0, the Korteweg-deVries equation (KdV) admits global
Birkhoff coordinates.

0 Introduction

Consider the Korteweg-deVries equation (KdV) on [0, 1] with periodic boundary
conditions,
Ou = fagu +6udu (t € R,z €R).

This equation can be viewed as a Hamiltonian system on the phase space HY (N >
0) with Poisson structure given by 9,,

OH
9q(x)
Here H is the KdV-Hamiltonian H(q) := fol (%(6&)2 + q3) dz, 622;) denotes the
Lo-gradient of H, and H” is the Sobolev space

HY = {g(@) = 32 4(R)e™ | [lallv < oo}
k

Oy = 0, (w).

where §(k) (k € Z) are the Fourier coefficients of ¢,

i) = [ o) da

and

llallZr = D 1a(k) [P (1 + k).
k

The Poisson structure 9, is degenerate: the average [q] := fol q(z)dx is a
Casimir and the symplectic leaves of the induced foliation on HY are given by
the affine spaces HY := {q € HY | [q] = c}. It has been proved in a series of
papers [Ka], [BBGK], and [BKM1] that for N € Z>¢, each symplectic leaf admits
Birkhoff coordinates, i.e. that the corresponding symplectic polar coordinates are
action-angle variables.
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Let us formulate this result in the case ¢ = 0 more precisely: For r > 0, denote
by A" := h"(N;R?) the model space {z = (z,y;);>1 | [|2|[7 = 2252, 5% (¢3 +93) <
oo} endowed with the Poisson bracket defined by {zk,yn} = Onk, {Tk, 0} =0,
{Yk;yn} = 0. As usual denote by L?[0,1] the space of real valued L2-integrable
functions on [0,1] and let L? = L2[0,1] = {q € L?[0,1] | [¢] = ¢}.

Theorem 1 There exists a symplectomorphism
Q: L3 — h2NGR?Y), g (20(0), Yn(0)) nse
with the following properties:

(1) (@n,Yn)n>1 are Birkhoff coordinates for KdV, i.e. the symplectic polar coor-
dinates (I, 0n)n>1 associated to (Tn,Yn)n>1,1In = (22 +y2)/2 and 0, :=

arctg (z—”), are action-angle variables for KdV.

(2) For any N € Zq, the restriction QW) of 0 to HY is a real analytic diffeo-
morphism, Q) : HY — BN+3.

A similar result has been proved for action-angle variables with respect to the
second bracket of KdV (cf. [KaMa]).

Let us mention, among many others, the following two applications of The-
orem 1:
(A) The KdV-Hamiltonian H can be brought into a convergent Birkhoff normal
form: when expressed in the new coordinates, H admits a convergent power series
expansion in the action variables I, I, . ...

(B) The image Z := {(In(q))n21 | g€ Lg} is all of the positive quadrant of the

weighted £1-sequence space, /1 (N;R>q). It is a (non-compact) infinite dimensional
convex polytope which is the image of the momentum map (I,,(q)),,~,. This map
arises from the action of an infinite dimensional torus on the function space L3.
This suggests that the theory of the convexity of the image of momentum map
developed in the finite dimensional case (cf [At], [GS]) extends to an infinite di-
mensional setting.

In this paper we present a new proof of Theorem 1 which is considerably
shorter than the one given in the series of papers [Ka], [BBGK], and [BKM1].
First we introduce action and angle variables, (I,)n>1 and (6,),>1. Heuristically,
the formulas for (I,),>1 and (6,)n>1 can be derived as in classical mechanics (cf
sections 2 and 3). Following computations for the defocusing nonlinear Schréodinger
equation (NLS) due to McKean and Vaninsky [MV], we show that (6,),>1 and
(In)n>1 satisfy canonical relations. We then use these variables to construct the
map 2 as follows: for ¢ with I,,(¢) # 0, define Q,,(¢) = (20 (q), yn(q)) by =, =
V21, cos 0, yn = /21, sin 0,,. We prove that Q(q) admits an analytic continuation
to a complex neighborhood of LZ. One of the main new features of the proof of
Theorem 1 is to use some of these canonical relations to show that ) is a local
diffeomorphism.
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The paper is organized as follows:

In section 1, for the convenience of the reader, we review regularity properties and
asymptotic estimates of the action variables I,, (n > 1) obtained in [BBGK].

In section 2, we introduce the angle variables 6,, (n > 1) given by the Abel map,
the latter being defined with the help of certain holomorphic differentials studied
in [BKM2], prove regularity properties, and provide asymptotic estimates of 6,,.
In section 3, we define the map Q : LZ — h'/? using the action-angle variables
(In, 0n)n>1 and prove that € is real analytic.

A natural way to prove that  is a symplectomorphism would be to verify the
canonical relations for actions and angles. These relations imply that €2 is a local
diffeomorphism. To show that €2 is 1 — 1 and onto it is to establish that 2 is proper
and Q-1{0} = {0}.

However, due to the fact that the Poisson structure 9, is a first order differential
operator, additional regularity for the Lo-gradients of the action-angle variables
are needed to justify the computations used to establish the canonical relations for
them. As a consequence, we modify the plan of proof proposed above as follows:
It is easy to see that the gradients of the actions have the additional regularity
needed to verify all the canonical relations involving the actions (section 4). These
canonical relations are used to conclude that € is a local diffeomorphism (section
5).

In section 6, we show that (2 is bijective and in section 7 we study the restriction
of Q to the Sobolev space HY'.

The property of ) being a local diffeomorphism allows to consider the push forward
Q.w of the Gardner symplectic structure w and to verify that Q.w is the standard
symplectic form (section 8).

In section 9 we establish, among other things, regularity properties for the Birkhoff
coordinates which will be used in subsequent work.

For the convenience of the reader we present several auxilary results in four
appendices. Notation is standard, except the one for denoting error terms: For
1 < p < oo, Op(n®) respectively 0,(n®), denotes a sequence of functions (fy),,~;
in LP such that n=%||f,||zr < C respectively limy,_,oo n™%||fnllze = 0. -

1 Action variables

In this section we recall the formulas for the actions (I,,),>1, found by Flaschka-
McLaughlin [FM], and state regularity properties and asymptotic estimates pre-
sented in [BBGK] and [BKM1].
For ¢ € L§ ¢ = L§([0,1]; C) consider the Schrodinger equation
-y +aqy=Xy. (1.1)
q) and ya(z, A, q) the fundamental solutions of (1.1) (which are
;C)) and by A(), ¢) the discriminant,

A(Aa Q) = yl(]-a )‘7 q) + yé(l, )‘7 q)

Denote by y1(z, A,
elements in HY (
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and write A(\) for £ A(X, q). Further denote by spec(q) the spectrum (An(q))n>0

of the operator fj—; + ¢ when considered with periodic boundary conditions on
the interval [0,2] where (A, (¢))n>0 are ordered in such a way that

Re A\, <Re )\ 41 or Re )\, =Re )41 and ImA, < ImA,4q.

We point out that A, (g) are not continuous with respect to ¢ due to this choice of
the ordering and the assumption that ¢ is complex valued. In the sequel, we will
always assume that Img of an element q € L(2),(C is sufficiently small so that, for
any n > 1,{A\an_1, A2n } is an isolated pair of eigenvalues.

For such a potential ¢, according to Flaschka and McLaughlin [FM], the
action variables of KAV, with respect to the Poisson structure d,, are given by

L&@ziiénw—z%%g—zdw (1.2)

Here \/A(u)? —4 denotes the branch on the complex plane slit open along
(=00, A0)s (A2n—1, Aap) (n > 1) with the sign of the radical chosen so that for
g real , iy/A(p)2 —4>0for \g < p <X and T',, (n > 1) is a circuit around the
interval (Agp—1, A2y) with counterclockwise orientation. Flaschka and McLaughlin
have obtained formula (1.2) by applying a well known procedure due to Arnold
in the case of finite dimensional integrable systems: they defined the action vari-
able I, by I, := % fcn a where « is a 1-form satisfying w = da and (c,),, is a
(appropriately chosen) basis of cycles of an invariant torus. Expressing % fcn a in
conveniently chosen canonical coordinates they obtain the integral in (1.2) .
Denote by (7n)n>1 the sequence of gap lengths, v, := Aan — Aan_1.

Proposition 1 Let qo € L3. Then there exist a neighborhood U, of qo in L%,(C and
a constant C' > 1 so that, for any n > 1, I, is analytic on Uy, and

1 /yn\2
2[n::-——-(——) 147,
nmw \ 2 ( T )

where the error Ty, is analytic on Uy, satisfies % < 1+r| < C and % <
Re(1+1r,) < C as well as the asymptotic estimate r,, = O (b—iﬁ)
As a consequence,
21 12
n(q) = o~ (1.3)
(1n/2)

is analytic and does not vanish on Uy, (with 212 denoting the branch of the square
root which equals 1 at z = 1) and satisfies the asymptotic estimate (¢ € Uy,)
1 logn

_ | <

where C' > 1 is independent of q.
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Proof. (in [BBGK], section 2) O
Integrating (1.2) by parts, the L?-gradient % can be computed

OA (1)
ol, 1 Bals)

oq(z) r, \/AQ(,u)—éld'u'

2 Angle variables

To define the angle variables, introduce the holomorphic differentials investigated
in [BKM2] (cf also [MT2]).

Proposition 2 There exists an open neighborhood U = Upz in L(Q)’C so that for
any q in U, one can find a sequence of entire functions 1;(A) = ¢;(A,q) (j > 1)
satisfying

1 ¢j ()‘a Q) dA

_ R AL VAR .

The functions v; depend analytically on X and q and admit a product repre-
sentation

(2.1)

()
G g — A
bi(h) = j27j1'2 H k272 (2.2)
kj

with u,(cj) = u,(cj) (q) and c; = ¢j(q) depending analytically on ¢ € U and satisfying

, 1 : 1
|M§€J) — 1| < CE l* (k#4); ™= §(>\2k71 + Azk) (2:3)

1
lej — 2mj| < 03 (2.4)

where C' > 0 can be chosen locally uniformly with respect to q and independently
of j = 1.

Proof. ¢f Theorem A.5 (in Appendix A.2), Lemma 3.2, and Lemma 3.3 in
[BKM2]. O

It is convenient to introduce the following

Definition An open set U in Lac is said to be a G-neighborhood if U satisfies the
properties stated in Proposition 2.

In the sequel, let U, always denote a bounded G-neighborhood of qo € L3.
To define the angle variables, introduce the hyperelliptic surface ¥4, y =
AZ(X) — 4, associated with spec(q).
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For ¢ in Uy, \ D,, with

D, = {q | Aop = )\271—1}’

the angle variable 6,,(q) is defined formally - to be the n’th component of the Abel
map associated to Xg, evaluated at (p})r>1 with pf = (e, /A2 (ur) —4) € X.
Here p, = pr(q) (k > 1) denote the Dirichlet eigenvalues of the operator —%22 +q
considered on [0, 1].

More precisely, we define for ¢ in Uy, \ Dn,

wr(a)
0 (q) ;ZZ/ ) gy (2.5)
=1 dan(@) VAZ(X,q) —4

where for each k£ > 1 the path in the integral

Ly (q)
T, () :=/ k Mdk (2.6)
Aar(e) VAZ(A @) —4

is near Aoy, but otherwise arbitrary.

Formula (2.5)for the variables (6,,), conjugate to the actions can be obtained
- at least formally - by taking the derivative of o =3 I,df,, with respect to I,
Oa 9 Jda

ol = df,, and integrating on an invariant torus with I,, # 0, 6,, = 40 DLn where

qo 1s a base point of the invariant torus under consideration. By then expressing
687&" in conveniently chosen canonical coordinates one obtains formula (2.5) under
the assumption that « coincides with the 1-form introduced in [FM].

In the remainder of this section we show that the 7, ;, are well defined analytic
functions on Uy, \ Dy,, multivalued in the case k = n, and that they satisfy estimates

to make the infinite sum in (2.5) convergent and 6, (¢) analytic.

Lemma 3 (i) For k # n, nnk is a well defined function defined on Ug,. In
particular, the integral in (2.6) is independent of the path chosen (as long as
the latter stays near Agg).

(ii) Mp,n is well defined as a multivalued function on Ugy\ D,, with values differing
by multiples of 2m.

Proof. (i) First notice that 7, 1 is well defined for ¢ with ~x(¢) = 0. In such a case

u,gn) = MAgi. Therefore 1, (\) and /A2(\) — 4 both contain the factor (Agr, — )

wn()‘) 1 3 ) s
and a0 is analytic near Aa;. Thus by Cauchy’s theorem, 7, ;. is well defined

in this case.
The independence of 7,, 1, of the path of integration in the case 7 # 0 follows
from the normalization (2.1)

A2kt g (A)dA

A2k V A2(>\, Q) -4

= 7p,, mod 27. (2.7)
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(ii) First we notice that as v,(q) # 0, the integral in (2.6) is well defined. Due to
the normalization condition (2.7), we have

e g (A)dA

————— =7 mod 27. (2.8)
A2n V AQ(Aa Q) —4
By Cauchy’s theorem, 1, 5, is thus well defined mod 2. O

To prove the boundedness result below, it is convenient to consider the model
for ¥,, obtained by glueing two copies of the complex plane, slit open along
(—00,X0), (A2n—1, A2n) (n > 1). These copies are refered to as the sheets of .

Lemma 4 Let Uy, be a bounded G-neighborhood of qo € L3. Then there emists
C > 0 so that for any n > 1 the following holds:

(i) for all k #n and g € Uy,
Cn 1
<" - _ :
|77717k(q)| = |k27n2|k(|/ﬁk Tk|+|7k|)7
(ii) for q € Uy \ Dy

[7n,n(¢) mod 27| < C'log (2 + ‘M
Tn

)

(iil) for all g € Uy,

1/2 1/2
C
> Imr(g)l < p >l — il + (D0 wl?
k#n k>1 E>1
Proof. is provided in Appendix A. O
To prove regularity properties of n,, , introduce
Sk = {a€ Uy | n(g) =0}
Wi = {q €Uy | i € {Aak—1, Aax}}.

Notice that S and Wy are analytic subvarieties as Sy = {q € Uy, | A(Ax) =
(—=1)*2, A(Ax) = 0} (where )\ is the root of A(\) = 0 near \gi) and Wy, = {q €

Ugo | 91(1, ) = (=1)"} = {q € Uyy | y1(1, px) — 5(1, px) = 0} where for the
characterization of Wy, we used that the Wronskian identity [y1(x, A), y2(z, A)] =1,
evaluated at (x,\) = (1, px), is given by y1 (1, pr)ys (1, ug) = 1.

Lemma 5 Let Uy, be a G-neighborhood of qo € L3. Then:
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(i) for k #n, ok is analytic on Ugy;

(ii) Mp,n is an analytic, multivalued function on Uy \ D, whose values can be
identified modulo ;

(iii) when restricted to real potentials, 1. n is a continuous, multivalued function
whose values can be identified modulo 2.

Proof. (i) Notice that for g € Uy, \ Sk and a small g-neighborhood V' C Uy, \ Sk,
there exist analytic functions )\;‘, A, on V with {)\g, AL b= { Aok, Aok—1}. In view

of (2.7) mnk(q) = ;Lf((;])) \/%d/\. From this deduce that 7, 5 is analytic on
V\ (Sx UTW}) and as a consequence, analytic on Uy, \ (Si U Wy).

It remains to prove the analyticity of n,, , for ¢ € S,UW}. By [[PT], Appendix
A] this amounts to prove that 7, is locally bounded and weakly analytic. By
Lemma 4, 1y, 3, is bounded on Uy,. For 0, to be weakly analytic it is to show that
for any given g € S, UW}, and any p € Lg,@ M,k (q+ 2p) is analytic for z € C near
z = 0. Introduce D, := {g+ zp | z € C, |z| < €} and chose € sufficiently small so
that D. C Ug,. Due to the fact that S;, and W}, are analytic submanifolds of Uy,
it follows that, for e sufficiently small, the following two cases occur:

case lg : SpND.C{q}; case 2¢ : SpND.= D,
and, similarly,
case lyy : WipND,C{q}; case 2w : WpnD.=D..

Combining them, we obtain four different cases, (is, jw) (1 < 4,5 < 2) which are
treated separately. First we notice that the cases (ig, 2 ) (i = 1,2) are particularly
easy as M,k = 0 on De. In the case (2g,1w) we have Aoy = Aag—1 = 7% on D,
and as 7, is analytic it follows that 7, 5 is continuous on D.. As, by considerations
above, 1, is analytic on D, \ {q} it follows that 7, 1 is analytic on D, (removable
singularity). It remains to treat the case (1g,1lw ). Again by the considerations
above, 1, i is analytic on D, \ {q}. As lim ra Aj (1) = Aar(q) for j =2k, 2k — 1,
reb.

77n,k|D€ is continuous at ¢. It follows that 7, 5 is analytic on D, in case (1g, 1w ).
(ii) By Lemma 3, 1, ,, is a multivalued function whose values coincide modulo 27.
For ¢ € Uy, \ Dy, there exist a neighborhood V' C Uy, \ D,, and analytic functions
Ao, on Voso that {\F, A, = {Aa2n, Aan—1}. As

A2n—1 b
N n—r mod 2n

Aan VAZ(A) -4
B n(N)

and —222__d\ is continuous on V', we conclude that is continuous on
A V/A2(N) -4 ’ In.k

V when viewed as a multivalued function whose values coincide modulo 7.
Arguing as in (i), we conclude that 7y, is analytic on V, and therefore on
Ugo \ Dy as well, when considered as a multivalued function.
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(iii) As Agp, and Ag,—1 are real for ¢ real valued, they are continous in ¢. This
implies that 7, , is continuous on Uy, \ D, N Lg when viewed as a multivalued
function whose values coincide modulo 27. [l

We summarize our results in the following

Proposition 6 There exists a G-neighborhood U = ULg of L in Lg,c so that, for
any n > 1, the following statements hold:

() 6, = D ktn Nk converges absolutely, is analytic on U, and satisfies 0, =
O (%) locally uniformly in q (cf Lemma 4);

(ii) 6, is an analytic, multivalued function on U \ D,, with values equal modulo
T

(iii) when restricted to real valued potentials in U \ Dy, 0, is a continuous mul-
tivalued function with values equal modulo 2.

3 Q : Definition and regularity properties

In this section we define a real analytic map Q = (Q,)n>1 @ L2 — h'Y/2(N;R?)
which satisfies - as will be proved in the subsequent sections - all the properties
listed in Theorem 1.

We begin by defining the n’th component of Q, Q,,(q) := (z,(q), yn(q)). Let
U = Up;z be a G-neighborhood of L3 in Lac.

Definition For ¢ € U \ D,,, set

(@) = (0(0). 9n(0)) = €(0) 2 (cos 0, (g).sin B(q)).

where £,(q) has been introduced in section 1, 0,(q) in section 2, and where v,(q) :=

2
A2n(q) — Aan—1(q), is related to the actions I, (q) by 2I,(q) = (fn(q)W”T(Q)) .

Recall that +,(q) is not continuous on U\ D,, due to the choice of the ordering
of the eigenvalues. Further recall that

Hn = TMn,n + en

where 9~n = Zk 2n Tk is analytic on U whereas

ety I

nn,n(Q) - . \/m

is analytic on U \ D,, when viewed as a multivalued function whose values coincide
mod 7 (cf Lemma 5).

Lemma 7 On U\ Dy, x,(q) and yn(q) are analytic.
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Proof. Let p € U\ D,,. Then there exist a neighborhood V' C U \ D,, and analytic
functions AF on V with {\(¢), Mt (9)} = {Xan-1(q), A2n(q)}.

_ [Hn _ n

It follows from the proof of Lemma 5 that 7, (q) := o 7ar=dA is ana-

lytic on V' when viewed as a multivalued function (mod 27). Introduce on V the
following functions

T = A A O =118 + O

n
+ +
Tf =&, 77” cos 0, Yt = §n77" sin ;.

Then ;1,05 2,7, y,t are analytic on V. Thus the claimed statement follows if

vn =z and yn =y

Take ¢ in V. If A (q) = Aan(q) then, according to the definition of ~, and

0., and Lemma 3

Y (@) =v(q), 6 (q) =0a(g) mod 27

whereas in the case A} (q) = A2,—1(q), in view of (2.7),

Y (@) = =m(9),  0:(q) = (6u(g) +m) mod 2.
Thus in both cases we conclude that z,(q) =z, (¢) and y,(q) = v, (¢)- O

The next result shows that €2,, can be extended:

Proposition 8 There exists a G-neighborhood U = Upz of L3 in L(2),(C so that for
anyn > 1, Q, = (n,yn) admits an analytic continuation on U.

Let us outline our proof of Proposition 8. First we show that, for any n > 1, 2,
admits a continuous extension on U (Corollary 11) and has a bound of the form

C
|QH(Q)| < m(hﬂ + |,u'n - Tn|)

where C' > 0 can be chosen independently of ¢ for ¢ in a bounded G-neighborhood
of go (Corollary 11). Using Lemma 7, Proposition 8 then follows by showing that
Q,, is weakly analytic.

We begin by establishing an auxilary result. For g € Uy, Uy, a G- neighbor-
hood of go € L, and n > 1 introduce the functions

Cn = Cn()‘aQ) = % (3'1)

defined for A € C near {A2,(q0), A2n—1(go)} where

Un(\, q) = (71)n—1% (A —n):)1/2 H ((A2k — )\)(k);ifgl —\)Y/2
k#n

(3.2)
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and 2'/2 denotes the branch defined on C \ R_ with 1'/2 = 1. Then, for

()\, VAN)? — 4) €3, near the branch points {Aan, Aon—1}ta/(A2n — A)(A — Aap_1)
is defined by

ey A -

V2n = A)A = Az 1) A2 —4

Lemma 9 Given a bounded G-neighborhood Uy, of qo € L3, there exists a constant
C > 0 so that, for q in Uy, andn > 1,

|Gn(7n) = 1] < Clml.

Proof. For g € Uy, \ D,, real valued, by formula (2.1),

1 A2n—1 1
- n(A, d\ = 1. 3.4
T //\2n C ( q) \/()\2n - )\)()\ - )\2n—1) ( )

Choose A(t) := 7, —t% (=1 <t < 1) as path of integration. As ¢ is realvalued

\/(AanA)(Angn,l):f%" (1—1)"*, (3.5)

Substituting (3.5) into (3.4) yields

dt
3 (3.6)

1:1/ gwm—li—1/<@wm+Qthajg—

m™J 1 (1—752)1/2 ™ Jo
Notice that ¢, (A(t)) + ¢, (A(—t)) is even in ty,. Further, (,()\) as well as 72 are
analytic in ¢, hence (3.6) remains valid on all of Uy, \ D,,. The integral in (3.6) is
split up into two parts, Fr(q) + Frr(q), with

FI(Q) : Cn(Tn)%/_l ﬂflﬁ = Cn(Tn)-

Then (3.6) leads to
|Cn(7-n) - 1| < |FII(Q)|' (37)

To estimate

Fir@ =1 [ (G = Galm) —

—1 (1 o t2)1/2’
notice that, as A(t) — 7, = —t %,
e
Cn()\) _C”(T") = —(Tn +S()‘_Tn))()‘_7_n)d5
o O
1
= -t %(Tn + sth)ds.

2 Jo O 2
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This leads to

t
Fuug ___/ / a_p)? aCA (7 + st dtds.

Choose C > 0 so that

sup L(Tn + st—) <C VgeUy,.
0<s<1 | OA 2
0<[¢[<1
Thus, for ¢ € Uy, \ D,
Cn(Tn) = 1] < Clml- (3.8)
As (,(7,) and |y,| are continuous and Uy, \ D, is dense in Uy, (3.8) holds on the
whole neighborhood Uy, . g

Recall that in section 2, we have introduced the real analytic submanifolds

W, = {q € qu | Hn € {)‘271’ )‘2"_1}}’
Sn = {q S qu | )\Qn = )\2n—1}

where Uy, is a bounded G-neighborhood of ¢y € L3. To formulate our next result,
introduce, for g € Uy,

Pn(q) / / 84” (Tn + St(pin — 7))dsdL. (3.9)

Use the model for ¥, near Ay, obtained by glueing two copies of the complex
plane, slit open along the interval G, = {(1 — t)\ap—1 + tAan, | 0 < ¢t < 1}. For

= (A VAN)2Z —4) € &, with A € G,, and near Ay, define ¢, = €,(\*) = £1
by

o\ 1/2
VO — N — dan_1) = ien - (A —70) (1 — (%) ) (3.10)

where (1 — 22)/2 denotes the square root on C\ (—oo, —1) U (1,00) with 11/2 = 1.
Formula (3.10) then leads to

AT — i Tn)(l(%_/?f)“. 1)

Define Q,, = (,yn) on Sy, as follows
(l’n, yn) = (07 0) on Sn N Wn (312)
(xn; yn) = (,Ufn - Tn)fneienéner" (1, *Z‘En) on Sn \ Wn (313)

with €, = e, (), ty, = (fn, y1(1, pn) — y5(1, 1)) and én = Zk;sn M.k~ Notice
that €| s, is continuous on Sy,.
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Lemma 10 For ¢; € S, \ W,

qh_,rgll Dn(q) = Qu(qr)-
q¢SnUWn
Proof. We first evaluate the limits of z,(q) & iy,(q) = 5@%eii9" fo%* q — q1
with ¢ € Uy, \ (S, UW,,). By Proposition 6, lim,_,, e*?(@ = eF#n(a1) and
by Proposition 1, limg—.q, én(q) = &u(q1). Thus it remains to find the limit of
Lo etinn(@) a5 g — 1. For q € Uy, \ (Sn UW,,),

& (V)
A2n - A2n \/()\2n - )\) ()\ - )\2n—1)

Mn, n d\ (3.14)

where (, () is given by (3.1) and the square root /(A2 — A)(A — Aa,—1) is defined
on ¥, for A near Ao, by (3.10). For g € Uy \ (Sn U W,,) with |y, — 7| < 4]7vnl, by
Lemma 4,

(@) < C  (for g with |pn — 70| < 4fynl ). (3.15)

B, ¢n(N) . .
To evaluate [, " \/(/\%’_/\)()\_/\Mil)d)\ for g € Ugy \(Sn U Wh) with [, —7| > 4|5

we consider two cases:

case 1 : Rew, > 0; case 2 : Rew, <0

— Kn—Tn

where w,, = S
Let us first consider case 1. Choose as path of integration

A(t) = Aon + (it — Aan) = T + %"w(t)
where
w(t)=1—-t+tw, (0<t<1).
Then

Oan =MD ~dant) = (2)7 (- w®)(1 +wit)
S (%)Qw(t)Q (1 - ﬁ) .

Notice that Rew(t) = 1 — ¢ 4+ tRew, > 0 (case 1). Moreover, for 0 < ¢ < 1, (cf
(3.10))

‘ Y 1 1/2
V (A2n = M) (A(t) = Aan—1) = ien—-w(t) <1 - w(t)2> . (3.16)
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Substituting (3.16) into the integral in (3.14) we get

[ GaO®) (i — Aan)dt
Mn,n(Q) /O o Tt (1 B ﬁ)l/g (3.17)

en [ (M)
= = 5 (wn — 1)dt
! /0 w(t) (1= 5t5) !

= — T2 g mod 2.
TS
Using the Taylor expansion
n n a n n
Cn (Tn + %w) = (n(7n) + %w ; 8C)\ (Tn + s% )ds,
the last integral in (3.17) can be split into two parts, 0, (¢) = I(¢) +II(q) where
€ wn 1
I@)i= 26 [ —— (3.18)
T
and . ag
Wn = (1, + 57"w)
/ / " 1/2 —dwds. (3.19)
Then, as Rew(t) > 0 for 0 <t < 1, and w( ) =1
n 1
I(g) = Z¢u () log (w +w(l — —2)1/2) ( mod 27) (3.20)
1 w wew,,

and with Zrdw = Z(w, — 1)dt = (ptn — Aan)dt

€n aCn ’}/n dtdS
11(q) = (pn— A2 )—/ Tn+8(— +t(pn—A2n))) ———=- (3.21)
( ( n n; o Jo I\ ( n ( ( n (17 w(1t)2)1/2 (
Notice that, for 0 < ¢ <1,
L _ L <2 (3.22)
(1-— w(1t)2)1/2 (1— ﬁ)1/2(1 I $)1/2 = 172
where using that |w,| > 4,
121 [T tw, =[P 2
TN S T e TN | (3.23)
w(t) t1/2 -1 t1/2
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and, using that Rew(t) = 1+ tRew,, > 1

1 1/2

w(t) -

_1/2_ ‘1+t(wn—1)

1 S L St )
‘ + 3+ twn — 1)

<1. (3.24)

Before continuing our argument for case 1 let us first consider the case 2: Re w,, < 0.
Then

A)d o W (A)dA
Mnn ( ( =7+ M mod 27 (3.25)
A2n )\) - Aon_1 A()\)Q —4

where we used (2.7). For the last integral in (3.25), choose as path of integration
At) = Aan—1 + t(pn — Aap—1) and argue as in case 1. It leads to the following
formula,

M, = 1(q) + 11(q) + I11(q)
where I(q) is defined as in (3.20) but

I1(q) := (pn — A2n—1) //6@“" dt—ds mod 27 (3.26)

1/2
1
(1 - at)

where 7(s,t) := 7, + s(=%5* + t(pn — A2n—1)) and

IT1(q) == (enCn(mn) + D7 mod 27. (3.27)

The estimates (3.23), (3.24) allow to take the limit under the integral in (3.21)
and (3.26) to obtain

lim 771(q) = (n — )\gn)% /0 ; a;;( (s, t))dtii)l/2 =pn(q1)

q9—4q1

(3.28)
where we used that limg_.q, 7»(q) = 0 and limg_.q, A2n(q) = T (q1).
Now let us continue with the proof of case 1 and case 2 simultaneously. From
(3.20) we obtain

~ ~ 1 1/2 iﬁngn(Tw,)

im Petil(e) _— im _

qlgzll 5 € il(qg) q]gqul 5 <w +w (1 w2) ) (3.29)
= (n — ) (Lenl(qr) +1)

where we used [(p (7)) — 1| < Clvy,| (Lemma 9) and thus

n 1 Cn("'n)
m 12 ( > = 1. (3.30)

a—a 2 \yn/2
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Notice that ITI(g) (cf 3.27) is continuous in ¢ and

lim e 119D = lim exp (fi(e,Cn(n) + 1)7) = 1. (3.31)
= a—aq

Combining (3.28), (3.29), and (3.31) we conclude that lim,_.q, Ze* exists.
For g1 € S, \ W,, we then obtain (¢ € Uy, \ (Sn UW,))

lim (z, +iyn) = fneié” lim % eitnn
q—q1 =
= fneié" lim (fy—n(an)EnCn(Tn)eenpn)
g—aq \ 2

= (1+ €n)§nei9n (tn — Tp)ePm

where p, = pn(q1) (cf (3.9)). Similarly,

lim (x, —iy,) = &e 0 lim I it n
q—q1 q—aq 2
_ £n€7i07" lim (7_"(an)fenCn('rn)efenpn)
q—q1 \ 2

(1= en)€ne ™" (1 — T )ePn.

Thus _
lim z,, = Eneenwn (Mn _ Tn)epn
q9—4q1
and i
lim y, = —ie,&pen?n (b, — T )eP™ = —ienxn(q1).

q9—4q1

Corollary 11 (i) Q, is continuous on Ug,.
(ii) There exists C > 0 so that for g € Uy, andn > 1,

c
lznl + lyn| < 75 (I = Tl + |ynl)-

Proof. (i) Follows from Lemma 7, Lemma 10 and the definitions (3.12), (3.13).
(i) On Uy,, (eiien(q)) (cf Proposition 6) and (v/n&,)n>1 (cf Proposition 1)

n>1

are bounded. It remains to bound Z+e" by C(|pn — 75| + |ya]). This follows
from (3.15), the boundedness of e**/1(@) (cf (3.21) and (3.26)), the boundedness
of e 119 (cf (3.27), Lemma 9), and the boundedness of e (cf (3.20),
Lemma 9). O

Proof. (of Proposition 8). The claimed statement follows if for any gy € L2, there
exists a G-neighborhood Uy, of g in Lg,c so that x,,y, are bounded on U,
and weakly analytic (cf [PT]). By Corollary 11, z,,y, are bounded on Uy, . From
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Lemma 7 and Corollary 11 one concludes, similarly as in the proof of Lemma 5,
that 2,,(q), yn(q) are weakly analytic. O

The results of this section lead to
Theorem 2 2 := (Qy,),,5; L — h'/2(N;R?) is real analytic.

Proof. Let qo € L3. By Corollary 11 there exist C' > 0 and a G-neighborhood Uqgo
of g in L(Q)’(C so that for any n > 1 Q,, is analytic on U, and, for ¢ in Uy,

eal? + ol < S (M@ + 10(@) ~ (@)

By Proposition 28, Uy, and C' > 0 can be chosen so that, for ¢ € Uy,

> (M@ + lunlg) = ma(@)?) < C.

n>1
Thus Q(q) € h'/2(N;R?) and Q is bounded on U,,. Together with the analyticity
of Q, on Uy, (n > 1), this implies that €2 is analytic on Uy,. O
4 Canonical relations: part 1
In this section we prove a first set of canonical relations for the variables I,,, 0,, (n >
1) introduced in sections 1 and 2 respectivly. These relations will be used in the

next section to prove that the map €2, defined in section 3, is a local diffeomorphism.
Let O(q) be the set of open gaps,

0 =0(q) :=={n eN|m(qg) # 0}
Proposition 12 (i) For g € L and m,n > 1,
{L,In} =0.
(ii) For g € L3, m € O(q), and n > 1,
{Om, 1n}(@) = —On.m-
(iii) For ¢ € L% and m,n & O(q),

{x”’xm} = {ynvym} =0
{Zn, ym} 0 (m#n); {zn,yn} #0.

We prove parts (i), (ii), and (iii) of Proposition 12 separately.
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Proof of Proposition 12(i) Recall that

A2k
oL, 2 aA(A) @)

dq(z) Aok_1 \/A2 4 0q(x)

where the path of integration is given by A = Aog_1 + ¢y — 10 with 0 < ¢ < 1. For
a,b € R, we have (cf (B.3) in Appendix B)

{Ala,9), Alb, )} = 0.
Therefore {I,,, I, } = 0. O

The proof of Proposition 12(ii) requires several auxiliary results which we present
first.

For ¢ € L2, let Iso(q) denote the set of isospectral potentials. As Iso(q) is
compact and generically not contained in a finite dimensional space, I'so(q) gener-
ically is not a manifold. Nevertheless its normal space N,Iso(q) and its tangent
space T, Iso( ) at ¢ are well defined (cf [MT1]) : TyIso(q) is the La-closure of the
span of &L (f3 — f2,_)) with n € O = O(q) where (fn)n>0 denotes an orthonor-
mal set of eigenfunctions of the Schrodinger operator fdd—; +q on [0, 2], considered
with periodic boundary conditions. The normal space N,Iso(q) is the orthogonal
complement of T,Iso(q) in L3.

Lemma 13 Forn > 1 and q € L3, dd:va?zi ) € TyIso(q).

Proof. Tt suffices to consider n € O as, for n € N\ O, 6q 5= 0. Similarly as in
the proof of Proposition 12(i) one shows that, for any A € R,

{A(N), I} =0.
Therefore A(-,¢q) remains unchanged along the flow generated by d% 6?1] As
A(+,q) determines the spectrum of ¢, {A,(q)}52, = {\ | A(},q) = £2}, we con-
clude that - 8?1{93) € T,Is0(q). O

Denote by m;; = m;; (A, q) (1 <4i,j <2) the entries of the Floquet matrix m;; :=
8;_1yj(1, A, q).

Lemma 14 For any k > 1, ¢ € L3, and \ # ux(q),

() A ) g) = %mu(uk(gl)ij()uk(zi)i()uk(q),q) Tiﬁ’(?)'

Proof. By the definition of the Poisson bracket,

L oA ) d Oux(a)

{pr, AN Ha) = - o Oq(z) dz 9q(z)
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Using that (cf. [PT]) aacf(L;) = mlfg;i)fx‘zf()%) we obtain (cf. (B.4) in Appendix B)
m12(>\) ( 1 >
2(\ — AN = - —m
(A = ) { e, A(A) } s () \ i () 22 (1)
Tzd) (ma1(pk) — maz(pe)) -
a2 (k)
([
Corollary 15 For any k,n > 1 and q € L3,
Ly () — moo(ue) [ maa(A) d\
{pw () In()} = —— - - 3
T a2 () Aemo1 A~ HE A/AZ(N) — 4
where we have omitted q from the list of parameters.
Proof. The claimed formula follows from Lemma 14 and
oL, 2 [*n 1 IAW) 4\
Oq(x) ™ [a, VAN —4 9g(x)
O
As %%I#SS) € T,Iso0(q), only the projection of % onto TyIso(g) will matter

for the computation of {6, I,,}(q). As 0y = >4~ .k We introduce, for k € O
and m > 1, B

P (2, ) _%yl(%uwyﬂx’”w if i € {Mak—1, Aok }
m,k\T,q) ‘= M o '
\/WC”Q(;) if Aog—1 < p < A2k

where ¥, (A) (m > 1) is given in Proposition 2.

Lemma 16 For g€ L%, k€ O, and m,n > 1,
(i)
dq(x) dz dq(z) /. \ " dwoglx)/ .

<anm,k d aIn> _ Um(w) 1 /A mi2(\)  dA
L2 Namoy A=l A/AZ(N) — 4

mag(pr) T

Proof. (1) Consider the case Aox—1 < pg < Aag. To prove the statement we use C.3

in Appendix C. As A\gx(+) is a spectral invariant, %@’3 € NyIso(q).
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By Lemma 13, <g{;‘(";“), d% 66:1?;) >L2 = 0. Similarly,

0 Ui (Y + A2k) d 09I, -0
0q(x) \ /=Gy + o) ) " dw Oq(x) [,

where G(\, q) = L . Therefore in this case we obtain (i). In the case ur = Az,
we use Lemma 42 1n Appendix C. By Corollary 40 in Appendix B,
<y2(:c k), d%%ﬁ((k)»p = 0, as Aoy, = ug. Therefore <y2(:c fik)s AL a‘ﬁx)> =0

and, by Lemma 42, we obtain (i). The case ur = Agg—1 is treated similarly.
(ii) For ¢ € L with uy, # )\2k, the statement follows from (i) and Corollary 15 (re-

call that «/A2 (k) = mq1 (k) — maz2(pk)). By continuity, (ii) holds for m # k,
orm:kandeO. d

Denote by GapoS x the set of K-gap potentials
Gaply ={q€ Ly | m =0iff k> K}. (4.3)

Proof of Proposition 12(ii) Fix m,n > 1. By Proposition 41, for K > max {m,n}
and q € Gap%K,

K o)
B Onm; d 01, Onmx d 0I,
{om’j"}(Q);<aq<x>%8q<x>>m+ 2 < q(x)’%aq<x>>m

k=K+1

o)

Using Corollary 44 together with (B.4) (cf Appendix B), we obtain, for k¥ > K
and \ # pug, (using that for Ao, = Aag_1, m3o(ux) = 1 and mas () = 0)

anm,k iaA(AaQ) _
<6q<x> "4z Dg(x) >Lz -0

Thus, for k > K,

2 Azn 677m k
dq(z)’ dx 8q(:c)>L2 B Aow 1 N/A2 < " da 9q(z)

Hence, for q € Gap%K, (cf Lemma 16 and Lemma 47 in Appendix D)

{0m, In}(q)

I
-
N\gle
/\
<
53
|3
S~
QL
=
S
OE
\/
N
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As % 8‘2{;) and 8‘2]9(2) depend continuously on ¢, and the set Uy> KGap%k is dense

in L3, we conclude that {0, [,} = —6,.m for ¢ € U\ Dy,. O
Corollary 17 For k,n > 1,

{2k, In} = Ok.nyn; {yk, In} = =0k k-
Proof. Assume that ¢ € U \ Dj. Then

I} = { ——cosOp—" — \/2I} sin b ——, — —"_ 4.4
(ks In <\/57;C°S e kT D) da:aq<x>>[; (44

= 5k,n\/ QIk sin Ok = 5k,nyk-

As xg, yi, and d% 62{;) are analytic, we conclude that (4.4) holds for ¢ € L3. The
other identity in the statement is obtained in a similar fashion. (I

R To prove Proposition 12(iii) we need the following two Lemmas. Recall that
0, = Zk?&n nnk(q) and introduce, for ¢ € L with Ao,—1 = Aoy, an Lo[0,1]-

orthonormal basis f~2”*17 an of span <y1('7 >‘2n)7y2('7 >‘2n)> with an = g2 and
fgnfl(()) > 0. Then fo,_1 is of the form (yj = y; (-, Aan), 5 =1,2)

fQ L= Y1+ bny2 . b i— _ <y17y2>L2
" ly1 + bnye||’ " (Y2, y2) L2

Lemma 18 Let ¢ € L2 with Aay—1(q) = Aan(q). Then

ax” _ 0 fgnifgn—l ..oy F 7
e = & <cos an — kp siné, fonfon_1 (4.5)

~—

Oyn_ _ Nt 0 _—
dq(z) &n <Sm9" 9 + Kn o8ty fonfon—1 (4.6)

where K, = kn(q) satisfies kn, # 0. If q is a finite gap potential one has for n — oo
logn
Kkn=—-14+0 < g ) .
n

Proof. is given in Appendix C. 0

Lemma 19 Let g € L3 with Aam—1(q) = Aam(q) and Aan—1(q) = Aan(q). Then,
with f; defined as above

. ~ d . .
<f22n _fgnfl’% (f22m _f22ml>>L2 =0 (47)

<f2nf2n1; %mef2m1> =0 (48)

L2

. _ d - -
(B BriaFanfines) = =dnm sl bugell. (9)
X L2
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Proof. Assume that ¢ € Hj. The identities (4.7) and (4.8) clearly hold if m = n.
If m # n, then, as f2,_ |, f%., and for fo—1 with k € {m,n} are in H3, we obtain
by Lemma 39 in Appendix B that (4.7)-(4.9) hold.

It remains to verify (4.9) for m = n. Notice that

Y1(2, A2 ) Y2 (%, A2n) = @ fan—1 fon — bnlly2])* f2,

where, in view of fo, 1 = Hzl%g:zz“, a = |ly1 + buyol|||y2||. Let Wf, g] =

f'g — f¢'. By a straightforward computation,

- d ~ ~
<f22n7 %f2nf2n1>L2

. d - -
<f22n—17%f2nf2n—1>

%W[f;nfla an](O)a

_%W[]%n—l; an](O)
L2

Combining the two identities above leads to

- - d - B R ~
<f22n - f22n—1a %f2n1f2n> = W[anfl, an](O) = 7l

L2 o

and (4.9) holds for n = m.
Finally one can argue by continuity to conclude that (4.7)-(4.9) hold for
q € L. O

Proof of Proposition 12(iii) The claimed identities follow from Lemma 18 and
Lemma 19. U

5 d,f) alocal diffeomorphism

In this section we prove
Proposition 20 For q € L3, the map d,Q : L — hz (N; R?) is invertible.

Remark The derivative d,{ at ¢ = 0 can be explicitly computed. It is given by
(v € L§)
-1

) = (=)

where (pn),,~, are the Fourier coefficents of p,

n>1

1 1
Don = / p(z) cos (2mnz)dx; pop—1 = / p(z) sin (2mrnz)dz.
0 0

To prove Proposition 20 we show in a first step that dq€2 is Fredholm (cf Lemma 23
below). For this we need the following
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Lemma 21 For K >0 and g € Gap%K (cf 4.3), we have:

. oxy, logn
i mmr—"" = —\/2cos 2z + Oue ( ) n — 00
() e (n — o0)
Oyn, . logn
V2nm = —V2sin2mnz + O (n — o0);
dq(x) n
.. 1 d Ox, . logn
(ii) o dr0qa) V2sin 2mnz 4+ Os ( ) (n — o0)
1 d 9y, logn

= —V2cos2mnz + Os < ) (n — o0).

Vanr dz dq(x)

Proof. The estimate for 6(?1(;)

is obtained similarly as the estimate for %, SO we

oz,
concentrate on Da(a)"

(i) Fix K > 0 and ¢ € Gap%j and let n > K be arbitrary. As X2, —1(q) =
A2n(q), by Lemma 18,

2 £2
al’n = fn(Q) (COSén% — Rn Sinén f2nf2n1> . (51)

Recall that én = Zk;ﬁn M k- As, for k > K, pp, = Aoy, we get, for k > K, 1y, = 0.
Therefore 0,, = Zszl M k- By Lemma 4

6, =0 <%> : (5.2)

Recall that &, = — (1 +o (log”», fm = =1+ 0 (105") Further, as y; —

cosnm 4 Ou (%) and yp = 2L 4 O (75) we have (y1,y2)12 = O (7z) and

n?2

(y2,y2)12 = O (5z). Hence b, = —% = O(1) and y; + bpys = cosnmz +
O (%) One thus obtains
rs yQ(xa)\Qn) . 1
= 2 /5 ~. :
Fon = ey = Vs + 0 (33)
and . .
z Y1 + 0nY2
=" =2 0] — . 5.4
fan—1 o1 + bnyal] V2 cosnrx + o (n) (5.4)
Therefore
- 1
fonfono1 = sin2nmz 4+ Oso (E) , (5.5)
Y 1
fi —f2 | = —2cos2nmz+ Oy <E> . (5.6)

Substituting the above estimates in (5.1), one obtains the claimed asymptotic.
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(ii) The proof for (ii) is similar, using the asymptotics of the derivatives of the
fundamental solutions y} (z, A2n) and y4(z, A2y) stated in (C.9). O

Introduce (n > 1)

B, = B, =V2nti——; B_,=B_, =V2nw ;
(q) 94(@) (9) (@)

T, =Tn(q) := —V2cos2mnz; T, =T_,(q) := —V/2sin 27wna.

From Lemma 21 we obtain, with

Gap?”inite = UkZIGapnga
Corollary 22 For q € Gap(}inite’ the system (Bm)mxo s quadratically close to
(Tm)m;go, i.e.

Z 1B — T * < 0.

m#0
The linear operator d,§ : L — h2 (N;R?) is given by

dQh) = Y (h,Bpn)psem (5.7)
meZ\{0}

where e,, = (2m7‘r)_1/2((5n,m,0)n21 and e_,, = (2m7r)_1/2(0,(5n,m)n21. Denote
by (e%,),, the basis dual to (en),,, i-e. e = (2mm)Y2(6,m,0)n>1 and e*,, =
(2mm)Y2(0, 8pm)n>1-

Lemma 23 Let g € LZ.
(1) The operator d,Q is a Fredholm operator with index 0.
(il) By = T + 02(1), (£m — o0).

Proof. Introduce the operators D : L2 — h%(N; R?), and A, : L3 — h%(N; R?),
given by

D(h) = Z <ha Tm)L2 €m;
meZ\{0}
Ay = dQ=D;  Ayh)= Y (hBm—Tu)psem.

meZ\{0}

(i) First we prove that, for ¢ € Gap?‘inite’ the operator A, is compact. It follows
from Corollary 22 that, for any ¢ € Gap?”inite and € > 0, there exist a > 0 and
M > 0 such that Vh € L3 with ||h|| < 1, the following inequalities hold

Al <ar Y (b B Tu)s <.
|m|>M

Thus Ag is compact.
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As Ay = d4Q? — D depends continuously on ¢ and Gap(}inite is dense in L2,
we conclude that A, is compact for ¢ € L3. As D is invertible, d,Q is a Fredholm
operator of index 0.

(i) Notice that, for m # 0, (d,Q)* (e%,) = B, where (d,Q)* : h™2 (N; R?) — L2
and (e%,), denotes the basis dual to (e, )m introduced above. Indeed, for h € L3,

((dg)" (€}) 1) 12 = (€7 dg(R)) = (h, Bin) >

where we used (5.7). By (i), Bm = D*(e},) + Aj(er,). Notice that D*(ey,) = Tin-
Further Aj(ey,) = 02(1) as A : h~3(N;R?) — L2 is compact. O

As a second ingredient of the proof of Proposition 20, we show that d, is 1 — 1.
First we need to establish some auxilary results. Following [GK], we say that a
sequence (F,),c, in L§ (J C Z) is almost normalized if

0 <inf ||F,|| and sup||F,|| < co.
n n

An almost normalized sequence (F},), . 7 is said to be w-linearly independent
in L§ (cf [GK] p. 316) if for any sequence (on)ney with Y - ;02 < oo and
ZnejanFn =0,a,=0forallneJ.

Notice that, by Lemma 23, B,, is almost normalized.

Lemma 24 Let g € L3. Then d,Q is invertible iff (Bim) o 18 w-linearly indepen-
dent in L3.

Proof. By Lemma 23, (d,Q)" : h~2(N;R?) — L2 is a Fredholm operator of index 0.
Further, for m # 0, (d,Q)* (€f,) = By Therefore, Null (d,Q)" = {0} iff (Bm)m;éo
is w-linearly independent in L3. (I

Forn € O, Y222 9 — 050, B, +sin 6,, B_,. Hence, by Lemma 21, the sequence
V2I, 9q(x)
(\/27171' oI,

is almost normalized.
V2I, 9q(z) ) neo

Lemma 25 The system (By,)mzo is w-linearly independent in L% iff the system

Vonm 01, . 1 . . 2
(m —aq(l,))neo 1s w-linearly independent in L§.

Proof. Assume that, for a sequence (o), 2o With >, <7 0y a?, < oo,

. _ oxy, Oyn '\ _
f= Z amBm—Z\/Qnﬂ' (a"é)q(:c) +a_, ) =0

mezZ\{0} n>1 9q(2)

Then, by Corollary 17, for k € O,

/., d 0L e B
0= <f, dr 8q(x)>L2 = 2k77T(Otkyk Oé,le'k).
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Thus, for k € O, (ag, a—y) = +,/a3 + a?,; (cos by, sin ;) and

oIy,
I;; 9q(x

—_

o Oxy, Vo Oyx
Oq(z) " 0q(x)

By Proposition 12(iii) and Corollary 17, for k & O,

- <f’diasz>> %a—k@?’“) dcfcasz>>

B d Oy O d Oy
0 = <f7 dr 9q(x )> = V2kmay, <aq(x)’ dx 8q(x)>L2 .

_ 2 2
=+4/ag +a2,

[\
~

Hence, by Proposition 12(iii), for k ¢ O, ayr = 0 and

et () B

mezZ\{0} neo

From these considerations the claimed statement follows. O

Vonmt OI, . _1; . . 2
Lemma 26 The system (—\/m 8q(‘”))neo s w-linearly independent in L.

Proof. Tt is to show that for any (an),co with Y- .o a2 < oo and

Vonw 98I,
Z " V21, dq(x)

=0 (5.8)

one has o, =0 for any n € O.
Recall that, for £k € O and m > 1, we have introduced

h ( ) 'l[)m((uk))yl(x Mk)yQ(I /J/k) Lk {)\2k 1, )\Qk}
m,k\T,q) ‘= "/’ml(bltk) P € —
AZ(py)—4 aq(;) )\Qkfl < pg < )‘Qk

and proved (cf Lemma 16)

<azn d, > ~ Ym() 1 /A mia(\) dA
8q(m), dx o L2 A2n—1 A= A2()‘) —4

sz (pk) T

For any m € O given, we want to conclude from (5.8) that «,,, = 0. Indeed,

- vVonm 0I, d
0 = <Z " VAL, Do) & L’k>L2
V2nm Y () L[ man(A) - dA
D> an V21, s (ur) ™ /ml A=k /A2(N) —
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With the change of variable of integration A = (,(t) := 7, +t% (-1 <t < 1),

/)\2n m12()\) / mi2 C’n v1-— t2’yn/2 dt
/\2n1>‘ Kk \/AQ 1 Gu(t) ,Ufk \/A2<n — 4112

and standard asymptotic estimates for v/2I,, = &7 /2, ¥m (), and rq2(\) one
concludes that (for n, k # m)

\/% wm( ) m12(< (t)) Vl*t27n/2 m |an|
VAL, a () Gult) — e /A Ga) 4| k2 — ]

Therefore

\/ 2nm 1 Azn wm(ﬂk) ml?()‘) dA
0= Z / Mo (pe) A — A2(X) —

(5.9)
A2n—1 kO

For, k & O, ¥, (ux) = 0. Thus, by the sampling formula (cf Proposition 46 Ap-
pendix D),

— Mk

Zd)m

keO k>1

We now can rewrite (5.9) as
Vonm 1o e (\) 2
0= Z Oy —F—— T 1/} d>\ = Z anﬂgn,m
and hence «,, = 0. U

6  a diffeomorphism

The main result of this section is the following

Theorem 3 The map Q) : L — h%(N;R2) as well as its inverse is a real analytic
diffeomorphism.

First we need to prove
Proposition 27 The map : L3 — h%(N; R?) is proper.

Proof. Given a compact subset K C h%(N ;R?), there exists M > 1 and, for any
e > 0,n. > 1 so that, for all ¢ € Q := Q7 1(K) C L3,

> nlI(q)| < M; (6.1)

n>1
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Z n|l,(¢)| < e. (6.2)

n>ne

It is proved in [BBGK, Lemma 2.2] that
I ,
I, > (8T)2m1n{(1/n)'yn,n'yn}.
Thus the set {vn(q)n>1 | ¢ € Q7 1(K)} is compact in ¢2. Therefore Q7(K) is
compact in L3 (cf [GT]). O

Proof of Theorem 3 We have established that Q : L2 — h%(N; R?) is a real
analytic map and a local diffeomorphism. It remains to show that €2 is 1-1 and onto.
Consider the set V := {z € hz(N;R2?) | #271(2) = 1}. Then V is open and closed
in h%(N :R?) as Q is proper and a local diffeomorphism. In order to prove that
V = h3(N;R?) it suffices therefore to show that V # ). Take w = 0 € h=(N;R2).
Then, for any ¢ € 27(0) and n > 1, v, (¢) = 0 and therefore ¢ = 0. O

7 Restriction of Q to HY (N > 1)

In this section we want to improve on Theorem 3. For any N > 0, denote by Q(V)
the restriction of Q = Q) to HJV. It turns out that the range of Q) is contained
in ANH1/2(N; R?) (cf Lemma 29), hence QY) can be viewed as a map

QW) . gN _ pNHU2(N;R?),
Theorem 4 For any N > 0,
(1) QW) is a diffeomorphism;
(ii) QW) s real analytic.

The proof of Theorem 4 follows from the results stated in the remainder of this
section.
Recall the following result from [KM] (cf also [ST]) and [Ma).

Proposition 28 (i) For qo € HY', there exists a complex neighborhood Uy, C Hé\’](c
s0 that, for q € Uy, (n(q)),,>1 and (pin(q) — A2n(q))n>1 are uniformly bounded
in bV (N; C).

(ii) For any real valued q € L% one has

q¢€ Hév if ('Yn(Q))n21 € hN(N;R)~
As a consequence we obtain the following

Lemma 29 Let N > 0.
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(i) For qo € HON there exists a complex neighborhood Uy, of qo in Hé\,]c so that
Q(qu) 1is bounded in hN""l/Q(N; (CQ),

(ii) For real valued potentials, the following characterization holds:

q € Hy iff (xn(q);yn(q)),5; € KNT2(N;R?).

Proof. (i) By Proposition 28(i), there exists a complex neighborhood Vi, of go
in Hé\,[c so that (¥n(q)),>; and (pn(q) — A2n(q))n>1 are uniformly bounded in
hN(N; C). By Corollary 11, there exists a complex neighborhood Wy, of go so that
|2l +1yn] < 75 (|n—Tul+1m]) (¥ = 1). Hence Q (Vg N1 We,) C AVHV/2(N; C2).
(ii) In view of (i) it remains to prove that for any element (z,,yn),>;

c hN+1/2(N;R2)’ 01 ((xmyn)@l) c HON, By Theorem 3,

g:=0"1 ((In,yn)n21> c L3

As q is real valued
|xn|2 + |yn|2 = 2I,.

By Proposition 1, 2I, = O () (77”)2 As q is real valued and (z,,yn),~; €
RN*+1/2(N;R?) it then follows from Proposition 28(ii) that ¢ € HY'. O

As a conseqgence of Lemma 29 one gets
Corollary 30 For any N > 0,

QW) - HY — pNH/2(N; R?)
is real analytic and bijective.

Proof. To see that QY) is real analytic it suffices to show that QV) is weakly
analytic and locally bounded. As  is real analytic, QV) is weakly analytic. By
Lemma 29(i), Q) is locally bounded.

From the fact that Q : LZ — h!/? is bijective it follows that QW) : HY —
RN*1/2 is 1-1 and by Lemma 29(ii), we have that Q(V) is onto. O

Let us now analyze the derivative dy{} in more detail. Clearly, for ¢ € HY,
N
g2V = dgQnl gy -

Using an inductive procedure, we obtain the following improvement of
Lemma 21.
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Lemma 31 Let ¢ € Gap%, with K > 0 and N > 0. Then for any p € HY', the
following statements hold:

‘v2mr< O ,p> +<\/5€082nm,p> ‘ < Chullpllax;
9q(z) L2 L2
OyYn .
‘\/2n7r<i,p> +<\/§sm2n7r:c,p> ‘ < Cullplla~
0q(x)"" / ;2 L2

where the bounds C,, are independent of p and satisfy C,, = O (:ﬁgﬁ )

Proof. Both estimates are proved similarly, so we concentrate on the first one. The
proof consists in verifying the statement for NV = 0,1 and in proving an inductive
step. Let us start with the latter one. Assume that the statement has already been
proved for N > 0. We want to show that the statement holds for N + 2. Let
pE Hé\]”. According to Lemma 18 and as ¢ € Gap%,, % is, forn > K + 1,
a linear combination of the products y;(z, A2, @)y, (%, A2n, q) € C (1 <1i,j <2).
Hence (straightforward verification)

oz, d Oz,

L = 2X\op—
19q(z) M dq(x)

(7.1)

where L, is a skew symmetric differential operator of order 3, given by

L —_ld_g_i_i + i
9T T T dr T gy

Denote by (%)71 : L3 — H} the inverse of the restriction of L to H}. It follows
from (7.1) that

oz, 1 d\ ! 0z,
=— | — L,——. 7.2
0q(z)  2Xan (d:c) 19q(x) (7.2)
Substitute (7.2) into <(£;€;) ,p>L2 and integrate by parts to get
Oxy, > 1 < 0z, ~>
B = —, 7-3
<3Q(:E) P/ an \0a(@)"/ 1 3
where . .
5= I i — ,l 49 ! i HY 7.4
p=Lo\ ) p=—gp T2 +d () p €Hy (7.4)

By the induction hypothesis

}\/ﬁ<;qi(;),ﬁ>m + <\/§COSQn7r:c,ﬁ>L2} <0 <%) Bll~.  (7.5)

By (7.4), we have
Blla~ < Cllpl|av+e. (7.6)
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Further,
1
<\/50052n7rx,j5> = - = <\/§(1052n7rx,p”> (7.7)
L2 2 L2
g\
+ <\/§c052n7r:v,2qp+q' <—) p>
dr Lo
where
<\/§ cos 2mr:c,p”>L2 = —(2nm)? <\/§cos 2mr:c,p>L2 , (7.8)
and

1

N
<\/§cos 2nmx, 2qp + ¢ (%) p>
L2

Substituting (7.8) and (7.9) into (7.7) and using (7.6), (7.5) leads to the following
estimate

0 1
V2nm &,ﬁ + 2n?n? <\/§cos 2n7rx,p> <0 osn [|p|| provee.
q( L2 L2 nNJrl

0q(x)
(7.10)
Using (7.3) , (7.10) and the asymptotics Aa, = n?72 + O(1), we obtain

), ()|

Vonm / Oz, 2n2nw?
——(——,p — (V2cos?2
=, <0q(x)’p>L2+ o <\/_cos mr:c,p>L2

2n?n?
+ |- <\/§cos 2mr:c,p> + <\/§cos 2n7r:c,p>
2B8Xo, L2 L2

logn
<0 (285 ) Il

This proves the induction step.

It remains to verify the statements for N = 0 and N = 1. The case N = 0 is
contained in Lemma 21(i). The case N = 1 is proved in similar fashion as the
induction step using the operator (4 ) ! Lg () ! instead of Lg () ! together
with Lemma 21(ii). O

Lemma 32 For g € HYY, d,QW) : HY — hNTV2 js bijective.

Proof. By Theorem 3, d,Q : L3 — h'/? is bijective, hence dqQ(N) = dqug)V is

1-1. To see that dqQ(N) is onto it then suffices to prove that dqQ(N) is a Fredholm
operator of index 0. Using Lemma 31, this is verified in a similar way as in the
proof of Lemma 23. O
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8 () a symplectomorphism

The symplectic structure w associated to the Poisson bracket {F,G} =
. . -1

<%,%%>L2 is given by w(f,g) = <f,(%) g>L2 (f,g € L3). Denote

by Wean the canonical symplectic structure wean = 21;“;1 dyi N dxj on h= (N; R?).

In this section we prove

Theorem 5 The map Q : (Lg,w) — (h% (N;RQ),wcan) is a symplectomorphism.

To establish Theorem 5, it remains to prove that Q.w = Wean. We will establish
this identity for finite gap potentials and then argue by continuity. First let us
introduce some more notation. Recall that Dy, = {¢ | 7m(q) = 0} and define, for
any given K > 0, the map

Ag : Np<k (Lg\Dm) — (R>0 X Sl)K X h% N>K;R2)
q = (In(q), 0n(2))1<n<k; (20 (@), Yn(@))n>k -

By Proposition 20, A is a local diffeomorphism. Further d,Af : L% — h2 (N; R?)
is given by

et = 3 (2 e (Pnn) o)
3 (G Gt ), )

Introduce v4, = v1,(q) = (quK)_l (e+n) and let wi be the restriction of the
symplectic form w to Gap? ;- which we now analyze.

Lemma 33 Let q € Gap%K and 1 <n,m < K. Then
(i) vn(q) € Tanp%K.

(ii) U—n(Q) = _% 3?1{;)-

(ill) Wi (V—m,v—n) =0; WK (Um,V—n) = —0Onm.

Proof. Notice that the system (8’2{;), a?;?;) Ji<n<K, (59%(;), %)n>]( is biorthogo-

nal to (vn,v_p)n>1, ie. for 1 <n < K and m > 1,

oI, 00,
y Um = Onm; a3 o V-m = 5n,m§ 8.1
(gren),, = o {agon),, &1

<0‘9q_z),vm>ﬂ = 0 <%,um>mo (8.2)
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and, forn > K, m > 1,

a7 o Um = Onm; y Uem = 5n,m§ 8.3
(o), = oo (aiton)., (53

(Fyesh, - o ()0 o

(i) As Gap%K ={q€ L& | z,(q) = yn(q) = 0 iff n > K}, it follows from (8.3) and
(8.4) that, for 1 <m < K, vip, € T,Gap? .
(

, %5;{% € T,Iso(q) C Tanp%K. By Proposition 12(ii), for

ii) By Lemma 13
<n,m< K,

90m d OI, s
Palw) 4z dq@) /1~ ™
By Proposition 12(i) and Corollary 17, for { > K, m > 1, and 1 < n < K, we have

9ly, d 0I, —
(S de iy ), = 0 and

< 0.%1 i 0In > -0 < é)yl i E)In > -0
dq(x) dx dq(x) [ ;2 q(x)” dx dq(x) / ;-
The conditions (8.1)-(8.4) determine (vy,, v_y)n>1 uniquely. Thus, for 1 <n < K|

— d 0l
v_n(q) = —5; dq(2) "

(iii) As, for 1 <1 < K, vy(q) € TanpOSK, we obtain, for 1 < n,m < K, using
(ii) and (8.1)

dx dq(x) dq(x)

ol,
W\Um,Von) = { Um, — = *5n,m~
( ) < 9q(x) >L2

I, 1.,
WK(’U—na'U—m) = W(U—n7v—m):<d 0 0 >
L2

Wi (Vm, V—p)

O

When expressed in the coordinates (I, 0,)1<n<k on Gap0<K the 2-form wg takes,
in view of Lemma 33, the form -

K
wi =Y do, NdL,+ Y cydl AdI; (8.5)
n=1 1<i<j<K

where ¢;; are functions of (In,,0n)1<n<i, (1 < 4,5 < K). As w is closed, wg is
closed as well. Therefore the coefficients ¢;; depend only on I,...,Ix. We want
to show that c;; vanish. To this end we prove that ¢;; = 0 when evaluated at a
potential ¢ € Gap% - with 6; = --- = 6k = 0. Introduce, for A C L?, the subset
of normalized potentials in A

NorA:={q € Al pur(q) = Aar(q) Vk > 1}.
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Notice that on NorGap%K, 01 = -+ = 0g = 0. In Appendix C, we derive an
explicit formula for the gradient %(;) on NorL%\ D,, which turns out to be in
H? (cf Proposition 41). Hence, on (L3 \ Dy,) N (L3 \ Dy) N NorL3, {0, 0} is

well defined. Further in Appendix C, Lemma 45, the gradients 6‘33& ) and 6?11& )

for potentials ¢ € L3 with 7;(¢) = 0 are given which also turn out to be in H?2.
Hence, for g € L with ,, # 0 and ;, = 0, {0,,, 71 }(¢) and {0,,,v:}(q) are both well
defined.
Lemma 34 (i) For m,n>1 and q € (L3 \ Dy,) N (LE\ D) N NorL3,
{Om, 0n}(q) = 0.
(ii) For I,n > 1 and q € NorL3 with v,(q) = 0 and 7, # 0
{e'mxl}’ = {anyl} =0.

Proof. (i) For k > 1, introduce

ar(@,q) = y1(z, 1 (0), )y2(@, we(a), @); - gr(@,q) = HyZQ((xuf(k;f t;ﬁw-

Then (cf [PT)), for i,5 > 1,

2 2 2
= J; =0; i, ——Q; =05 iy =i = —0; ;.
<g’L Y dxg] >L2 ) <ar daj a‘7>L2 <a] dmgl >L2 2 5]

The claimed statement then follows from Proposition 41.

(ii) For ¢ € (L3 \ D,,)N (L3 \ Di)NNorL3, we conclude from (i) and Proposition 12
that the claimed statement holds. In view of Proposition 41, the general case is
then obtained by a limiting argument. (I

Lemma 35 Let q € NorGap%K and 1 <n,m < K. Then
(1) 'Un(Q) = d;‘fn 3?1?;
(il) wi (Vn,vm) =

3

0.

Proof. By Lemma 34, for 1 <n < K, > K, and q € NorGapOSK
{On, 21} (q) = {On,u1}(q) =0

and, for 1 <[ < K,

{00 Lix(q) = —bny; {6n,0:}(q) = 0.

Thus it follows from (8.1)-(8.4) that, for 1 <n < K, v, = %86;9(;).

(ii) Follows from (i) and (8.2). O
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Proposition 36 When expressed in the coordinates (I,,0n)1<n<i on Gap%, the
2-form wg is canonical, i.e.

K
wi =Y _ dfn Ndl,.

n=1

Proof. By (8.5)

K
wie =Y do, ANdL, + Y cydl; AdI,

n=1 1<i<j<K
where the coeflicients ¢;; depend only on Ii,...,Ix. By Lemma 35, ¢;; = 0 if
1= =0k =0. Thus ¢;; =0 on Gaplp, for 1 <i<j<K. O

Proof of Theorem 5 Introduce, for ¢ € L2 and n > 1,
Uty = utn(q) = (dg) " (exn). (8.6)
We have to prove that, for any m,n > 1 and any q € L2,
WU, Un) = W(U—im, U—p) = 0;  W(Um, U—p) = —Omn- (8.7)

Fixm,n > 1. For any K > max{m,n} and q € GapOSK we have, by Proposition 36,

W(Vm,yVp) =WV, V—pn) =0;  W(Vm,V—p) = —0m.n-
For1 <k <K,
up = /2[pv cosf 7;’0 sin 6
k= kVk k /ol —k k
1
U_p = /2[ v sinf, + ———wv_g cos ;.

V2I

Therefore, by Proposition 36, we obtain (8.7), for ¢ € Gap%K. The set
Uk >max {myn}GapOSK is dense in L3 and, as Q is analytic, U4, (q), u+n(g) depend
continuously on ¢. Therefore (8.7) holds for any ¢ € L3. O

9 Canonical relations: part 2
In this section we establish regularity properties of the Lo-gradients of 6,,, x,,, and

yn (cf Proposition 37 below) and apply them to prove the remaining cannonical
relations.
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Proposition 37 Forn > 1 and N > 0, the maps

00

w0 HY\ Dy — HY'Y n ~

\Y% o\ 0 Vb, iqg— 900)
Ox
VvV, : HNHHNH; Vi, :q— w
0 0 q 8q(£)
Vyn : HY — HNTL Wy, :q— Oyn
0 o dq(x)

are real analytic.

Proof. We prove the statement for N = 0, as for N > 0 the proof is similar. Let
g € L2 and z := Q(q). As Q' : hz(N;R?) — L2 is analytic, d.Q! depends
analytically on z. Thus, for n > 1, the maps u+,(-) : L2 — L3, ¢ — u+n(q) (cf
(8.6)) are analytic.

Notice that the system (8“ Oyn ) is biorthogonal to the basis
n>1

9q(z)’ 9q(@) ) >
(Unsu—n),>;- On the other hand, it follows from (8.7) that

(o () ) = (oo () o) -0

d\"!
my \ 7. —n = 75m n- 2
<u <da:) u > i (9.2)
L2

Thus (f (%)_1 U_p, (d%)_l un) N is a system, biorthogonal to (un,u—n), -

n>1 =

As a basis admits exactly one biorthogonal system, we conclude that, for n > 1,

On d\ " O d\

[ - o frd —_ . 93
dq(x) (d:c) s dq(x) dx tn 93)

In particular, for ¢ € L3, 8‘?;2;), aész;) € H} and Vz,, : q — % and Vy, : ¢ —

;qL(;‘), viewed as maps from L2 to H}, are analytic. As, for ¢ € L2\ Dy,

= cosbp,—— — /2[,sinb, ——;
9q(x) V2I, 9q(x) 9q(x)
OYyn 1. oI, n
= sin@, —— + /21, cos 6, ——
9q() 2I, 9q() 9q(x)

and the map VI, : L2 — HZ is analytic, we conclude that V0, : L2\ D,, — H{} is
a real analytic map. O
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Theorem 6 (i) For ¢ € L2 and m,n > 1,
{zm,an} =0 {ym,yn} =0; {Zn,ym} = On.m-
(ii) For m,n >1 and q € (L3 \ D) N (LE\ Dy,),
{0m,0,} = 0.

Proof. (i) By Proposition 37, any bracket in the statement is well defined. The
statement follows from Theorem 5 (cf 8.7) and (9.3).

(ii) For g € (L% \ Dn) N (Lg \ Dm), {0, 0.} is well defined by Proposition 37. By
(i) we have

0 = {@n, xm} = {\/21, c08 0,1, \/21,, cos O, }. (9.4)
Using that {I,, I,,} = 0 and {0,, I,,} = —d,,m one verifies
{V/21,, cos 0,,,\/21,,, cos 0,,} = sin 0, sin O, \/ 21 \/ 210 {00, O} (9.5)
Combining (9.4) and (9.5) yields
sin 0, sin 6,,{0,,,0,,,} =0
and thus, for 6,,, 0,, ¢ {0,7} mod 2,
{0y,0} =0.

By continuity, {6y, 0} =0 on (L \ Dy,) N (L3 \ D). O

A Appendix
In this appendix, we prove Lemma 4 stated in section 2:

Lemma 38 Let Uy, be a bounded G-neighborhood of qo € L3. Then there exists
C > 0 so that for any n > 1 the following holds:

(i) for all k #n and g € Uy,

Cn 1

[,k (@)] < M;T

n2|E(|M’“_T’“|+|7’“|);

(ii) for q € Ug \ Dy

Mn — Tn

n

|77n,n(q) mod 27T| < Clog (2 + ‘

)
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(iil) for all g € Uy,

1/2 1/2
C
Dolmr@l < = [ Dl =l |+ [ Dol
k#n k>1 k>1
Proof. (i) As n # k, one has by (2.7)
(V)

——d\
Azg—1 \/ - Aok \/A()\)Q—4

The following argument is not affected if one interchanges the roles of Ao;_1 and
Aak. Therefore we may assume in the following that |ug — Aak—1| < |pr — Aak|. For
A near G := {tAor + (1 —t)Agi—1 | 0 <t < 1} we have

(N e = A
ANZ—4 = VOak =N — Agk_l)c"”“w

where, with unn =7,

—1/2

Cp, H ‘u;n) - A 1 A — )\0 ()\2j — >‘)(>‘2j*1 — )\)

o — A j2m2 kr L2712 on (j27T2)2

Cn,k ==

£k
Using that ¢, = O(n) (Proposition 2) we then conclude (cf [PT], Appendix E),
that for A\ near Gi, and any n, k with n # k

n

Gk (V)] < Cikm? e (A.1)

uniformly for ¢ € U,,. Moreover, if we integrate along a straight line [ from A1
to pr on the sheet of ¥, determined by pj, then we have

()
e =X 5
pY— (1)

since |pur — Aogp—1| < |k — A2k| and u,g") =7+ O ('yz) Thus it remains to show
that

2T ) — O (] + e — 7
P v (el + [k — 7x])

when integrating along the straight line [. But this follows with the substitution

A = Aog—1 + t(ug — Aog—1). Setting € = |M;(gn) — Aop—1| and § = |pup — Aop—1] we
obtain the bound

A2k—1

/ ”€+ (5dt—2\/e+ 5V3 < e+ 26.
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As € = O(|y|) and 6 = O(|vk| + |k — &), the claim follows.
(ii) Arguing as in (i), we may assume, in view of (2.7) that p, # A2n—1,A2,. In
the case where p,, satisfies 0 < |u, — A\| < 2|v,|, one obtains as in (i),

1

o, wn ) 1
= C/o 12| — NEV2 |y /2|12

A2n \/

which establishes the claimed estimate in this case.
If [p, — AF| > 2|74, the integral is split into two parts,

i — AL, (A:2)

fon l/fn( )
A2n \/

where z = 7, + || ﬁ‘; The first integral on the right side of (A.3) is estimated

Bn—Tnl"
as in (A.2). Arguing as in (i), the second integral can be estimated

AF )\)

Hn wn ()\

Ny (A.3)

2‘ Mn’ylenl 1
°f, " mwmlEl A
Hn — Tn Hn — Tn
Carccosh | |———| | < C log (2 ‘7
(‘ Yn/2 ) Y /2

Combining (A.3) and (A.4) leads to the claimed estimate.

(iii) We split the sum 3, |nk(q)| into two parts > ., <, /0 [Mnk(q)| and
> lk—n|>ns2 k()] The two parts are estimated separately,

B b (N)dA
; AN —

In

IN

n 1 1
> lme@l £ €Y s (=l )

lk—n|<n/2 [k—n|<n/2 |k —n]
< 2 (=l + )
_ — T
< 0~ T —nl Mi — Ti| + |7k
k#n

1/2 1/2 1/2

Z|k—1n|2 Z|"‘k_7'k|2 + Z|’7k|2
k#n

k>1 E>1

where for the last inequality we have used the Cauchy-Schwartz inequality.
The sum ;15,2 M.k (q)] is treated similarly. O

B Appendix

In this appendix, we prove various orthogonality relations.
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For A € R and ¢ € L?, introduce

F(xa)\aq) = Z a/zj(q)yl(xa )‘7q)y] (Ia )‘7q)
1<4,j<2
1<4,5<2

with a;;(+), bi;(-) € C(L*R). Notice that for ¢ € H', F and G are in H}
not necessarily periodic.

(R), but

Lemma 39 Assume that o # 3, and ¢ € H'. Then, with F = F(x,a,q) and
G = G(z,8,9),

d 1 1 ey e 1y 1 . 1
<F’@G>L2 = 5o [5 (F'G — F'G' + FG")|, +2 (F(q )G)|0](l;) |
1

Moreover, if the right side of (B.1) is well defined and continuous for q € L2,
(B.1) holds for q € L2.

Proof. For a € R, introduce

o M(dN L d d o d
se 9\ de Yoz Taz? “az

One verifies that

LyoF(z,0,q) = Lg,gG(x, 8, q) = 0. (B.2)
As % = m(Lq;a — Lg.3), we obtain using (B.2)
<F, iG> = # (F, (Lgsa — Lq;B)G>L2 = # (F' Lq;aG>L2 :
)" 2B-a) 26— a)

Integrating by parts, we obtain
1
(F,LyaG) e = —5 (F'G — F'G' + FG")|o+2 (Fqg—a)@)|s = (LgaF, G) .

Using (B.2) once again we obtain (B.1). O

Corollary 40 (i) Assume that o # (3 and, for ¢ € H', F = F(-,a,q), G
G(-,B,q) € H3. Then, for q € L?,

<F, ia> —o.
dx I

(ii) For A\, 8 arbitrary and q € L2,

0A(A,q) d OA(B,q)\  _
< da(x) ' dx () >L20' (B3)
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(iii) For \,a,b € R, k> 1, and q € L*?

<%€;;})’% (ayl(fﬂaﬂkﬂ)yQ(xaﬂkaQ)+by§(zaﬂk’q»> -

L2
miz2(A
ﬁ (amar (pe)maz () + b(m3y (k) — 1)) - (B.4)
1
Proof. (i) It follows from the assumption F, G € H?® that d‘fj F‘ = 0and de G‘o _

0 for 0 < j < 2. Hence the claimed statement is a direct consequence of Lemma 39.
(ii) For g € H and A € R, 229 ¢ H3 and (i) can be applied.

9q(z)
(iii) Assume that ¢ € H'. Let F := %&)‘1) and G := ay1 (x, tk, Q)y2 (T, i, q)
)

by3(z, pi, q). Then F € H? and G € H} (R). One verifies that F(0) = F(1
miz(A), F'(0) = F'(1) = ma2(A) — m11(A), G(0) = G(1) =0, G'(0) = a, G'(1) =
amay(pe)maz (k) = a, G"(0) = 2b, G(1)" = 2(ama1(ur)maz (k) + bm%g(uk))-
Therefore (B.4) holds for ¢ € H'. As the right hand side of (B.4) is defined and
continuous on L2, we conclude from Lemma 39 that the identity (B.4) remains
valid for ¢ € L2. O

+

C Appendix

The purpose of this appendlx is to derive an explicit formula for the gradient of
the angle variables a ( ) for certain potentials. This formula is similar to the one

obtained in [MV] for the nonhnear Schrédinger equation (NLS). In addition, we

present formulas for 8631?;) and 8(](@ for ¢q € LO with Aoj—1 = Ao

Recall that D,, := {q | v.(¢) = 0}. For k,n > 1 and q € L3\ D,, introduce

) mi11ma1
ok =nplq) = — | 5 dr=di(q) = ()M
A A2k, A A2k,q
Recall that t,(),¢) is an entire function introduced in section 2 and m;; =
m;j(A,q) (1 < i,j < 2) denote the entries of the Floquet matrix m;; = 9!
Yj (1a )‘7 q)

Proposition 41 Let K,n > 1 and q € L%\ D,, with pr(q) = Xak(q) for k > K.
Then
9q(x) dq(x)

k=1

(C.1)

o

+ Z cn.k(q (y1 T, A2k, @)Y2(T; A2k, q) +dk(Q)y§(fU,>\2k,Q)>

where the series converges in H2.
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To prove Proposition 41 we first study the gradient of 7, ;. Notice that

B e O (TR P ()R )
T,k (q) = /0 VG + Aar(q), q) w 2

where G(\, q) := 3 2(:) 2 For g € L2 with Ax_1(q) < px(q) < Aar(q), we can use
(C.2) to write

ann,k _ wn(uk(Q%Q) auk B Oag
dql@) /A (u(a).0) — <5q(:c)(Q) aq(x)(Q)> (C3)

pr(@)=Aer(a) 1 0 Q/Jn(er)\Qk( )aQ)
dy.
+ /0 V—y Oq(z <\/ Gy + Mk (9),9) ’

Lemma 42 For p € L3 with Aak—1(p) < px(p) = Aok (p),

- (—1)*4py, o omi1 . %
= < 228q(ac) 116(]( )>
= ok ((@2(2) + dryz (@),

where " denotes the derivative with respect to .

(C.4)

A2k,P

Proof. Introduce the open sets (k > 1)

={g € L§ [ Mar—1(q) < px(q) < dar(a)}-

It follows from (C.3) and the analyticity of 1, ; that

1im 877n,k = lim ¢n(uk(q)7q) 6Mk _ 8)‘2k
qlevk dq(x) %iv,f A%(ur(q),q) — (&1( )(q) dq(x) (q))'

As A(A2x(q),q) = (=1)*2 and mi2(ur(q),q) = 0, we get, by implicit differentia-
tion,

Ik _ 8(1(1)()‘%( 9), q). Opig B 5223(#1@;)
20 " = " AGaraha) | 0@ T il

Differentiating the Wronskian identity, mi1maa — miameo; = 1, with respect to A
at A = uk(q), we get, using that 2mi; = A + VA2 —4 and 2mas = A — VA2 — 4
at A = uy,

21M12Ma1 = 211 Mag + 2martae = A(ma1 + meg) — VA2 — 4(1hq1 — 1haa).

Similarly, differentiating the Wronskian identity with respect to ¢ and evaluating
the result at A = pi(q) we get

om d(myi1+maz) 8(m11 ma2)
o _ A oww . VA 94@)
m12 A(Thu + m22) -V AQ - 4(m11 — mgg)
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Thus
VU ik, q) < Opi 0ok >
- C.5
i, q) =1\ P~ () (C5)
U (i, q) a‘Z@@ B %2@ - VAZ - 4%@)(7”11 — ma2)

AA — VAT Z4(1hy; — 1hgg)

VA2 (pk, q) — 4

Taking the limit ¢ — p, (C.5) yields

A2k,q Hierq

(1 A (s S i 52 )

m *mum

A2k,P

To finish the derivation, notice that, as ug(p) = Aak(p), miz(Aak,p) = 0 and
mi1(Aak, p) = maa(Aak, p) = (—1)F. Using that (cf [PT])

2225 = mazyi (x) = muyi(2)ys(2)
SZZ;Q) = maoy1(2)ya(z) — mary3 ()

we obtain at (Aak(p),p)

omi1 . Omaa

20 a0 ~ (1) Ayi ()y2 (@) + ri1ima v (@). -

a2

Lemma 43 (i) Let n > 1 be fized. ¢, 1(q) with k # n and di(q) with k > 1 can be
extended continuously on L2 and satisfy the asymptotics

e =0 (%) ; di(q)=0(1).

ii) Forn > 1, Ypcnn can be extended continuously on L2 and satisfies the asymp-
TnCn, 0

totics
1
Cnm = YnCnn = —AnT (1 +0 ( Of’l”)) £ 0.

Proof. (i) Recall that ¢, (A, q) and AN, q) have the following product representa-
tions

(n) j
Cn(Q) Hm™= — )\ . . A — A
l/}n(Aa Q) = n2n2 o mens A()‘v Q) - - JL_;[I 272
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Thus ¢, 1(q) = —% can be written as a product of three quotients
2

Cn,k(4) = 5 enla)  fQan) " = o

: C.6
An — Aok g()‘Qk) Ak — Aok ( )

(n) _ _ )
where f(A) =[] m>1 “7;;2”2)‘ and g(A) = [ m>1 )7‘7’1”2773. As, by assumption,
m#k,n m#k,n

n # k, the first two quotients on the right hand side of (C.6) are continuous on L2.
As Aoy = K272 4+0(1), —).\c"(q) = O (%) whereas fQan) (1 +0 (%)) (cf [PT]

— Aok - g(Aer)
Appendix E). To estimate the third quotient, recall that ([BKM1, Theorem2.1] and
[BKM2 Lemma 2.4])

70) =~ = £ (F) 1wt —nipl =0 (FF) - ©1

uniformly in {(n,k) € Nx N | k # n} and p in a sufficiently small neighborhood
of g. This leads to

)

u = dox | | —mo— /2| | 1/243%0(1/k)
Mo — Aok Mo — T — /2 1/2 +v,O(log k/k)’

Thus the last quotient on the right hand side of (C.6) can be extended continuously
on L2 and is O(1). The estimates for dj are obtained in a similar way.
(ii) Notice that

(n) _
Ja2eey 2n
o Cn Hm;ﬁn m272
YnCn,n = Tn )\ \ R
— m —A2n
n 2n Hm;ﬁn 5

m2m2

Similarly as in (i) one obtains

2 'Yn/Q* ()‘n*Tn) n

Using (C.7) and the estimate ¢, = 2nm (1 + O (£)) (cf Proposition 2) one obtains
the claimed asymptotic. (]

Combining the two Lemmas above, one obtains
Corollary 44 For k # n and q € L3 with y(q) =0,

Iy
62(.;6) = Cn,k (yl (l’, >\2k27 q)yQ(x, )\2].3, q) + dky%(l', >\2k; q)) .
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Proof of Proposition 41 Formula (C.1) follows from Lemma 42 and Corollary 44.
It remains to prove that the series in (C.1) converges in H2.

For k > K, y1(z, A2k, q) y2(x, Aok, q) and y3(z, Aok, q) are in H2. Using that
enk and cp pdi are O (kQ) (Lemma 43) and the following estimates of y; =
y1(z, Aok, q) and y2 = yo(z, Aok, q) (cf [PT])

1 sin mkx 1
y1 = cosmkx + Og (E) : Yo = = + Os (ﬁ) : (C.8)
1
y) = —mksinmkz + O (1) ; Yy = coskx + O (E) (C.9)

one obtains, by a straightforward computation, the convergence of the series in
H?. O
To state the next result, recall that 6, := Zk;én Nk For ¢ € L% with Aap—1(q) =

Aan(q) mtroduce an orthonormal basis fgn, fon—1 of span (y1(-, Aan ), y2(-, Aan))
with fo, = Hy—H and fo,_ 1(0) > 0. Then fa,,—1 is of the form (y; = yJ( )\gn)
i=12)

y1+bay2 b _ (Y1, Y2) L2

lly1 + bnyal|’ " (y2,Y2) 12

Lemma 45 Let ¢ € L with Aay—1(q) = Aan(q). Then

f2n71 =

72
O = &, (cosH M — Ky sin 6, f2nf2n—1> (C.10)

9q(x) 2
£
ai‘lfl) = & (Sm@ % + Fin 08 O fznfzn_1> (C.11)

where Ky, = kn(q) satisfies ky, # 0. If q is a finite gap potential, one has for n — oo

=140 (252,
n

Proof. Formulas (C.10) and (C.11) are derived in a similar fashion, so we prove
only (C.10). Let (gm)m>1 be a sequence in L, convergent to ¢, such that ji,,(gm) =
Xon (@m) > Aan—1(qm) Ym > 1. For p € L3\ D,,, z,, = v/2I,, cos 6, = %f,ﬁn cosB,,.
Therefore,
o0z, 1

. 9n
=— lim |——~,cos6, + &,
Oq(x) 2m—oe aq(ac)fy ¢

Ovn, i a0,

cos 0, — &y Sin Qn—]
0q(x) 0q(x) .
By definition, 7, ,(p) = 0 for p with Aon—1(p) < pn(p) = A2n(p). Hence 0,,(qm) =
Zk;ﬁn Mk (@m ). As Zk:,én M,k 1s analytic, the following limit exists,

9~n = lim 6,( Znnk

m—o0
k#n
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As &,(+) is analytic and lim,,— o0 ¥n(gm) = 0, we obtain

lim ﬁ’yn cos 6, =0.
m—oo 0g(2) .

Thus

Oxy, 1 s Ovn Lo 00,

= —£,(q) [cosf, lim —siné, lim ~,—— . C.12

oq(z) 2 (@) m—oo Jq(z) |, m—oco " 0q(z) |, ( )
Step 1 : Computation of the first limit on the right side of (C.12). For p € L3\ D,,,
6(?1?;) .= 12 (p)—f3,_1(p), where fo,,_1 and fa, are L?>-normalized eigenfunctions
corresponding to Aap,—1 and Aap. As Aop(gm) = tin(gm ), the eigenfunction fay, (¢m)

can be chosen to be fa,(¢m) = % Then
lim f3,(4m) = f3..
m—0o0
Notice that, as Aop—1(gm) < A2n(gm), the eigenfunction fa,—1(¢m) is orthogonal
to the eigenfunction fa, (g, ). Choose
f2n71 = an(yl (1'; >\2n71; Qm) + bny2(1’; >\2n71; Qm))

with an = an(qm) = ||ly1 + buye|| ™! and by, = by(gm) (m sufficiently large). From

<f2n—1(Qm)7f2n(Qm)>L2 =0 (C13)

it follows that
<y2a f2n>L2 by, = — <y1a f2n>L2

where f2n = an(:L'a Qm) and Y; = yj(l', Aanl(Qm)a Qm) (] = ]-7 2) Notice that
(Y2, fan) 2 = |ly2( A2n (@), Il # 0 (m — o0).
Hence for m sufficiently large (y2, fon) > # 0 and

<y17 f2n>L2

b, = — .
<y27 f2n>L2

Define Q(gm) = |ly1 + bnyz2|| (m sufficiently large) and notice that Q(gm) — Q(q)
with Q(q) # 0 as y1(z, Aan(q),q) and ya(x, A2n(q),q) are linearly independent.
Hence a,(gm) := 1/Q(gm) is well defined for m large and

an(gm) — an(q) >0 (m — o0).
We conclude that lim,—co fon—1(gm) = fgn_l(q) where

; Y1+ bnf2n
fon—1(q) = ——5—
lly1 + bn fonll
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with
(Y1, 2) 2
bn(q) i= ———=.
n(@) (y2,y2) 12
It follows that
1fon-all =1 (Fon-tsfon) =0 (C14)

and limy, oo fo,_1(qm) = f22n_1. Thus we have proved that

. 0vn ) )
Jm m(qm) = fan = fon-1:
Step 2 : Computation of the second limit on the right side of (C.12). We have

. Yn _O0n
to compute lim,, o S aq(;) .

. As Zk;én T,k is analytic, its gradient %(z)
m p

>k 2n Tn.k depends continuously on p. Therefore, as lim,— oo Yn(gm) = 0, we ob-
tain

lim On | _ i Onin O Lign sk — fim A, D
moee " Dg(a) |, meee " \Bg(w) T Gale) )|, moee " Og() |,
By Lemma 42

. IMn.n - .
lim ~, = ( lim 'Yn(Qm)Cn,n(Qm)) y1($,>\2n,q)y2(x,>\2mq)
m— 00 aq(x) . m— 00
(1m0 () enn (@n)dn(am) ) U3, Az 0).
By Lemma 43,

Cnon = 1m Y (gm)enn(gm) = —4mn (1 + 0 <1Oin>> #0

m— 00

and limy, o0 dn(¢m) = dn(q) = O(1). Hence

lim 06
e " ()|,

- én,n (yl (xa )‘2717 q)y2 (Ia )‘Qna Q) + dn (Q)yg (Ia )‘Qna q)) .

To obtain the claimed statement it remains to interprete the right side of the

90, _
m . dxr = 0 for

any m. Therefore 0 = fol (y1(x)y2(z) + dny3(x)) dz. Hence y1 + dpy2 and y; are
orthogonal and thus d,, = b,,. It follows that

equation above. As 0,,(¢ + ¢) = 0(q) for any ¢, we have fol Yn

1. .
§Cn,n(y1y2 + dnyg) = ’iannf2n71
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with £, = 3Ennl[y2]] [[y1 + buye|| # 0 and

o = beam (100 (22)) (2L o (L)) (Lo (2))
_ —1+O(1°in).

In view of (C.12), formula (C.10) and the claimed asymptotics for k, are thus
proved. Il

D Appendix

In this appendix, for the convenience of the reader, we review the sampling for-

mula (cf [MT1]) in the form used in this paper. Recall that for ¢ € L%, j > 1,
. G)_

Vi a) = 7 1y %727:—2)\ denote the functions introduced in section 2. The

following interpolation formula is an incidence of the sampling formula (cf [MT1]).

Proposition 46 For g € L3, j > 1,

7/}j ,LLk ) mia(A, q) o
Z mig Mk )\ Mk( ) - %(A,Q) ()\ S (C) (D.l)

where " denotes the derivative with respect to X and mi2(X, q) = y2(1, A, q).

Proposition 46 follows by a limiting argument from the corresponding one for finite
gap potentials. Denote by Gap? ;- the set of K-gap potentials Gap<K ={qe L}
=0iff k> K} (1 < K < oo arbitrary).

Lemma 47 ForqEGapSK, 1<j<K,and NeC

¥, ( Mk ) miz(Nq)
Z 112 (i (q ))\ — Q) =9;(\q) (D.2)

Proof. Denote the left and right hand side of (D.2) by LHS;(g, \) and RHS;(g, )
respectively. Using the product representation for ¢, and for mqs (cf. [PT]), we
conclude that

miz2(A, q) -1 ]._.[ w(g) — A
= Gl (>‘7 Q)a
A — pi(q) k22 itk 1272
£k
(9)
¢;(q) () — A
l/fj (>‘a Q) = j]27T2 H L 1252 — GQ,]' (>‘a Q),
1<ISK
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where

— @y _
Gl(Avq) = H %; Gg,j()\,q) = H M

k>K k>K

As q € Gap<, for k > K, pr(q) = pf’’ (¢) = dar—1(g) = Aar(q) and G1(\, q) =
Ga,;(Nq) =1 G(A,q). Thus LHS;(\, q) = P1j(\¢q)G(\,q) and RHS;(X,q) =
P, (A, q)G(X, q) where Py j(), q) and P (A, ¢) are polynomials in A of degree at
most K — 1. As mia(pr(q),q) = 0 for k > 1, we obtain, by L’Hopital’s rule, that
LHS;(ux(q),q) = RHS;(uk(q),q). Clearly, G(ui(g),q) # 0 for 1 < k < K, thus
P i(ux(q),q) = Poj(pr(q),q) for 1 < k < N which means that P, and P, both

being polynomials of degree at most K — 1, coincide. (I
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