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Interacting Fermi Liquid in Three Dimensions
at Finite Temperature:
Part I: Convergent Contributions

M. Disertori, J. Magnen and V. Rivasseau

Abstract. In this paper we complete the first step, namely the uniform bound on
completely convergent contributions, towards proving that a three dimensional in-
teracting system of Fermions is a Fermi liquid in the sense of Salmhofer. The analy-
sis relies on a direct space decomposition of the propagator, on a bosonic multiscale
cluster expansion and on the Hadamard inequality, rather than on a Fermionic ex-
pansion and an angular analysis in momentum space, as was used in the recent
proof by two of us of Salmhofer’s criterion in two dimensions.

I Introduction

Conducting electrons in a metal at low temperature are well described by Fermi
liquid theory. However we know that the Fermi liquid theory is not valid down to
zero temperature. Indeed below the BCS critical temperature the dressed electrons
or holes which are the excitations of the Fermi liquid bound into Cooper pairs and
the metal becomes superconducting. Even when the dominant electron interaction
is repulsive, the Kohn-Luttinger instabilities prevent the Fermi liquid theory to be
generically valid down to zero temperature.

Hence Fermi liquid theory (e.g. for the simplest case of a jellium model with
a spherical Fermi surface) is only an effective theory above some non-perturbative
transition temperature, and it is not obvious to precise its mathematical defini-
tion. Recently Salmhofer proposed such a mathematical definition [S]. It consists
in proving that (under a suitable renormalization condition on the two-point func-
tion), perturbation theory is analytic in a domain |λ logT | ≤ K, where λ is the
coupling constant and T is the temperature, and that uniform bounds hold in that
domain for the self-energy and its first and second derivatives. This criterion in
particular excludes Luttinger liquid behavior, which has been proved to hold in
one dimension [BGPS-BM], and for which second momentum-space derivatives of
the self-energy are unbounded in that domain.

Recently two of us proved Salmhofer’s criterion for the two dimensional jel-
lium model [DR1-2]. However the proof relies in a key way on the special momen-
tum conservation rules in two dimensions. In three dimensions general vertices are
not necessarily planar in momentum space. This has drastic constructive conse-
quences (although perturbative power counting is similar in 2 and 3 dimensions).
In particular it seems to prevent, up to now, any constructive analysis based on
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angular decomposition in momentum space. The only existing constructive result
for three dimensional Fermions relies on the use of a bosonic method (cluster ex-
pansion) together with the Hadamard inequality [MR]. It proves that the radius
of convergence of the theory in a single momentum slice of the renormalization
group analysis around the Fermi surface is at least a constant independent of the
slice.

In this paper, we build upon the analysis of [MR], extending it to many slices.
We use a multiscale bosonic cluster expansion based on a direct space decomposi-
tion of the propagator, which is not the usual momentum decomposition around
the Fermi sphere. We bound uniformly the sum of all convergent polymers in the
Salmhofer domain |λ logT | ≤ K. Hence our result is the three dimensional analog
of [FMRT] and [DR1]. Because of its technical nature, this result is stated precisely
only in section III.6, after the definition of the multiscale cluster expansion.

Using a Mayer expansion we plan in a future paper (which would be the
three dimensional analog of [DR2]) to perform renormalization of the two point
subgraphs and to study boundedness of the self energy and of its first and sec-
ond momentum space derivatives. That would complete the proof of Fermi liquid
behavior in three dimensions.

Remark however that the optimal analyticity radius of the Fermi liquid series
should be given by |λ lnT | = KBCS where KBCS is a numerical constant given by
the coefficient of a so called “wrong-way” bubble graph [FT2]. In this paper we
prove analyticity in a domain λ| lnT | ≤ K but our constant is not the expected
optimal one, KBCS , not only because of some lazy bounds, but also because of a
fundamental difficulty linked to the use of the Hadamard inequality. Actually the
kind of Hadamard bound relevant for a model of fermions with two spin states is∑
n
λn

n! det
2 An ≤

∑
n(|λ|a2)n n

n

n! , where An is an n× n matrix whose coefficients
are all bounded by a. Hence (using Stirling’s formula), the radius of convergence
in λ of that series is only shown to be at least 1/ea2 by this bound, whether 1/a2

would be expected from perturbation theory.
For this reason it seems to us that the analyticity radius obtained by any

method based on Hadamard bound is smaller than the optimal radius by a factor
at least 1/e, and we do not know how to cure this defect.

II Model

We consider the simple model of isotropic jellium in three spatial dimensions with
a local four point interaction. We use the formalism of non-relativistic field theory
at imaginary time of [FT1-2-BG] to describe the interacting fermions at finite
temperature. Our model is therefore similar to the Gross-Neveu model, but with
a different, non relativistic propagator.
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II.1 Free propagator

Using the Matsubara formalism, the propagator at temperature T , C(x0, �x), is
antiperiodic in the variable x0 with antiperiod 1

T . This means that the Fourier
transform defined by

Ĉ(k) =
1
2

∫ 1
T

− 1
T

dx0

∫
d3x e−ikx C(x) (II.1)

is not zero only for discrete values (called the Matsubara frequencies) :

k0 =
2n+ 1
β

π , n ∈ ZZ , (II.2)

where β = 1/T (we take /h = k = 1). Remark that only odd frequencies appear,
because of antiperiodicity.

Our convention is that a four dimensional vector is denoted by x = (x0, �x)
where �x is the three dimensional spatial component. The scalar product is defined
as kx := −k0x0 + �k.�x. By some slight abuse of notations we may write either
C(x− x̄) or C(x, x̄), where the first point corresponds to the field and the second
one to the antifield (using translation invariance of the corresponding kernel).

Actually Ĉ(k) is obtained from the real time propagator by changing k0 in
ik0 and is equal to:

Ĉab(k) = δab
1

ik0 − e(�k)
, e(�k) =

�k2

2m
− µ , (II.3)

where a, b ∈ {↑, ↓} are the spin indices. The vector �k is three-dimensional. Since
our theory has three spatial dimensions and one time dimension, there are really
four dimensions. The parameters m and µ correspond to the effective mass and
to the chemical potential (which fixes the Fermi energy). To simplify notation we
put 2m = µ = 1, so that, if ρ = |�k|, e(�k) = e(ρ) = ρ2 − 1. Hence,

Cab(x) =
1

(2π)3β

∑
k0

∫
d3k eikx Ĉab(k) . (II.4)

The notation
∑
k0

means really the discrete sum over the integer n in (II.2).
When T → 0 (which means β → ∞) k0 becomes a continuous variable, the cor-
responding discrete sum becomes an integral, and the corresponding propagator
C0(x) becomes singular on the Fermi surface defined by k0 = 0 and |�k| = 1. In the
following to simplify notations we will write:

∫
d4k ≡ 1

β

∑
k0

∫
d3k ,

∫
d4x ≡ 1

2

∫ β
−β

dx0

∫
d3x . (II.5)
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II.2 Ultraviolet cutoff

It is convenient to add a continuous ultraviolet cut-off (at a fixed scale Λu) to the
propagator (II.3) for two reasons: first because it makes its Fourier transformed
kernel in position space well defined, and second because a non relativistic theory
does not make sense anyway at high energies. To preserve physical (or Osterwalder-
Schrader) positivity one should introduce this ultraviolet cutoff only on spatial
frequencies [FT2]. However for convenience we introduce this cutoff both on spatial
and on Matsubara frequencies as in [FMRT]; indeed the Matsubara cutoff could be
lifted with little additional work. The propagator (II.3) equipped with this cut-off
is called Cu and is defined as:

Ĉu(k) := Ĉ(k) [u(r)]|r=k20+e2(�k) (II.6)

where the compact support function 0 ≤ u(r) ∈ C∞0 (R) satisfies: u(r) = 1 for
r ≤ 1, u(r) = 0 for r > 10.

II.3 Position space

In the following we will use the propagator in position space. The key point for
further analysis is to write it as

Cu(�x, t) =
1

1 + |�x|
1

1 + f(t) + |�x| F (�x, t) (II.7)

where f(t) is defined by

f(t) :=
∣∣∣∣ sin (2πTt)2πT

∣∣∣∣ = ε(t)
sin (2πTt)

2πT
t ∈
[
− 1
T
,
1
T

]
(II.8)

and ε(t) is the sign of sin (2πTt).
This is useful since the remaining function F has a spatial decay scaled with

T , and no global scaling factor in T , as proved in the following lemma.

Lemma 1 For any p ≥ 1, there exists Kp such that the function F (�x, t) defined by
(II.7) satisfies

|F (�x, t)| ≤ Kp
(1 + T |�x|)p ∀p ≥ 1. (II.9)

Proof. In radial coordinates the propagator is written as

Cu(�x, t) =
T

(2π)3
∑
k0

∫ 2π

0
dφ

∫ π
0
dθ sin θ

∫ ∞

0
dρ ρ2 eiρ|�x| cos θ−ik0t

ik0 − e(ρ)
u
[
k2
0 + e2(ρ)

]
.

(II.10)
By symmetry considerations, changing θ to π − θ, we can rewrite this as

Cu(�x, t) =
T

2(2π)3
∑
k0

∫ 2π

0
dφ

∫ π
0
dθ sin θ

∫ ∞

−∞
dρ ρ2 eiρ|�x| cos θ−ik0t

ik0 − e(ρ)
u
[
k2
0 + e2(ρ)

]
.

(II.11)
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Now we write the integral over θ as∫ π
0
dθ sin θ eiρ|�x| cos θ =

∫ 1

−1
dv eiρ|�x|v (II.12)

and applying twice the identity

eiρ|�x|v =
1

(1 + |�x|)

(
1− i

ρ

d

dv

)
eiρ|�x|v (II.13)

we obtain∫ 1

−1
dv eiρ|�x|v =

1
1 + |�x|

∫ 1

−1
dv

[
1− i

ρ

d

dv

]
eiρ|�x|v (II.14)

=
1

1 + |�x|

[∫ 1

−1
dv eiρ|�x|v +

1
iρ

(
eiρ|�x| − e−iρ|�x|

)]

=
[

1
(1 + |�x|)2

∫ 1

−1
dv eiρ|�x|v

]
+
{[

(2 + |�x|)
(1 + |�x|)2

]
1
iρ

(
eiρ|�x| − e−iρ|�x|

)}
.

We decompose further, introducing for the first term 1 = χ(|�x| ≤ 1) + χ(|�x| > 1),
where χ is the characteristic function of the event indicated, and perform the v
integration for the second term only. In this way the function F can be written as
a sum of two terms F = F1 + F2 where

F1 = χ(|�x| ≤ 1)
(1 + f(t) + |�x|)

(1 + |�x|)
T

2(2π)2∑
k0

∫ 1

−1
dv

∫ ∞

−∞
dρ ρ2 eiρ|�x|v−ik0t

u[k2
0 + e2(ρ)]

ik0 − e(ρ)
(II.15)

F2 =
[
(2 + |�x|+ χ(|�x| > 1)/|�x|)(1 + f(t) + |�x|)

(1 + |�x|)

]
T

2(2π)2∑
k0

∑
σ=±1

∫ ∞

−∞
dρ

σρ

i
eiσρ|�x|−ik0t

u[k2
0 + e2(ρ)]

ik0 − e(ρ)
. (II.16)

Now we apply on F1 and on F2 the identity[
1 + f(t)− i

2
ε(t)ai|�x|

]
eiaiρ|�x|−ik0t =

[
1 + ε(t)

(
i
∆
∆k0
− 1

2
d

dρ

)]
eiaiρ|�x|−ik0t

(II.17)
where we defined a1 =: v for F1 and a2 =: σ for F2, and where the discretized
derivative ∆

∆k0
on a function F (k0) is defined by

∆
∆k0

F (k0) =
1

4πT
[F (k0 + 2πT )− F (k0 − 2πT )] . (II.18)
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Hence integrating by parts the Fi’s are written as

F1(�x, t) =
T

2(2π)2
∑
k0

∫ 1

−1
dvf1(�x, t, v)

∫ ∞

−∞
dρeiρ|�x|v−ik0tG1(k0, ρ) (II.19)

G1(k0, ρ) = [1 + ε(t)∆]

[
ρ2 u

(
k2
0 + e2(ρ)

)
ik0 − e(ρ)

]

F2(�x, t) =
T

2(2π)2
∑
k0

∑
σ

f2(�x, t, σ)
∫ ∞

−∞
dρ

σ

i
G2(k0, ρ) eiσρ|�x|−ik0t (II.20)

G2(k0, ρ) = [1 + ε(t)∆]

[
ρ u
(
k2
0 + e2(ρ)

)
ik0 − e(ρ)

]

where we have defined

f1(�x, t, v) = χ(|�x| ≤ 1)
(1 + f(t) + |�x|)

(1 + |�x|)(1 + f(t)− i
2ε(t)v|�x|)

(II.21)

f2(�x, t, σ) =
2 + |�x|+ χ(|�x| > 1)/|�x|

1 + |�x|
1 + f(t) + |�x|

(1 + f(t)− i
2ε(t)|�x|σ)

(II.22)

∆ =
(
1
2
d

dρ
− i ∆

∆k0

)
. (II.23)

Remark that these functions are uniformly bounded in modulus (f1 is bounded by
1 and f2 by 6). The signs and coefficients in ∆ have been optimized in order to
obtain a positive factor 1+f(t) and to minimize the action of ∆ on (ik0−e(ρ))−1.
After a tedious but trivial computation, we find

Gi =: [1 + ε(t)∆]
[
ρbi

u[k2
0 + e2(ρ)]

ik0 − e(ρ)

]
=
{
ρbi +

ε(t)biρbi−1

2

}
u[k2

0 + e2(ρ)]
ik0 − e(ρ)

+ρbiε(t)

{
u′[k2

0 + e2(ρ)]

[
2ρ(ρ2 − 1)
ik0 − e(ρ)

− ik0(ik0 − e(ρ))
[ik0 − e(ρ)]2 + 4π2T 2

]

+u[k2
0 + e2(ρ)]

(ρ− 1)[ik0 − e(ρ)]2 + 4π2T 2ρ

[ik0 − e(ρ)]2
(
[ik0 − e(ρ)]2 + 4π2T 2

)

+
O(T )

[ik0 − e(ρ)]2 + 4π2T 2

}
(II.24)

where b1 = 2 for G1 and b2 = 1 for G2.
Using these explicit expressions it now easy to check that F1 and F2 are

uniformly bounded by some constant K (independent of T as T → 0). To complete
the proof of Lemma 1, there remains to check that these functions F1 and F2 also
decay like any power as T |�x| → ∞. For F1 there is obviously nothing to check
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remarking the function χ(|�x| ≤ 1) in (II.21). Hence we have only to prove

(1 + |�x|T )p |F2| ≤ Kp (II.25)

for some constant Kp independent from T . Since

(1 + |�x|T )p eiσ|�x|ρ =
(
1− T i

σ

d

dρ

)p
eiσ|�x|ρ (II.26)

we have

| (1 + |�x|T )p F2(�x, t)| ≤ T.K1 sup
σ=±1

∑
k0

∫ ∞

−∞
dρ

∣∣∣∣
(
1 + T

i

σ

d

dρ

)p
G2(k0, ρ)

∣∣∣∣
(II.27)

where we bounded the factors |fi| by constants. Now, performing the change of
variable w = ρ2 − 1, using the fact that the u function has compact support, and
the fact that the sum over k0 is bounded away from 0 since by (II.2) |k0| ≥ T , it
is a trivial power counting exercise to check that (II.27) is actually bounded by a
constant. �

Remark that it is not possible to improve significantly Lemma 1. Actually if
we try in (II.7) to obtain e.g. more factors such as (1+ f(t) + |x|), identity (II.17)
should be applied several times and the action of two or more ∆ operators on the
free propagator (II.3) would generate terms that diverge when T → 0. Similarly,
if the factor (1 + |x|) appears more than one time, some corresponding factors fi
would not remain bounded when |x| → ∞.

In the following we will use the spatial decay of the propagator to integrate
and the following lemma will be useful

Lemma 2 Let the interval
[
− 1
T ,

1
T

[
be divided into eight sub-intervals

Ij =:
[
− 1
T

+
j − 1
4T

,− 1
T

+
j

4T

[
, 1 ≤ j ≤ 8 (II.28)

Then
1

1 + f(t) + |�x| ≤
1

1 + 2
π |t− tj |+ |�x|

(II.29)

where tj = − 1
T + j−1

4T for j odd and tj = − 1
T + j

4T for j even.

Proof. Remember that f(t) = ε(t) sin 2πTt
2πT is positive and periodic with period 1/2T

(see Fig.1).
In each interval Ij with j odd, the function ε(t) sin 2πTt is higher or equal to

the line 4T (t− tj) while for j even it is higher that the decreasing line −4T (t− tj).
The proof follows1. �

1Splitting C =
∑8

j=1 Cj according to which interval we are in, and taking tj as the new
origin, we could in fact obviously restrict ourselves to proving the main result of this paper for
j = 5, where t ≥ 0 and f(t) ≥ 2t/π.
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1/T-1/2T-1/T 1/2T t

Figure 1: The function ε(t) sin(2πTt)

II.4 Heuristic discussion

Before going on into technical details, we include here some informal discussion,
according to the referee’s suggestion. The particular expansion scheme below may
seem unnecessarily complicated, but it has been developed to overcome a series of
hurdles, that we try to sketch here.

- First the choice of the Hadamard inequality is up to now the only way
to overcome the main difficulty of three dimensional Fermionic models, namely
the nonplanarity of the three dimensional vertex. This comes with a price: since
Hadamard’s bound consumes the symmetry factorial of the vertices, nothing is left
to make a tree expansion, which is usually the simplest way to treat constructively
a Fermionic theory (see e.g. [DR1]). A consequence is that one needs to treat the
infinite volume limit as in a bosonic theory, using cluster expansions [MR].

- In [MR] a single step of the renormalization group is performed, but there
is nevertheless some multiscale aspect, because an expansion had to be performed
with respect to a superrenormalizable auxiliary index. The corresponding cluster
expansions were made with respect to rectangular rather than square boxes. This
is due to the difference between space and time decrease of the propagator that
appears in the previous subsection. Therefore the naive multiscale generalization
of [MR] would be a somewhat mind-boggling “double index” expansion with rect-
angles of all sizes and aspects. We prefer to avoid this complication, and to stay
within the much more familiar renormalization group picture of a multiscale cluster
expansion performed with respect to a single sequence of growing cubic lattices. It
is for that purpose that we introduce in the next subsection a scale decomposition
solely related to the size of x and t. Hence the slices used in this paper are not the
usual momentum shells around the Fermi surface of [FT1-2] or of [MR], although
they are loosely related to them. Our decomposition is anisotropic. Two conditions
have to be satisfied. One of them involves the square of the propagator, C2, since
the Hadamard bound is written in terms of C2. The other one involves directly
the propagator C, since it is used to perform the “horizontal” cluster expansion
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between cubes of a given scale. These two conditions are explained in detail in
Appendix A.

- After applying the Hadamard bound the power counting factors of the
propagators is entirely consumed and nothing is left to sum over the scales of the
four fields hooked to a given vertex. Roughly speaking for symmetric vertices, i.e.
when the scales of the four fields are summed over identical intervals, these sums
can be paid for by the fact that the coupling constant is in c/| log T |. On the other
hand the vertical part of a multiscale expansion (the one that couples together the
different scales) typically dissymmetrizes the field scales of the vertices, introducing
some constraints. For instance one considers usually that a vertical coupling at
scale j is made of a vertex with at least one field of scale higher than j and one
field of scale lower than j. But after applying Hadamard’s inequality there is not
enough decay to sum over j for such vertices. Our inductive definition of the vertical
expansion in section III may seem complicated but it is designed to carefully
avoid this problem. It extends the notion of vertical coupling at scale j to include
any vertex with at least one field of scale higher than j (but not necessarily any
field of scale lower than j!). We remark that the corresponding extended vertical
expansion would not work for an ordinary bosonic theory. Indeed it can create an
arbitrary number of vertices say in a single cube of the first slice, corresponding to
vertical connections of lower scales, and this leads to the usual bosonic divergence
of perturbation theory. However remember that Fermionic perturbation theory
with cutoffs converges, and this is why this new kind of vertical expansion is
possible in our context! Nevertheless to implement this convergence in practice is
quite subtle. It requires in particular an optimal use of the two different forms of
the Hadamard inequality (IV.113) and (IV.114), for rows and for columns. This is
done in subsection IV.3, introducing a so-called weight expansion, which is really
the core of our paper.

Let us finally mention some technical complications related to our extended
rules for vertical connections. The vertical expansion is inductive, since new vertical
connections must bring in new vertices, and we have not been able to cast it in
the most symmetric and compact tree formalism of Brydges-Kennedy [BK] [AR2].
Since we use instead the older formalism of Brydges-Battle-Federbush [BF1-2], we
have to exploit carefully the additional 1/n! factors that are hidden in the integrals
over the interpolating factors. This is explained in subsection IV.7.1. Also our
inductive rules for this vertical expansion create quite naturally redundant vertical
connections. Nevertheless to organize the sum over the positions of the cubes of a
multiscale connected component of the expansion, it is convenient to extract a tree
out of these redundant connections, which joins all the cubes. This tree extraction
is explained in subsection III.3.
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II.5 Slice decomposition

To introduce multiscale analysis we can work directly in position space. We then
write the propagator as

Cu(�x, t) =
jM+1∑
j=0

Cj(�x, t) ; Cj(�x, t) = Cu(�x, t) χΩj (�x, t) (II.30)

where χΩ(�x, t) is the characteristic function of the subset Ω ⊂ R4

χΩ(�x, t) = 1 if (�x, t) ∈ Ω
= 0 otherwise (II.31)

and the subset Ωj is defined as follows:

Ωj = { (�x, t) | M j−1 ≤ (1 + |�x|) 3
4 (1 + f(t) + |�x|) 1

4 < M j } 0 ≤ j ≤ jM
= { (�x, t) | M jM ≤ (1 + |�x|) 3

4 (1 + f(t) + |�x|) 1
4 } j = jM + 1

(II.32)
where M > 0 is a constant that will be chosen later. In Appendix A we discuss
why the relative powers 3/4 and 1/4 for (1+|�x|) and (1+f(t)+ |�x|) are convenient.
jM is defined as the temperature scale M jM � 1/T , more precisely

jM = 1 + I

[
ln
(
T−1

)
lnM

]
(II.33)

where I means the integer part. With these definitions

jM+1∑
j=0

χΩj (�x, t) = 1 . (II.34)

This decomposition is somewhat dual to the usual slice decomposition in mo-
mentum space of the renormalization group. Now, for each slice j we can introduce
a corresponding lattice decomposition. We work at finite volume Λ := [−β, β]×Λ′,
where Λ′ is a finite volume in the three dimensional space. For j ≤ jM we parti-
tion Λ in cubes of side M j in all directions, forming the lattice Dj . For that we
introduce the function

χ∆(x) = 1 if x ∈ ∆
= 0 otherwise (II.35)

satisfying
∑

∆∈Dj
χ∆(x) = χΛ(x). For j = jM + 1 we partition Λ in cubes of side

M jM in all directions, forming the lattice DjM+1 = DjM . We define the union of
all partitions D = ∪jDj .
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Auxiliary scales The function χΩj actually mixes temporal and spatial coordi-
nates. In order to sharpen the analysis of �x and t, we will need later an auxiliary
slice decoupling for each scale j:

Cj(�x, t) =
kM (j)∑
k=0

Cj,k(�x, t) ; Cj,k(�x, t) = Cj(�x, t) χΩj,k
(t) (II.36)

where, for any j ≤ jM we defined

Ωj,k = { t | M j+k−1 ≤ f(t) < M j+k } k > 0
= { t | 0 ≤ f(t) < M j } k = 0 (II.37)

and kM (j) is defined as

kM (j) = min{jM − j, 3j} . (II.38)

The bound k ≤ jM − j is obtained observing that f(t) ≤ M jM in any case by
periodicity. The bound k ≤ 3j is obtained observing that (1 + f(t))

1
4 ≤M j .

The case j = jM + 1 is special. In this case we must have 0 ≤ f(t) ≤ M jM

by periodicity, therefore there is no k decomposition. Actually we say that k = 0
and we define

ΩjM+1,0 = { t | 0 ≤ f(t) ≤M jM } (II.39)

Spatial constraints For any j and k fixed, the spatial decay is constrained too.
We must distinguish three cases:

• j ≤ jM and k > 0: then there is a non zero contribution only for

M j− k
3−

4
3 2−

1
3 ≤ (1 + |�x|) ≤ M j− k

3 + 1
3 (II.40)

• j ≤ jM and k = 0: then there is a non zero contribution only for

M j− 4
3 2−

1
3 ≤ (1 + |�x|) ≤ M j (II.41)

• j = jM + 1: then there is a non zero contribution only for

M jM 2−
1
3 ≤ (1 + |�x|) (II.42)

Power counting and scaled decay of the propagator Now for each j and k we can
estimate more sharply the propagator Cjk. We distinguish three cases:

• for j ≤ jM and k > 0 we have

∣∣Cj,k(�x, t)∣∣ ≤ K1 M
−2j− 2

3k M
7
3 2

1
3 χj,k (�x, f(t)) (II.43)
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where the function χj,k is defined by

χj,k(�x, t) = 1 if |�x| ≤M j− k
3 + 1

3 , f(t) ≤M j+k

= 0 otherwise (II.44)

and the function F (�x, t) is bounded by Kp.

• for j ≤ jM and k = 0 we have

∣∣Cj,k(�x, t)∣∣ ≤ K1 M
−2j M

8
3 2

2
3 χj,0 (�x, f(t)) (II.45)

where the function χj,0 is defined by

χj,0(�x, t) = 1 if |�x| ≤M j , f(t) ≤M j

= 0 otherwise (II.46)

• for j = jM + 1 we have

∣∣CjM+1,0(�x, t)
∣∣ ≤ M−2jM 2

2
3 χjM+1,0 (f(t))

Kp
(1 +M−jM |�x|)p (II.47)

where the function χjM+1,0 is defined by

χjM+1,0(t) = 1 if f(t) ≤M jM

= 0 otherwise (II.48)

and the spatial decay for |�x| comes from the decay of the function F in (II.9).

In the following, the multiscale analysis is essentially performed using the
j index. The auxiliary structure will be introduced only in section IV. In that
section we will also need to exchange the sums over j and k. The constraints on
the maximal value of k, kM (j), are then changed into constraints on j:

jM+1∑
j=0

kM (j)∑
k=0

Cj,k =

3jM
4∑
k=0

∑
j∈J(k)

Cj,k (II.49)

where

J(k) = [
k

3
, jM − k] for k > 0 (II.50)

J(0) = [0, jM + 1] (II.51)
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II.6 Partition function

We introduce now the local four point interaction

I(ψ, ψ̄) = λ

∫
Λ
d4x (ψ̄↑ψ↑)(ψ̄↓ψ↓) = λ

∫
Λ
d4x

4∏
c=1

ψc , (II.52)

where ψc is defined as:

ψ1 = ψ̄↑ ψ2 = ψ↑ ψ3 = ψ̄↓ ψ4 = ψ↓ . (II.53)

The partition function is then defined as

ZuΛ =
∫
dµCu(ψ, ψ̄)eI(ψ,ψ̄) =

∞∑
n=0

1
n!

∫
dµCu(ψ, ψ̄)I(ψ, ψ̄)n

=
∞∑
n=0

1
n!

∫
dµCu(ψ, ψ̄)

∏
v∈V

Iv(ψ, ψ̄) (II.54)

where V is the set of n vertices and Iv(ψ, ψ̄) denotes the local interaction at vertex
v. Now we can introduce slice decomposition over fields:

ψc =
jM+1∑
j=0

ψjc (II.55)

hence

Iv(ψ, ψ̄) = λ
∑
Jv

∫
Λ
d4xv

4∏
c=1

ψ
jvc
c (II.56)

where xv is the position of the vertex v, Jv = (jv1 , jv2 , jv3 , jv4 ) gives the slice indices
for the fields hooked to v. Now we write

I(v) = λ
∑
Jv

∑
∆v

∫
∆v

d4xv

4∏
c=1

ψ
jvc
c (II.57)

where ∆v ∈ D0 and

ZuΛ =
∞∑
n=0

λn

n!

∑
JV

∑
∆V

(II.58)

[∏
v

∫
∆v

d4xv

] ∫
dµCu(ψ, ψ̄)

[∏
v

(
4∏
c=1

ψ
jvc
c (xv)

)]
,

where we denoted any set {av}v∈V by aV .
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A(∆)

j

j+1

∆

Figure 2: Ancestor

The Grassmann functional integral at the n-th order in (II.58) can be written
as a determinant

∫
dµCu(ψ, ψ̄)

[∏
v

(
4∏
c=1

ψ
jvc
c (xv)

)]
= detM(JV , {xv}) (II.59)

where M(JV , {xv}) is a 2n × 2n matrix, whose rows correspond to fields and
whose columns correspond to antifields. Therefore, for a given vertex v, ψ1(xv)
and ψ3(xv) correspond to columns and ψ2(xv) and ψ4(xv) correspond to rows.
The matrix element is then

Mvc;v̄c̄ = δjvc ,jv̄c̄ Cj
v
c (xv, xv̄) (II.60)

where c ∈ C =: {2, 4} are field indices and c̄ ∈ C̄ =: {1, 3} are antifield indices.

Notations For each cube ∆ we denote by i∆ its slice index, that is ∆ ∈ Dj with
j = i∆. We call ancestor of any cube ∆ ∈ Dj, A(∆), the unique cube ∆′ ∈ Dj+1
satisfying ∆ ⊂ ∆′ (see Fig.2). In the same way for any set S of cubes in Dj , we call
ancestor of S the set A(S) = ∪∆∈SA(∆). We call ∆jv, the unique cube ∆ ∈ Dj,
for any j ≥ i∆v , satisfying ∆v ⊂ ∆ (for j = i∆v we have ∆jv = ∆v). (We remark
that for the moment all i∆v = 0 ∀∆v).

In the following we will denote by hvc the half-line corresponding to the field
ψ
jvc
c (xv). We say that hvc is external field for the cube ∆ if ∆v ⊆ ∆, i∆ < jvc and

there exist at least one field hvc′ hooked to v (different from hvc ) with attribution
jvc′ ≤ i∆ (see Fig.3). We call E(∆) the set of external fields and antifields of ∆.
In the same way we denote by E(S) = ∪∆∈SE(∆) the set of external fields and
antifields of the subset S ⊂ Dj.

We need also to introduce some notations for the fields with smallest index
attached to a vertex v. We call iv the smallest scale of the vertex v, nv the number
of fields hooked to v with band index j = iv (1 ≤ nv ≤ 4) and σv the set of
indices of these nv fields with j = iv, which is necessarily non-empty. Finally we
distinguish the particular field in σv with lowest value of c, which we call cv.

iv = inf {jvc | 1 ≤ c ≤ 4} ; σv = {c | jvc = iv} ; nv = |σv| ; cv = inf {c ∈ σv}
(II.61)
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∆

A(∆)

Figure 3: External fields for ∆

We say that a vertex v belongs to a cube ∆ ∈ Dj if xv ∈ ∆, and we denote
the corresponding set of vertices by

V (∆) = {v |∆v ⊆ ∆} . (II.62)

In the same way we denote by V (S) = ∪∆∈SV (∆) the set of vertices belonging to
the subset S ⊂ Dj.

We then say that a vertex v is internal for a cube ∆ ∈ Dj if v belongs to ∆
and iv ≤ j. The set of internal vertices of ∆ is therefore defined as

I(∆) = V (∆) ∩ {v | iv ≤ j} . (II.63)

We remark that there may be vertices in V (∆)\I(∆)). In the same way we denote
by I(S) = ∪∆∈SI(∆) the set of internal vertices for the subset S ⊂ Dj . Remark
that, if v ∈ I(∆), then v ∈ I(∆′) for any ∆′ such that ∆ ⊆ ∆′.

III Connected functions

In order to compute physical quantities, we need to extract connected functions.
For instance Z in perturbation theory is the sum over all vacuum graphs corre-
sponding to the full expansion of the determinant in (II.59), and we know that the
logarithm of Z is the same sum but restricted to connected graphs. But while in
ordinary graphs the connectedness can be read directly from the propagators join-
ing vertices, here we need for constructive reasons to test the connection between
different cubes in D by a multiscale cluster expansion. Then the computation of
log Z is achieved through a Mayer expansion [R].

For this purpose we must introduce two kinds of connections, vertical con-
nections between cubes at adjacent levels j − 1 and j, whose scale is defined as
j, and horizontal connections between cubes at the same level j, whose scale is
defined as j. (We remark that there is therefore no vertical connection of scale 0).
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The difficulty is that our definition of these connections is inductive, starting from
the scale zero towards the scale jM .

We define a connected polymer Y as a subset of cubes in D, such that for
any two cubes ∆,∆′ ∈ Y , there exists a chain of cubes ∆1, ...,∆N ∈ Y such
that ∆1 = ∆, ∆N = ∆′ and there is a connection between ∆i and ∆i−1 for any
i = 2, ..., N .

For each scale j we define connected subpolymers at scale j as subsets of
cubes belonging to ∪jq=0Dq, that are connected through connections of scale ≤ j.
These are the analogs of the quasi-local subgraphs in [R]. As for usual graphs,
we call Y jk (k = 1, ..., c(j)) the c(j) connected polymers at scale j and yjk their
restriction to Dj. The set of external fields for Y jk then corresponds to the set of
external fields for yjk, which is denoted by E(yjk). Finally for a given vertex v we
call yjv the particular connected component yjk which contains the vertex v.

Connections
1) For any pair ∆,∆′, with ∆,∆′ ∈ Dj and ∆ �= ∆′, we say that there

is a horizontal connection, or h-connection (∆,∆′) between them if there exists
a propagator Cj(xv, xv′) with ∆v ⊆ ∆ and ∆v′ ⊆ ∆′ in the expansion of the
determinant of (II.59). (This definition is not inductive).

It is also convenient to introduce generalized notions: a ”generalized cube” ∆̃
of scale j is a subset of cubes of scales j and a generalized horizontal connection,
or gh-connection (∆̃, ∆̃′) is a propagator Cj(xv, xv′) with ∆v ⊆ ∆̃ and ∆v′ ⊆ ∆̃′

in the expansion of the determinant of (II.59).
2) For each connected subpolymer at scale j, denoted by Y , we suppose by

induction that we have defined all subconnections for the subpolymers in Y of
scales ≤ j. Let us suppose that |y| = p and that the p cubes of y = Y ∩ Dj are
labeled as ∆1, ... ∆p.

• 2a) We say that there exists a vertical connection, called v-connection, be-
tween each cube ∆i of y and its ancestor A(∆i) for i = 1 to p if we can
associate to y a single new internal vertex v in Y that has never been associ-
ated previously by the inductive process to any previous vertical connections
at scale j′ ≤ j. We remark that the existence of such a single vertex creates
always a set of associated vertical connections, with cardinal |y|. This set of
v-connections is called the v-block associated to the vertex v. In summary
typically (when |y| > 1) several vertical connections are associated to a single
vertex, and these vertical connections can form loops (see Fig.4)).

• 2b) If condition 2a is not satisfied, i.e. there is no such new internal vertex
v for y, but |E(y)| > 0, we say that there exists a vertical connection, called
f -connection, again between each cube ∆i of y for i = 1 to p and its ancestor
A(∆i). In this case all these vertical connections are called f-connections,
and |E(y)| is called the strength of each such connection. The set of all such
f -connections for a fixed set of external lines is called the f -block associated
to these external lines.
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∆A( 1) ∆A( 2)

∆∆ 21

=

Figure 4: Example of vertical and horizontal connections
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Figure 5: An example of polymer Y .

In fact in this paper we will restrict ourselves to the analysis and bound for
connected subpolymers for which in the second case, we always have |E(y)| ≥ 6,
since the other cases need renormalization.

When there is no vertical connection, i.e. no new vertex, and |E(y)| = 0, we
call Y simply a (vacuum) polymer.

III.1 Polymer structure

With these definitions in phase space (in our usual representation, for which index
space is vertical) all polymers have a “solid on solid” profile (see Fig.5)2.

2This is not the unique possible choice. In [AR1] polymers with holes or overhangs are allowed.
Here we choose polymers without holes for simplicity.
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We define the highest and lowest slice index of each polymer Y as

mY = min∆∈Y i∆
MY = max∆∈Y i∆.

(III.64)

For each cube ∆ ∈ Y , we define the “exposed volume of ∆” as

Ex(∆) = ∪{ ∆′∈D with
∆=A(∆′) and ∆′ �∈Y

} ∆′. (III.65)

In other words this is the part of ∆ that contains no other cube of Y , and is
therefore at the upper border of the polymer (see Fig.5). An element ∆ ∈ Y is
called a “summit cube” if Ex(∆) �= ∅, and we define the “border of Y ”, B(Y ),
as the union of all summit cubes: E(Y ) = ∪{∆ | Ex(∆)�=∅} ∆. We remark that
{Ex(∆)}∆∈B(Y ) is a partition of the volume occupied by Y , and the sum over ∆v
for any v in Y can be written as

∑
∆v∈D0

∫
∆v

dxv =
∑

∆v∈B(Y )

∫
Ex(∆v)

dxv (III.66)

and we say that the vertex v is localized in the summit cube ∆v ∈ B(Y ).

Trees and Forests The connections among cubes in a polymer are the construc-
tive analogs of lines in a graph. It is useful to select among these connections a
minimal set i.e. a tree connecting the cubes of the polymer. This is the purpose of
the expansion defined below. But we perform this task in two steps. In the main
step, called the multiscale cluster expansion, we select vertices, external lines and
propagators which form v-blocks, f -blocks and gh-connections (still containing
loops, see Figure 4); then in a second, auxiliary step, called the tree and root se-
lection, we eliminate some redundant connections from the v-blocks and f -blocks,
and we localize the gh-connections into ordinary h-connections, in order to obtain
an ordinary tree connecting all cubes of the polymer; moreover we select for any
subpolymer a particular cube called the root, in a coherent way.

Just like the definition of the connections, our expansion is inductive. The
multiscale expansion starts from the slices with lowest index towards the ones with
higher index. The tree and root selection works also inductively but in the inverse
order, from the slices with highest index towards the ones with lower index.

In the end the particular connections which are selected by the expansion to
form the tree will be called links (more precisely v-link, f -link, or h-link, if they
correspond to a v-connection, an f -connection, or an h-connection).

Therefore by construction for each subpolymer Y jk , the set of horizontal and
vertical links of scale j′ ≤ j forms a subtree Tj spanning the subpolymer; and for
the union ∪kY jk of subpolymers at scale j it forms a forest Fj (i.e. a set of disjoint
trees).

The forest Fj at scale j is built from the forest Fj−1 at scale j−1, by adding
a set of v-links or f -links of scale j and a set of h-links of scale j. Therefore
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F0 ⊂ F1 ⊂ ... ⊂ FjM+1 := F (such a growing sequence of forests is technically
called a “jungle”[AR2]).

III.2 Multiscale Cluster Expansion

In this first step we build connected polymers by choosing v-blocks, f -blocks and
gh-links which ensure the connectedness of the polymer. This is done through
Taylor expansions with integral remainders, inductively from scale 0 to scale jM .

We build the connected subpolymers at scale j + 1, knowing already the
connected subpolymers at scales j′ < j+1. We perform first the vertical expansion,
then the horizontal one, except for the first slice, for which we start with the
horizontal one.

III.2.1 Vertical expansion

For each connected subpolymer Y jk , we define Ij(y
j
k) ⊂ I(yjk) as the subset of

vertices internal for yjk that have been selected until the step j. We can also define
the union of all vertices already selected until scale j as Ij(Fj) = ∪kIj(yjk). We
extract first the v-blocks, then the f -blocks of scale j+1 (all other connections at
scale j′ ≤ j being already fixed).

v-blocks First we test the existence of a v-block associated to a vertex. We want
therefore to know whether I(yjk)\Ij(y

j
k) �= ∅ for each yjk, namely whether there is

at least one internal vertex v that has not already been selected.
For this purpose we introduce into (II.58) the identity

1 =
∏

v∈V \Ij(Fj)

[
4∏
c=1

(
υj(jvc ) + υ>j(jvc )

)]
(III.67)

where we defined
υj(jvc ) = 1 if jvc ≤ j

= 0 otherwise (III.68)

and υ>j(jvc ) = 1 − υj(jvc ). Remark that v is internal vertex for ∆jv if there is at
least one field hooked to v with jvc ≤ j. Therefore, to select one new internal vertex
for ykj we define the function

F (w′
yjk
) =

∏
v∈V (yjk)\Ij(yjk)

4∏
c=1

[(
w′
yjk
υj(jvc ) + υ>j(jvc )

)]
. (III.69)

The identity (III.67) corresponds to F (w′
yjk

= 1). Now we apply the first order
Taylor formula:

F (1) = F (0) +
∫ 1

0
dw′
yjk

F ′(w′
yjk
) (III.70)



752 M. Disertori, J. Magnen and V. Rivasseau Ann. Henri Poincaré

where

F (0) =
∏

v∈V (yjk)\Ij(yjk)

[
4∏
c=1

υ>j(Jv)

]
(III.71)

means there is no new internal vertex for ykj (hence Ij(ykj ) = I(ykj )), and we must
go to the next paragraph to test for the existence of external fields (f -blocks). On
the other hand, the integral remainder

F ′(w′
yjk
) =

∑
v∈V (yjk)\Ij(yjk)

4∑
αv=1

υj(jvαv )
∫ 1

0
dw′
yjk

∏
c′ �=αv

(
w′
yjk
υj(jvc′) + υ>j(jvc′)

)

∏
v′∈V (yj

k
)\Ij(y

j
k
)

v′ �=v

[
4∏
c=1

(
w′
yjk

υj(jv
′

c ) + υ>j(jv
′

c )
)]

. (III.72)

extracts one new internal vertex for ykj , choosing the field with c = αv to have
jvc ≤ j. To simplify this expression we define

Υj(v, c) =
(
w′
yjv

υj(jvc ) + υ>j(jvc )
)

(III.73)

where we recall that yjv is the particular connected component yjk at scale j con-
taining v, as defined in the introduction of Section III. Hence the remainder term
is written

F ′(w′
yjk
) =

∑
v∈V (yjk)\Ij(yjk)

4∑
αv=1

υj(jvαv )
∫ 1

0
dw′
yjk

∏
c′ �=αv

Υj(v, c′)
∏

v′∈V (yj
k
)\Ij(y

j
k
)

v′ �=v

4∏
c=1

Υj(v′, c).

(III.74)
When this remainder term is selected, we have built the v-block corresponding to
yjk and to the vertex v. Remember that this v-block associated to the vertex v is
made of as many vertical connections as there are cubes in yjk.

This analysis is performed for each connected component ykj before going on.

f -blocks If w′
yjk

= 0, that is I(yjk)\Ij(y
j
k) = ∅, there is no v-block connecting yjk

to its ancestor, therefore we must test for the existence of external fields (f -block).
Fo each v ∈ I(yjk) (actually in this case Ij(y

j
k) = I(yjk)) we can write the sum

over field attributions as follows∑
Jv

=
∑
nv,σv

∑
iv∈Iv

∑
J ′
v

(III.75)

where we recall that iv = min{jvc | c = 1, ..., 4}, σv gives the indices of the fields
with jvc = iv and nv = |σv| (II.61). The attribution iv can belong only to the
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interval Iv = [0, lv] where lv is the scale where the vertex v has been associated to
a vertical block. Remark that lv ≤ j − 1 because this vertex has been extracted
as internal vertex for some yj

′

k′ with j′ < j. Finally J ′
v gives the band indices for

the 4 − nv fields that do not belong to the band iv: jvc > iv, ∀c �∈ σv. Remark
that if the field c = αv does not belong to σv then it satisfies the constraint
iv < jvαv ≤ lv ≤ j − 1. The interpolating function F is now

F (w′′
yjk
) =

∏
v∈I(yjk)

∏
c�∈σv
jvc>j

w′′
yjk

. (III.76)

We want to extract external lines until we have convergent power counting. Since in
this theory two and four point functions a priori require renormalization [FT1-2],
we push the Taylor formula in w′′ to sixth order:

F (w′′ = 1) =
5∑
p=0

F (p)(w′′ = 0) +
∫ 1

0
dw′′ F (6)(w′′) (III.77)

where all terms with p odd are zero by parity and the term F (p)(w′′ = 0) for
p = 0, 2, 4 corresponds to the case of 0, 2 and 4 external fields. Finally the integral
remainder corresponds to the case of 6 external legs or more. When a field is
derived by the Taylor formula at scale j, hence is chosen as external field, its band
attribution is constrained to the set jvc > j. The highest band is constrained to
iv ≤ j, but this was already true because external fields only hook to vertices that
have been extracted at some level j′ ≤ j (therefore iv ≤ j − 1).

Remark that the same field may be chosen as external field at different scales.
When any term in (III.77) is selected except the one with p = 0 we have built

the f -block corresponding to yjk and to the corresponding set of selected external
lines, and we say that the f -block has a corresponding strength of p = 2, 4, or 63.
Remember that this f -block again is made of as many vertical f -connections as
there are cubes in yjk.

This analysis is again performed for each connected component ykj before
going on.

III.2.2 Horizontal expansion

The extraction of the vertical blocks has fixed a certain set of generalized cubes at
scale j + 1, called D̃j+1. The elements of D̃j+1 are the connected components at
scale j + 1, taking into accounts all previous connections, that is the connections

3In part II of this study we plan to perform renormalization of the two point function and to
simply bound logarithmic divergences such as those of the 4-point function using the smallness
of the coupling constant like in [DR2]. For that purpose we need to complicate slightly this
definition, and to introduce holes in the vertical direction of our polymers when f -blocks have
strength 2 or 4. These complications are not necessary here so we postpone them to this future
publication.
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of scale j′ ≤ j and the vertical connections of the v and f -blocks of scale j + 1
that have just been built.

In order to complete the construction of the connected subpolymers at scale
j+1, we must test horizontal connections between these generalized cubes, that is
gh-connections. Extracting these gh-connections actually corresponds to extract-
ing forests made of such gh-connections at scale j+1 over these generalized cubes.
We denote such a forest by Fhj+1. This is done using a so called forest formula.

Forest formula To simplify notation we work at scale j instead of j + 1. Forest
formulas are Taylor expansions with integral remainders which test connections
(here the gh-connections at scale j) between n ≥ 1 points (here the generalized
cubes at scale j) and stop as soon as the final connected components are built.
The result is a sum over forests, a forest being a set of disjoint trees.

We use the unordered Brydges-Kennedy Taylor formula, which states [AR2]
that for any smooth functionH of the n(n−1)/2 variables ul, l ∈ Pn = {(i, j)|i, j ∈
{1, .., n}, i �= j},

H|hl=1 =
∑
u−F

k∏
q=1

(∫ 1

0
dwq

)( k∏
q=1

∂

∂hlq
H

)
(hFl (wq), l ∈ Pn) (III.78)

where u−F is any unordered forest, made of 0 ≤ k ≤ n−1 lines l1, ..., lk over the n
points. To each line lq q = 1, ..., k of F is associated the parameter wq, and to each
pair l = (i, j) is associated the weakening factor hFl (wq). These factors replace the
variables ul as arguments of the derived function

∏k
q=1

∂
∂hlq

H in (III.78). These

weakening factors hFl (w) are themselves functions of the parameters wq, q = 1, ..., k
through the formulas

hFi,i(w) = 1

hFi,j(w) = inf
lq∈PF

i,j

wq, if i and j are connected by F

where PF
i,j is the unique path in the forest F connecting i to j

hFi,j(w) = 0 if i and j are not connected by F . (III.79)

In our case, the H function is the determinant, Pn is the set of pairs of
generalized cubes at scale j

Pn = {(∆̃, ∆̃′) | ∆̃, ∆̃′ ∈ D̃j} . (III.80)

We apply the forest formula (III.78) at scale j and we denote the corresponding

forest by Fhj . Therefore the interpolation parameter h
Fh
j

∆̃∆̃′ is inserted besides the
matrix element defined in (II.60):

Mvc;v̄c̄ = δjvc ,jv̄c̄

[
Cj

∆j
v,∆j

v̄

(xv, xv̄)
]
j=jvc

(III.81)
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where we defined

Cj
∆j
v,∆j

v̄

(xv, xv̄) =: χ∆j
v
(xv) Cj(xv, xv̄) χ∆j

v̄
(xv̄) (III.82)

and χ∆(x) is the characteristic function of ∆, defined by: χ∆(x) = 1 if x ∈ ∆ and
χ∆(x) = 0 otherwise. The interpolated matrix element, for any jvc = j is then

Mvc;v̄c̄(h
jvc
∆̃,∆̃′ ) = δjvc ,jv̄c̄

[
hj

∆̃j
v,∆̃j

v̄

Cj
∆j
v,∆j

v̄

(xv, xv̄)
]
j=jvc

(III.83)

where we defined ∆̃jv as the unique generalized cubes containing ∆jv, and write for

simplicity hj
∆̃j
v,∆̃j

v̄

instead of h
Fh
j

∆̃j
v,∆̃j

v̄

.

III.3 Tree and root selection

Localization of the gh-connections We now fix, for each field h or antifield h̄
hooked to a vertex v, whether it belongs or not to a propagator derived by the
horizontal expansions (since this costs only a factor 2 per field or antifield, hence
a factor 16 per vertex). As we know the position of ∆v for any v, we know exactly
for each ∆̃ in yjk the set of h, h̄ that form at scale j (as jbh = j) the propagators of
the tree Tjk. We denote this set by b(∆̃).

The first, rather trivial step, consists in replacing each gh-connection between
generalized cubes by an ordinary h-link between ordinary cubes. This means, in
the propagator χ∆̃C

jχ∆̃′ corresponding to the gh-connection, that we expand the
characteristic functions as χ∆̃ =

∑
∆∈Dj ,∆⊂∆̃ χ∆, and χ∆̃′ =

∑
∆′∈Dj ,∆′⊂∆̃′ χ∆′ .

Accordingly the gh-connection is localized into an ordinary connection, or h-link
between ∆ and ∆′ 4.

Choice of the roots Remember that at each scale j each connected subpolymer
yjk is actually made of a set of disjoint generalized cubes ∆̃.We want now to choose
one generalized cube ∆̃root in each yjk, called the root of the subpolymer, and one
particular cube ∆root in each generalized cube ∆̃ called the root of the generalized
cube.

The root cube in ∆̃root is special: it will correspond to the root cube of the
whole subpolymer, therefore we will denote it by ∆0

root.
Finally, in each yjk, for each ∆̃ �= ∆̃root, we want to choose one field or antifield

in b(∆̃) as the one contracting towards the root in Tjk and we call it hroot (the
vertex to which it is hooked being called vroot). We call then Rroot the set of all
hroot for all generalized cubes at all the different scales.

4The corresponding sums are bounded below in two steps: in the first step, at the beginning
of section III.4, the set b of the fields for the h-links is chosen (and paid in section IV.7.3), and
in section IV.6 the contraction between these fields is performed (construction of Tjk). Since in
section III.4 the position of all the fields is known, together these two steps pay for the localization
of gh-connections into ordinary connections.
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Remark that the choice of the set Rroot can be performed only after the
choice of ∆̃root. The set of remaining fields in b(∆̃) is denoted by lb(∆̃) (and called
the leaves for ∆̃). Remark that for ∆̃root all fields are leaves: b(∆̃) = lb(∆̃).

The roots are chosen inductively scale by scale, from bottom up, starting by
the biggest index scale MY of the polymer and going up until the smallest index
mY , To break translation invariance, we need to assume from now on that the
polymer Y contains a particular point, namely the origin x = 0.

At the biggest scale we have only one connected component, that must con-
tain the origin x = 0. Therefore we choose ∆̃root as the unique ∆̃ containing x = 0,
and ∆root = ∆0

root as the unique cube ∆ ∈ ∆̃root containing x = 0. Now for each
∆̃ �= ∆̃root we define ∆root as the (necessarily unique) cube ∆ ∈ ∆̃ containing a
field hroot ∈ Rroot of that scale.

With these definitions we can introduce the general inductive rule. We assume
that all ∆root and ∆̃root have been defined until the scale j. We now want to define
the roots at scale j − 1.

Remark that each connected component yj−1
k actually corresponds to some

generalized cube ∆̃0 at scale j. We denote by ∆0 its root cube. Now we distinguish
two cases:

• there exists a cube ∆1 ∈ yj−1
k with ∆1 ⊆ ∆0 which contains either 0 or one

hroot at some scale j′ ≥ j. Remark that this ∆1 must be unique. Then we
define as ∆̃root for y

j−1
k the unique ∆̃ with ∆1 ⊆ ∆̃. Now for all ∆̃ �= ∆̃root

we introduce hroot and ∆root exactly as in the case of the lowest band MY .
Finally for ∆̃root we choose ∆1 as root cube: ∆1 = ∆0

root.

• there is no cube ∆1 ∈ yj−1
k with ∆1 ⊆ ∆0 with 0 ∈ ∆1 or ∆vroot ⊆ ∆1 for

some hroot at a lower scale. Therefore we choose as root one of the ∆̃ ∈ yj−1
k

satisfying ∆̃∩∆0 �= ∅ (remark that there must be at least one of such ∆̃ by
construction). For all ∆̃ �= ∆̃root we introduce hroot and ∆root exactly as in
the case of the lowest band MY . Finally for ∆̃root we choose as ∆0

root one of
the cubes satisfying ∆ ⊆ ∆0 (there must be at least one by construction).

For an example see Fig.6, where cubes of three scales are shown. The lines
connecting two cubes are are h-links. The union ∆1∪∆2∪∆3 is a generalized cube
at scale j (corresponding to ∆̃0 above). From the figure one can see that there are
three generalized cubes at scale j − 1:

∆̃1 = ∆′
1

∆̃2 = ∆′
2 ∪∆′

3 ∪∆′
4

∆̃3 = ∆′
5 ∪∆′

6 . (III.84)

Now, let us say that ∆̃0 is a root at scale j, ∆2 is the corresponding root cube
and 0 �∈ ∆2 and no hroot has vertex in ∆2. Then we have two equivalent choices
for ∆̃′

root as ∆̃
′
2 ∩∆2 �= ∅ and ∆̃′

3 ∩∆2 �= ∅. Let us take ∆̃′
root = ∆̃′

2. Now inside
∆̃′

2 we have again two equivalent choices for ∆′
root as ∆′

3 and ∆′
4 ⊂ ∆2.
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∆’ ∆’ ∆’ ∆’ ∆’∆’

∆ ∆ ∆1 2 3

1 2 3 4 5 6

j

j−1

j−2

Figure 6: Construction of roots

Choice of the v-links and f -links Remember that in order to avoid loops, each
time several cubes in yjk have the same ancestor we must choose only one of them in
the block to bear a link (either of v or f type). The choice of this cube is completely
arbitrary (for instance choose the first ones in some lexicographic ordering of the
cubes), except for one constraint. Actually, for each connected subpolymer y the
root cube ∆0

root acts as root for y, therefore we decide to always choose as vertical
link (∆0

root,A(∆0
root)). All other choices are arbitrary. This constraint is useful

because in the following all the vertical power counting for yjk will be concentrated
on this special vertical link (∆,A(∆)) (∆ = ∆0

root).
At the end of this selection process we have therefore an ordinary tree of

either v, f or h links connecting together all cubes of Y .

III.4 Result of the expansion

As a result of this inductive process we obtain the following expression

ZuΛ =
∞∑
n=0

λn

n!

∑
∆V

∑
F

∑
Vd,αVd

∑
a,b,R

∑
lVd

∑
{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
Cb

εF

[∏
v

∫
∆v

d4xv

]


jM+1∏
j=0


 ∏
l∈hLj

∫ 1

0
dwl






jM+1∏
j=1


 ∏
l∈vLj

∫ 1

0
dw′
l






jM+1∏
j=1


 ∏
l∈fL6

j

∫ 1

0
dw′′
l







jM+1∏
j=0


 ∏
l∈hLj

Cj∆l∆̄l
(xl, x̄l)






∏
v∈Vd


 ∑
nvσvρv

∑
iv∈Iv

∑
J ′
v






∏
v∈V̄d

∑
Jv





∏
v∈Vd


υ>jm(v)(jvαv ) υ

lv(jvαv )
lv−1∏
j=0

Υj(v, αv)





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
∏
v∈Vd

∏
c�=αv


υ>jm(v)(jvc )

lv∏
j=0

Υj(v, c)







∏
v∈V̄d

4∏
c=1


υ>jm(v)(jvc )

jM∏
j=0

Υj(v, c)







∏
v∈Vd

∏
c�∈σv


jvc−1∏
j=0

sj(v, c)




 detM ′ ({wl}) (III.85)

where

• Vd = {v ∈ V | ∃ one v-link associated to v } and V̄d = V \Vd;

• a = {hvc | v ∈ Vd and hvc is associated to some f -links at one or several
scales};

• b = {hvc | hvc is associated to one h-link };

• R = Rroot = {hvc | hvc is a root field or antifield };

• lVd = {lv | v ∈ Vd} where lv + 1 is the scale of the v-links associated to v
(they are all at the same scale);

• Jah is the set of scales j where the field h is associated to a f -link: for each
j ∈ Jah hvc is external field for yjv. The same definition holds for h̄;

• jbh is the scale of the h-link associated to h. The same definition holds for h̄;

• Cb fixes the pairs h− h̄ that form the h-links;

• εF is a sign coming from the horizontal forest formulas;

• hLj is the set of h-links of scale j in Fj . For each h-link l we denote the
corresponding field, antifield by hl, h̄l. The vertices are denoted by v(l) and
v̄(l), their positions by xl (x̄l) and the cubes of the link containing them by
∆l and ∆̄l.

• vLj is the set of vertical links of scale j associated to a vertex. We recall
that each such vertex corresponds to a set of v-links in Fj connecting some
subset y at scale j − 1 (which is already connected by Fj−1) to its ancestor;

• fLpj is the set of vertical links of scale j associated to p external fields. We
recall that each such set of external fields corresponds to a set of f -links of
scale j and order p (p = 2, 4, 6) in Fj connecting some subset y at scale j−1
(which is already connected by Fj−1) to its ancestor;
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• w′
l = w′

yjk
where l is the v-links connecting yjk to its ancestor. The same

definition holds for w′′
l ;

• Defining{
jm(v) = max{j | yjv connected to A(yjv) by a f−link} if v ∈ V̄d,
jm(v) = max{j < lv | yjv connected to A(yjv) by a f−link} if v ∈ Vd,

(III.86)
we must have, for all hvc , j

v
c > jm(v). This bound can be understood as fol-

lows: a vertex v cannot have iv ≤ jm(v). Indeed otherwise it would be internal
for yjm(v)

v , and would have been chosen at that scale instead of the f -link
connecting yjm(v)

v to its ancestor. We remark that for v ∈ Vd this argument
only applies for scales j < lv, since after lv the vertex can no longer be se-
lected as a vertical connection. This explains the definition (III.86). All these
constraints are expressed in formula (III.85) by the function υ>jm(v)(jvc ).

Moreover, for each v ∈ Vd we have inserted an additional sum∑
ρv

=
∏

{hvc | c�=cv}

∑
ρh

(III.87)

where we recall that cv = min{c ∈ σv} (II.61), and we define ρh = 1 if
iv ≤ jh ≤ lv and ρh = 2 if lv < jh. Remark that for c ∈ σv and c �= cv, or for
c = αv, we must have ρhvc = 1 by construction (Recall that αv is defined in
(III.72)). On the other hand, if h ∈ a we must have ρh = 2 by construction.

• the values of sj depend on the f -links:

- sj(v, c) = 1 if yjv is connected to its ancestor by a v-link or if j ∈ Jahvc
(which means hvc is associated to a f -link connecting yjv to its ancestor);

- sj(v, c) = w′′
yjv

if yjv is connected to its ancestor by a f -link of order 6
and j �∈ Jahvc ;

- sj(v, c) = 0 if yjv is connected to its ancestor by a f -link of order 2 or 4
and j �∈ Jahvc .

• finally det′ is the determinant remaining after the propagators corresponding
to h-links have been extracted. The matrix element is

M ′
vc;v̄c̄ ({wl}) = δjvc ,jv̄c̄

[
h
Fh
j

∆j
v,∆j

v̄

(w)Cj
∆j
v,∆j

v̄

(xv, xv̄)
]
j=jvc

(III.88)

where the weakening factor h
Fh
j

∆j
v,∆j

v̄

(w) is defined in (III.79), substituting in

the formulae the general forest F with the horizontal forest Fhj .
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Constrained attributions The non zero contributions are given by the following
attributions:
- for v ∈ Vd and c ∈ σv we must have

iv ∈ Icv = [1 + jm(v) , lv] (III.89)

- for v ∈ Vd and c �∈ σv we must have

jvc ∈ J
′c
v = [iv , lv] for c = αv

jvc ∈ J
′c
v = [jm(v, c) , jM (v, c)] c �= αv (III.90)

where

jm(v, c) = 1 + iv if hvc �∈ a and ρhvc = 1
jm(v, c) = 1 + lv if hvc �∈ a and ρhvc = 2
jm(v, c) = 1 +max{j ∈ Jahvc } if hvc ∈ a (III.91)

and jM (v, c) = lv if hvc �∈ a and ρhvc = 1, otherwise jM (v, c) = min{j > iv | yjv is
connected to its ancestor by a f -link of order p = 2, 4 }, with the convention that
min ∅ = jM + 1. Remark that jvαv satisfies a special constraint because this is the
field derived in order to extract a v-link at scale lv + 1, therefore it must satisfy
jvαv ≤ lv;
- finally, for v ∈ V̄d we must have

jvc ∈ Jcv = [jm(v) + 1 , jM + 1]. (III.92)

Reinserting attribution sums inside the determinant This is a key step for later
bounds. We observe that for all v ∈ V̄d the constraints υj and υ>j on the attri-
butions for each field hooked to v are independent. Therefore we can reinsert all
the sums inside the determinant (bringing with them the corresponding vertical
weakening factors w′ and w′′).

On the other hand, for v ∈ Vd, the sum over attributions for hvc with c �∈ σv
are independent from each other but are all dependent from iv. Therefore we
can reinsert in the determinant the sums for c �∈ σv (with their vertical weakening
factors), but we must keep the sum over iv outside the determinant. The weakening
factors for all c �= cv are inserted in the determinant. On the other hand for
the particular field hvcv we keep outside the determinant the weakening factors
w′, as they will be used to perform certain sums, and reinsert the others in the
determinant.

Therefore we can write the partition function as

ZuΛ =
∞∑
n=0

λn

n!

∑
∆V

∑
F

∑
Vd,αVd

∑
a,b,R

∑
lVd

∑
{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
Cb

εF

[∏
v

∫
∆v

d4xv

]
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
jM+1∏
j=0


 ∏
l∈hLj

∫ 1

0
dwl






jM+1∏
j=1


 ∏
l∈vLj

∫ 1

0
dw′
l






jM+1∏
j=1


 ∏
l∈fL6

j

∫ 1

0
dw′′
l







∏
v∈Vd


 ∑
nvσvρv

∑
iv∈Icv






 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv





jM+1∏
j=0


 ∏
l∈hLj

Cj∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′})




detM ′′ ({wl}, {w′

l}, {w′′
l })

(III.93)

where the matrix element is

M ′′
vc;v̄c̄ ({wl}, {w′

l}, {w′′
l }) =


 ∑
jvc∈Ivc

Wvc(jvc )


 (III.94)

δjvc ,jv̄c̄

[
h
Fh
j

∆j
v ,∆j

v̄

(w) Cj
∆j
v,∆j

v̄

(xv, xv̄)
]
j=jvc


 ∑
jvc∈Iv̄c̄

Wv̄c̄(jv̄c̄ )




and the horizontal propagator is

Cj∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′}) =Wvlcl(j) C

j
∆l∆̄l

(xl, x̄l) Wv̄lc̄l(j) (III.95)

and vl, cl and v̄l, c̄l identify respectively the field and the antifield of the link. We
defined

Ivc = {iv} v ∈ Vd, c ∈ σv
Ivc = J

′c
v v ∈ Vd, c �∈ σv

Ivc = Jcv v ∈ V̄d (III.96)

and Icv , J
′c
v and Jcv is the set of band attributions with the constraints due to the

forest structure that we introduced above. Finally the definitions for the factors
Wvc are given below.

Vertical weakening factors The expression for Wvc(jvc ) is given by the Υj(v, c)
and sj functions. Remark that

Υj(v, c) = 1 if j < jvc
Υj(v, c) = w′

yjv
if j ≥ jvc (III.97)

Actually we have to distinguish different cases.
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If v ∈ Vd, c = αv and c �= cv

Wvαv (j
v
αv
) =


 lv−1∏
j=jvαv

w′
yjv




j

v
αv

−1∏
j=iv

sj(v, αv)


 . (III.98)

If v ∈ Vd, c �= αv and c �= cv

Wvαv (j
v
c ) =


 lv∏
j=jvc

w′
yjv




jvc−1∏
j=iv

sj(v, c)


 . (III.99)

If v ∈ Vd and c = cv

Wvcv (j
v
cv
) =


j

v
cv

−1∏
j=iv

sj(v, cv)


 . (III.100)

Finally if v ∈ V̄d

Wvαv (j
v
c ) =


 jM∏
j=jvc

w′
yjv




jvc−1∏
j=iv

sj(v, c)


 (III.101)

where we take the convention that a void product is 1. Therefore for v ∈ Vd and
ρh = 1 the product over sj is reduced to 1 and for v ∈ Vd and ρh = 2 the product
over w′ is reduced to 1.

III.5 Connected components

Now, at each order n we can factorize the connected components, namely the
polymers. The forest F is connected if at the highest slice index (hence the lowest
energy scale) there is only one connected component. Remark that F could have
no link for any j > jF . In this case the forest is connected if FjF has only one
connected component.

The partition function is written as

ZuΛ =
∞∑
kY =0

1
kY !

∑
Y1,...,YkY

∪qYq=D, Yq∩Y
q′=∅

∏
q

A(Yq) (III.102)

where kY is the number of different connected polymers Yq and the amplitude for
a polymer Y is defined as

A(Y ) =
∞∑
n=0

λn

n!

∑
∆V

∑
Fc
MY

∑
Vd,αVd

∑
a,b,R

∑
lVd

∑
{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
Cb

εF

[∏
v

∫
∆v

d4xv

]
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
 MY∏
j=mY


 ∏
l∈hLj

∫ 1

0
dwl






 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l






 MY∏
j=mY +1


 ∏
l∈fL6

j

∫ 1

0
dw′′
l







∏
v∈Vd


 ∑
nvσvρv

∑
iv∈Icv






 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv





 MY∏
j=mY


 ∏
l∈hLj

Cj∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′})




detM ′′ ({wl}, {w′

l}, {w′′
l })

(III.103)

where FcMY
is any connected forest over Y 5. The spatial integral for each v is still

written in terms of cubes in D0, but all sums are restricted to the polymer. This
means that ∆ ∈ Dj becomes ∆ ∈ Dj ∩ Y and so on. Remark that FcMY

has no
link at scale j < mY .

III.6 Main result

Now we have nearly succeeded in computing the logarithm of Z. Actually (III.102)
would be the exponential ofA(Y ), if there was no constraint Yq∩Yq′ = ∅, ∪qYq = D.
Taking out these conditions and computing the logarithm is the purpose of the so
called Mayer expansion [R].

By translation invariance, a Mayer expansion converges essentially if the fol-
lowing condition holds: ∑

Y
0∈Y

|A(Y )|e|Y | ≤ 1 (III.104)

(where |Y | is the cardinal of Y , hence the total number of cubes of all scales forming
Y ). If we perform power counting, we find that all sub-polymers of Y , Y jk , with
|E(Y jk )| = 2, 4 need renormalization. This is postponed to a future publication6.
To start with a simpler situation, in this paper we restrict ourselves to the case
|E(Y jk )| > 4 for all j < jM + 1. We call this subset the convergent attributions
for Y and we denote the corresponding amplitudes by Ac(Y ). Remark that Ac(Y )
contains only f -links of order 6. We therefore prove the following theorem, which
is a 3-d analog of [FMRT] and [DR1].

Theorem For any L > 0, there exists K > 0, such that if

|λ lnT | ≤ K (III.105)
5The constraint that Y must be connected implies that the term at order n is zero unless n

is big enough (in order to be able to connect Y ).
6In this future publication, we plan in fact to renormalize only the 2-point function, and to

bound the logarithmic divergence of the 4-point functions by the condition λ| log T | ≤ K, like in
[DR2].
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we have ∑
Y

0∈Y

|Ac(Y )|L|Y | ≤ 1 (III.106)

The sum is performed over all polymers that contain the position x = 0, and Ac(Y )
is the amplitude of Y restricted to the convergent attributions.

The rest of the paper is devoted to the proof of this theorem, and from now
on we further assume K ≤ 1.

IV Proof

The general idea is to bound the determinant by a Hadamard inequality, and to
sum over the horizontal structures using the horizontal propagators decay. The
Hadamard inequality generally costs a factor

nn | lnT ||V̄d\Vb|+(1−ε)|Vd∪Vb| (IV.107)

where 0 < ε < 1 and Vb is the set of vertices hooked to some horizontal link:

Vb = {v ∈ V | hvc ∈ b for some c}. (IV.108)

The factor nn is bounded by the global 1/n! symmetry factor of the vertices,
up to a factor en by Stirling formula, which is absorbed in the constant K ′ (see
however the remark in the Introduction). The logarithm is bounded by a fraction
of the small coupling constant λn. A delicate point is to prove that the factor ε is
strictly positive ε > 0, since we need to spare a fraction of λ at each derived vertex
v ∈ Vd ∪ Vb in order to extract a small factor per cube. This factor is necessary to
bound the last sum over the polymer size and shape.

In the following we will denote fields only by h (not hvc ) and antifields by h̄.
The corresponding vertex is vh, vh̄, the field index is ch ∈ C, the antifield index
ch̄ ∈ C̄ (C and C̄ are introduced in section II.6), their slice indices are jh, jh̄ and
their vertex position is xh, xh̄.

In order to bound the amplitude of a polymer A(Y ) we must introduce the
auxiliary slice decoupling of section II.5. For each propagator extracted from the
determinant we write

Cj∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′}) =

kM (j)∑
k=0

Cjk∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′}) (IV.109)

=
∑
khlkh̄l

δkhl ,kh̄l
C
jkhl
∆l∆̄l

(xl, x̄l, {w′
l′}, {w′′

l′})

where

Cjk∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′}) =Wvlcl(j) C

jk
∆l∆̄l

(xl, x̄l) Wv̄l c̄l(j) (IV.110)
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Cjk is defined in (II.36) and Wh(j) corresponds to the function Wvc(j) defined in
(III.98-III.101). The matrix element is written as

M ′′
h;h̄ ({wl}, {w

′
l}, {w′′

l }) =
∑
khkh̄

∑
j∈Ih∩Ih̄∩J(kh)

δkh,kh̄ (IV.111)

[Wh(j)]
[
h
Fh
j

∆j
h,∆

j

h̄

(w)
]
Cjkh

∆j
h,∆

j

h̄

(xh, xh̄) [Wh̄(j) ]

where we have exchanged the sums over jh and kh, J(k) is defined in (II.50) and
the interval Ih corresponds to the interval Ivc defined in (III.96). Finally we denote
by ∆jh the cube ∆jvh . The same definitions hold for h̄. The sums over kh and kh̄
are extracted from the determinant by multilinearity. We need now to reorganize
the sum over Y according to a tree structure analogous to the “Gallavotti-Nicoló
tree” [GN]. that is called here S.

IV.1 The S structure

Let MY be the lowest scale of the polymer. S is a rooted tree that pictures the
inclusion relations for the connected components of Y at each scale and the type
of vertical connection (vertex or field). In this rooted tree the extremal leaves are
pictured as dots and the other vertices as circles. A circle at layer l represents
a connected subpolymer at scale j = MY − l. A leaf at layer l by convention
represents an extremal summit cube, that is a cube such that Ex(∆) = ∆ (no
cube above), whose scale is MY − l + 1. The highest layer fixes the scale mY :
lmax =MY −mY +1 (as at scale MY − lmax there are only leaves, hence no cubes)
and satisfies lmax − 1 ≤ jM .

There are two types of links in S: the leaf-links which join a leaf to a circle,
and the circle-links which join two circles. To each circle-link corresponds a ver-
tical block in the multiscale expansion, and we can associate to it a label f or v
depending if this block is associated to a vertex or to external fields7.

An example of S structure is given in Fig.7 and two possible polymers cor-
responding to this structure are given in Fig.8 a and b. We remark that S fixes in
a unique way the number and scales of the extremal summit cubes, but that sev-
eral polymers, with different total number of cubes, may correspond to the same
structure S.

In order to fix this total number of cubes, we introduce for each circle-link
of S a further number which fixes the number of vertical links (which are v-links
or f -links depending of the type of the circle-link) selected in the block in section
III.3. Since there is one vertical link per ancestor cube, this number is the number
of ancestor cubes of the connected component y corresponding to the circle at the
top of the circle-link. We call this collection of indices V L. S and V L together

7We remark that the circles at level l connected only to leaves at level l+1 must be connected
to the previous circle at level l− 1 by a v-circle-link. Indeed each of the extremal summit cubes
forming that circle must contain at least one vertex.
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∆

1 2

3

4 5
6

v

v

f

Figure 7: Example of S
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Figure 8: Two possible polymers corresponding to S
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v

Figure 9: a,b,c: three polymers corresponding to the same S shown in d: V L can
distinguish a from b, but not b from c
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fix the number |Y | of cubes in Y . For instance the situations in Fig.9a and b.
correspond to the same S, shown in Fig.9 d. But the case a) corresponds to an
index V L = {1} for the unique circle-link and to 4 cubes in Y , whether the case
b) corresponds to an index V L = {2} and to 5 cubes in Y ,

Finally when S and V L are given, we can label all the cubes of Y , and we fix
the subset BS of those cubes of Y which are summit cubes. They are those with
non-zero exposed volume: |Ex(∆)| > 08. Nevertheless we remark that there is still
some ambiguity, as even V L and BS cannot distinguish between Fig.9b and c, and
the position of the cubes of Y is not yet fixed.

IV.2 The reorganized sum

The sum (III.106) is then reorganized in terms of the structure S as

∑
Y

0∈Y

|Ac(Y )|L|Y | ≤
∑
MY

∑
S

∑
V L

L|Y |
∑
BS

∑
{x∆}c

∣∣∣∣∣∣
∞∑
n=0

λn

n!

∑
Vd,αVd

∑
a,b,R

∑
{vl}l∈vL

∑
nVdσVdρVd

∑
{n∆}∆∈BS

∑
∆c
V̄d


∏
v∈Vd

∑
iv∈Icv

∑
∆v∈Div∩Y


 ∑

{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
{kh},{kh̄}

 MY∏
j=mY

cj∏
k=1

∑
Tjk




∏
v∈V̄d

∫
Ex(∆v)

dxv


 [ ∏

v∈Vd

∫
∆v

dxv

]
εF (IV.112)


 MY∏
j=mY


 ∏
l∈hLj

∫ 1

0
dwl






 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l






 MY∏
j=mY +1


 ∏
l∈fL6

j

∫ 1

0
dw′′
l







 MY∏
j=mY

cj∏
k=1


 ∏
l∈Tjk

C
jkhl
∆l∆̄l

(xl, x̄l, {w′
l′}, {w′′

l′})


 δkhlkh̄l




[
detM ′′ ({wl}, {w′

l}, {w′′
l }, {kh,h̄}

)]  ∏
v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv



∣∣∣∣∣∣∣

where

• {x∆}c chooses the position of each cube in the polymer, constrained by S,
V L and BS , with the additional constraint that at the lowest levelMY there
is one cube containing the origin x = 0.

• vl is the vertex v ∈ Vd associated to the vertical link l ∈ vL where vL =
∪jvLj . Remark that once we know vl for each l ∈ vL, we automatically know

8Actually BS only really fixes the non-extremal summit cubes ∆ (with 0 < |Ex(∆)| < |∆|)
since the extremal summit cubes with Ex(∆) = ∆ were already known from the data in S.
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lv for all v ∈ Vd. The vertices of Vd are from now on said to be localized in
the cube ∆iv ∈ Div to which they belong.

• nBS = {n∆}∆∈BS gives the number of vertices in V̄d localized in each summit
cube (recall (III.66): nBS = {n∆|∆ ∈ BS} with the constraint

∑
∆∈BS

n∆ =
|V̄d| = n− |Vd|.

• nVd , σVd , ρVd are the assignments nv, σv, ρv ∀v ∈ Vd.

• ∆c
V̄d

chooses which vertices v ∈ V̄d are localized in each summit cube: ∆c
V̄d

=
{∆v}v∈V̄d with the constraint #{v | v ∈ V̄d, ∆v = ∆} = n∆, ∀∆ ∈ BS . The
spatial integral for each v ∈ V̄d is then performed over the exposed volume
of the corresponding cube Ex(∆v) (see (III.66)).

• kh fixes the value of an auxiliary scale (defined in section II.5) that will be
used in the propagator analysis; kh̄ is the same thing for antifields.

• Tjk chooses the tree connecting the generalized cubes ∆̃ ∈ ykj by h-links of
scale j. To fix Tjk one has to choose the h-links and the corresponding fields.
As the fields (antifields) that must contract at scale j in order to create Tjk
are already fixed by b, jbh and j

b
h̄
, we only have to fix the field-antifield pairing

Cb restricted to ykj .

IV.3 Bounding the determinant

In order to bound the main determinant we apply the following

Hadamard inequalities If M is a n×n matrix with elements Mij, its determinant
satisfies the following bounds

Hr : |detM | ≤
n∏
i=1


 n∑
j=1

|Mij |2



1
2

(IV.113)

Hc : |detM | ≤
n∏
j=1

[
n∑
i=1

|Mij |2
] 1

2

(IV.114)

where Hr is obtained by considering each row as a n-component vector, and Hc by
considering each column as a n-component vector.

We remark that these two inequalities are both true, but not identical. In
our case it is crucial to optimize as much as possible our bounds, and to use either
the row or the column inequality depending of the kind of fields involved and of
various scaling and occupation factors.
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Before expanding the determinant in (IV.112) we distinguish therefore five
different types of fields (antifields) denoted by an index αh, αh̄:

αh = 1 if vh �∈ Vd
αh = 2 if vh ∈ Vd, ch �= cv and ρh = 1 (IV.115)
αh = 3 if vh ∈ Vd, ch �= cv, h �∈ a and ρh = 2
αh = 4 if vh ∈ Vd, h ∈ a
αh = 5 if vh ∈ Vd and ch = cv

The same definitions hold for antifields h̄. The case αh = 1 is the most general
one. This is a partition, since neither the fields with ρh = 1 and ch �= cv nor the
special fields h with vh ∈ Vd and ch = cv can belong to a.

We now define for each field h a weight Ih which depends of the type of the
field as follows:

αh = 1 : Ih = n∆h
M−4i∆h f−1

∆h

αh = 2 : Ih = M−4ivh

αh = 3 : Ih = M−4lvh

αh = 4 : Ih = M−4ih

αh = 5 : Ih = M−4ivh (IV.116)

where ∆h is the cube where the vertex vh is localized. For ∆ ∈ BS we defined
f∆ as the exposed fraction of the volume |∆| = M4i∆ , and n∆ as the number of
vertices in V̄d localized in the summit cube ∆. Finally, for each h ∈ a the scale ih
is defined as

ih = max Jah . (IV.117)

We remark that actually h ∈ a can only have attributions j ≥ 1 + ih. The same
definitions hold for h̄.

The Hadamard inequality will be either of the row or of the column type
depending on whether the ratio of weights of the fields involved is larger or smaller
than 1. In fact we need to discretize these ratios in order to transfer some factors
from fields to antifields and conversely and to obtain a correct bound. To implement
this program we introduce an auxiliary expansion called the weight expansion.

IV.3.1 The weight expansion

We expand

h =
5∑

βh=1

hβh (IV.118)

where hβh means that h can contract only with h̄ such that αh̄ = βh. The same
holds for the antifields.
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Finally, we expand each hβh (h̄βh̄) as

hβh =
∑
r∈ZZ

hβh(r) (IV.119)

where hβh(r) means that h can contract only with h̄ such that

Ih
Ih̄
∈ Ir ; I0 = [1], Ir =]2r−1, 2r] if r > 0, Ir = [2r, 2r+1[ if r < 0 (IV.120)

We remark that the intervals Ir are disjoint with ∪r∈ZZIr =]0,+∞[ and that with
this definition h(r) can contract only with antifields h̄(r′) with r′ = −r. The same
holds for the antifields.

The special fields or antifields of type 5 require an additional expansion. We
define for each such field h an occupation number n(h) which is the number of
derived vertices localized in the same cube than h

n(h) = nd(∆ivh ) = |{ vertices in Vd localized in the cube ∆ivh }| (IV.121)

We remark that nd(∆ivh ) has nothing to do with n∆vh
in general, since these

numbers concern respectively Vd and V̄d. We recall that the vertices v ∈ Vd are
localized in the cube of Div to which they belong, whether the vertices of V̄d are
localized in the summit cube to which they belong.

By convention, for any field not of type 5 we put

n(h) = 1 (IV.122)

The same definitions hold for the antifields. Now we expand each field as

hβ(r) =
∑
s∈ZZ

hβ(r, s) (IV.123)

where hβh(r, s) means that h can contract only with h̄ such that

n(h)
n(h̄)
∈ Is (IV.124)

where Is is defined like Ir in (IV.120). We remark that this additional s expansion
is trivial (reduced to the term s = 0) unless α or β equals 5, and that for α �= 5
β = 5, s is negative: s ≤ 0. Symmetrically for α = 5 β �= 5, s is positive: s ≥ 0.

Summarizing all constraints, the field hβh(r, s) contracts only with antifields
h̄βh̄(r′, s′) such that βh = αh̄, βh̄ = αh, kh = kh̄, r′ = −r and s′ = −s. Therefore
we have∣∣{hβ(r, s) | αh = α, kh = k}

∣∣ = ∣∣{h̄α(−r,−s) | αh̄ = β, kh̄ = k}
∣∣ . (IV.125)
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The determinant in (IV.112) is now written as

detM ′′ =
∑

{βh}{βh̄}

∑
{rh},{rh̄}

∑
{sh},{sh̄}


 ∏
r,s∈ZZ

detMr,s ({βh}{βh̄})


 (IV.126)

where the sums over rh, rh̄, sh, sh̄, βh and βh̄ are extracted from the determinant by
multilinearity, andMr,s is the matrix containing only fields with rh = r (therefore
only antifields with rh̄ = −r) and sh = s (therefore only antifields with sh̄ = −s)
We take the convention thatMr,s = 1 if there is no field with rh = r and sh = s.
We recall that the sums over sh and sh̄ are restricted by some constraints: s = 0
unless βh or βh̄ equals 5, s ≤ 0 for βh = 5, βh̄ �= 5, and s ≥ 0 for βh �= 5, βh̄ = 5.

Now we can insert absolute values inside the sums and (IV.112) can be
bounded by

∑
Y

0∈Y

|Ac(Y )|L|Y | ≤
∑
MY

∑
S

∑
V L

L|Y |
∑
BS

∑
{x∆}c

∞∑
n=0

|λ|n
n!

∑
Vd,αVd

∑
a,b,R

∑
{vl}l∈vL

∑
nVdσVdρVd

∑
{n∆}∆∈BS

∑
∆c
V̄d


∏
v∈Vd

∑
iv∈Icv

∑
∆v∈Div∩Y


 ∑

{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
{kh},{kh̄}

 MY∏
j=mY

cj∏
k=1

∑
Tjk




∏
v∈V̄d

∫
Ex(∆v)

dxv


 [ ∏

v∈Vd

∫
∆v

dxv

]
(IV.127)


 MY∏
j=mY


 ∏
l∈hLj

∫ 1

0
dwl






 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l






 MY∏
j=mY +1


 ∏
l∈fL6

j

∫ 1

0
dw′′
l







 MY∏
j=mY

cj∏
k=1


 ∏
l∈Tjk

∣∣∣Cjkl∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′})
∣∣∣

 δkhlkh̄l


 ∑

{βh}{βh̄}

∑
{rh},{rh̄}

∑
{sh},{sh̄}


 ∏
r,s∈ZZ

|detMr,s ({βh}{βh̄})|




 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv




Now, for each r, s we distinguish between three cases.

• If r > 0 (which means rh = r > 0 and rh̄ = −r < 0), then Ih > Ih̄ for any
h, h̄ inMr. In this case we apply the row inequality (IV.113).

• If r < 0 (which means rh = r < 0 and rh̄ = −r > 0), then Ih < Ih̄ for any h,
h̄ inMr. This case is similar to the first case, exchanging the role of fields
and antifields, so we apply the column inequality (IV.114).
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• If r = 0 (which means rh = r = 0 and rh̄ = −r = 0), then Ih = Ih̄ for any h,
h̄ in Mr. In this case we must analyze in more detail the subdeterminants
as will be explained later.

With these conventions the fixed index (field or antifield) in the sum
∑n
j=1 |Mij |2

for Hr or
∑n
i=1 |Mij |2 for Hc is always the one with the highest weight I. This is

essential in the following bounds.

IV.3.2 Case r > 0 (and r < 0)

As remarked above we treat only the case r > 0, the other case being similar,
exchanging fields and antifields, hence rows and columns. In that case we apply
the row inequality (IV.113):

|detMr,s ({βh}{βh̄})| ≤
∏

{
h�∈b,rh=r

sh=s

}




∑
{

h̄�∈b|βh=αh̄,αh=βh̄,

kh̄=kh,rh̄=−r, sh̄=−s

} |Mh,h̄|2




1
2

(IV.128)

where h �∈ b is the set of fields that are not extracted from the determinant to give
some h-link. Now

|Mh,h̄|2 =

∣∣∣∣∣∣
∑

j∈Ih∩Ih̄∩J(kh)

δkh,kh̄ [Wh(j)]
[
h
Fh
j

∆j
h,∆

j

h̄

(w)
]
Cjkh

∆j
h,∆

j

h̄

(xh, xh̄) [Wh̄(j)]

∣∣∣∣∣∣
2

≤ δkh,kh̄

∑
j∈Ih

∣∣∣∣Cjkh∆j
h,∆

j

h̄

(xh, xh̄)
∣∣∣∣
2

(IV.129)

where the weakening factors Wh(j), Wh̄(j) and h
Fh
j

∆j
h,∆

j

h̄

(w) are bounded by one,

the sum over j is performed over the larger set Ih ∩ Ih̄ ∩ J(kh) ⊂ Ih, which is an
upper bound, and we applied the identity

Cjkh
∆j
h,∆

j

h̄

(xh, xh̄) C
j′kh

∆j′
h ,∆

j′
h̄

(xh, xh̄) = 0 if j �= j′ (IV.130)

which is true by construction. For any h̄ in the sum, its weight satisfies

Ih 2−r ≤ Ih̄ < Ih 2−r+1. (IV.131)

Before going on we prove the following lemma

Lemma. If r > 0, the only non zero contributions are for αh < 5. Proof. Actually
if there exists αh = 5 we must have

M−4ivh > 2r−1 Ih̄ ≥ Ih̄ . (IV.132)
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But this is impossible. Indeed let us consider for instance the case αh̄ = 1. Then

M−4ivh > n∆h̄
M−4i∆h̄ f−1

∆h̄
≥M−4i∆h̄ (IV.133)

which implies ivh < i∆h̄
. But to contract h with h̄ we must also have ivh ≥ i∆h̄

,
which is a contradiction. The other cases are verified in the same way.

�
Now the first step is to estimate the sum over h̄

Σh̄ =:
∑

{
h̄�∈b|βh=αh̄,αh=βh̄,

kh̄=kh,rh̄=−r,sh̄=−s

} |Mh,h̄|2 . (IV.134)

For this purpose we distinguish five cases.

1.) βh = 1 which means that h can contract only with h̄ of type 1 (αh̄ = 1).
Therefore for any h̄ the weight I is

Ih̄ = n∆h̄
M−4i∆h̄ f−1

∆h̄
. (IV.135)

Therefore the sum Σh̄ is bounded by

Σh̄ ≤
∑
j∈Ih

∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ∑
∆′∈BS,∆′⊂∆

2n∆′ (IV.136)

where 2n∆′ is the maximal number of antifields (two for each vertex) localized in
∆′. We remark that the vertex position in the propagator is substituted by the
cube center x∆. By (IV.131) and (IV.135) we see that

n∆′ < Ih 2−r+1 M4i∆′ f∆′ (IV.137)

therefore (IV.136) is bounded by

Σh̄ ≤ 2 Ih 2−r+1
∑
j∈Ih

∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ∑
∆′∈BS,∆′⊂∆

M4i∆′ f∆′ . (IV.138)

Now we observe thatM4i∆′ f∆′ is the exposed volume of ∆′ and that ∪∆′⊂∆Ex(∆′)
is a partition of ∆, for any cube ∆, therefore we have∑

∆′∈BS,∆′⊂∆

M4i∆′ f∆′ =M4j (IV.139)

hence Σh̄ is bounded by

Σh̄ ≤ Ih 2−r+2
∑
j∈Ih

M4j
∑

∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 . (IV.140)
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Finally the sum over ∆ is bounded by∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ≤ C M
16
3 M−4j M− 4

3kh
∑

∆∈Dj

χj,k(x∆j
h
, x∆) (IV.141)

where from now on we use C as generic name for a constant independent of M
which can be tracked but whose numerical precise value is inessential. We applied
the scaled decay (II.43)-(II.47), and the function χj,k is different from zero only for
|�x∆j

h
−�x∆| ≤M j and |t∆j

h
− t∆| ≤M j+k (actually for k > 0 we have |�x∆j

h
−�x∆| �

M j− k
3 + 1

3 ≤ M j). Now, for x∆j
h
fixed, the number of cubes such that their center

x∆ satisfies these bounds is at most 26(2Mkh) where 26 is the number of nearest
neighbors of ∆jh in the position space, and 2Mkh is the number of choices in the
time direction. Therefore∑

∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ≤ CM
16
3 M−4j M− kh

3 . (IV.142)

Remark that the case j = jM + 1 needs a different treatment. Actually in
this case we have∑
∆∈Dj

∣∣CjM+1,0(x∆, x∆′)
∣∣2 ≤ Cp M

−4jM
∑

∆∈Dj

χ(|t∆ − t∆′ | ≤M jM )
(1 +M−jM |�x∆ − �x∆′ |)2p

≤M−4jM
∑

n1,n2,n3∈ZZ

Cp
(1 +M−jMM jM (|n1|+ |n2|+ |n3|))2p

≤ C M−4jM . (IV.143)

The sum Σh̄ is finally bounded by

Σh̄ ≤ C M
16
3 Ih 2−r

∑
j∈Ih

M4j M−4j M− kh
3 ≤ C M

16
3 Ih 2−r M− kh

3 |Ih|

≤ C M
16
3 Ih 2−r M− kh

3 jM (IV.144)

where |Ih| is the number of elements in the interval Ih, the numerical constants
have been absorbed in C and we bounded |Ih| by jM .

2.) βh = 2 which means that h can contract only with h̄ of type 2 (αh̄ = 2).
Therefore all h̄ must be hooked to some vertex in Vd and must have scale attribu-
tion ivh̄ ≤ jh̄ ≤ lvh̄ . The weight Ih̄ is

Ih̄ = M−4ivh̄ = M−4ir(h) (IV.145)

where ir(h) is the unique scale for which (IV.131) is satisfied. Now

Σh̄ ≤
∑
j∈Ih

j≥ir(h)

∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 2(jM + 2− j) (IV.146)
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where jM +2− j ≤ 2jM is the maximal number of cubes at scale jM +1 ≥ j′ ≥ j
containing ∆. As j = jh̄ ≤ lvh̄ , only vertices localized in these cubes can contribute.
The factor 2 appears because there is only one vertex localized in each cube and
at most 2 antifields hooked to that vertex. The sum over ∆ is performed as in the
case 1.). Therefore

Σh̄ ≤ C jM M
16
3 M− kh

3

∑
j∈Ih

M−4j . (IV.147)

Now

M−4j =M−4(j−ir(h)) M−4ir(h) ≤M−4(j−ir(h)) 2−r+1 Ih . (IV.148)

The sum over j is performed with the decay M−4(j−ir(h))

∑
j∈Ih

j≥ir(h)

M−4(j−ir(h)) ≤ C . (IV.149)

Finally

Σh̄ ≤ C M
16
3 Ih 2−r M− kh

3 jM (IV.150)

where all constants have been inserted in C.

3.) βh = 3 which means that h can contract only with h̄ of type 3 (αh̄ = 3).
Therefore all h̄ in the sum are hooked to some v ∈ Vd and have jh̄ > lv. The
weight is

Ih̄ = M−4lvh̄ = M−4ir(h) (IV.151)

where ir(h) is the unique scale for which (IV.131) is satisfied. Then

Σh̄ ≤
∑
j∈Ih

∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ∑
∆′∈Dir(h),∆′⊂∆

2 (IV.152)

where 2 is the maximal number of antifields with ∆v ⊆ ∆′ that are hooked to the
vertex vl of the vertical link l ∈ vLi∆′ connecting the connected component yjk
(j = i∆′) containing ∆′ to its ancestor. Now we observe that

∑
∆′∈Dir(h),∆′⊂∆

2 ≤ 2 M4j M−4ir(h) (IV.153)

where M4j−4ir(h) is the number of cubes of scale ir(h) contained in a cube of scale
j. By (IV.131)-(IV.151) we see that

M−4ir(h) ≤ Ih 2−r+1 (IV.154)
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hence Σh̄ is bounded by

Σh̄ ≤ 2Ih 2−r+1
∑
j∈Ih

M4j
∑

∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 . (IV.155)

The sum over ∆ is bounded as in the case 1.) above. Therefore

Σh̄ ≤ C M
16
3 Ih 2−r

∑
j∈Ih

M4j M−4j M− kh
3 ≤ C M

16
3 Ih 2−r M− kh

3 |Ih|

≤ C M
16
3 Ih 2−r M− kh

3 jM (IV.156)

where |Ih| ≤ jM + 1 ≤ 2jM and all constant factors are absorbed in C.

4.) βh = 4 which means that h can contract only with h̄ of type 4 (αh̄ = 4).
Therefore all h̄ in the sum are associated to some f -link of order 6 and its weight
is

Ih̄ = M−4ih̄ = M−4ir(h) (IV.157)

where ir(h) is the unique scale for which (IV.131) is satisfied. Then

Σh̄ ≤
∑
j∈Ih

∑
∆∈Dj

∣∣∣Cjkh(x∆j
h
, x∆)

∣∣∣2 ∑
∆′∈Dir(h),∆′⊂∆

6 (IV.158)

where 6 is the maximal number of antifields with ∆v ⊂ ∆′ that have been derived
by a f -link of order 6 at scale i∆′ for the connected component yjk (j = i∆′)
containing ∆′. Now we can apply the same analysis as for the case 3.) except that
instead of a factor 2 we have a factor 6. Hence we obtain

Σh̄ ≤ C M
16
3 Ih 2−r M− kh

3 jM (IV.159)

5.) βh = 5 which means that h can contract only with h̄ of type 5 (αh̄ = 5).
Therefore all h̄ in the sum are hooked to some v ∈ Vd and have jh̄ = iv. The
weight is

Ih̄ = M−4ivh̄ = M−4ir(h) (IV.160)

where ir(h) is the unique scale for which (IV.131) is satisfied. There is no sum
over j to compute, as we have only j = ir(h).

Σh̄ ≤
∑

∆∈Dir(h)

∣∣∣Cir(h)kh(x∆ir(h)
h

, x∆)
∣∣∣2 n(h̄) . (IV.161)

We know that s is negative, and by (IV.124) (and the fact that n(h) = 1), we
obtain n(h̄) ≤ 2−s = 2|s|. Therefore

Σh̄ ≤ 2|s|
∑

∆∈Dir(h)

∣∣∣Cir(h)kh(x∆ir(h)
h

, x∆)
∣∣∣2 . (IV.162)
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The sum over ∆ is performed as in the other cases then

Σh̄ ≤ C 2|s|M
16
3 M− kh

3 M−4ir(h) . (IV.163)

Applying (IV.160) we have

Σh̄ ≤ C 2|s| 2−r IhM
16
3 M− kh

3 . (IV.164)

Now we can insert all these bounds in (IV.128):

|detMr,s ({βh}{βh̄})| ≤
(
C M

8
3

)nr,s ∏
{

h�∈b,rh=r
sh=s,βh=1,...,4

}
[
I

1
2
h 2−

r
2 j

1
2
M M− kh

6

]

∏
{

h�∈b,rh=r
sh=s,βh=5

}
[
I

1
2
h 2−

r
2 2

|s|
2 M− kh

6

]
(IV.165)

where C is a constant and nr,s is the number of fields belonging to the matrix
Mr,s. Now we observe that

∏
{

h�∈b,rh=r
sh=s,βh=β

}
[
I

1
2
h 2−

r
2

]
≤

∏
{

h�∈b,rh=r
sh=s,βh=β

}
[
I

1
4
h 2

r
4 2−

r
2

] ∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=β

}
[
I

1
4
h̄

]

=
∏

{
h�∈b,rh=r
sh=s,βh=β

}
[
I

1
4
h 2−

r
8

] ∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=β

}
[
I

1
4
h̄
2−

r
8

]
(IV.166)

where we applied the relation (IV.131) and the fact that |{h |rh = r, sh = s, βh =
β}| = |{h̄ |rh̄ = −r, sh̄ = −s, αh̄ = β}| for β = 1, ..., 5. Moreover

∏
{
h�∈b,rh=r

sh=s

}
[
M− kh

6

]
=

∏
{
h�∈b,rh=r

sh=s

}
[
M− kh

12

] ∏
{
h̄�∈b,rh̄=−r

sh̄=−s

}
[
M− kh̄

12

]
(IV.167)

since |{h |rh = r, sh = s, kh = k}| = |{h̄ |rh̄ = −r, sh̄ = −s, kh̄ = k}| for any k ≥ 0
and ∏

{
h�∈b,rh=r

sh=s,βh=1,...,4

}
[
j

1
2
M

]
=

∏
{

h�∈b,rh=r
sh=s,βh=1,...,4

}
[
j

1
4
M

] ∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=1,...,4

}
[
j

1
4
M

]

≤
∏

{
h�∈b,rh=r

sh=s,αh=1,...,4

}
[
j

1
4
M

] ∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=1,...,4

}
[
j

1
4
M

]
(IV.168)
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where we applied the relation |{h | rh = r, sh = s, αh = 1, ..., 4}| = |{h̄ | rh̄ =
−r, sh̄ = −s, αh̄ = 1, ..., 4}| + |{h̄ | rh̄ = −r, sh̄ = −s, αh̄ = 5}| which is true
because αh < 5 ∀h. Now, for any h with βh = 5 there is no factor jM therefore we
write 1 ≤ j

1
4
M .

Finally we observe that (see (IV.121)):

∏
{

h�∈b,rh=r
sh=s,βh=5

} 2
|s|/2 =

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=5

} 2
|s|/2 ≤

∏
{

h̄�∈b,rh̄=−r,

sh̄=−s,αh̄=5

} 2
−|s|/2 2nd(∆ivh̄ )

≤
∏

{
h�∈b,rh=r,

sh=s

} 2
−|s|/4

∏
{

h̄�∈b,rh̄=−r,

sh̄=−s,αh̄=5

} 2
−|s|/4 2nd(∆ivh̄ ) (IV.169)

where we apply the inequality 2|s| ≤ 2nd(∆ivh̄ ). The determinant |detMr,s| is
then bounded by

|detMr,s| ≤
(
C M

8
3

)nr,s ∏
{

h�∈b,rh=r
sh=s,αh<5

}
[
I

1
4
h 2−

r
8 2−

|s|
4 M− kh

12 j
1
4
M

]

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄<5

}
[
I

1
4
h̄
2−

r
8 2−

|s|
4 j

1
4
M M− kh̄

12

]
(IV.170)

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=5

}
[
I

1
4
h̄
2−

r
8 2−

|s|
4 M− kh̄

12 nd(∆ivh̄ )
]

where nr,s is the number of fields in the determinant. Inserting the definitions for
I we can write the determinant as

|detMr,s| ≤
(
C M

8
3

)nr,s ∏
{

h�∈b,rh=r
sh=s,αh=1

}


M−i∆hn

1
4
∆h

1

f
1
4
∆h

2−
r
8 2−

|s|
4 M− kh

12 j
1
4
M




∏
{

h�∈b,rh=r
sh=s,αh=2

}
[
M−ivh 2−

r
8 2−

|s|
4 M− kh

12 j
1
4
M

] ∏
{

h�∈b,rh=r
sh=s,αh=3

}
[
M−lvh 2−

r
8 2−

|s|
4 M− kh

12 j
1
4
M

]

∏
{

h�∈b,rh=r
sh=s,αh=4

}
[
M−ih2−

r
8 2−

|s|
4 M− kh

12 j
1
4
M

]
(IV.171)

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=1

}


M−i∆h̄n

1
4
∆h̄

1

f
1
4
∆h̄

2−
r
8 2−

|s|
4 M− kh̄

12 j
1
4
M



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∏
{

h̄�∈b,rh̄=−r

sh̄=−s,

αh̄=2

}
[
M−ivh̄ 2−

r
8 2−

|s|
4 M− kh̄

12 j
1
4
M

] ∏
{

h̄�∈b,rh̄=−r

sh̄=−s,

αh̄=3

}
[
M−lvh̄ 2−

r
8 2−

|s|
4 M− kh̄

12 j
1
4
M

]

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=4

}
[
M−ih̄2−

r
8 2−

|s|
4 M− kh̄

12 j
1
4
M

]

∏
{

h̄�∈b,rh̄=−r

sh̄=−s,αh̄=5

}
[
M−ivh̄ 2−

r
8 2−

|s|
4 M− kh̄

12 nd(∆ivh̄ )
]

where we applied the fact that for r > 0, αh < 5 ∀h.

IV.3.3 Case r = 0

The subdeterminant for r = 0 actually needs a more detailed analysis. We can
write it as

detM0,s ({βh}{βh̄}) = detM0,s(≤ 5, < 5) (IV.172)
detM0,s(< 5,= 5) detM0,s(= 5,= 5)

where the first subdeterminant contains contractions between fields with αh < 5
(which corresponds to βh̄ < 5) and any antifield (which corresponds to βh ≤ 5), the
second subdeterminant contains contractions between fields with αh = 5 (which
corresponds to βh̄ = 5) and antifields with αh̄ < 5 (which corresponds to βh < 5).
Finally the third subdeterminant contains contractions between fields with αh = 5
(which corresponds to βh̄ = 5) and antifields with αh̄ = 5 (which corresponds to
βh = 5).

In the first case ( αh < 5) we apply exactly the same bound as for r > 0. In
the second case ( αh = 5, βh < 5) we apply the column inequality (IV.113) and
everything goes as in the case r > 0 exchanging fields and antifields.

Finally in the third case we have some field with αh = 5 contracting with some
antifield with αh̄ = 5. Here again we optimize the Hadamard inequalities depending
on the sign of s. If s ≥ 0 we apply the row inequality, and symmetrically9.

The two main weights are equal

Ih̄ =M−4ivh̄ =M−4ivh = Ih . (IV.173)

Remark that there is no sum over j to compute, as we have only j = ivh .

Σh̄ ≤
∑

∆∈Divh

∣∣∣Civhkh(x
∆
ivh
h

, x∆)
∣∣∣2 n(h̄) . (IV.174)

9This second optimization is not really necessary, but nicer.
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We know that n(h̄) < 2−s+1n(h) therefore

Σh̄ ≤ 2−|s|+1n(h)
∑

∆∈Divh

∣∣∣Cir(h)kh(x∆ir(h)
h

, x∆)
∣∣∣2 . (IV.175)

The sum over ∆ is performed as in the other cases and we get

Σh̄ ≤ 2−|s|+1n(∆vh)C M
16
3 M− kh

3 M−4ivh = C 2−|s|n(∆vh) IhM
16
3 M− kh

3

(IV.176)
where the constant 2 has been inserted into C. As before we will distribute the
factor 2−|s| on both sides of the determinant which gives again factors 2−|s|/4 for
each field or antifield of this determinant after the Hadamard inequality. The other
factors are unchanged.

IV.3.4 Result of the weight expansion

The global determinant is bounded by

∏
r,s

|detMr,s| ≤ Cn M
16n
3

∏
h�∈b

2−
|rh|
8 − |sh|

4 M− kh
12

∏
h̄�∈b

2−
|rh̄|
8 − |sh̄|

4 M− kh̄
12

∏
{

h�∈b,
αh=1

}
[
M−i∆hn

1
4
∆h
f
− 1

4
∆h

j
1
4
M

] ∏
{

h�∈b,
αh=2,3

}
[
M−ivh j

1
4
M

] ∏
{

h�∈b,
αh=4

}
[
M−ih j

1
4
M

]

∏
{

h�∈b,
αh=5

}
[
M−ivh nd(∆ivh )

] ∏
{

h̄�∈b,
αh̄=1

}
[
M−i∆h̄n

1
4
∆h̄
f
− 1

4
∆h̄

j
1
4
M

] ∏
{

h̄�∈b,
αh̄=2,3

}
[
M−ivh̄ j

1
4
M

]

∏
{

h̄�∈b,
αh̄=4

}
[
M−ih̄ j

1
4
M

] ∏
{

h̄�∈b,
αh̄=5

}
[
M−ivh̄ nd(∆ivh̄ )

]
(IV.177)

where we have applied
∑
r,s nr,s ≤ 2n, and all numerical factors have been ab-

sorbed in the constant C. The factors M−lvh have been moreover bounded by
M−ivh . Inserting this result inside (IV.127) we have

∑
Y

0∈Y

|Ac(Y )|L|Y | ≤
∑
MY

∑
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∑
V L

L|Y |
∑
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∞∑
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(
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16
3

)n
n!
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(∏
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dxv

)  ∏
v∈Vb\Vd

∫
Ex(∆v)

dxv




 ∏
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M4i∆v



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
 MY∏
j=mY

cj∏
k=1


 ∏
l∈Tjk

∣∣∣Cjkl∆l∆̄l
(xl, x̄l)

∣∣∣

 δkhlkh̄l


 ∑

{rh},{rh̄}

∑
{sh},{sh̄}

(IV.178)


 ∏
{h�∈b}

2−
|rh|
8 − |sh|

4

∏
{h̄�∈b}

2−
|rh̄|
8 − |sh̄|

4




 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l
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

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v∈Vd
cv �=αv

lv∏
j=iv
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



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v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv




 ∏
{h�∈b}

[
M− kh

12

] ∏
{h̄ �∈b}

[
M− kh̄

12

] ∏
v∈Vd∪Vb

| lnT |3/4

∏
v �∈Vd∪Vb

| lnT |
∑
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{
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αh=1

}
[
M−i∆hn

1
4
∆h
f
− 1

4
∆h

] ∏
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αh̄=1

}
[
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1
4
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f
− 1

4
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{

h�∈b,
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}M
−ivh

∏
{

h̄�∈b,
αh̄=2,3

}M
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


 ∏
{

h�∈b,
αh=4

}M
−ih

∏
{

h̄�∈b,
αh̄=4

}M
−ih̄
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


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{

h�∈b,
αh=5

}M
−ivhnd(∆ivh )

∏
{

h̄�∈b,
αh̄=5

}M
−ivh̄nd(∆ivh̄ )




where ∣∣∣Cjkl∆l∆̄l
(xl, x̄l, {w′

l′}, {w′′
l′})
∣∣∣ ≤ ∣∣Cjkl (xl, x̄l)∣∣ . (IV.179)

To get the factor
∏
v∈Vd∪Vb

[
| lnT |3/4

]∏
v �∈Vd∪Vb | lnT | in this bound we collected

the factors j1/4M , which are bounded by | lnT |1/4 (II.33), and we used the fact that
a vertex v ∈ Vd ∪ Vb either is in Vd, hence has a field or antifield of type 5 hooked
to it, which has no j1/4M factor, or is in Vb−Vd, hence has at least a field or antifield
in b which does not appear in the products of (IV.177).

The integrals over the weakening factors wl and w′′
l have been bounded by

one, but the ones over w′
l are kept preciously since they are used below. Now we

observe that

∑
{rh},{rh̄}
{sh},{sh̄}


 ∏
{h�∈b}

[
2−

|rh|
8 − |sh|

4

] ∏
{h̄�∈b}

[
2−

|rh̄|
8 − |sh̄|

4

] ≤ Cn . (IV.180)

The logarithms are bounded using the relation | lnT ||λ| ≤ K. Hence we can
write (since we assumed K ≤ 1)∏

v∈Vd∪Vb

|λ| | lnT |3/4
∏

v �∈Vd∪Vb

|λ| | lnT | ≤ K|V̄d\Vb|
∏

v∈Vd∪Vb

|λ| 14 . (IV.181)
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The n∆ and n(∆) factors coming from the Hadamard bound can be estimated
using Stirling’s formula as follows:

∏
{

h�∈b,
αh=1

}n
1
4
∆h

∏
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h̄�∈b,
αh̄=1

}n
1
4
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∆ ≤
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n∆! en∆ = en
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}nd(∆ivh̄ ) ≤
∏

∆∈Y
nd(∆)nd(∆) ≤ en

∏
∆∈Y

nd(∆)!

(IV.182)

Inserting all these results and absorbing all constants except K in the global factor
Cn we have
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where we applied f∆ ≥ M−4 to bound every factor f− 1
4

∆h
by M . As we have at

most four fields of type 1 per vertex v ∈ V̄d we obtain at most the factor M4n.

IV.4 Extracting power counting

In order to extract the power counting for h-links we define

Cjkl∆l∆̄l
(xl, x̄l) =M−jbh M−jbh̄M−εkh M−εkh̄ Djkl∆l∆̄l

(xl, x̄l) (IV.184)

where h and h̄ are the field, antifield contracted to form the propagator and ε
is some small constant 0 < ε < 1 that will be determined later. Remark that
jbh = jb

h̄
= j, kh = kh̄ = kl by construction. The factor M−εkh is necessary to sum

over kh and extract a small factor per cube. The factor M−jbh corresponds to a
kind of power counting for the field.

Now we can write
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 (IV.185)

where we defined ih = jbh if h ∈ b, and we defined Ωv = ∆iv if v ∈ Vd and
Ωv = Ex(∆v) if v ∈ Vb ∩ V̄d. We also defined ∆h = ∆vh ∈ BS if αh = 1 and
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∆h = ∆ivh if αh = 2, 3, 5. Now for each h with ih > i∆h
we can write

M−ih =M−i∆hM−(ih−i∆h
). (IV.186)

The same formulas hold for h̄. The factor M−i∆h will be used to compensate the
integration over xv ∈ ∆vh .

To extract power counting for a v-link associated to the vertex v we extract
a fraction |λ| 18 for each vertex in Vd:∏

v∈Vd

|λ| 14 =
∏
v∈Vd

|λ| 18 |λ| 18 . (IV.187)

Now, for each yjk connected to its ancestor by a f -link, there are 6 external fields.
One of these may be the field hroot. For this field we keep the vertical decay
M−(jbh−i∆h

) untouched, in order to perform later the sum over the tree structure.
The vertical decay for the remaining five external fields, together with the

factors λ
1
8 are necessary for several purposes:

• to ensure a factor M−4 to sum the root cube for any yjk inside a cube at
scale j + 1;

• to sum over Jah and jbh;

• to extract one small factor per cube;

• to sum over the tree structure.

Therefore we write the vertical decay for each of the five fields as follows:

M−(ih−i∆h
) =M− ε′

2 (ih−i∆h
) M− ε′

2 (ih−i∆h
) M−(1−ε′)(ih−i∆h

) (IV.188)

where 0 < ε′ < 1 is some small constant that will be chosen later. One of the two
fractions ε′/2 is necessary to sum over Jah and jbh, and to extract one small factor
per cube. The other fraction will be used to reconstruct some vertical decay in
order to sum over the tree. Now we call GF the set of subpolymers yjk connected
to their ancestor by a f -link, and GV the set of subpolymers yjk connected to their
ancestor by a v-link. Therefore we can write

∏
{

h�∈b | αh=4, or
h∈b and h�∈Rroot

}M
−(1−ε′)(ih−i∆h

)M− ε′
2 (ih−i∆h

) (IV.189)

∏
{

h̄�∈b | αh̄=4, or
h∈b and h̄�∈Rroot

}M
−(1−ε′)(ih̄−i∆h̄

)M− ε′
2 (ih̄−i∆h̄

) ≤
∏

gjk∈GF

M−5(1−ε′) M−5 ε′
2



Vol. 2, 2001 Fermi Liquid in Three Dimensions: Convergent Contributions 785

where we applied the equation

M−(1−ε′)(ih−i∆h
) =

i∆h
−1∏

j=ih

M−(1−ε′)[j−(j−1)] . (IV.190)

On the other hand for subpolymers with v-links we write

∏
v∈Vd

|λ| 18 =
∏

yjk∈GV

|λ| 18 ≤


 ∏
yjk∈GV

M−5(1−ε′)


[∏

v∈Vd

|λ| ε
′
8

]
(IV.191)

where from now on we assume

|λ| 18 ≤M−5. (IV.192)

Finally we observe that for each h ∈ Rroot we can reconstruct a fraction of
the vertical decay jbh − i∆h

. This is possible because any cube ∆ in the set

Ah =: {∆ | jbh > i∆ ≥ i∆h
and ∆h ⊆ ∆} (IV.193)

must be ∆0
root for some connected component at scale i∆, with ∆h ⊆ ∆, and we

can extract a fraction |λ| ε
′

16 or M−5 ε′
2 of its vertical decay. Remark that no field

h′ �= h ∈ Rroot can hook to any cube in Ah, because they are all cubes of type
∆0
root, therefore Ah ∩ Ah′ = ∅ for any h′ �= h ∈ Rroot. This means that the same

∆ is never used for more than one h ∈ Rroot. Therefore we can write

[ ∏
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] [ ∏
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16

]
(IV.194)

One of this fractions can be used to sum over jbh, the others will be used to sum
over the tree. Inserting all these bounds we have
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l∈Tjk

∣∣∣Djkl∆l∆̄l
(xl, x̄l)

∣∣∣

 δkhlkh̄l





 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l






 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv


 (IV.195)

where we applied ∏
v �∈Vd∪Vb

M4i∆v

∏
v �∈Vd∪Vb

M−4i∆v = 1. (IV.196)

and

∏
yjk∈GV

M−5(1−ε′)
∏

yjk∈GF

M−5(1−ε′) =


MY −1∏
j=mY

cj∏
k=1

M−5(1−ε′)


 . (IV.197)

where we have extracted from |λ| 18 a fraction |λ| 116 that will be used to extract a
small factor per cube. The factors M−5(1−ε′) will be used to sum over the cube
positions and to perform the last sum over S. Remember that ∆v is a cube in BS
if v ∈ Vb ∩ V̄d, but if v ∈ Vd, the localization cube ∆iv of v may not be a summit
cube.

IV.5 Extracting a small factor per cube

Now, before bounding the polymer structure, we must extract a small factor g for
each cube, in order to obtain a factor g|Y |.

First we still need to extract some fractions of vertical decay. Actually, we
will need also a fraction of the k decay for tree lines. Therefore we write

M−εkh = M− ε
2kh M− ε

2kh (IV.198)
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for each h, h̄ ∈ b. One fraction will be used to sum over kh, and the remaining
fraction is used to extract a small factor per cube. Finally we need to extract a
fraction ε′/4 of the vertical decay M− ε′

2 (ih−i∆h
) for each h, h̄ �∈ b with αh = 4, and

for each h, h̄ ∈ b. One fraction will be used to sum over Ja and jb. The remaining
fraction is bounded by
 ∏
{h�∈b | αh=4

or h∈b }
M− ε′

4 (ih−i∆h
)
∏

{
h̄�∈b | αh̄=4,

or h̄∈b

}M
− ε′

4 (ih̄−i∆h̄
)



[∏
v∈Vd

|λ| ε
′

16

]
≤


MY −1∏
j=mY

cj∏
k=1

M−5 ε′
4


 .

(IV.199)
Now we can prove the following lemma.

Lemma. One can extract from (IV.195) at least one small factor g < 1 for each
cube in Y , where g is defined by

g = max[ |λ| 132 , M−5 ε′
4d , M− ε

2d ] (IV.200)

where d = 34 = 81 is the number of nearest neighbors for each cube (including
itself).

Proof. We will proof the following inequality

[ ∏
v∈Vd∪Vb

|λ| 116
] MY −1∏

j=mY

cj∏
k=1

M−5 ε′
4




∏
h∈b

M− ε
2kh

∏
h̄∈b

M− ε
2kh̄


 ≤ g|Y |

(IV.201)
which is enough to prove the lemma.

First we make some remarks.

1) For all extremal summit cube ∆ ∈ Y (Ex(∆) = ∆), there must be at least one
vertex v ∈ Vd∪Vb with ∆v = ∆, as this cube must be connected to the polymer by
a horizontal or vertical link. For this vertex we have a factor |λ| 116 ≤ g2. Therefore
we a factor g2 for each ∆ ∈ Y with Ex(∆) = ∆.

2) For all ∆ ∈ Y such that ∆ = ∆0
root for some connected subpolymer yjk, there

is a vertical link connecting ∆ to its ancestor and we have a fraction of the vertical
decay M−5 ε′

4 ≤ gd.

3) For each tree line Cjk connecting some ∆,∆′ ∈ Dj, we can write the vertical
decay M− ε

2k for the corresponding h and h̄ (kh = kh̄ = k) as

M− ε
2kM− ε

2k =
j+k−1∏
j′=j

M− ε
2M− ε

2 . (IV.202)
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Therefore for all ∆′′ ∈ Dj′ with j ≤ j′ ≤ j + k − 1 such that ∆ ⊆ ∆′′ or ∆′ ⊆ ∆′′

we have a factor M− ε
2 ≤ gd.

With these remarks we can now prove (IV.201) by induction. Actually we
will prove that, if at the scale j we have a factor g2 for any ∆ ∈ Dj ∩ Y then we
can rewrite this factors in such a way to have a factor g for any ∆ ∈ Dj ∩ Y and
a factor g2 ∀ ∆ ∈ Dj+1 ∩ Y .

Inductive hypothesis: At scale j we have a factor g2 for any ∆ ∈ Dj ∩ Y .
This is certainly true for the highest scale mY , because at this scale all cubes

are extremal summit cubes therefore by remark 1) they have a factor g2.

Proof of the induction. Now we must prove that, given a factor g2 for any ∆ ∈
Dj∩Y , we have a factor g for any ∆ ∈ Dj∩Y and a factor g2 for any ∆ ∈ Dj+1∩Y .

We consider a connected component yj+1
k . This is made from a set of gener-

alized cubes connected by a tree. Let us consider one particular generalized cube
∆̃ which is made of cubes of scale j + 1 connected by links of higher scales. Now
we consider each cube in ∆̃. For each such ∆ we denote by s∆ the number of cubes
above that is s∆ = {∆′ ∈ Dj ∩ Y | ∆′ ⊂ ∆} We distinguish three situations.

a) If |s∆| = 0 then we are in the special case Ex(∆) = ∆ therefore the extremal
summit cube ∆ has a factor g2.

b) If |s∆| ≥ 2 then we have

g2|s∆| = g|s∆| g|s∆| ≤ g|s∆| g2 (IV.203)

therefore we can keep a factor g for each ∆′ ∈ s∆ and we have a factor g2 for ∆.

c) The case |s∆| = 1 is the most difficult one. We call the unique element of s∆
∆′. Again we distinguish three cases:

• there is no tree line of any scale connecting ∆′ to some other ∆′′ ∈ Dj
(see Fig.10 a). Therefore ∆ = ∆̃ and ∆′ must be ∆0

root for some connected
component at scale j, therefore there is a vertical link connecting ∆′ to ∆,
and, by 3) we have a factor gd. Hence we can write

g2 gd = g gd+1 ≤ g g2 (IV.204)

and we can keep a factor g for ∆′ and assign a factor g2 to ∆.

• there is at least one tree line Cj
′k at some scale j′ ≤ j connecting ∆′ to some

∆′′ ⊂ ∆1 (∆1 ∈ ∆̃) and ∆′ is not nearest neighbor of ∆′′ (see Fig.10 b).
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a b c

∆ ∆ ∆

∆ ∆ ∆’ ’ ’

Figure 10: Three possible cases for |s∆| = 1.

Then, |t∆′ − t∆′′ | ≥ M j+1 (in the space directions they must always be
nearest neighbors) and the propagator must have j′ + k ≥ j + 1. Therefore
as j′ ≤ j k cannot be zero and by remark 3) we can associate to ∆′ a factor
gd in addition to g2. Hence we can write

g2 gd = g gd+1 ≤ g g2 (IV.205)

and we can keep a factor g for ∆′ and assign a factor g2 to ∆.

• there is at least one tree line Cj
′k at some scale j′ ≤ j connecting ∆′ to some

∆′′ ⊂ ∆1 (∆1 ∈ ∆̃) and ∆′ is nearest neighbor of ∆′′ (see Fig.10 c).

In this case j′ + k ≥ j and no factor can be extracted from the k decay.
Remark that, if ∆′ = ∆0

root for some connected component at scale j, then
there is a vertical link and everything works as in the case of Fig 10 a). On
the other hand, if ∆′ �= ∆0

root, there is still a vertical link connecting ∆′ to
∆ but it does not have any vertical decay associated. In this case we have to
distinguish three possible situations:

a’ ) there is no other tree line connecting ∆′ or ∆′′ to some other cube in
Dj . Therefore ∆′′ must be ∆0

root for some connected component at scale
j and the corresponding vertical link has a vertical decay associated.
Hence we have a factor g in addition to g2 for each cube nearest neighbor
(nn) of ∆′′, hence for each of them we can keep one factor g and give
the remaining g2 to its ancestor.

b’ ) there is a tree line connecting ∆′′ to some cube which is not nn of ∆′′.
Then we have some k vertical decay from the tree propagator, and we
can assign a factor g in addition to g2 for each cube nn of ∆′′. Therefore,
as in a’, we have a factor g in addition to g2 for each cube nn of ∆′′,
hence for each of them we can keep one factor g and give the remaining
g2 to its ancestor.

c’ ) there is a tree line connecting ∆ or ∆′′ to some cube nn. Then we
test case a’ and b’ again, and we go on until a’ or b’ (see Fig11 a,b) is
satisfied, or until the chain of nn cubes at scale j arrives to a cube at
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∆

∆’

j+1

j

∆

∆

j+1

j’

∆

∆’

b

c

a

Figure 11: Three possible situations when extracting a small factor g

scale j + 1 that is not nn of ∆. In this last case (see Fig11 c) we must
have at least M of such cubes, therefore we can write

(g2)M ≤ gM (g2)d (IV.206)

which means that we keep one factor g for each cube at scale j and we
give a factor g2 to each nn of ∆ at scale j+1. This is true ifM satisfies:

M ≥ 2d. (IV.207)

�

IV.6 Bounding the tree choice

Construction of Tjk Before summing over the trees we must see how the tree is
built. In the connected component yjk, for each ∆̃ �= ∆̃root we have one h ∈ Rroot
and d∆̃ fields in lb(∆̃) (defined in sec. III.3). For ∆̃root we have no h ∈ Rroot but
we still have d∆̃ fields in lb(∆̃). Each h ∈ lb(∆̃) can contract only with a h ∈ Rroot
in some ∆̃ �= ∆̃′. As there is only one field h ∈ b(∆̃′) we only have to choose ∆̃′.
This last sum is performed using the decay of the tree line as we will prove below.

Therefore for each h ∈ lb(∆̃) we have to perform the following sum

∑
∆̃′∈yj

k
∆̃′ �=∆̃

∫
Ωh′

dxh′
∣∣Cjkh′ (xh, xh′)

∣∣ = ∑
∆′
root �=∆root(h),∆0

root

∫
Ωh′

dxh′
∣∣Cjkh′ (xh, xh′)

∣∣
(IV.208)

where h′ is the unique field in Rroot hooked to ∆̃′, Ωh′ is the localization volume
Ωvh′ of the vertex to which h′ is hooked, ∆′

root is the corresponding cube in ∆̃′ and
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)A( ∆ )A( ∆ h root

h root∆

∆∆’

= ∆0
root

a b c

∆

Figure 12: Three types of oriented links

∆h′ ⊆ ∆′
root is the localization cube for h′. Finally we denoted by ∆root(h) the

cube ∆root for the generalized cube ∆̃ where h is hooked (this contraction is not
possible as it would generate a loop). Remark that the condition ∆′

root �= ∆0
root

holds because this last cube does not contain any h ∈ Rroot. The sum over the
tree Tjk is then bounded by

∏
h∈b\Rroot

jb
h
=j, and ∆h⊆y

j
k

∑
∆′
root �=∆root(h),∆0

root

∫
Ωh′

dxh′
∣∣Cjkh′ (xh, xh′)

∣∣ . (IV.209)

Sum over the cube positions and Tjk Now, for fixed Tjk, we have a multiscale
tree structure. We want to sum over the cube positions following this tree from
the leaves towards the root (which is the cube ∆0

root at scale MY , which contain
x = 0). For this purpose we give a direction (represented by an arrow) to all links
(vertical and horizontal).

• For any vertical link connecting some ∆0
root to its ancestor we draw an arrow

going from ∆0
root down to its ancestor and we call it a down − link (see

Fig.12a)

• For all other vertical links connecting some ∆ to its ancestor we draw an
arrow going from its ancestor up to ∆ or and we call it a up − link (see
Fig.12b).

• For each horizontal link, that is made by the contraction of a field (antifield)
in Rroot with an antifield ( field) in b\Rroot we draw an arrow going from the
field (antifield) in Rroot towards the antifield ( field) in b\Rroot (see Fig.12c).

Now we can perform the sums following the tree. We have three situations.

• If we have a down-link we have to sum over the choices for ∆, for ∆′ = A(∆)
fixed. Remark that for each down-link we have the vertical decayM−5(1−ε′).
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From this we first extract a fraction M−5ε′ that will be used for the last
sum. With the remaining M−5(1−2ε′) assuming ε′ ≤ 1/10 we can write

∑
∆∈Dj

∆⊂∆′,i∆′=j+1

M−5(1−2ε′) =
|∆′|
|∆|M

−5(1−2ε′) =M4M−5(1−2ε′) ≤ 1 . (IV.210)

• If we have an up-link we have to sum over the choices for ∆′ = A(∆) for ∆
fixed. As there is only one ∆′ such that ∆′ = A(∆) there is no sum at all.

• If we have an horizontal link the argument is more subtle and we explain it
below.

Sum over horizontal links For some h ∈ Rroot we want to prove that

M−(ih−i∆h
) M−4 ε′

2 (ih−i∆h
)
∑
x∆

∫
Ωh

dxh
∣∣Djkh (xh, xh′)∣∣ ≤ C M11/3 M4i∆h

(IV.211)
where ∆ is the unique cube at scale ih = jbh = j with ∆h ⊆ ∆ (see Fig.12c). From
now on we write j instead of ih. We recall that we defined for k > 0 (see (IV.184))∣∣Dj,kh (xh, xh′)∣∣ = ∣∣Cj,kh (xh, xh′)∣∣M2jM2εkh (IV.212)

≤ C M8/3M2εkhM−2kh/3χ
(
|�xh − �xh′ | ≤M j−kh/3+1/3, |th − th′ | ≤M j+k

)
and for k = 0∣∣Dj,0 (xh, xh′)∣∣ =

∣∣Cj,0 (xh, xh′)∣∣M2jM2εkh (IV.213)

≤ C M8/3 χ
(
|�xh − �xh′ | ≤M j , |th − th′ | ≤M j

)
The case k = 0 is simple as∫

Ωh

dxhχ
(
|�xh − �xh′ | ≤M j , |th − th′ | ≤M j

)
≤M4i∆h χ

(
|�x∆ − �x∆′ | ≤M j , |t∆ − t∆′ | ≤M j

)
(IV.214)

and ∑
x∆

χ
(
|�x∆ − �x∆′ | ≤M j , |t∆ − t∆′ | ≤M j

)
≤ d (IV.215)

where d is the number of nearest neighbors. Therefore

M−(j−i∆h
) M−2ε′(j−i∆h

)
∑
x∆

∫
Ωh

dxh
∣∣Djkh (xh, xh′)∣∣ ≤ C M8/3 M4i∆h

(IV.216)
where the decay M−(1+2ε′)(j−i∆h

) is just bounded by one.
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The case k > 0 is more difficult. Now the integral is given by∫
Ωh

dxh χ
(
|�xh − �xh′ | ≤M j−kh/3+1/3, |th − th′ | ≤M j+k

)
(IV.217)

≤M i∆h

(
min[ M i∆h , M j−kh/3+1/3]

)3
χ
(
|�x∆ − �x∆′ | ≤M j , |t∆ − t∆′ | ≤M j+k)

and the sum over x∆ gives∑
x∆

χ
(
|�x∆ − �x∆′ | ≤M j , |t∆ − t∆′ | ≤M j+k) ≤ d 2Mk . (IV.218)

Now we have to distinguish two cases.

1. If we have
i∆h

< j − kh
3

+
1
3

(IV.219)

(IV.211) is bounded by

C M8/3 M4i∆h Mkh M−(1+2ε′)(j−i∆h
)M−kh(2/3−2ε) . (IV.220)

By (IV.219) we have

M−(1+2ε′)(j−i∆h
) ≤M−(1+2ε′)kh/3M(1+2ε′)/3. (IV.221)

Inserting this bound in the equation above we obtain(
C M8/3M(1+2ε′)/3

)
M4i∆h Mkh(2ε−2ε′) ≤ C M11/3 M4i∆h (IV.222)

for ε < ε′.

2. On the other hand, if we have

i∆h
≥ j − kh

1
3
+

1
3
⇒ kh ≥ 3 (j − i∆h

) + 1 (IV.223)

(IV.211) is bounded by

C M8/3 M i∆h M3(j−kh/3+1/3) Mkh M−(1+2ε′)(j−i∆h
)M−kh(2/3−2ε) . (IV.224)

Now we can write

M i∆h M3(j−kh/3+1/3)Mkh =M M−kh Mkh M4i∆h M3(j−i∆h) (IV.225)

and (IV.211) is bounded by(
C M1+8/3

)
M4i∆h M(2−2ε′)(j−i∆h

)M−kh(2/3−2ε) ≤ C M11/3M4i∆h (IV.226)
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if we can prove that

kh ≥
(1− ε′)
(1/3− ε)(j − i∆h

) . (IV.227)

This is true by (IV.223) if
(1− ε′)
(1/3− ε) ≤ 3 (IV.228)

hence for ε < ε′

3 which is consistent with the condition we find in the case 1.

With all these results we can now write

∑
{x∆}


 ∏
{h∈Rroot}

M−(ih−i∆h
)

∏
{h̄∈Rroot}

M−(ih̄−i∆h̄
)


[ ∏

v∈Vd∪Vb

M−4i∆v

]
(IV.229)


 ∏
{h∈Rroot}

M−4 ε′
2 (ih−i∆h

)
∏

{h̄∈Rroot}

M−4 ε′
2 (ih̄−i∆h̄

)




MY −1∏
j=mY

cj∏
k=1

M−5(1−2ε′)





 MY∏
j=mY

cj∏
k=1

∑
Tjk


[ ∏

v∈Vd∪Vb

∫
Ωv

dxv

]  MY∏
j=mY

cj∏
k=1


 ∏
l∈Tjk

∣∣∣Djkl∆l∆̄l
(xl, x̄l)

∣∣∣

 δkhlkh̄l




≤ C |Y |M11n/3
∏

v∈Vd∪Vb

M4i∆vM−4i∆v ≤ C |Y |M11n/3

where the constant C |Y | comes from (IV.211), and we applied∏
h∈Rroot

M4i∆h

∏
h̄∈Rroot

M4i∆h̄ ≤
∏

v∈Vd∪Vb

M4i∆v . (IV.230)

This is true because two hroot cannot be hooked to the same vertex by construction.

IV.7 Final bound

Now we can perform all the remaining bounds, namely

∑
Y

0∈Y

|Ac(Y )|L|Y | ≤
∑
MY

∑
S

∑
V L

L|Y |
∑
BS

g|Y | C |Y |
∞∑
n=0

CnM13n 1
n!

|λ|
|Vd∪Vb|

16 K|V̄d\Vb|
∑
Vd,αVd

∑
a,b,R

∑
{vl}l∈vL

∑
nVdσVdρVd

∑
{n∆}∆∈BS

∑
∆c
V̄d

(IV.231)


∏
v∈Vd

∑
iv∈Icv

∑
∆v∈Div∩Y


 ∑

{Jah},{Jah̄}

∑
{jbh},{jbh̄}

∑
{kh},{kh̄}

∑
{βh}{βh̄}



Vol. 2, 2001 Fermi Liquid in Three Dimensions: Convergent Contributions 795

[∏
∆∈Y

nd(∆)!

][ ∏
∆∈BS

n∆!

] ∏
{h�∈b}

M− kh
12

∏
{h̄�∈b}

M− kh̄
12




 ∏
{h∈b}

M− ε
2kh





 ∏
{h̄∈b}

M− ε
2kh̄




 ∏
{h�∈b | αh=4

or h∈b }
M− ε′

4 (ih−i∆h
)

∏
{
h̄�∈b | αh̄=4,

or h̄∈b

}M
− ε′

4 (ih̄−i∆h̄
)





MY −1∏
j=mY

cj∏
k=1

M−5ε′




 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l






 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv




whereM−5ε′ is the factor we extracted formM−5(1−ε′) before performing the sum
over the tree choice. Now we can immediately bound the following sums.

• the sum over βh costs only a factor 5 per field, hence∑
{βh}{βh̄}

1 ≤ 54n (IV.232)

• the sum over kh is performed using the vertical decay∑
{kh},{kh̄}

∏
{h�∈b}

M− kh
12

∏
{h̄�∈b}

M− kh̄
12

∏
{h∈b}

M− ε
2kh

∏
{h̄∈b}

M− ε
2kh̄ ≤ Cn

(IV.233)

• the sums over Jah and jbh are performed using the vertical decayM− ε′
4 (ih−i∆h

)

For jbh we write∑
{jbh},{jbh̄}

∏
{h∈b}

M− ε′
4 (jbh−i∆h

)
∏

{h̄∈b}

M− ε′
4 (jbh̄−i∆h̄

) ≤ C |Vb| . (IV.234)

For Jah we define V ′
d as the set of vertices v ∈ Vd that have some field (or

antifield) h ∈ a. Then we can write∏
v∈V ′

d

∏
{hcv∈a}

∑
Jah

M− ε′
4 (ih−i∆h

) ≤ Cn (IV.235)

where we applied i∆h
= iv (as v ∈ Vd) and

∑
Jah

M− ε′
4 (ih−iv) =

∑
ih>iv

ih−iv−1∑
p=0

∑
iv<j1<j2...<jp<ih

M− ε′
4 (ih−iv)

≤
∑
ih

M− ε′
4 (ih−iv)

ih−iv−1∑
p=0

2(ih−iv) ≤ C

and we used
∑m
p=0
∑

0<j1<j2...<jp<m 1 ≤ 2m
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IV.7.1 Choice of iv and ∆iv

For each vertex vl ∈ Vd associated to the vertical link l ∈ vL we can sum over
the choices for iv and ∆iv using the weakening factors w′. Actually these factors
not only allow to choose iv and ∆iv , but they also give a factor 1/nd(∆)! for each
∆, where we recall that nd(∆) is the number of vertices v ∈ Vd localized in ∆
(IV.121). This is proved in the following lemma.

Lemma IV.7.1a The integrals over the weakening factors w′ allow to choose iv
and ∆iv , and give a factor 1/nd(∆)! for each ∆, namely

∏
v∈Vd

∑
iv∈Icv

∑
∆iv∈Div∩Y




 MY∏
j=mY +1


 ∏
l∈vLj

∫ 1

0
dw′
l







 ∏

v∈Vd
cv �=αv

lv∏
j=iv

w′
yjv




 ∏

v∈Vd
cv=αv

lv−1∏
j=iv

w′
yjv


 ≤ C |Y |

∏
∆∈Y

1
nd(∆)!

(IV.236)

Proof. We perform the sum following the structure of the rooted tree S. We call
T the tree obtained by S taking away the leaves (dots). We work with T and not
with S because the leaves of S do not correspond to a connected component but
to a void subset. We denote each vertex of T as vT . Remark that the vertex vT
at the layer l corresponds to a set of connected cubes in Dj , with j = MY − l.
For V L fixed, we know the number of cubes at this scale belonging to vT , hence
also the number of vertices v ∈ Vd localized in some cube of vT . We denote this
number by n(vT ). This satisfies n(vT ) =

∑
∆∈vT nd(∆).

Now we visualize the sums using a set of arrows on the rooted tree T . For
each link of type v (which corresponds to a vertical link l ∈ vL) between a vertex
v′T and its ancestor in the tree vT , we draw an arrow starting at vT and going up,
and stop the arrow at the vertex v′′T corresponding to the connected subpolymer
at scale ivl containing the cube ∆vl , where vl is the vertex associated to the link
(see Fig.13).

Therefore n(vT ) actually corresponds to the number of arrows which end at
vertex vT in the tree S. Let d(vT ) be the number of arrows departing from vT . For
any line l of T let us call t(l) the traffic over l, namely the number of arrows flying
above line l. We have obviously at any vertex vT of the tree a conservation law. If
l0(vT ) is the trunk arriving at node vT from below in the tree, and l1(vT ), .... lp(vT )
the branches going up from vT , we have t(l0) + d(vT ) = n(vT ) +

∑p
i=1 t(li(vT )).

Now the integration of the w′ factors gives exactly
∏
l∈L(T ) 1/t(l), where L(T )

is the set of lines in T of type v. This can be seen as each such line corresponds
to a vertical link l ∈ vL that is to the introduction of a specific w′

l parameter (it
is not every line of T , because there can be f links too, see Fig.13). Indeed the
power of that w′ factor to integrate is then exactly t(l)− 1 for that line l. The -1
is there because the derivation with respect to w′ erased the factor w′ for the v
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v’’
T

v

v

v

f

vT = root

v’T

Figure 13: Example of arrow system

link created, but it did not erase all other w′ factors for the other v links going up
through that line.

We can now decide to fix the numbers n(vT ) and d(vT ) of arrows arriving
and departing at vT . (IV.236) is then written as


∏
vT

∑
n(vT )

∑
d(vT )


 ∑
syst

∏
l∈L(T )

1/t(l)


∏
vT

∑
{nd(∆)}

( ∏
v∈vT

∑
∆v∈vT

) 1 (IV.237)

∑
syst is the sum over all systems of arrows compatible with n(vT ) and d(vT ),
{nd(∆)} chooses the number of vertices localized in each ∆ ∈ vT with the condition∑

∆∈vT nd(∆) = n(vT ) and
∏
v∈vT

∑
∆v∈vT chooses for each vertex localized in vT

by the arrow system, the localization cube ∆v. The sums over n(vT ) and d(vT )
will be performed later and will cost at most C |Y |.

Let us perform first the sum over {nd(∆)} and ∆v.

∏
v∈vT

∑
∆v∈vT

1 ≤ n(vT )!∏
∆∈vT nd(∆)!

and
∑

{nd(∆)}∆∈vT

≤ 2|vT |+n(vT ) (IV.238)

where |vT | is the number of cubes in vT and we applied
∑

{nd(∆)}∆∈vT
1 ≤

2|vT |+n(vY ) (by a well known combinatoric trick,
∑
i1,i2,...ip|

∑
ij=m 1 ≤ 2m+p−1 ≤

22m−1). Therefore
∏
vT

∑
{nd(∆)}∆∈vT

( ∏
v∈vT

∑
∆v∈vT

) 1 ≤ C |Y |
∏
vT
n(vT )!∏

∆ nd(∆)!
. (IV.239)

Indeed the number of vertical links of type v is at most |VT | − 1 where |VT | is the
number of vertices in T . Therefore we have

∑
vT
n(vT ) = m ≤ |VT | − 1 ≤ |Y |.

Now we perform the sum over the arrow system. Remark that once the num-
bers n(vT ) and d(vT ) are fixed, the traffic numbers t(l) are also known, since for
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any line the traffic t(l) is equal to the sum of all arrows arriving in the subtree for
which l is the trunk, minus the number of arrows departing in that subtree (be-
cause arrows always go upwards in the tree, so the ones departing in the subtree
have to end there too).

Now, it is easy to check that the complete choice over the system of arrows
consists, for each node vT of the tree, in choosing by multinomial coefficients the
n(vT ) ones from the arriving traffic t(l0) which stop at vT , and then which of the
remaining ones go into which subbranches. This costs exactly a factor

A(vT ) =
t(l0(vT ))!

n(vT )!
∏
i t

′(li(vT ))!
(IV.240)

where t′(li) = t(li) − 1 if li ∈ L(T ), that is if there is one departing arrow from
node vT flying over line li corresponding to a vertical link of type v attaching the
vertex v′T at the upper end of line li to its ancestor vT ; and t′(li) = t(li) otherwise
(actually in that last case, t′(li) = t(li) = 0 because that link must be of type f
therefore no vertex from a higher scale can be associated to a vertical link at a
lower scale). Therefore we have to bound

[∏
vT

t(l0(vT ))!
n(vT )!

∏
i t

′(li(vT ))!

] ∏
l∈L(T )

1/t(l)


 =

[∏
vT

1
n(vT )!

]
[A.B] (IV.241)

where A is
∏
vT
A(vT ) =

∏
vT

t(l0(vT ))!∏
i t

′(li(vT ))! and where B is our good factor coming
from the w′ integrals, namely

∏
l∈L(T ) 1/t(l).

Lemma IV.7.1b For any tree and any choice of the numbers n(vT ) and d(vT )
(which determine the traffic numbers t(l), as said above), we have A.B = 1 (ex-
actly!)

Proof. By induction, starting from the leaves of the tree towards the trunk, we see
that this is true.

For instance from a leaf vT of a tree, we have an apparently bad factor
t(l0(vT ))! in A, where because we are at a leaf, t(l0(vT )) = n(vT ) (all arrows must
end at vT , because there is nothing beyond if vT is a leaf). But then if at the
node v′T below that line l0(vT ) there is a departing arrow flying over l0(vT ), we
have a factor 1/t(l0(vT )) from B, and l0(vT ) = li(v′T ) for some i. Combining the
factor 1/t(l0(vT )) from B and the factorial t′(li(v′T ))! = [t(l0(vT ))−1]! in A at the
next node, we can reconstruct a denominator 1/t(l0(vT ))!, which exactly cancels
our bad factor t(l0(vT ))!. Doing that for all leaves above v′T , we erase all bad
factors and remain with exactly the numerator of the A factor at node v′T , namely
[t(l0(v′T ))]!. Continuing this way towards the bottom of the tree, we are finally left
with a single factorial of the traffic, namely [t(l0(vT0))]! which is the last traffic at



Vol. 2, 2001 Fermi Liquid in Three Dimensions: Convergent Contributions 799

the trunk. But this traffic is 1! Therefore A.B = 1. This ends the proof of Lemma
IV.7.1b10. �

Now, the factor
∏
vT

1
n(vT )! cancels the corresponding factor on the numerator

in (IV.239), while the
∏

∆
1

nd(∆)! is kept outside. Finally we check that
∏
vT

∑
n(vT )

∑
d(vT )


 1 ≤ C |Y | . (IV.242)

As for (IV.238-IV.239) we have
∑
vT
n(vT ) =

∑
vT
d(vT ) = m ≤ |VT |−1 ≤ |Y | and

we apply
∑
i1,i2,...ip|

∑
ij=m 1 ≤ 2m+p−1 ≤ 22m−1. This ends the proof of Lemma

IV.7.1a. �

IV.7.2 Extracting a global factor |λ|

The last sum over MY will cost an extra logarithm. Therefore, in order to prove∑
Y

0∈Y
|Ac(Y )|L|Y | ≤ 1 we must ensure that we can extract at least one factor

|λ| from the sums11. This is not trivial because we have only a fraction |λ| 116 per
vertex v ∈ Vd. If |Vd| ≥ 17 we can extract the factor |λ| to sum over MY and keep
a remaining small factor |λ||Vd|/(16×17) = |λ||Vd|/272 per vertex. The case |Vd| ≤ 16
is more delicate. Remark that, when |Vd| ≤ 16, the Hadamard bound is simpler
in the sense that we do not need to pay any logarithm (see case 2 in IV.3.2) or
any factor n∆, n(∆) (see case 1 and 5 in IV.3.2) to choose the contractions as
the number of choices to contract a field with an antifield are bounded by 2 · 16.
The only logarithms appearing are then the ones given by the sums over possible
attributions ( the

∑
j in the Hadamard bound).

We distinguish two situations:

• |Vd| ≤ 16 and |Y | = |Vd|. In this case we have at most 17 energy scales,
therefore any sum over scale attributions costs just a factor 17, hence the
Hadamard bound does not produce any logarithm. This means that the
three fields (antifields) of type αh �= 5 hooked to the vertex v ∈ Vd still have
their factor |λ| 14 , therefore we have a factor |λ|

3|Vd|
4 |λ|

|Vd|
16 = |λ|

13|Vd|
16 . Now,

for |Vd| > 1 we can extract a factor |λ|. Otherwise, if |Vd| = 1, we have a
polymer reduced to one or two cubes, therefore there is no logarithms. We
can extract the complete coupling constant for the unique vertex. Remark
that in this case we have not extracted a small factor g for the cube, but only
a factor K. Nevertheless this is only one term of the sum (only the polymers
with |Y | = 1).

10This lemma is a particular variation on well known combinatoric identities [BF2], [DR2,
Appendix B1].

11In fact to perform a Mayer expansion, we need only to control
∑

Y
0∈Y

with MY fixed in our

main result (III.104). However we prove the slightly stronger result (III.106) for simplicity, since
it is also true.
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• |Vd| ≤ 16 and |Y | > |Vd|. In this case we must have at least |Y |−|Vd| vertical
links of type f , therefore there must be at least 2 vertices with some derived
fields hooked: |V ′

d| ≥ 2. Let us say that the lowest f -link is at scale j. At
lower scale there can be only v-links, therefore there are at most 16 scales.
AsMY −j ≤ 16 the set of attributions for six fields derived to give the f -link
has at most sizeMY −j ≤ 16, therefore these links do no give any logarithm,
and we have a factor |λ|6/4 < |λ|.

IV.7.3 Remaining sums

Now the remaining sum is∑
Y

0∈Y

|Ac(Y )|L|Y | ≤ |λ|
∑
MY

∑
S

∑
V L

∑
BS

(gLC)|Y |

∑
n≥1

(
CM13)n 1

n!
|λ|

|Vd∪Vb|
272 K|V̄d\Vb|

∑
Vd,αVd

∑
a,b,R

∑
{vl}l∈vL

∑
nVdσVdρVd

∑
{n∆}∆∈BS

∑
∆c
V̄d

[ ∏
∆∈BS

n∆!

] MY −1∏
j=mY

cj∏
k=1

M−5ε′


 (IV.243)

where all constants have been inserted in C and the factor
[∏

∆∈Y nd(∆)!
]
coming

from (IV.231) is compensated by
[∏

∆∈Y
1

nd(∆)!

]
coming from Lemma IV.7.1a.

Sum over {n∆} and ∆cV . These sums are bounded as follows.

∑
{n∆}∆∈BS

∑
∆c
V̄d

∏
∆∈BS

[n∆!] ≤
∑

{n∆}∆∈BS

|V̄d|!∏
∆∈BS

n∆!

∏
∆∈BS

n∆! ≤ |V̄d|! 2|Y |+n

(IV.244)
where we applied ∑

{n∆}∆∈BS

1 ≤ 2|Y |+n (IV.245)

as
∑

∆∈BS
n∆ = |V̄d| ≤ n.

Sum over {vl}l∈vL This sum actually consumes a fraction of the global factorial,
namely

1
n!

∑
{vl}l∈vL

1 ≤ 1
n!
[n (n− 1) (n− 2) ... (n− |Vd|+ 1)] =

1
|V̄d|!

(IV.246)

where we applied n− |Vd| = |V̄d|.
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Sum over σvd , nVd , a, b, R, Vd, ρVd and αVd . The sum over σvd costs at most a
factor 4! per vertex, the sum over nVd at most a factor 4 per vertex, the sums over
a, b and R a factor 2 per field, the sum over Vd a factor 2 per vertex, the sum
over ρVd a factor 2 per field and finally the sum over αVd a factor 4 per vertex.
Therefore ∑

Vd,αVd

∑
a,b,R

∑
nVdσVd

≤ Cn . (IV.247)

The remaining bound is now∑
Y

0∈Y

|Ac(Y )|L|Y | ≤ |λ|
∑
MY

∑
S

∑
V L

∑
BS

(gLC)|Y | (IV.248)

∑
n≥1

(
CM13)n |λ| |Vd∪Vb|

272 K|V̄d\Vb|


MY −1∏
j=mY

cj∏
k=1

M−5(1−2ε′)




where all constants have been inserted in C and the factorial |V̄d|! in (IV.244) has
been canceled by the factor 1

|V̄d|! in (IV.246). Now

∑
n≥1

(
CM13)n |λ| |Vd∪Vb|

272 K|V̄d\Vb| = (IV.249)

∑
|Vd∪Vb|≥1

(
CM13|λ|1/272

)|Vd∪Vb| ∑
|V̄d\Vb|≥0

(
CM13K

)|V̄d\Vb| ≤ C

for λ and K small enough, depending on M . The choice of BS costs a factor 2 per
cube so finally we have to bound

|λ|
∑
MY

∑
S

∑
V L

(gLC)|Y |


MY −1∏
j=mY

cj∏
k=1

M−5ε′


 (IV.250)

Sum over S and V L These sums are performed together. For this purpose we
reorganize the sum as follows:

∑
S

∑
V L

(gLC)|Y |


MY −1∏
j=mY

cj∏
k=1

M−5ε′


 ≤∑

p≥1

(8gLC)p
0

(IV.251)

∑
d0≥0

d0∏
i=1


∑
p1i≥1

(8gLC)p
1
i M−5ε′

∑
d1i≥0

d1i∏
i′=1


∑
p2
i′≥1

(8gLC)p
2
i′ M−5ε′

∑
d2
i′≥0

· · ·






where p0 is the number of cubes in the connected subpolymer at the layer l = 0
(corresponding to the scale MY ), d0 the number of connected components at the
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scale MY − 1 (circles in the rooted tree) connected to the root, p1
i the number of

cubes for the connected subpolymer i and so on. The factor 8 include a factor 2
to decide, for each vertical link, whether it is a v or f link, a factor 2 to decide for
any cube of the connected subpolymer if it is going to a give a dot or not in S at
the next layer (see Fig. 7), and finally a factor 2p to decide the remaining positive
numbers V L for the circle links of S (since they are strictly positive and their sum
is p).

The products stop at pMY as this is the maximal number of layers. We remark
that for the root we do not have any vertical link, hence no vertical decay M−5ε′ .

We start computing this formula from leaves, which correspond to d = 0.
Assuming gLC ≤ 1/16 and M−5ε′/2 ≤ 1/2 we have

∑
p≥1

(8gLC)pM−5ε′ ≤ 1
2
M−5ε′/2 . (IV.252)

Now we can perform the sum over d at the previous layer

∑
d≥0

(
M−5ε′/2

)d
≤ 2 (IV.253)

and at each layer we compensate the factor 2 by the new factor M−5ε′/2 ≤ 1/2.
Therefore we can sum over all layers until the root, and the result is bounded

by 2 because the last layer has no M−5ε′ factor.

Sum over MY This sum is finally bounded as announced by our spared factor λ∑
Y

0∈Y

|Ac(Y )|L|Y | ≤ |λ|
∑
MY

2 ≤ 2| lnT ||λ| ≤ 2K ≤ 1. (IV.254)

for |λ lnT | ≤ K.
This ends the proof of the theorem. To summarize our conditions, for a given

L we compute first the constant C, we choose M large enough (and λ small
enough) so that gLC ≤ 1/16 and M−5ε′/2 ≤ 1/2, and we restrict again λ so that
CM13λ1/272 ≤ 1/2. These restrictions on λ are therefore enforced solely by taking
K small enough depending on L, which is our theorem.

Appendix A
In section II.5 we have introduced band decoupling on the position space,

and defined, for each band j the characteristic function Ωj . Let us introduce the
following generalization of (II.32):

Ωj = { (�x, t) | M j−1 ≤ (1 + |�x|) 1
2+α (1 + f(t) + |�x|) 1

2−α < M j } j ≤ jM
= { (�x, t) | M jM ≤ (1 + |�x|) 1

2+α (1 + f(t) + |�x|) 1
2−α } j = jM

(A.1)
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To select the optimal value for α we must insert auxiliary scales as in section
II.5 and estimate the scaled decay of the propagator Cjk, as a function of α. We
insert auxiliary scale decomposition as in (II.37).

Spatial constraints The constraints on spatial positions now are:

• if j ≤ jM and k > 0 there is a non zero contribution only for

M jM−k( 1−2α
1+2α )M− 2

1+2α 2−
1−2α
1+2α ≤ (1+|�x|) ≤ M jM−k( 1−2α

1+2α )M
1−2α
1+2α (A.2)

• for j ≤ jM and k = 0 there is a non zero contribution only for

M j M− 2
1+2α 2−

1−2α
1+2α ≤ (1 + |�x|) ≤ M j (A.3)

• for j = jM + 1 there is a non zero contribution only for

M jM 2−
1−2α
1+2α ≤ (1 + |�x|) (A.4)

Scaled decay of the propagator Now for each j and k we can estimate the scaled
decay of the propagator Cj,k. We distinguish three cases:

• for j ≤ jM and k > 0 we have∣∣Cj,k(�x, t)∣∣ ≤ M−2j M−k( 4α
1+2α )M

3+2α
1+2α 2

1−2α
1+2α χj,k (�x, f(t)) (A.5)

where the function χj,k is defined by

χj,k(�x, t) = 1 if |�x| ≤M j M−k( 1−2α
1+2α ) M

1−2α
1+2α , f(t) ≤M j+k

= 0 otherwise (A.6)

• for j ≤ jM and k = 0 we have∣∣Cj,0(�x, t)∣∣ ≤ M−2j M
4

1+2α 22( 1−2α
1+2α ) χj,0 (�x, f(t)) (A.7)

where the function χj,0 is defined by

χj,0(�x, t) = 1 if |�x| ≤M j , f(t) ≤M j

= 0 otherwise (A.8)

• for j = jM + 1 we have∣∣CjM+10(�x, t)
∣∣ ≤ M−2jM 22( 1−2α

1+2α ) χjM+1,0 (f(t))
Kp

(1 +M−jM |�x|)p (A.9)

where the function χjM+1,0 is defined by

χjM+1,0(t) = 1 if f(t) ≤M jM

= 0 otherwise (A.10)

and the spatial decay for |�x| comes from the decay of the function F in (II.7).
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Integration volume The region of spatial integration (for a scale propagator) is
now fixed by the χj,k domain. Therefore

• for j ≤ jM and k > 0 we have

Vj,k = |�x|3 f(t) ≤M4j M−k( 2−8α
1+2α ) M3( 1−2α

1+2α ) (A.11)

• for j ≤ jM and k = 0 we have

Vj,k = |�x|3 f(t) ≤M4j (A.12)

• for j = jM + 1 we have

Vj,k = |�x|3 f(t) ≤M4jM . (A.13)

As we have seen, the tree propagator is used in two cases, namely to bound
the sum over cubes in the Hadamard bound (see (IV.141)) and to perform the
sum over trees. In the Hadamard bound we must have

Fjk =: |Cjk|2 M4j Mk ≤ K M−εk (A.14)

for some constants K, ε > 0 (K is actually proportional to some constant power
of M). The decay M−εk is necessary to sum over k. Inserting the α depending
bounds for Cjk we have, for k > 0

Fjk ≤M−4j M−k( 8α
1+2α)M2 3+2α

1+2α 22 1−2α
1+2α M4j Mk =Mk[1−( 8α

1+2α)] M2 3+2α
1+2α 22 1−2α

1+2α

(A.15)
and (A.14) is true for

1−
(

8α
1 + 2α

)
< 0 ⇒ α >

1
6
. (A.16)

On the other hand when summing over the tree structure we must ensure
that

Fjk =: |Cjk| Vjk ≤ K M2j M−εk (A.17)

for some constants K, ε > 0 (K is actually proportional to some constant power
of M). Again the decay M−εk is necessary to sum over k. Inserting the values for
|Cjk| and Vjk we have

Fjk ≤ M−2j M−k( 4α
1+2α )M

3+2α
1+2α 2

1−2α
1+2α M4j M−k( 2−8α

1+2α ) M3( 1−2α
1+2α )

≤ M2j M−k( 2−4α
1+2α ) M2( 3−2α

1+2α ) 2
1−2α
1+2α (A.18)

and (A.17) is true for

2− 8α > 0 ⇒ α <
1
2
. (A.19)
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Therefore the parameter α then can take values only in the open interval (1
6 ,

1
2 ).

Actually we choose the value α = 1
4 which corresponds to

Vjk =M4j . (A.20)

For this value the band volume does not depend on k which is consistent with the
choice of j as the real band slicing, while k is just an auxiliary band slicing.
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