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Curves whose curvature depends on their
position and null curves

R. Pacheco and S. D. Santos

Abstract. We show that, apart from degeneracies, determining a plane
curve whose curvature depends on its position essentially consists of de-
termining a null curve in the Lorentzian 3-space when the null tangent
direction depends on its position. We use this point of view to investigate
the intrinsic equations for the n-elastic curves. We show how the problem
of prescribed null tangent direction in terms of the position can be solved
by quadratures when the prescription exhibits sufficient symmetries. This
problem is formalized in terms of a convenient contact 3-form.

Keywords. Prescribed curvature, Plane geometries, Contact geometry,
Lorentzian 3-space, Null curves.

1. Introduction

The problem of determining a plane curve when its curvature is defined in
terms of its position is not only important in geometry, but also has implica-
tions in physics. For instance, the Newton-Lorentz law for the planar motion
of a charged particle under a perpendicular magnetic field can be interpreted
as a position-dependent curvature problem for Euclidean plane curves. The
understanding of such motions plays a crucial role in the understanding of
some dynamic processes in plasmas [1].

The solutions of some well-known classical variational problems are plane
curves whose curvature only depends on the Euclidean distance d from a
given line. The Euler elasticae curves (see [2,3] and references therein), which
minimize the bending energy of a thin, inextensible wire, have curvature pro-
portional to d. Other classical example is provided by the profile curves of
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Delaunay’s surfaces [4]. More recently, in [5], the authors obtained a full de-
scription of n-elastic curves, i.e., curves whose curvature is of the form dn +μ,
with n, μ ∈ R. This work was motivated by the study of stationary soap films
with vertical potentials. For more examples on curves whose curvature depends
on the Euclidean distance from a given line, see [6]. D. Singer [7] addressed the
case where the prescribed curvature only depends on the Euclidean distance r
to a point. He reformulated the equations of the problem as a Hamiltonian sys-
tem associated to the motion of a body under the influence of a central force.
This Hamiltonian system exhibits a sufficient of symmetries to be integrable
by quadratures. A. Berger [8] considered the same problem from a dynamical
point of view, and gave a complete classification of the closed curves whose
curvature prescription is of the form arb, with a, b ∈ R. In [9], the authors con-
sidered curves in the Lorentzian plane with Lorentzian curvature depending
on their position. They showed how to determine such curves through quadra-
tures when the prescribed curvature function only depends on the Lorentzian
distance to a point.

The second main role in the present paper will be played by null curves in
the Lorentzian 3-space R

2,1. It is well known that the one-parameter family of
osculating circles associated to a curve γ in the Euclidean plane, assuming that
γ has nonvanishing curvature and it has no vertices, defines a null curve Γ in
the Lorentzian 3-space R

2,1 [10,11]. Geometrically, the null curve Γ represents
the one-parameter family of osculating circles to the curve γ under the isotropy
projection. This point of view provides [10,11] an elegant proof of Tait-Kneser
theorem, which states that the osculating circles along a plane curve with
monotone non-vanishing curvature are pairwise disjoint and nested. The cor-
respondence between plane curves and null curves in the Lorentzian 3-space,
which we recall in Sect. 2, holds almost verbatim in other plane geometries (eg.
Lorentzian, isotropic and equi-centro-affine planes [10,12,13]).

In Sect. 3, we show that, apart from degeneracies, determining a plane curve
when the curvature depends on its position (see Problem 3.1) essentially con-
sists of determining a null curve in the Lorenztian 3-space when the null tan-
gent direction depends on its position (see Problem 3.2). This reduces, in a
geometric sensible way, the differential equations of the initial problem to a
nonautonomous system of two differential equations. Since curves in other
plane geometries (equipped with the corresponding notions of curvature and
osculating conics) also produce null curves in the Lorentzian 3-space, Prob-
lem 3.2 encompasses the analogues of the initial problem in other plane geome-
tries, thus being a little more general. We show how the intrinsic equations for
the solutions of Problem 3.1 can be deduced from the corresponding solutions
of Problem 3.2. In particular, in Example 3.8, we investigate the intrinsic equa-
tions for the n-elastic curves. Recall that the curvature function k of a classical
elastic curve is a solution of the equation k′′ = − 1

2k3 + λk, with λ ∈ R. We
obtain the analogous second order differential equations for n-elastic curves
(see (13)). When the prescription of null directions in Problem 3.2 exhibits
a sufficient number of symmetries, one can expect to solve the corresponding
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system of differential equations by quadratures. In Sect. 4 we will show how
this system can be reduced to a first order ordinary differential equation to-
gether with a quadrature when the prescription of null directions is invarian for
different one-parameter subgroups of O(2, 1). Apart degeneracies, Problem 3.2
admits a coordinate-free description in terms of a convenient contact 3-form,
as explained in Sect. 5.

2. Plane curves and null curves

Consider the Lorentzian 3-space R
2,1 := (R3, ·), with the scalar product of

signature (2, 1) given by (x1, y1, z1)·(x2, y2, z2) = x1x2+y1y2−z1z2. A nonzero
vector �u ∈ R

2,1 is called lightlike (respectively, timelike and spacelike) if �u · �u =
0 (respectively, �u · �u < 0 and �u · �u > 0). Any line spanned by a lightlike vector
is called a null line. A null curve in the Lorentzian 3-space is a regular curve
whose tangent vector at each point is lightlike.

The Lorentzian 3-space models the space of all points and oriented circles in
the Euclidean plane R

2 as follows [14]. Points in R
2 will be regarded as circles

of zero radius. Denote by (�e1, �e2, �e3) the canonical basis of R
2,1. Consider the

natural identification R
2 ∼= span{�e3}⊥. Given a point P = (x, y, z) ∈ R

2,1,
denote by L(P ) the light cone with vertex at P . The intersection of L(P )
with R

2 is a circle centered at (x, y) with radius |z|. Equip this circle with
the positive orientation if z > 0 and with the negative orientation if z < 0.
This establishes a one-to-one correspondence, called the isotropy projection,
between R

2,1 and the set of points and oriented circles in R
2.

Under the isotropy projection, a one-parameter family of points and oriented
circles in the Euclidean plane corresponds therefore to a curve in the Lorentzian
3-space R

2,1. In particular, the family of osculating circles to a given regular
plane curve γ corresponds to a certain curve in R

2,1, which we call, following
[11], the L-evolute of γ. More precisely: let γ : I → R

2 be a regular curve
with nonvanishing curvature k; let ε : I → R

2 be its evolute and z = 1/k its
(signed) radius of curvature, so that ε = γ + 1

kn, where n is the unit normal
vector field of γ; the L-evolute of γ is the curve Γ = ε + z�e3 : I → R

2,1. For
each t ∈ I, Γ(t) ∈ R

2,1 corresponds to the osculating circle of γ at t under the
isotropy projection.

We have the following:

Proposition 2.1. [10,11] Let γ : I → R
2 ∼= span{�e3}⊥ be a regular curve with

nonvanishing curvature k. If the derivative k′ is nonvanishing (i.e., γ has
no vertex points), then the L-evolute Γ is a null curve for which Γ′ ∧ Γ′′ is
nonvanishing.

Conversely, given a null curve Γ : I → R
2,1, with Γ′ ∧ Γ′′ nonvanishing, which

does not intersect R
2, there exists a unique regular curve γ : I → R

2 with
nonvanishing curvature and without vertex points such that either (a) the L-
evolute of γ is Γ or (b) the L-evolute of the opposite curve γop is Γop.
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In the conditions of Proposition 2.1, the curve γ is obtained from Γ as follows.
Let L be the null line spanned by Γ′. Then γ is the intersection of the affine
line Γ + L with R

2, that is, if Γ = ε + z�e3, where ε is a curve in R
2, then

γ = Γ − z

z′ Γ
′. (1)

Observe that z′ is nonvanishing since Γ is a (regular) null curve.

Remark 2.2. The correspondence between plane curves and null curves in
the Lorentzian 3-space holds almost verbatim in other plane geometries (eg.
Lorentzian, isotropic and equi-centro-affine planes [10,12,13]).

3. Curvature depending on the position from null curves point
of view

Consider the problem of finding a curve γ in the Euclidean plane when its
curvature is given in terms of its position. More precisely:

Problem 3.1. Let U be an open subset of R
2. Given a smooth function κ : U →

R, find a regular curve γ : I → U such that the curvature function of γ is given
by k = κ ◦ γ.

This problem amounts to solve the nonlinear second order differential equation
X ′(t)Y ′′(t) − Y ′(t)X ′′(t)

(X ′(t)2 + Y ′(t)2)3/2
= κ (X(t), Y (t)) . (2)

We shift the focus from the curvature to the osculating circles. Suppose that
γ is any solution of Problem 3.1 with nonvanishing curvature function and
without vertex points. By Proposition 2.1, γ admits a well-defined L-evolute
Γ such that Γ′ ∧Γ′′ is nonvanishing. Set ρ = 1/κ and assign to each P ∈ U the
family S(P ) of oriented circles of signed radius ρ(P ) through that point. Under
the isotropy projection, this family corresponds to the intersection between the
light cone with vertex at P and the horizontal plane z = ρ(P ). If the curve
γ passes through P , then γ is osculated at that point by one of the oriented
circles in S(P ). Consequently, Γ ∈ S(γ). The situation is illustrated in Fig. 1.

Denote by P(L) the projectivization of the light cone

L =
{
(x, y, z) ∈ R

2,1|x2 + y2 − z2 = 0}.

Let M be the set of points (x, y, z, L) ∈ R
2,1 × P(L) satisfying z = ρ

(
P

)
,

where P ∈ U is the point of intersection between the affine line (x, y, z) + L
and R

2. Then the solution γ of Problem 3.1, when its curvature function k is
nonvanishing and γ has no vertex points, determines a curve

Γ̂ := (Γ, L) : I → M ⊂ R
2,1 × P(L)

satisfying the contact condition

L = span{Γ′}. (3)
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Figure 1 A curve γ and its L-evolute Γ

Parametrize the projectivized light cone P(L) by:

θ ∈ S1 �→ Lθ = span
{
(cos θ, sin θ, 1

)} ∈ P(L). (4)

Hence

M =
{
(x, y, z, Lθ) ∈ R

2,1 × P(L) : z = ρ
(
x − z cos θ, y − z sin θ

)}
. (5)

For any smooth function ρ, the set M can be seen as the preimage of a regular
value, so M is a 3-dimensional submanifold of R

2,1 × P(L).

This motivates the following more general problem:

Problem 3.2. Given a 3-dimensional manifold M of R
2,1 × P(L), find the

curves Γ̂ = (Γ, L) in M satisfying the contact condition L = span{Γ′}.

Remark 3.3. Let M be a 3-dimensional submanifold of R
2,1 × P(L). A curve

Γ̂ = (x, y, z, Lθ) in M satisfies the contact condition (3) if, and only if, x′ =
z′ cos θ and y′ = z′ sin θ. Assuming that z′ is nonvanishing, we can use z to
reparametrize Γ̂ so that the contact condition can be written as:

dx

dz
= cos θ,

dy

dz
= sin θ. (6)

Remark 3.4. In Sect. 5, we will give a coordinate-free description of this con-
tact condition in terms of an appropriate local contact 3-form.

Notice now that if a curve Γ̂ = (Γ, L) in M is a solution of Problem 3.2, with
M defined by z = ρ

(
x− z cos θ, y − z sin θ

)
, then the contact condition implies

that Γ is a null curve. Assume that Γ′ ∧Γ′′ is nonvanishing. Hence there exists
a unique regular curve γ : I → R

2 with novanishing curvature and without
vertex points such that either (a) the L-evolute of γ is Γ or (b) the L-evolute
of the opposite curve γop is Γop. This curve γ can be recovered from Γ by
applying formula (1). Clearly, either γ or γop is a solution of Problem 3.1 with
respect to the function κ = 1/ρ.

Thus, apart from certain degeneracies, we have shown that solving Problem 3.1
essentially consists of solving Problem 3.2 for manifolds M of the form (5).
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Remark 3.5. The reformulation of the initial problem in terms of null curves
has some advantages:

(1) Since the evolutes of curves in other plane geometries (e.g. Lorentzian,
isotropic and equi-centro-affine planes), equipped with the corresponding
notions of curvature, also produce null curves in the Lorentzian 3-space,
our approach in terms of null curves encompasses the analogues of the
initial problem in other plane geometries, only changing the form of the
3-dimensional manifold M ⊂ R

2,1 × P(L).
(2) We have reduced, in a sensible geometrical way, the differential equations

of the problem to the nonautonomous system (6).

Remark 3.6. Let M be a 3-dimensional submanifold of R
2,1×P(L) and assume

that M is of the form θ = θ(x, y, z), with (x, y, z) in some open set U of R
2,1,

as in Remark 3.3. Then, by applying the existence and uniqueness theorem of
solutions to the system of first order ordinary differential equations (6), given
P = (x0, y0, z0) in U , there exists δ > 0 and a unique curve Γ̂ = (Γ, L) :
(−δ, δ) → M such that Γ̂(0) = (P,Lθ0), where θ0 = θ(x0, y0, z0), and L =
span{Γ′}, up to reparametrization.

Proposition 3.7. Let κ be a smooth function on an open subset U of R
2. Fix

p ∈ U such that κ(p) 	= 0 and grad κ(p) 	= 0. Given a unit vector n0 not
perpendicular to the level curve of κ at p, there exists δ > 0 and a unique
(up to orientation-preserving reparametrization) solution γ : (−δ, δ) → U of
Problem 3.1 such that γ(0) = p, and the circle centered at p + 1

κ(p)n0 with
signed radius 1

κ(p) osculates γ at p.

Proof. Take P = p + 1
κ(p)n0 + 1

κ(p) �e3, and n0 = (cos θ0, sin θ0). Since, by
hypothesis, n0 is not perpendicular to the level curve of κ at p, the manifold
M given by (5) is locally a graph θ = θ(x, y, z) at (P,Lθ0). The existence and
uniqueness of local solution follow directly from Remark 3.6. �

3.1. Intrinsic equations

Given a smooth function κ on an open subset U ⊂ R
2, suppose we know

a solution x(z), y(z), θ(z) of the corresponding system (6), giving rise to the
solution

γ(z) = (x(z) − z cos θ(z), y(z) − z sin θ(z))

of Problem 3.1. Denote by t an arclength parameter of γ. Then

dz

dt
= ± 1

zθ′(z)
. (7)

Since z(t) = 1
k(t) , where k = κ ◦ γ is the curvature of γ, the intrinsic equation

for γ is obtained by integrating the first order differential equation (7).
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Observe that, differentianting (7) with respect to t and replacing z = 1
k , we

obtain the following second order differential equation for k:

d2k

dt2
= 3

k5

θ′(z)2
+

k4

θ′(z)3
θ′′(z). (8)

Example 3.8. Let κ be defined by

κ(X,Y ) = Y n + μ,

where n, μ ∈ R. A curve γ whose curvature is given by k = κ ◦ γ is called an
n-elastic curve [5]. Recall that the curvature function k of a classical elastic
curve (the case n = 1, μ = 0) is a solution of the equation k′′ = − 1

2k3+λk, with
λ ∈ R. We will use (8) to obtain the corresponding equation for an n-elastic
curve. We will only consider the case μ = 0 and Y > 0. The submanifold M
of R

2,1 × P(L) is then given by z = (y − z sin θ)−n, hence (for n 	= 0)

sin θ =
y

z
− 1

zp
, (9)

where p = 1
n+1. Let Γ = (x, y, z, Lθ) be a solution of (6) in M . From dy

dz = sin θ,
we obtain the first order linear ODE

dy

dz
− y

z
= − 1

zp
,

which can be easily integrated to obtain (for p 	= 0)

y(z) =
1

pzp−1
+ λz, λ ∈ R,

and, from (9),

sin θ =
1 − p

p

1
zp

+ λ. (10)

Differentiating this with respect to z gives

θ′(z) =
p − 1

zp+1 cos θ
, (11)

and we can differentiate again to obtain

θ′′(z) =
1 − p2

zp+2 cos θ
+

θ′(z)(p − 1) sin θ

zp+1 cos2 θ
. (12)

Replacing (10), (11) and (12) in (8), with z = 1
k and p = 1

n + 1, we can see,
after straightforward computations, that the curvature function k of a plane
curve γ = (X,Y ) whose curvature at each point is prescribed in terms of the
function κ(X,Y ) = Y n, with n 	= −1, 0, satisfies a second order ODE of the
form

d2k

dt2
= A(n, λ)k1− 2

n + B(n)k3 + C(n, λ)k2− 1
n , (13)

where

A(n, λ) = (1 − λ2)(n − 1)n, B(n) = − 2n2

(n + 1)2
, C(n, λ) =

λn(3n − 1)
n + 1

.
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For n = 1, we have A(1, λ) = 0, B(1) = − 1
2 , C(1, λ) = λ, recovering the

well-known equation for the classical elastic curves.

4. Solutions by quadrature

The similarity group of R
2,1, Sim(2, 1) := (R+ ×O(2, 1))�R

2,1, acts on R
2,1 ×

P(L) as follows: given g = ((λ,A), t) ∈ Sim(2, 1) and (p, L) ∈ R
2,1 × P(L),

then
g(p, L) = (gp,AL). (14)

Let H be a one-parameter subgroup of Sim(2, 1). If a 3-dimensional submani-
fold M of R

2,1 × P(L) is invariant under H, then H is a Lie point symmetry
of system (6), which implies that, for a convenient change of variables, it can
be reduced to a first order ordinary differential equation together with a quad-
rature [15, Theorem 2.66]. Next we will exemplify how this can be explicitly
done for different one-parameter subgroups H of Sim(2, 1).

4.1. Invariance under boosts of timelike axis

Let H = {Rα : α ∈ S1} be the one-parameter subgroup of boosts with axis
E3 = span{�e3}. The action of H on R

2,1 × P(L) is given by Rα(x, y, z, θ) =
(x cos α − y sin α, x sin α + y cos α, z, θ + α), with infinitesimal generator v :=
x ∂

∂y − y ∂
∂x + ∂

∂θ , which admits the following set of invariants
{
z, t :=

√
(x − z cos θ)2 + (y − z sin θ)2, u :=

√
x2 + y2

}
(15)

on the open set t, u > 0. We will assume that z 	= 0 as well. Considering a
polar angle function β of (x, y), we have v(β) = 1.

At the points (x, y, z, Lθ) ∈ R
2,1 × P(L) around which (15) is a complete set

of functional invariants, i.e., the Jacobian matrix ∂(z,t,u)
∂(x,y,z,θ) has rank 3 at those

points, M is locally given by F (z, t, u) = 0, for some smooth function F (see
[15, Proposition 2.18], for example). Assume further that Fz is nonvanishing, so
that M is given locally by z = ρ(t, u), for some nonvanishing smooth function
ρ. Following the general procedure described in [15, Theorem 2.66], we consider
the change of variables from (x, y, z) to (t, u, β), with t as the new independent
variable, so that system (6) takes the form

u′ = (ρuu′ + ρt) cos(θ − β), β′ =
(ρuu′ + ρt)

u
sin(θ − β),

with cos(θ − β) = u2+ρ2−t2

2uρ . Hence

u′ = (ρuu′ + ρt)
u2 + ρ2 − t2

2uρ
, (16a)

(u′)2 + u2(β′)2 = (ρuu′ + ρt)2. (16b)
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So we have locally reduced system (6) to a first order ordinary differential
equation (16a) for u together with a quadrature (16b), which gives β from u.
The corresponding solutions are then given by Γ̂ = (Γ, span{Γ′}), with

Γ(t) =
(
u(t) cos β(t), u(t) sin β(t), ρ(t, u(t))

)
.

Example 4.1. The Norwich spiral is the curve, besides the circle, whose radius
of curvature is, at all points, equal to the distance to a fixed point. It is
well known that the Norwich spiral is a second involute of a circle. We test
the formulas obtained above for this particular case. Consider the function
κ : R

2 \ {0} → R defined by κ(X,Y ) = 1√
X2+Y 2 . In this case, M is given by

z = ρ(t) = t and the integration of (16a) yields u2 = at, with a > 0. From
(16b) we obtain

β(t) = ±
(√

4t − a

a
− arctan

√
4t − a

a
+ b

)
,

with b ∈ R. By using the change of variable tan v =
√

4t−a
a , we have

u(v) =
a

2 cos v
, β(v) = ±(tan v − v + b),

with a > 0, b ∈ R and −π
2 < v < π

2 . For each a, b, ε = (u cos β, u sin β) is an
involute of the circle with center at the origin and radius a/2 (see [16]), hence
the Norwich spiral is a second involute of a circle.

4.2. Invariance under boosts of spacelike axis

Let H = {Rα : α ∈ S1} be the one-parameter subgroup of boosts with axis
E1 = span{�e1}. Parameterize P(L ∩ {εxz > 0}), with ε = ±1, by

ν ∈ R �→ Lν = span
{
(1, ε sinh ν, ε cosh ν

)} ∈ P(L ∩ {εxz > 0}). (17)

The action of H on R
2,1 × P(L ∩ {εxz > 0}) is given by Rα(x, y, z, ν) =

(x, y cosh α + z sinhα, y sinh α + z cosh α, ν + α), with infinitesimal generator
v := z ∂

∂y + y ∂
∂z + ∂

∂ν , and it admits the following set of invariants
{
x, t :=

√
(z − εx cosh ν)2 − (y − εx sinh ν)2, u :=

√
z2 − y2

}
. (18)

on the open set z−x cosh ν > |y−x sinh ν|, z > |y|, x > 0. For β := arctanh
(

y
z

)
,

we have v(β) = 1.

At the points (x, y, z, Lν) ∈ R
2,1 × P(L ∩ {εxz > 0}) around which (18) is

a complete set of functional invariants, M is locally given by F (x, t, u) =
0, with x, t, u > 0, for some smooth function F . Assume further that Fx is
nonvanishing, so that M is given locally by x = ρ(t, u), for some nonvanishing
smooth function ρ. Observe that contact condition (3) can be written as: y′ =
εx′ sinh ν and z′ = εx′ cosh ν. Similarly to Sect. 4.1, we can take the change of
variables from (x, y, z) to (t, u, β) (with t as the new independent variable) in
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order to reduce the system (6) to a first order ordinary differential equation
together with a quadrature:

u′ = (ρuu′ + ρt)
u2 + ρ2 − t2

2uρ
, (19a)

(u′)2 − u2(β′)2 = (ρuu′ + ρt)2. (19b)

The corresponding solutions are then given by Γ̂ = (Γ, span{Γ′}), with

Γ(t) =
(
ρ(t, u(t)), u(t) sinh β(t), u(t) cosh β(t)

)
.

4.3. Invariance under boosts of lightlike axis

Consider the lightlike vectors �p := 1√
2
(�e2 + �e3) and �q := 1√

2
(�e2 − �e3) of R

2,1.
Let H = {Rα : α ∈ R} be the one-parameter subgroup of boosts with axis
E = span{�p}. Parametrize P(L) \ {span{�p}} by

μ ∈ R �→ Lμ = span
{
μ�e1 − μ2

2
�p + �q} ∈ P(L) \ {span{�p}}. (20)

The action of H on R
2,1 × (P(L)\{span{�p}}) is given by

Rα(x�e1 + y �p + z �q, μ) =
(
(x + αz)�e1 + (y − αx − α2z

2
)�p + z �q, μ + α

)
,

with infinitesimal generator v := z ∂
∂x − x ∂

∂y + ∂
∂μ , which admits the following

complete set of functional invariants

{
z, t := x − zμ, u :=

x2 + 2yz

z

}

on the open set z 	= 0. For β := x
z , we have v(β) = 1. The submanifold M

is then locally given by F (z, t, u) = 0, with z 	= 0, for some smooth function
F . Assume further that Fz is nonvanishing, so that M is given locally by
z = ρ(t, u), for some nonvanishing smooth function ρ. The contact condition
(3) can be written as: x′ = z′μ, y′ = −z′ μ2

2 . Similarly to Sect. 4.1 and Sect. 4.2,
we can take the change of variables from (x, y, z) to (t, u, β) (with t as the new
independent variable) in order to reduce the contact condition to a first order
ordinary differential equation (21a) for u together with a quadrature (21b):

u′ = −(ρuu′ + ρt)
t2

ρ2
, (21a)

β′ = −(ρuu′ + ρt)
t

ρ2
. (21b)

The corresponding solutions of Problem 3.2 are then of the form Γ̂ = (Γ, span{Γ′}),
with

Γ(t) = β(t)ρ(t, u(t))�e1 +
u(t) − β(t)2ρ(t, u(t))

2
�p + ρ(t, u(t))�q.
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5. The contact condition

Next we give a coordinate-free description of the contact condition (3) in terms
of an appropriate local contact 3-form.

Throughout this section we will assume that M ⊂ R
2,1 × P(L) is locally the

graph of a smooth map ψ : U → P(L) defined on an open subset U of R
2,1.

For each vector field X : U → R
2,1 on U , X̂ := (X, dψ(X)) is a local vector

field on M . Given ξ : U → L such that ψ = span{ξ} (such lifts always exist
locally), consider the local one-form ωξ ∈ Ω1(M) defined by

ωξ(X̂) := X · ξ. (22)

Proposition 5.1. The one-form ωξ is a local contact form on M if, and only
if,

ξ⊥ = span{ξ, dξ(ξ)}.

Proof. Without loss of generality, we may assume that ξ is of the form ξ =
(cos θ, sin θ, 1), for some smooth function θ on U , because ωξ is a contact form
if, and only if, for any smooth nonvanishing function λ on U , ωλξ is a contact
form. Set ω = ωξ. A direct computation shows that

dω(X̂, Ŷ ) = Y · dξ(X) − X · dξ(Y ).

Set η = (− sin θ, cos θ, 0), and ζ = (cos θ, sin θ,−1). The vector fields ξ̂, η̂, ζ̂

form a frame on M . Since ω(ξ̂) = ω(η̂) = 0 and ξ · dξ = 0, we obtain

ω ∧ dω(ξ̂, η̂, ζ̂) = ω(ζ̂)dω(ξ̂, η̂) = 2 η · dξ(ξ).

So, ω is a contact form if, and only if, η · dξ(ξ) is nonvanishing. Since ξ⊥ =
span{ξ, η} and dξ(ξ) = (η · dξ(ξ)) η, the result follows. �

Remark 5.2. In terms of the coordinates x, y, z on U ⊂ R
2,1, we have ωξ =

cos θ dx + sin θ dy − dz, for ξ = (cos θ, sin θ, 1).

Assume that the one-form ωξ given by (22) is a local contact form on M . Let
Γ be a regular integral curve of ψ (interpreted as a distribution), i.e., Γ is a
regular curve in U satisfying ψ(Γ) = span{Γ′}. Then the curve Γ̂ := (Γ, ψ(Γ))
in M is a Legendre curve (with respect to the local contact structure induced
by ωξ) satisfying

(Γ̂)′ ∈ span{ξ̂ ◦ Γ} ⊂ ker ωξ. (23)
Conversely, we have the following:

Proposition 5.3. Assume that the one-form ωξ given by (22) is a local contact
form on M . Let Γ̂ = (Γ, ψ(Γ)) be a (regular) Legendre curve in M satisfying
(23). Then Γ is a null curve in U ⊂ R

2,1 such that ψ(Γ) = span{Γ′} and
Γ′ ∧ Γ′′ is nonvanishing.
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Proof. From (23), we clearly have ψ(Γ) = span{Γ′} (in particular, Γ is a null
curve). Hence Γ′ = μ(ξ ◦ Γ), for some smooth nonvanishing function μ, which
implies

Γ′′ = μ′(ξ ◦ Γ) + μdξ(Γ′) = μ′(ξ ◦ Γ) + μ2dξ(ξ ◦ Γ).

Since ωξ is a contact form, by Proposition 5.1, (ξ◦Γ)∧dξ(ξ◦Γ) is nonvanishing,
and the result follows. �

Hence, apart certain degeneracies, the contact condition (3) is equivalent to
(23).

Remark 5.4. Suppose that the smooth map ψ : U → P(L) is constructed
from a function κ on an open subset of the Euclidean plane by applying the
procedure we have described in this paper. If ωξ given by (22) defines a local
contact form on M , which locally is the graph of ψ, then a curve Γ̂ = (Γ, ψ(Γ))
in M satisfying (23) produces a null curve Γ which is, by Proposition 2.1 and
Proposition 5.3, the L-evolute of a plane curve with nonvanishing curvature
function and no vertex points (i.e. the plane curve intersects transversally the
level curves of κ).

Finally, observe that, if g = ((λ,A), t) ∈ Sim(2, 1), then gM = M̃ , where M̃

is the graph of the smooth function ψ̃ : gU → P(L) given by

ψ̃(gp) = Aψ(p).

Consider the lift ξ̃ = Aξ ◦ g−1 of ψ̃. The following proposition is a direct
consequence of the definitions:

Proposition 5.5. With the notations above, the one-form ωξ is a contact form
on M if, and only if, ωξ̃ is a contact form on M̃ . In this case, we have the
following:

(a) g : (M,ωξ) → (M̃, ωξ̃) is a contact diffeomorphism;
(b) the curve Γ̂ = (Γ, ψ(Γ)) in M is a Legendre curve satisfying (23) if, and

only if, the curve gΓ̂ in M̃ is a Legendre curve satisfying (23) with respect
to ξ̃.
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